JPH01207634A - Differential pressure type flowmeter - Google Patents

Differential pressure type flowmeter

Info

Publication number
JPH01207634A
JPH01207634A JP3362988A JP3362988A JPH01207634A JP H01207634 A JPH01207634 A JP H01207634A JP 3362988 A JP3362988 A JP 3362988A JP 3362988 A JP3362988 A JP 3362988A JP H01207634 A JPH01207634 A JP H01207634A
Authority
JP
Japan
Prior art keywords
differential pressure
diaphragm
hole
flow rate
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3362988A
Other languages
Japanese (ja)
Inventor
Kenichi Yoshioka
吉岡 賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP3362988A priority Critical patent/JPH01207634A/en
Publication of JPH01207634A publication Critical patent/JPH01207634A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To measure a fine flow rate by allowing a gauge made of a semiconductor formed on a diaphragm of silicon itself to detect differential pressure across a differential pressure hole bored in the center of the strain inducing part of the diaphragm. CONSTITUTION:When fluid Q flows in through a hole 32 as shown by an arrow, a pressure drop is generated at the differential pressure hole 21 at the center part of the strain inducing part 32 which functions as the orifice of the diaphragm 20 made of silicon, thereby generating differential pressure across the hole 21. This differential pressure causes the strain inducing part 32 to be strained, which is detected by a shear type gauge 38 as a piezoelectric resistance element. A computing element which calculates the flow rate is formed integrally with the fixed part 37 of the diaphragm 20 by semiconductor technology so as to satisfy a specific expression of the detected differential pressure and flow rate, and its electric signal is led out through lead wires 29 and 30.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、流体通路に形成された絞りの上下に生じる差
圧を測定することにより流量を検出する差圧形流量計に
係り、特に小形で微少流量を測定することの出来る差圧
形流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a differential pressure type flowmeter that detects a flow rate by measuring the differential pressure generated above and below a restriction formed in a fluid passage, and particularly relates to a small-sized This paper relates to a differential pressure type flow meter that can measure minute flow rates.

〈従来の技術〉 微少流量を測定する流量計としては差圧流量計、熱式流
量計、面積式流量計などがある。このうちオリフィスと
変換器が一体となっているオリフィスの穴径が0.5m
m程度のインテグラルタイプの差圧流量計があるが、そ
の形態はかなり大きいものである。
<Prior Art> Flowmeters that measure minute flow rates include differential pressure flowmeters, thermal flowmeters, and area flowmeters. Of these, the hole diameter of the orifice where the orifice and converter are integrated is 0.5 m.
There are integral type differential pressure flowmeters with a size of about 1.5 m, but they are quite large.

第3図に従来の差圧流量計のうち差圧検出部の原理構成
を示す、10.11は流体管路であり、その各端面には
フランジ部12.13が設けられている。このフランジ
部12.13の間に中央に円形の孔が開けられた円板状
のオリフィス板14が挿入固定されている。
FIG. 3 shows the principle structure of a differential pressure detecting section of a conventional differential pressure flowmeter. Reference numeral 10.11 is a fluid conduit, each end face of which is provided with a flange portion 12.13. A disk-shaped orifice plate 14 having a circular hole in the center is inserted and fixed between the flange portions 12,13.

そして、オリアイス板14に対して流体管路10.11
の上下流の管壁には圧力取出孔15.16が開けられ、
ここから差圧変換部17に各圧力が導入されてこれ等の
差圧りが測定される。
Then, the fluid conduit 10.11 is connected to the Oriais plate 14.
Pressure extraction holes 15 and 16 are opened in the upstream and downstream pipe walls,
From here, each pressure is introduced into the differential pressure converter 17, and these differential pressures are measured.

第3図では差圧変換部を簡単のためU字管式の差圧変換
部で代表して示しであるが、実際には例えば両端がダイ
ヤフラムでシールされ中央にセンタダイヤフラムが配置
されシリコン液でこの中が満たされた2つの部屋を持つ
差圧検出部の各ダイヤフラムに差圧取出孔15.16で
取り出された各圧力が印加され、これによって生じた差
圧に基づいてセンタダイヤスラムが変位してこの変位を
差圧変換部で静電容量の変化として電気的に検出するよ
うに構成されている。そして、この検出原理はサイズの
大小に関係せず同じである。
In Fig. 3, the differential pressure converter is shown as a U-tube type differential pressure converter for simplicity, but in reality, for example, both ends are sealed with diaphragms and a center diaphragm is arranged in the center. The respective pressures taken out through the differential pressure extraction holes 15 and 16 are applied to each diaphragm of the differential pressure detection unit, which has two filled chambers, and the center diaphragm is displaced based on the differential pressure generated. The differential pressure converter is configured to electrically detect this displacement as a change in capacitance. This detection principle is the same regardless of size.

