JP2654184B2 - Semiconductor humidity sensor - Google Patents

Semiconductor humidity sensor

Info

Publication number
JP2654184B2
JP2654184B2 JP15738389A JP15738389A JP2654184B2 JP 2654184 B2 JP2654184 B2 JP 2654184B2 JP 15738389 A JP15738389 A JP 15738389A JP 15738389 A JP15738389 A JP 15738389A JP 2654184 B2 JP2654184 B2 JP 2654184B2
Authority
JP
Japan
Prior art keywords
diaphragm
moisture
humidity
change
humidity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15738389A
Other languages
Japanese (ja)
Other versions
JPH0321849A (en
Inventor
良雄 宮井
貞夫 阪本
安弘 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP15738389A priority Critical patent/JP2654184B2/en
Publication of JPH0321849A publication Critical patent/JPH0321849A/en
Application granted granted Critical
Publication of JP2654184B2 publication Critical patent/JP2654184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、感湿体の湿度による体積変化を利用した湿
度センサに関する。
The present invention relates to a humidity sensor that utilizes a volume change of a humidity sensitive body due to humidity.

(ロ)従来の技術 従来、湿度センサとしては、高分子(以下ポリマーと
いう)やセラミック等の雰囲気湿度により抵抗,容量等
の電気的性質が変わることを利用したものが知られてい
る。しかし、これらの湿度センサは検出部を常に測定雰
囲気中にさらして使用するため、汚染等により電気的性
質の変化が避けがたく、長期安定性に欠ける。これに対
し、特開昭56−42126号公報に開示された毛髪やナイロ
ンのような感湿体を用いた湿度計は、感湿体の伸縮とい
う機械的な性質を利用するため、上記電気的性質を利用
するものに比べて長期の安定性がある。しかし、これま
でこの感湿体の伸縮を容易に電気信号に変換し難く、湿
度センサ化されていなかった。
(B) Conventional technology Conventionally, as a humidity sensor, a sensor utilizing the fact that electrical properties such as resistance and capacitance change depending on the atmospheric humidity of a polymer (hereinafter, referred to as a polymer), ceramic, or the like is known. However, since these humidity sensors always use the detection unit exposed to the measurement atmosphere, changes in electrical properties due to contamination or the like are inevitable and lack long-term stability. On the other hand, a hygrometer using a moisture-sensitive body such as hair or nylon disclosed in Japanese Patent Application Laid-Open No. 56-42126 uses the mechanical property of the moisture-sensitive body to expand and contract. It has long-term stability compared to those that use properties. However, it has been difficult to convert the expansion and contraction of the moisture-sensitive body into an electric signal easily, and it has not been used as a humidity sensor.

一方、本発明者らは実願昭60−120665,特開昭61−245
889で示したごとく感湿材の伸縮を半導体のピエゾ抵抗
効果を用いて検出する湿度センサを提案している。
On the other hand, the present inventors have disclosed Japanese Utility Model Application No. 60-120665 and Japanese Patent Application Laid-Open No. 61-245.
As indicated at 889, a humidity sensor that detects expansion and contraction of a moisture-sensitive material using the piezoresistance effect of a semiconductor has been proposed.

(ハ)発明が解決しようとする課題 前記感湿材の伸縮を利用する湿度センサは、感湿材が
薄膜化されており湿度による伸縮が面内方向のみである
ため該感湿膜が被着されているシリコンダイアフラムを
大きく変形させることはできず、ピエゾ抵抗の抵抗変化
が小さく検出される出力電圧が小さいという課題があっ
た。
(C) Problems to be Solved by the Invention In the humidity sensor utilizing the expansion and contraction of the moisture-sensitive material, the humidity-sensitive material is thinned and the expansion and contraction due to the humidity is only in the in-plane direction. However, there has been a problem that the silicon diaphragm used cannot be largely deformed, and the change in resistance of the piezoresistor is small, and the detected output voltage is small.

(ニ)課題を解決するための手段 シリコンペレットをエッチング加工してダイアフラム
構造とし、このダイアフラム部と側壁間に感湿体を被着
し湿度による体積変化でダイアフラムを変形させ、この
変形をダイアフラム上に形成されたピエゾ抵抗体の抵抗
変化として検出する。
(D) Means for solving the problem A silicon pellet is etched to form a diaphragm structure. A moisture-sensitive body is applied between the diaphragm part and the side wall, and the diaphragm is deformed by a volume change due to humidity. Is detected as a change in the resistance of the piezoresistor formed at the time.

