JPH03277973A - Semiconductor current meter - Google Patents

Semiconductor current meter

Info

Publication number
JPH03277973A
JPH03277973A JP7914890A JP7914890A JPH03277973A JP H03277973 A JPH03277973 A JP H03277973A JP 7914890 A JP7914890 A JP 7914890A JP 7914890 A JP7914890 A JP 7914890A JP H03277973 A JPH03277973 A JP H03277973A
Authority
JP
Japan
Prior art keywords
fluid
silicon diaphragm
diaphragm
measured
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7914890A
Other languages
Japanese (ja)
Inventor
Toshio Aga
阿賀 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP7914890A priority Critical patent/JPH03277973A/en
Publication of JPH03277973A publication Critical patent/JPH03277973A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To reduce in size and weight, to facilitate handling and to decrease a cost by displacing a silicon diaphragm by a force from fluid to be measured, and detecting the displacement by a piezo resistance element. CONSTITUTION:A plurality of piezo resistance elements 2 for detecting the displacement of a silicon diaphragm are so arranged as to form a bridge on the surface of the vicinity of one end of the diaphragm 1, and a flow peeling material 3 is arranged at the end of the vicinity. They are fixedly disposed in the bottom of a tube 5 along the flowing direction of fluid to be measured through a support 4 with the material 3 as the upstream side. A pressure distribution responsive to the flowing speed of the fluid is generated on the pressure receiving surface of the diaphragm by the material 3. Thus, the diaphragm 1 is received by the force from the fluid, the force is detected by the elements 2, and the speed of the fluid can be obtained from the output signals of the elements.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体式流速計に関し、更に詳しくは、管路内
の流速測定に適した小形で取扱いが容易な半導体式流速
計に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a semiconductor type current meter, and more particularly to a small and easy-to-handle semiconductor type current meter suitable for measuring flow velocity in a pipe.

〈従来の技術〉 従来から、管路内の流速測定にあたっては、熱線式やピ
トー管式等が用いられている。
<Prior Art> Conventionally, a hot wire method, a pitot tube method, etc. have been used to measure the flow velocity in a pipe.

熱線式流速計は電流で加熱されている白金線を流体にさ
らすと熱が奪われて温度が下がって白金線の電気抵抗が
減少することを利用したものであり、主に気体の流速測
定に用いられている。具体的には、加熱電圧を一定に保
っておいて白金線の抵抗値変化に起因する不平衡電流の
変化から流速を求める定電圧方式と、白金線の温度を一
定に維持するために印加すべき電流の変化から流速を求
める定温度方式とがある。
Hot wire anemometers utilize the fact that when a platinum wire heated by an electric current is exposed to a fluid, heat is removed, the temperature drops, and the electrical resistance of the platinum wire decreases.It is mainly used to measure the flow velocity of gases. It is used. Specifically, there is a constant voltage method in which the heating voltage is kept constant and the flow velocity is determined from changes in unbalanced current caused by changes in the resistance value of the platinum wire, and a method in which the heating voltage is kept constant and the flow rate is determined from changes in the unbalanced current caused by changes in the resistance value of the platinum wire. There is a constant temperature method that calculates the flow velocity from the change in current.

一方、ピトー管式流速計はベルヌーイの定理を応用した
ものであり、気流や水流の測定に用いられる。例えば両
端が開放されたパイプの一端をL字形に曲げて水流中に
浸してその端部を流れの上流側に向けると、流れがせき
とめられてパイプ内部には水流の動圧と静圧を加えた圧
力(総圧)が作用し、パイプ内の水面は水流の水面より
も流速に比例した動圧分だけ高くなる。従って、水流の
場合には両端が開放されて一端がL字形に曲げられたパ
イプよりなるピトー管だけで流速を測定できる。なお、
気流の流速(動圧)を測定する場合には、静圧を測定す
る静圧管を組み合わせて総圧と静圧の差圧を求めること
が行われている。
On the other hand, a Pitot tube current meter applies Bernoulli's theorem and is used to measure air and water flows. For example, if one end of a pipe with both ends open is bent into an L shape and immersed in a stream of water, with the end facing upstream, the flow is blocked and the dynamic and static pressures of the water flow are applied inside the pipe. The water level in the pipe becomes higher than the water level in the water stream by an amount of dynamic pressure proportional to the flow velocity. Therefore, in the case of water flow, the flow velocity can be measured using only a pitot tube, which is a pipe with both ends open and one end bent into an L-shape. In addition,
When measuring the flow rate (dynamic pressure) of airflow, static pressure tubes for measuring static pressure are combined to determine the differential pressure between the total pressure and the static pressure.