この差圧変換部で検出した差圧を用いて図示しない流量
演算器で流量演算を実行して出力している。
Using the differential pressure detected by this differential pressure converter, a flow rate calculator (not shown) executes flow rate calculation and outputs the result.

〈発明が解決しようとする課題〉 しかしながら、微少流量を測定する微少流量計としては
熱式流量計、面積式流量計などでは精度が充分でなかっ
たり、取り扱いが面倒であるなどの欠点を持ち、また差
圧流量計では変換部は小サイズでも大サイズでもその大
きさに差異はないので、小サイズの差圧流量計はど相対
的に変換部の大きさが大きくなり、微少流量の流量計と
してはその形状も、その重量も大きくなり簡便さに欠け
、コストも上昇する欠点を持つ。
<Problem to be solved by the invention> However, as micro flowmeters for measuring micro flow rates, thermal flowmeters, area flowmeters, etc. have drawbacks such as insufficient accuracy and troublesome handling. In addition, in a differential pressure flowmeter, there is no difference in the size of the converter whether it is small or large, so a small-sized differential pressure flowmeter has a relatively large converter, and a flowmeter with a minute flow rate has a large converter. However, it has the drawbacks of a large shape and weight, lack of simplicity, and increased cost.

く課題を解決するための手段〉 この発明は、以上の課題を解決するために、中央部に差
圧孔の開けられた薄肉の起歪部とその周辺の固定部を有
するシリコンのダイヤフラムと、5このダイヤフラムに
形成され差圧孔の両側の差圧に対応して歪む起歪部の歪
みを検出する半導体のゲージと、ダイヤフラムを支持す
る基板と、ゲージの出力に関連する電気信号を外部に取
り出すリード線が固定されたベースと、このベースと基
板とを結合し測定流体の通路となるチューブと、ダイヤ
フラムを覆うようにベースに結合され流体の通路となる
カバーとを具備し、ゲージの出力に関連する電気信号を
用いて流量演算をするようにしたものである。
Means for Solving the Problems> In order to solve the above problems, the present invention provides a silicon diaphragm having a thin strain-generating part with a differential pressure hole in the center and a fixing part around it; 5 A semiconductor gauge that is formed in this diaphragm and detects the distortion of the strain-generating part that is distorted in response to the differential pressure on both sides of the differential pressure hole, a substrate that supports the diaphragm, and an electrical signal related to the output of the gauge that is connected to the outside. It is equipped with a base to which a lead wire to be taken out is fixed, a tube that connects this base and a substrate and serves as a passage for the fluid to be measured, and a cover that is coupled to the base so as to cover the diaphragm and serves as a passage for the fluid. The flow rate is calculated using electrical signals related to the flow rate.

く作用〉 流体通路となるチューブとカバーとの間に配置されたダ
イヤフラムの起歪部の中央に開けられた差圧孔おいて測
定流量に対応して発生した差圧により生じた歪みをゲー
ジで検出し、この検出した検出信号を用いて流量演算を
する。
A gauge measures the strain caused by the differential pressure generated in response to the measured flow rate in the differential pressure hole drilled in the center of the strain-generating part of the diaphragm, which is placed between the tube that serves as the fluid passage and the cover. The detected detection signal is used to calculate the flow rate.

〈実施例〉 第1図は本発明の1実施例の構成を示す縦断面図である
<Embodiment> FIG. 1 is a longitudinal sectional view showing the configuration of one embodiment of the present invention.

20は第2図で詳述するシリコンなどの半導体の単結晶
で出来た例えば円形のダイヤフラムである。この中央部
には差圧を発生させるための差圧孔21が開けられてい
る。ダイアプラム20は例えばパイレックス硝子などで
できたリング状の基板22の一端に陽f!接合などの方
法により接合されている。基板22の他端には流体Qの
通路となる外周面に円形の段差23を持つ円筒状のチュ
ーブ24が接合されている。
Reference numeral 20 denotes, for example, a circular diaphragm made of a single crystal semiconductor such as silicon, which will be described in detail in FIG. A differential pressure hole 21 for generating a differential pressure is opened in this central portion. The diaphragm 20 is attached to one end of a ring-shaped substrate 22 made of, for example, Pyrex glass. They are joined by a method such as bonding. A cylindrical tube 24 having a circular step 23 on its outer peripheral surface, which serves as a passage for the fluid Q, is joined to the other end of the substrate 22 .

25は金属製の全体として外面が円筒状のベースであり
、この外面の一部に円形の段差26が形成されている。
A base 25 is made of metal and has a cylindrical outer surface as a whole, and a circular step 26 is formed on a part of the outer surface.

このベース25の内部は、チューブ24、基板22、お
よびダイヤフラム20を収容する段差のある円柱状の空
間を有し、ベース25はチューブ24の段差23に当接
して液密に固定されている。この円柱状の外部に位置す
る肉厚部にはその軸方向にリード線を通す貫通孔27.
28が形成され、この貫通孔27.28にはダイヤフラ
ム20からのリード線29.30が例えばガラスなどの
封着材で液密にシールされて挿入固定されている。
The inside of the base 25 has a cylindrical space with a step that accommodates the tube 24, the substrate 22, and the diaphragm 20, and the base 25 is fixed in a liquid-tight manner by contacting the step 23 of the tube 24. A through hole 27 through which a lead wire is passed in the axial direction is provided in the thick wall portion located on the outside of this columnar shape.
28 is formed, and lead wires 29.30 from the diaphragm 20 are inserted and fixed into the through holes 27.28 while being liquid-tightly sealed with a sealing material such as glass.

31は例えば金属製で外径が円柱状のカバーであり、そ
の内部は流体通路となる円形の孔32が開けられ、その
下部にダイヤフラム20、基板22、チューブ24、お
よびベース25を収納する収納孔33が開けられ、この
下端はベース25の外面に形成された段差26に当接し
て液密に固定されている。
Reference numeral 31 denotes a cover made of metal and having a cylindrical outer diameter, the inside of which has a circular hole 32 that serves as a fluid passage, and the lower part of which is a housing for storing the diaphragm 20, the substrate 22, the tube 24, and the base 25. A hole 33 is formed, and the lower end of the hole 33 abuts against a step 26 formed on the outer surface of the base 25 and is fixed in a liquid-tight manner.

次に、ダイヤフラム20に関連する部分について第2図
を参照して詳細に説明する。
Next, parts related to the diaphragm 20 will be explained in detail with reference to FIG. 2.

第2図(イ)は絶縁膜を除去したときのダイヤフラムの
平面図、第2図(ロ)はダイヤフラムを基板に固定した
場合の横断面図である。
FIG. 2(a) is a plan view of the diaphragm with the insulating film removed, and FIG. 2(b) is a cross-sectional view of the diaphragm fixed to the substrate.

34はn形のシリコン単結晶で作られたダイヤフラムで
あり、凹部35を有しさらに凹部35の形成により単結
晶の厚さの薄くなった起歪部36とその周辺の固定部3
7とを有している。起歪部36の中央部には差圧孔21
が起歪部36を貫通して開けられている。
Reference numeral 34 denotes a diaphragm made of n-type silicon single crystal, which has a concave portion 35, and a strain-generating portion 36 in which the thickness of the single crystal is reduced due to the formation of the concave portion 35, and a fixed portion 3 around it.
7. A differential pressure hole 21 is provided in the center of the strain-generating portion 36.
is opened through the strain-generating portion 36.

起歪部36は単結晶の(100)面とされ、その上には
その中心を通る結晶軸<001>方向で起歪部36と固
定部37との境界付近にピエゾ抵抗素子としての剪断形
ゲージ38が不純物の拡散により伝導形がP形として形
成されている。この剪断形ゲージ38の上は5102な
どの酸化膜39で覆われている。
The strain-generating portion 36 is made of a (100) plane of a single crystal, and a shear shape as a piezoresistive element is formed on the surface near the boundary between the strain-generating portion 36 and the fixed portion 37 in the <001> direction of the crystal axis passing through the center thereof. The conductivity type of the gauge 38 is P type due to the diffusion of impurities. The top of this shear type gauge 38 is covered with an oxide film 39 such as 5102.

ダイヤフラム34の固定部37の下端は、例え。The lower end of the fixed portion 37 of the diaphragm 34 is for example.

ばガラス製の中央に孔40の開けられたリング状の基板
22に、陽極接合などの方法により接合されている。
For example, it is bonded to a ring-shaped substrate 22 made of glass and having a hole 40 in the center by a method such as anodic bonding.

次に、以上のように構成された差圧形流量計の動作につ
いて説明する。
Next, the operation of the differential pressure type flowmeter configured as described above will be explained.