(ホ)作 用 本発明によれば、雰囲気湿度が変化すると感湿体は膨
張,収縮の体積変化を生じる。この時、感湿体はダイア
フラム側壁にも十分被着されており、ダイアフラムの受
感部はこの側壁を基準に感湿体に引っ張られたり押され
たりするので、ダイアフラム面に垂直な応力を大きく受
けることになり大きな変形を生じる。このダイアフラム
の変形によりピエゾ抵抗領域の抵抗変化も大きくなり大
きな変化を得ることができる。
(E) Operation According to the present invention, when the atmospheric humidity changes, the moisture-sensitive body undergoes volume changes such as expansion and contraction. At this time, the moisture-sensitive body is also sufficiently attached to the side wall of the diaphragm, and the sensing part of the diaphragm is pulled or pushed by the moisture-sensitive body based on this side wall, so that the stress perpendicular to the diaphragm surface is increased. And undergoes significant deformation. Due to the deformation of the diaphragm, the resistance change of the piezoresistive region is increased, and a large change can be obtained.

(ヘ)実 施 例 第1図は本発明の一実施例の平面図で、第2図は第1
図のa−b部分の断面図である。(1)はシリコン単結
晶からなる半導体ペレット,(2)は半導体ペレット
(1)をエッチング加工して設けたダイアフラム,
(3),(4),(5),(6)はダイアフラム部
(2)表面に形成されたピエゾ抵抗体である。(7)は
液状高分子で本実施例では紫外線硬化樹脂(以下,UVレ
ジンという)を用いた。このUVレジンをディスペンサー
等により一定量ダイアフラム裏面に滴下すると、表面張
力により第2図のように広がる。UVレジン(7)の硬化
は乾燥状態で行われるが、この硬化の際に(本実施例で
用いたものは約10%)体積収縮があり、UVレジン(7)
はダイアフラムの側壁(8)にも被着してることから、
その形状は第3図のようになる。また、雰囲気湿度が高
くなると、UVレジン(7)は吸湿しその体積が膨張する
ので、ダイアフラム(2)は第4図のような形状に変わ
る。この様に雰囲気湿度によりUVレジン(7)の体積が
変わることに対応してダイアフラム(2)の変形状態が
変わり、これに伴う応力変化でピエゾ抵抗(3)(4)
(5)(6)の抵抗値も変化する。
(F) Embodiment FIG. 1 is a plan view of an embodiment of the present invention, and FIG.
It is sectional drawing of ab part of a figure. (1) a semiconductor pellet made of silicon single crystal, (2) a diaphragm formed by etching the semiconductor pellet (1),
(3), (4), (5), and (6) are piezoresistors formed on the surface of the diaphragm (2). (7) is a liquid polymer. In this embodiment, an ultraviolet curable resin (hereinafter referred to as UV resin) is used. When a certain amount of this UV resin is dropped on the back surface of the diaphragm by a dispenser or the like, it spreads as shown in FIG. 2 due to surface tension. The curing of the UV resin (7) is performed in a dry state, and at the time of this curing (about 10% used in the present embodiment), there is a volume shrinkage, and the UV resin (7)
Is also attached to the side wall (8) of the diaphragm,
Its shape is as shown in FIG. Also, when the atmospheric humidity increases, the UV resin (7) absorbs moisture and its volume expands, so that the diaphragm (2) changes into a shape as shown in FIG. In this way, the deformation state of the diaphragm (2) changes in response to the change in the volume of the UV resin (7) due to the atmospheric humidity, and the piezoresistors (3) (4)
(5) The resistance value of (6) also changes.

第5図は、本発明者らが実願昭56−42126等で示した
感湿材の薄膜を用いた構造の湿度センサの断面図であ
る。温度変化に応じて感湿膜(7)は伸縮するが、薄膜
であるため面内の2次元的な応力が主となる。この感湿
膜(7)はダイアフラム(2)に被着されているため、
感湿膜(7)の2次元的な応力で結果的にダイアフラム
は3次元的に変形するが、その変形量は小さい。これに
対し本発明では、固定された側壁をベースにダイアフラ
ム受感部に垂直な応力を加えるので、大きなダイアフラ
ムの変形を得ることができる。その応力がダイアフラム
(2)に加えられるが、この時の応力は2次元的に加わ
るだけで、第3図,第4図に示した様なダイアフラム変
形は伴わない。これに対し本発明では上記のごとくダイ
アフラムの垂直方向(3次元的)な応力が働くのでダイ
アフラムの大きな変形が生じる。
FIG. 5 is a cross-sectional view of a humidity sensor having a structure using a thin film of a moisture-sensitive material disclosed by the present inventors in Japanese Utility Model Application No. 56-42126. The moisture-sensitive film (7) expands and contracts in response to a change in temperature, but since it is a thin film, two-dimensional stress in the plane is mainly used. Since the moisture-sensitive film (7) is attached to the diaphragm (2),
As a result, the diaphragm is three-dimensionally deformed by the two-dimensional stress of the moisture-sensitive film (7), but the deformation is small. On the other hand, in the present invention, a large stress is applied to the diaphragm sensing portion based on the fixed side wall, so that a large deformation of the diaphragm can be obtained. The stress is applied to the diaphragm (2), but the stress at this time is applied only two-dimensionally, and does not accompany the deformation of the diaphragm as shown in FIGS. On the other hand, in the present invention, since the stress in the vertical direction (three-dimensional) acts on the diaphragm as described above, a large deformation of the diaphragm occurs.