〈発明が解決しようとする課題〉 しかし、これら従来の流速計は、いずれも比較的大形で
、取扱いは簡単ではなく、価格も高いという問題がある
<Problems to be Solved by the Invention> However, all of these conventional current velocity meters have problems in that they are relatively large, are not easy to handle, and are expensive.

本発明はこのような点に着目してなされたものであり、
その目的は、小形で軽量で取扱いが容易で安価な半導体
式流速計を提供することにある。
The present invention has been made with attention to these points,
The purpose is to provide a semiconductor type current meter that is small, lightweight, easy to handle, and inexpensive.

〈課題を解決するための手段〉 上記課題を解決する本発明は、 受圧面が被測定流体の流れ方向に沿って配置されるシリ
コンダイアフラムと、 該シリコンダイアフラムに配設され、該シリコンダイア
フラムの変位を検出するピエゾ抵抗素子と、 前記のシリコンダイアフラムの上流側端部近傍に配設さ
れ、前記シリコンダイアフラムの受圧面に被測定流体の
流速に応した圧力分布を生じさせる流れ剥離体とを具備
したことを特徴とするものである。
<Means for Solving the Problems> The present invention for solving the above problems includes: a silicon diaphragm in which a pressure receiving surface is arranged along the flow direction of a fluid to be measured; a piezoresistive element that detects the flow rate of the fluid to be measured; and a flow separation body that is disposed near the upstream end of the silicon diaphragm and generates a pressure distribution on the pressure receiving surface of the silicon diaphragm in accordance with the flow velocity of the fluid to be measured. It is characterized by this.

く作用〉 本発明の半導体式流速計によれば、シリコンダイアフラ
ムは被測定流体からの力を受は変位し、ピエゾ抵抗素子
はその変位を検出する。
Effects> According to the semiconductor current meter of the present invention, the silicon diaphragm receives the force from the fluid to be measured and is displaced, and the piezoresistive element detects the displacement.

これにより、ピエゾ抵抗素子の出力信号から被測定流体
の流速を求めることができる。
Thereby, the flow velocity of the fluid to be measured can be determined from the output signal of the piezoresistive element.

〈実施例〉 以下、図面を参照して本発明の実施例を詳細に説明する
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の構成図、第2図は第1図の
簡略断面図、第3図は圧力分布を示す図である。図にお
いて、シリコンダイアフラム1の一端近傍の表面にはブ
リッジを構成するように複数のピエゾ抵抗素子(ゲージ
)2が配設され、該ピエゾ抵抗素子2近傍のシリコンダ
イアフラム1の端部には例えばガラスで構成された流れ
剥離体3が配設されている。該シリコンダイアフラム1
は例えば異方性エツチングで形成されるものであり、流
れ剥離体3が上流側に位置するようにして被測定流体の
流れ方向に沿って例えばガラスよりなる支持体4を介し
て管5の底面に固定配置されている。なお、この受圧面
の幅はbであり、長さはLである。流れ剥離体3や支持
体4はシリコンダイアフラム1に陽極接合や低融点ガラ
ス等で接合される。シリコンダイアフラム1の内部の圧
力は大気圧や真空等の一定の値P、に保たれている。
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a simplified sectional view of FIG. 1, and FIG. 3 is a diagram showing pressure distribution. In the figure, a plurality of piezoresistive elements (gauges) 2 are arranged on the surface near one end of a silicon diaphragm 1 to form a bridge, and the end of the silicon diaphragm 1 near the piezoresistive elements 2 is made of glass, for example. A flow separation body 3 is provided. The silicon diaphragm 1
is formed by, for example, anisotropic etching, and the bottom surface of the tube 5 is etched along the flow direction of the fluid to be measured via a support 4 made of glass, for example, with the flow separation body 3 located on the upstream side. is fixedly placed. Note that the width of this pressure receiving surface is b, and the length is L. The flow separation body 3 and the support body 4 are bonded to the silicon diaphragm 1 by anodic bonding, low melting point glass, or the like. The pressure inside the silicon diaphragm 1 is maintained at a constant value P, such as atmospheric pressure or vacuum.