いま、第1図に示す様に流体Qが矢印の方向から孔32
の中を通って流入するとダイヤフラム20のオリフィス
として機能する差圧孔21で圧力損失を生じその前後に
差圧ΔPが発生する。この差圧ΔPによりダイヤフラム
20の起歪部36(第2図)に歪みが生じ、この歪みを
剪断形ゲージ38で検出する。
Now, as shown in Fig. 1, the fluid Q is flowing into the hole 32 from the direction of the arrow.
When the fluid flows through the inside, a pressure loss occurs at the differential pressure hole 21 which functions as an orifice of the diaphragm 20, and a differential pressure ΔP is generated before and after the hole. This differential pressure ΔP causes strain in the strain-generating portion 36 (FIG. 2) of the diaphragm 20, and this strain is detected by the shear type gauge 38.

ここで検出される差圧ΔPと流RQ+との関係は、 (hOc(AP)V2 で現すことができる。The relationship between the differential pressure ΔP detected here and the flow RQ+ is: (hOc(AP)V2 It can be expressed as

従って、この関係を満足するように、ダイヤフラム34
の固定部37などに半導体技術によりこの流量演算をす
る演算素子を一体に形成して、その電気信号をリード線
29.30を介して外部に出力するようにすることによ
り差圧形で小形の流量計を実現することができる。
Therefore, the diaphragm 34 is designed to satisfy this relationship.
By integrally forming an arithmetic element that calculates the flow rate using semiconductor technology in the fixed part 37, etc., and outputting the electric signal to the outside via the lead wires 29 and 30, a small and differential pressure type A flow meter can be realized.

また、気体の流量を測定する場合には、測定流体の温度
、圧力により測定する気体の体M流量が変化するので、
この補正をする必要がある。この様な場合には、流量演
算の演算素子を固定部37に形成したように、温度セン
サと圧力センサとをダイヤフラム20に例えば半導体技
術で形成してこれ等の出力を用いて気体流量の温度、圧
力補正をすることができる。この様な構成にすると、半
導体センサを利用するので、気体流量測定用の超小形の
差圧形流量計が実現できる。
In addition, when measuring the flow rate of gas, the flow rate of the gas to be measured changes depending on the temperature and pressure of the measuring fluid.
It is necessary to make this correction. In such a case, a temperature sensor and a pressure sensor may be formed on the diaphragm 20 using, for example, semiconductor technology, just as the arithmetic element for flow rate calculation is formed on the fixed part 37, and the outputs of these sensors may be used to determine the temperature of the gas flow rate. , can perform pressure correction. With this configuration, since a semiconductor sensor is used, an ultra-small differential pressure type flowmeter for measuring gas flow rate can be realized.

なお、第1図において示す差圧孔21の形状は丸孔とし
て形成されているがこれは角孔でも良く、また流#、Q
は孔32側から流入させる構成としているが、これはチ
ューブ24側から流入させても良い。
Note that although the shape of the differential pressure hole 21 shown in FIG. 1 is formed as a round hole, it may also be a square hole.
is configured to flow from the hole 32 side, but it may also flow from the tube 24 side.

さらに、差圧を検出するゲージとして剪断形ゲージをベ
ースとして説明したが、これに限られることはなく他の
形式のゲージでも良い。
Further, although the description has been made based on a shear type gauge as a gauge for detecting differential pressure, the present invention is not limited to this, and other types of gauges may be used.

〈発明の効果〉 以上、実施例と共に具体的に説明したように本発明によ
れば、シリコンのダイヤフラムの起歪部の中央に開けら
れた差圧孔の両端に生じる差圧をこのダイヤスラム自体
に形成された半導体のゲージで検出するようにしな、つ
まりオリフィスと差圧検出部とを半導体技術により一体
に形成したので、微少流量を測定することの出来る超小
形の差圧形流量計を実現することができる。この結果、
流量計自体の重量を低減することができ、ひいては低コ
ストが実現できる。
<Effects of the Invention> As specifically explained above in conjunction with the embodiments, according to the present invention, the differential pressure generated at both ends of the differential pressure hole opened in the center of the strain-generating portion of the silicon diaphragm is absorbed by the diaphragm itself. In other words, the orifice and differential pressure detection part are integrally formed using semiconductor technology, resulting in an ultra-compact differential pressure flowmeter that can measure minute flow rates. can do. As a result,
The weight of the flowmeter itself can be reduced, and as a result, cost can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を示す縦断面図、第2図は第
1図におけるダイヤフラムを基板に固定したときの詳細
を示す構成図、第3図は従来の差圧形流量計の構成を示
す縦断面図である。 10.11・・・流体管路、14・・・オリフィス板、
20・・・ダイヤフラム、21・・・差圧孔、22・・
・基板、24・・・チューブ、31・・・カバー、36
・・・起歪部、37・・・固定部、38・・・剪断形ゲ
ージ。
Fig. 1 is a longitudinal sectional view showing one embodiment of the present invention, Fig. 2 is a configuration diagram showing details when the diaphragm in Fig. 1 is fixed to a substrate, and Fig. 3 is a diagram of a conventional differential pressure type flowmeter. FIG. 3 is a vertical cross-sectional view showing the configuration. 10.11... Fluid pipe line, 14... Orifice plate,
20...Diaphragm, 21...Differential pressure hole, 22...
・Substrate, 24...Tube, 31...Cover, 36
... Strain part, 37... Fixed part, 38... Shear type gauge.

Claims (1)

【特許請求の範囲】[Claims]  中央部に差圧孔の開けられた薄肉の起歪部とその周辺
の固定部を有するシリコンのダイヤフラムと、このダイ
ヤフラムに形成され前記差圧孔の両側の差圧に対応して
歪む起歪部の歪みを検出する半導体のゲージと、前記ダ
イヤフラムを支持する基板と、前記ゲージの出力に関連
する電気信号を外部に取り出すリード線が固定されたベ
ースと、このベースと前記基板とを結合し測定流体の通
路となるチューブと、前記ダイヤフラムを覆うように前
記ベースに結合され前記流体の通路となるカバーとを具
備し、前記電気信号を用いて流量演算をすることを特徴
とする差圧形流量計。
A silicon diaphragm having a thin strain-generating part with a differential pressure hole in the center and a fixed part around it, and a strain-generating part formed on the diaphragm that distorts in response to the differential pressure on both sides of the differential pressure hole. A semiconductor gauge that detects the strain of the diaphragm, a substrate that supports the diaphragm, a base to which a lead wire for extracting an electrical signal related to the output of the gauge to the outside is fixed, and this base and the substrate are coupled together for measurement. A differential pressure type flow rate comprising a tube serving as a passage for fluid, and a cover coupled to the base so as to cover the diaphragm and serving as a passage for the fluid, and calculating the flow rate using the electric signal. Total.
JP3362988A 1988-02-16 1988-02-16 Differential pressure type flowmeter Pending JPH01207634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3362988A JPH01207634A (en) 1988-02-16 1988-02-16 Differential pressure type flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3362988A JPH01207634A (en) 1988-02-16 1988-02-16 Differential pressure type flowmeter

Publications (1)

Publication Number Publication Date
JPH01207634A true JPH01207634A (en) 1989-08-21

Family

ID=12391745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3362988A Pending JPH01207634A (en) 1988-02-16 1988-02-16 Differential pressure type flowmeter

Country Status (1)

Country Link
JP (1) JPH01207634A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001066955A3 (en) * 2000-03-08 2002-02-07 Rosemount Inc Bi-directional differential pressure flow sensor
JP2007017367A (en) * 2005-07-11 2007-01-25 Tokyo Electron Ltd Flow measuring device and flow measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001066955A3 (en) * 2000-03-08 2002-02-07 Rosemount Inc Bi-directional differential pressure flow sensor
JP2007017367A (en) * 2005-07-11 2007-01-25 Tokyo Electron Ltd Flow measuring device and flow measuring method

Similar Documents

Publication Publication Date Title
US7503221B2 (en) Dual span absolute pressure sense die
US5447073A (en) Multimeasurement replaceable vortex sensor
US4523477A (en) Planar-measuring vortex-shedding mass flowmeter
JPH06201421A (en) Flowmeter
US7201067B2 (en) System and method for determining flow characteristics
AU2001284789A1 (en) Fluid-tight differential pressure flow sensor
EP1307711A2 (en) Fluid-tight differential pressure flow sensor
WO2006008837A1 (en) Multi-vortex flow meter
JPH0629821B2 (en) Multi-function differential pressure sensor
JPH01207634A (en) Differential pressure type flowmeter
US20210231473A1 (en) Differential pressure type flowmeter
JPH0645209Y2 (en) Semiconductor differential pressure flow meter
JP3184126B2 (en) Flow sensor
JPH06229793A (en) Flowmeter
JP2001124645A (en) Semiconductor pressure sensor
JP3024364B2 (en) Karman vortex flowmeter
JPS5928342Y2 (en) force detector
JPH03277973A (en) Semiconductor current meter
JP3209303B2 (en) Vortex flow meter
JPH04194718A (en) Differential pressure measuring device
JPS5953489B2 (en) Flow velocity flow measuring device
SU443254A1 (en) Flow sensor
JPH01107113A (en) Vortex flowmeter
JPH0198926A (en) Mass flowmeter
JPH0862004A (en) Flowmeter