第6図は、ピエゾ抵抗領域(3),(4),(5),
(6)の抵抗変化を電圧変化として検出するためのホィ
ートストンブリッジで、定電流源(9)を用いて1mAの
定電流をブリッジに流し、出力電圧Vout(10)を検出す
るものである。この電圧Vout(10)は次式で計算され
る。
FIG. 6 shows the piezoresistive regions (3), (4), (5),
(6) A Wheatstone bridge for detecting a resistance change as a voltage change, in which a constant current of 1 mA flows through the bridge using a constant current source (9) to detect an output voltage Vout (10). . This voltage Vout (10) is calculated by the following equation.

感湿体を被着しない状態においては、4個の抵抗値は
ほぼ等しいのでVout≒0となる。表1に本実施例に基づ
いて試作したセンサの各ピエゾ抵抗(3),(4),
(5),(6)の低湿30〜40%RH,高湿90〜100%RH雰囲
気中での抵抗値と式(1)より計算されるVoutの値を示
した。
In a state where the moisture-sensitive body is not attached, Vout ≒ 0 because the four resistance values are almost equal. Table 1 shows the piezoresistors (3), (4),
The resistance values in (5) and (6) in a low humidity 30 to 40% RH and high humidity 90 to 100% RH atmosphere and the value of Vout calculated from equation (1) are shown.

このVout(10)の値は実際に第5図のようにブリッジ
接続して検出される電圧値ともほぼ等しいことを確認し
ている。また、ペレット(1)に感湿体(7)を被着し
ない状態でダイアフラム部に圧力を印加して第3図及び
第4図の様なダイアフラムの変形状態をつくり、その時
の各ピエゾ抵抗値の変化を測定するとで、感湿体(7)
の膨張,収縮による体積変化で第3図、第4図のように
ダイアフラムが変形していることを確認している。
It has been confirmed that the value of Vout (10) is substantially equal to the voltage value actually detected by bridge connection as shown in FIG. In addition, a pressure is applied to the diaphragm portion in a state where the moisture-sensitive body (7) is not adhered to the pellet (1) to form a deformed state of the diaphragm as shown in FIG. 3 and FIG. By measuring the change in the moisture-sensitive body (7)
It has been confirmed that the diaphragm is deformed as shown in FIGS. 3 and 4 by the volume change due to expansion and contraction of the diaphragm.

分流式湿度発生装置を用いて本実施例で試作したセン
サの感湿特性を第7図に示す。
FIG. 7 shows the humidity-sensitive characteristics of a sensor prototyped in this example using a split flow type humidity generator.

(ト)発明の効果 本発明によれば、感湿体の膨張,収縮による体積変化
という機械的性質を利用するので、電気的性質などに比
べて測定雰囲気からの汚染等による経時変化が少なく、
長期安定な湿度センサが可能である。
(G) Effects of the Invention According to the present invention, since the mechanical properties such as volume change due to expansion and contraction of the moisture sensitive body are used, there is less change over time due to contamination from the measurement atmosphere as compared with electrical properties and the like.
A long-term stable humidity sensor is possible.

また、ダイアフラム側壁を受感部に感湿体を被着しそ
の体積変化を利用するのでダイアフラムを大きく変形す
ることができ、出力電圧も大きくとれS/N比等も改善さ
せる。
In addition, since a moisture sensitive body is attached to the sensing portion of the diaphragm side wall and the change in volume is used, the diaphragm can be greatly deformed, the output voltage can be increased, and the S / N ratio can be improved.