管5内における被測定流体の深さDと流れ剥離体3とシ
リコンダイアフラム1と支持体4を重ね合わせた高さH
の関係は、H<Dを満たすようにする。
Depth D of the fluid to be measured in the tube 5 and height H when the flow separation body 3, silicon diaphragm 1 and support body 4 are overlapped
The relationship is made to satisfy H<D.

このような構成において、シリコンダイアフラム1は被
測定流体からの力を受けてピエゾ抵抗素子2はその力を
検出することになり、ピエゾ抵抗素子2の出力信号から
被測定流体Fの流速を求めることができる。
In such a configuration, the silicon diaphragm 1 receives a force from the fluid to be measured, and the piezoresistive element 2 detects the force, and the flow velocity of the fluid to be measured F can be determined from the output signal of the piezoresistive element 2. I can do it.

被測定流体の流れの一部は流れ剥離体3の前面の角部で
全体の流れの中から剥離させられる。剥離させられた流
れの先端は第3図(イ)に示すように一定距離gだけ流
速Vで移動した後、シリコンダイアフラム1の表面に付
着する。この距離pは流速Vに比例する。すなわち、 i ocv、    、、I−に−v       −
(1)(K:定数) の関係が成立する。
A part of the flow of the fluid to be measured is separated from the entire flow at the front corner of the flow separation body 3. The tip of the separated flow moves a certain distance g at a flow velocity V, as shown in FIG. 3(a), and then attaches to the surface of the silicon diaphragm 1. This distance p is proportional to the flow velocity V. That is, i ocv, ,,I-to-v-
The following relationship holds true: (1) (K: constant).

本実施例を第3図(イ)の如く配置した場合、シリコン
ダイアフラム1の上面側での圧力P。の分布は第3図(
ロ)で示され、シリコンダイアフラム1のした面側での
圧力P、の分布は第3図(ハ)で示される如く一定であ
る。したがって、シリコンダイアフラム1の流れ剥離体
3の後端からほぼI/2及びI +(t ■2)の各位
置にそれぞれ次式で示される力F及びF′が作用するこ
とになる。
When this embodiment is arranged as shown in FIG. 3(A), the pressure P on the upper surface side of the silicon diaphragm 1. The distribution of is shown in Figure 3 (
The distribution of the pressure P on the side of the silicon diaphragm 1 is constant as shown in FIG. 3(c). Therefore, forces F and F' expressed by the following equations are applied to positions approximately I/2 and I + (t2) from the rear end of the flow separation body 3 of the silicon diaphragm 1, respectively.

F ”(Po −P+ )  ・D−b      −
(2)F″”lPo −Ko ’ (1/2)  ’ 
P ” V 2−Pt l・g゛ ・b =(K+−に2・v2)   b・(L−1)/2−(
3)但し、K、、に、、に、:定数 Po :距離g内でのシリコンダイアフラム1の上面の
圧力 ρ:流体密度 これらの力F及びF′によりシリコンダイアフラム1の
固定端近傍のピエゾ抵抗素子2には曲げモーメントM及
び曲げモーメントMに基づく応力σが作用し、ゲージ出
力Eは、 Eocσ eM cX:F −j+F’ −(14(j ’/2)1”1
) 2”(K I −に2 ・V2)・+ o、−j)
/21・ ((L+1 )/2+c1cV2+(Kl−
に2−V2)(L2−K)−V2)s”K、6V4 +
に、6V2 +に6、’、E=に4  ・V’ +に5
 ・V2+に6−(4)但し、K3.に4.に、、に6
 :定数になる。
F”(Po −P+) ・Db −
(2) F″”lPo −Ko ' (1/2) '
P ” V 2-Pt l・g゛・b = (2・v2 to K+-) b・(L-1)/2-(
3) However, K, , , , : Constant Po : Pressure on the top surface of silicon diaphragm 1 within distance g ρ : Fluid density Due to these forces F and F', piezoresistance near the fixed end of silicon diaphragm 1 A bending moment M and a stress σ based on the bending moment M act on the element 2, and the gauge output E is Eocσ eM cX:F −j+F′ −(14(j′/2)1”1
) 2” (K I − 2 ・V2)・+ o, −j)
/21・((L+1)/2+c1cV2+(Kl−
2-V2) (L2-K)-V2)s”K, 6V4 +
, 6V2 + 6, ', E = 4 ・V' + 5
・6-(4) for V2+ However, K3. 4. ni,,ni6
: Becomes a constant.

すなわち、ゲージ出力Eから流速Vを求めることができ
る。なお、定数に4.に5.に6は予め校正して求めて
おく。また、流れ剥離体3の高さH(0も含む)や流れ
の方向に沿った長さCなどは最適値を選ぶようにする。
That is, the flow velocity V can be determined from the gauge output E. In addition, 4. is added to the constant. 5. Calibrate and find 6 in advance. Further, the height H (including 0) of the flow separation body 3, the length C along the flow direction, etc. are selected to be optimum values.

このように構成される流速計は、小形で取扱いは容易で
ある。そして、半導体製造プロセスで大量生産できるの
で、安価である。
The current meter configured in this manner is small and easy to handle. Moreover, since it can be mass-produced using a semiconductor manufacturing process, it is inexpensive.

また、ピエゾ抵抗素子とともにシリコンダイアフラムの
固定部分に信号処理回路を形成することにより、信号処
理された出力を得ることができる。
Furthermore, by forming a signal processing circuit on a fixed portion of the silicon diaphragm together with the piezoresistive element, a signal-processed output can be obtained.

〈発明の効果〉 以上詳細に説明したように、本発明によれば、小形で軽
量で取扱いが容易で安価な半導体式流速計を提供するこ
とができる。
<Effects of the Invention> As described above in detail, according to the present invention, it is possible to provide a semiconductor type current meter that is small, lightweight, easy to handle, and inexpensive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、 第2図は第1図の簡略断面図、 第3図は圧力分布説明図である。 1・・・シリコンダイアフラム 2・・・ピエゾ抵抗素子(ゲージ) 3・・・流れ剥離体 4・・・支持体 第 図 第 図 2ビニV砿仇畢士鳳グーンJ 第 図 FIG. 1 is a configuration diagram of an embodiment of the present invention, Figure 2 is a simplified cross-sectional view of Figure 1; FIG. 3 is an explanatory diagram of pressure distribution. 1...Silicon diaphragm 2... Piezoresistive element (gauge) 3...Flow separation body 4...Support No. figure No. figure 2 vinyl V 砿织碇士HOGOON J No. figure

Claims (1)

【特許請求の範囲】 受圧面が被測定流体の流れ方向に沿って配置されるシリ
コンダイアフラムと、 該シリコンダイアフラムに配設され、該シリコンダイア
フラムの変位を検出するピエゾ抵抗素子と、 前記のシリコンダイアフラムの上流側端部近傍に配設さ
れ、前記シリコンダイアフラムの受圧面に被測定流体の
流速に応じた圧力分布を生じさせる流れ剥離体とを具備
したことを特徴とする半導体式流速計。
[Scope of Claims] A silicon diaphragm whose pressure-receiving surface is arranged along the flow direction of a fluid to be measured; a piezoresistive element disposed on the silicon diaphragm to detect displacement of the silicon diaphragm; and the silicon diaphragm. a flow separator disposed near the upstream end of the silicon diaphragm to generate a pressure distribution on the pressure receiving surface of the silicon diaphragm according to the flow velocity of the fluid to be measured.
JP7914890A 1990-03-28 1990-03-28 Semiconductor current meter Pending JPH03277973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7914890A JPH03277973A (en) 1990-03-28 1990-03-28 Semiconductor current meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7914890A JPH03277973A (en) 1990-03-28 1990-03-28 Semiconductor current meter

Publications (1)

Publication Number Publication Date
JPH03277973A true JPH03277973A (en) 1991-12-09

Family

ID=13681875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7914890A Pending JPH03277973A (en) 1990-03-28 1990-03-28 Semiconductor current meter

Country Status (1)

Country Link
JP (1) JPH03277973A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429001A (en) * 1992-09-30 1995-07-04 Rosemount Inc. Vortex mass flowmeter
US6170338B1 (en) 1997-03-27 2001-01-09 Rosemont Inc. Vortex flowmeter with signal processing
US7258024B2 (en) 2004-03-25 2007-08-21 Rosemount Inc. Simplified fluid property measurement
CN107085122A (en) * 2017-06-08 2017-08-22 河海大学 Universal rainwash real-time monitoring device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429001A (en) * 1992-09-30 1995-07-04 Rosemount Inc. Vortex mass flowmeter
US6170338B1 (en) 1997-03-27 2001-01-09 Rosemont Inc. Vortex flowmeter with signal processing
US6412353B1 (en) 1997-03-27 2002-07-02 Rosemount Inc. Vortex flowmeter with signal processing
US6484590B1 (en) 1997-03-27 2002-11-26 Rosemount Inc. Method for measuring fluid flow
US6651512B1 (en) 1997-03-27 2003-11-25 Rosemount, Inc. Ancillary process outputs of a vortex flowmeter
US6658945B1 (en) 1997-03-27 2003-12-09 Rosemount Inc. Vortex flowmeter with measured parameter adjustment
US7258024B2 (en) 2004-03-25 2007-08-21 Rosemount Inc. Simplified fluid property measurement
CN107085122A (en) * 2017-06-08 2017-08-22 河海大学 Universal rainwash real-time monitoring device
CN107085122B (en) * 2017-06-08 2019-08-20 河海大学 Universal rainwash real-time monitoring device

Similar Documents

Publication Publication Date Title
US4787251A (en) Directional low differential pressure transducer
US7536908B2 (en) Micromachined thermal mass flow sensors and insertion type flow meters and manufacture methods
US6055869A (en) Lift force fluid flow sensor for measuring fluid flow velocities
EP1227326A2 (en) Fluid flow sensor
CN104482971B (en) A kind of thermal flow rate sensor based on MEMS technology
US5515735A (en) Micromachined flow sensor device using a pressure difference and method of manufacturing the same
EP1363104A2 (en) Tilt sensor and method of forming such device
JP3282773B2 (en) Thermal flow meter
WO2007147027A2 (en) Pressure transducer with differential amplifier
US7201067B2 (en) System and method for determining flow characteristics
JPH03277973A (en) Semiconductor current meter
CN107192849A (en) A kind of design of micro-machine acceleration transducer based on thermal convection principle and preparation method thereof
JPS6331041B2 (en)
US4361054A (en) Hot-wire anemometer gyro pickoff
JPH03282217A (en) Semiconductor type current meter
JP2654184B2 (en) Semiconductor humidity sensor
JPH07176769A (en) Piezoelectric resistance sensor device
JP2512220B2 (en) Multi-function sensor
JPH0645209Y2 (en) Semiconductor differential pressure flow meter
JPH0648421Y2 (en) Semiconductor acceleration sensor
JP2002296291A (en) Sensor for wind direction and wind velocity
JP2001124645A (en) Semiconductor pressure sensor
JPH01207634A (en) Differential pressure type flowmeter
GB2107924A (en) Strain gauge pressure transducers
JPH09329478A (en) Thermal type flow meter having straightening cover