さらに、前述の従来タイプのものに比べて感湿体をシ
リコンペレットに被着する方法が容易であるという製作
上の利点もある。
In addition, there is an advantage in manufacturing that the method of attaching the moisture sensitive body to the silicon pellet is easier than the above-mentioned conventional type.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を示すシリコンペレットの平面
図、第2図は第1図におけるa−b断面図、第3図は感
湿体が収縮したときの断面図、第4図は感湿体が膨潤し
た時の断面図、第5図は従来タイプの湿度センサーの断
面図、第6図はホィートストンブリッジ回路、第7図は
本発明による試作センサの感湿特性図である。 (1)……半導体ペレット、(2)……ダイアフラム、
(3)(4)(5)(6)……ピエゾ抵抗体、(7)…
…感湿体
FIG. 1 is a plan view of a silicon pellet showing an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along a line ab in FIG. 1, FIG. 5 is a cross-sectional view of a conventional humidity sensor, FIG. 6 is a Wheatstone bridge circuit, and FIG. 7 is a humidity-sensitive characteristic diagram of a prototype sensor according to the present invention. . (1) ... semiconductor pellet, (2) ... diaphragm,
(3) (4) (5) (6) ... piezoresistor, (7) ...
… Moisture sensitive

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シリコンダイアフラムの裏面と側壁の間に
被着したポリマ等感湿体の湿度による体積変化で、該ダ
イアフラムに垂直な方向の応力を加えることでダイアフ
ラムを変形させ、該ダイアフラム表面に設けられている
ピエゾ抵抗領域の抵抗変化を検出することで、雰囲気湿
度を検出する湿度センサ。
1. A pressure change in a direction perpendicular to a diaphragm caused by a change in volume of a moisture sensitive body such as a polymer adhered between a back surface and a side wall of a silicon diaphragm. A humidity sensor that detects atmospheric humidity by detecting a change in resistance of a provided piezoresistive region.
JP15738389A 1989-06-20 1989-06-20 Semiconductor humidity sensor Expired - Fee Related JP2654184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15738389A JP2654184B2 (en) 1989-06-20 1989-06-20 Semiconductor humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15738389A JP2654184B2 (en) 1989-06-20 1989-06-20 Semiconductor humidity sensor

Publications (2)

Publication Number Publication Date
JPH0321849A JPH0321849A (en) 1991-01-30
JP2654184B2 true JP2654184B2 (en) 1997-09-17

Family

ID=15648448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15738389A Expired - Fee Related JP2654184B2 (en) 1989-06-20 1989-06-20 Semiconductor humidity sensor

Country Status (1)

Country Link
JP (1) JP2654184B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6770394A (en) * 1993-05-25 1994-12-20 Rosemount Inc. Organic chemical sensor
CN102105226B (en) 2008-07-25 2015-01-21 史密夫及内修公开有限公司 Controller for an acoustic standing wave generation device in order to prevent clogging of a filter
US9882133B2 (en) 2014-08-20 2018-01-30 Boe Technology Group Co., Ltd. Electronic package device for testing a package effect of the device, fabrication method thereof and method for testing electronic package device
CN104332562B (en) * 2014-08-20 2017-03-08 京东方科技集团股份有限公司 A kind of electronic encapsulation device and preparation method thereof, method for testing packaging effect
CN105928989B (en) * 2016-07-18 2018-11-23 南京信息工程大学 Humidity sensor and its correction of temperature drift method based on the huge piezo-resistive arrangement of π type

Also Published As

Publication number Publication date
JPH0321849A (en) 1991-01-30

Similar Documents

Publication Publication Date Title
US7508040B2 (en) Micro electrical mechanical systems pressure sensor
US7503221B2 (en) Dual span absolute pressure sense die
JPH11506835A (en) Steam pressure sensor and method thereof
JP2007132946A (en) Pressure sensor housing and configuration
US6584864B2 (en) Sensor
JPH09126934A (en) Pressure detector to detect pressure in combustion chamber of internal combustion engine
JP2654184B2 (en) Semiconductor humidity sensor
Ma et al. A MEMS surface fence for wall shear stress measurement with high sensitivity
US4682502A (en) Pressure sensor
Wang et al. Thermal micropressure sensor for pressure monitoring in a minute package
JP2630836B2 (en) Semiconductor humidity sensor
JPH03226649A (en) Moisture-sensitive element
JPH07117485B2 (en) Humidity detector
JP3022142U (en) pressure switch
JP2645884B2 (en) Semiconductor humidity sensor
CN1128991C (en) X-type silicon microstrain solid-state piezo-resistance sensor and its making technology
CN112880886B (en) Flexible sensor
JPH0648421Y2 (en) Semiconductor acceleration sensor
Von Papen et al. A MEMS surface fence sensor for wall shear stress measurement in turbulent flow areas
JPH0587032B2 (en)
JPS60164231A (en) Force distribution detector
JP2001124645A (en) Semiconductor pressure sensor
JPS6378048A (en) Humidity sensor
JPH01259241A (en) Humidity detector
JPH0449562Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees