JP2001124645A - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JP2001124645A
JP2001124645A JP30199199A JP30199199A JP2001124645A JP 2001124645 A JP2001124645 A JP 2001124645A JP 30199199 A JP30199199 A JP 30199199A JP 30199199 A JP30199199 A JP 30199199A JP 2001124645 A JP2001124645 A JP 2001124645A
Authority
JP
Japan
Prior art keywords
pressure
diaphragm
pressure sensor
detecting
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30199199A
Other languages
Japanese (ja)
Inventor
Yasunori Shoji
康則 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30199199A priority Critical patent/JP2001124645A/en
Publication of JP2001124645A publication Critical patent/JP2001124645A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor pressure sensor having the combined structure of a piezoresistance with a diaphragm, which can measure pulsation pressure in addition to differential pressure and static pressure with one chip. SOLUTION: An inlet port having a throttle mechanism is formed on the lower surface intermediate layer of a diaphragm, so that the smoothed pressure of the diaphragm upper surface is applied through the inlet port. According to this structure, a pressure difference by the portion of pulsation pressure is generated between the upper surface and lower surface of the diaphragm. In addition to this pulsation pressure measuring diaphragm, differential pressure measuring and static pressure measuring diaphragms are formed, whereby various pressure measurements can be performed with one chip.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は各種プラントで圧
力、流量等を測定する際に使用される半導体圧力センサ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor pressure sensor used for measuring pressure, flow rate and the like in various plants.

【0002】[0002]

【従来の技術】被測定物の圧力を受けて変位するシリコ
ンダイアフラム上に感歪ゲージとしてピエゾ抵抗を配置
し、圧力センサを構成することはよく知られている。通
常、圧力センサは例えば特開平5−157648号のよ
うにダイアフラム上面と下面の圧力差を測定する差圧セ
ンサ、ダイアフラム下面を一定圧力に密閉して上面の圧
力変化を測定する静圧センサの2種類の圧力センサが集
積化されているのが一般的である。しかし、実際の圧力
には差圧、静圧に脈動圧が重畳している場合がある。特
開平5−157648号のような構造では、差圧セン
サ、静圧センサとも脈動圧を重畳した形でしか圧力検知
ができない。
2. Description of the Related Art It is well known that a piezoresistor is disposed as a strain-sensitive gauge on a silicon diaphragm which is displaced by receiving a pressure of an object to be measured to constitute a pressure sensor. Usually, the pressure sensor is a differential pressure sensor for measuring the pressure difference between the upper surface and the lower surface of the diaphragm as disclosed in Japanese Patent Application Laid-Open No. 5-157648, and a static pressure sensor for measuring the pressure change on the upper surface by sealing the lower surface of the diaphragm to a constant pressure. In general, various types of pressure sensors are integrated. However, in some cases, the differential pressure is superimposed on the actual pressure, and the pulsating pressure is superimposed on the static pressure. In the structure as disclosed in Japanese Patent Application Laid-Open No. 5-157648, the pressure can be detected only in a form in which the pulsating pressure is superimposed on both the differential pressure sensor and the static pressure sensor.

【0003】一方、特開平5−40069号は、圧力セ
ンサチップの外側に積分絞り、積分タンクを付加して脈
動圧を検知できる圧力センサ構造を提供している。
On the other hand, Japanese Patent Application Laid-Open No. Hei 5-40069 provides a pressure sensor structure capable of detecting a pulsating pressure by adding an integrating throttle and an integrating tank outside the pressure sensor chip.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記公知例で
は、圧力センサチップとは別に積分絞り、積分タンクを
設けているために、センサ全体が複雑で、容積も大きく
なってしまう。また、構造上、差圧や静圧を同時検出す
ることはできない。
However, in the above-mentioned known example, since the integrating throttle and the integrating tank are provided separately from the pressure sensor chip, the whole sensor is complicated and the volume becomes large. Further, due to the structure, it is impossible to simultaneously detect the differential pressure and the static pressure.

【0005】本発明の目的は、ダイアフラムの下面中間
層に絞り機構をもつ圧力導入口を形成し、この導入口を
センサ側面に向けて形成することでダイアフラム上面の
圧力がかかるようにし、脈動圧を測定できる構造を提供
することである。
It is an object of the present invention to form a pressure inlet having a throttle mechanism in an intermediate layer on the lower surface of the diaphragm, and to form the inlet toward the side of the sensor so that the pressure on the upper surface of the diaphragm is applied to the pulsation pressure. Is to provide a structure capable of measuring the

【0006】[0006]

【課題を解決するための手段】上記課題を解決する手段
として、単結晶シリコン基板と、単結晶シリコン膜の間
に形成された中間層の凹部で、ダイアフラムの変位領域
と圧力導入口を形成する構造とする。この圧力導入口の
コンダクタンスを小さくすることで、絞り機構とし、脈
動圧を測定することができる。
As a means for solving the above problems, a displacement region of a diaphragm and a pressure inlet are formed by a concave portion of an intermediate layer formed between a single crystal silicon substrate and a single crystal silicon film. Structure. By reducing the conductance of the pressure inlet, a pulsating pressure can be measured by using a throttle mechanism.

【0007】この構造を用いると、同一センサチップに
差圧センサ、静圧センサを容易に集積化することがで
き、1チップのセンサで多様な圧力測定が可能となる。
When this structure is used, the differential pressure sensor and the static pressure sensor can be easily integrated on the same sensor chip, and various pressure measurements can be performed with a single chip sensor.

【0008】[0008]

【発明の実施の形態】図1は本発明における実施例の概
略構造を示す上面図、図2は図1の矢視A−O−B断面
図である。単結晶シリコン基板51およびn型(10
0)面の単結晶シリコン膜52とからなり、単結晶シリ
コンは間に例えばパイレックスガラス層53を介して配
置されている。単結晶シリコン基板51の一部はエッチ
ング除去加工によって貫通穴が形成されており、下面側
は例えば低融点ガラス層54を介して、差圧検出用導入
口35を有する例えばTe−Ni製のポスト55に接着
される。パイレックスガラス層53は、エッチング除去
加工によってセンサチップ側面へ通じる動圧検出用導入
口34及び動圧検出用導入口34がつながる動圧検出用
中空部36、また、これとは別に動圧検出用導入口34
がつながらない静圧検出用中空部37が形成され、単結
晶シリコン基板51の貫通穴が形成されている領域でパ
イレックスガラス層53がエッチング除去加工されてい
る部分は差圧検出用中空部38となる。
FIG. 1 is a top view showing a schematic structure of an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line AOB of FIG. Single crystal silicon substrate 51 and n-type (10
The single-crystal silicon film 52 of the 0) plane is provided, and the single-crystal silicon is disposed, for example, with a Pyrex glass layer 53 interposed therebetween. A part of the single-crystal silicon substrate 51 is formed with a through hole by etching removal processing, and a lower surface side of the post is made of, for example, a Te-Ni post having a differential pressure detection inlet 35 through a low melting point glass layer 54, for example. 55. The Pyrex glass layer 53 has a dynamic pressure detecting inlet 34 connected to the side of the sensor chip by etching and a dynamic pressure detecting hollow portion 36 to which the dynamic pressure detecting inlet 34 is connected. Inlet 34
The portion where the Pyrex glass layer 53 is etched off in the region where the through-hole is formed in the single crystal silicon substrate 51 where the hollow portion 37 for static pressure detection which is not connected to is formed becomes the hollow portion 38 for differential pressure detection. .

【0009】動圧検出用導入口34は、脈動圧の変化に
追随できない程度にコンダクタンスを小さくする必要が
あり、図1のようにつづら折り構造をとっても良いし、
溝を浅く、あるいは幅を狭くしても構わない。
It is necessary to reduce the conductance of the dynamic pressure detecting inlet 34 to such an extent that it cannot follow the change of the pulsating pressure, and it may have a self-folding structure as shown in FIG.
The groove may be shallow or narrow.

【0010】差圧検出用中空部38上の差圧検出用ダイ
アフラム31には、差圧を受けてダイアフラムが変形し
た際の応力を検知する差圧検出用ピエゾ抵抗21a〜2
1dが、動圧検出用中空部36上の動圧検出用ダイアフ
ラム32には動圧を受けてダイアフラムが変形した際の
応力を検知する動圧検出用ピエゾ抵抗22a〜22d
が、静圧検出用中空部37上の静圧検出用ダイアフラム
33には静圧を受けてダイアフラムが変形した際の応力
を検知する静圧検出用ピエゾ抵抗23a〜23dが形成
されている。
The differential pressure detecting diaphragm 31 on the differential pressure detecting hollow portion 38 has a differential pressure detecting piezoresistor 21a-2 for detecting stress when the diaphragm is deformed by receiving a differential pressure.
1d is a dynamic pressure detecting piezoresistor 22a to 22d which receives a dynamic pressure and detects a stress when the diaphragm is deformed by the dynamic pressure detecting diaphragm 32 on the dynamic pressure detecting hollow portion 36.
However, the static pressure detecting diaphragm 33 on the static pressure detecting hollow portion 37 is provided with static pressure detecting piezoresistors 23a to 23d for detecting stress when the diaphragm is deformed by receiving a static pressure.

【0011】また、単結晶シリコン膜52上で、ダイア
フラム領域となっていない場所には温度検出用ピエゾ抵
抗24が形成されている。25はp型高濃度不純物層の
配線、26はアルミニウムの配線、1〜16はアルミニ
ウムのコンタクトパッドである。
On the single-crystal silicon film 52, a piezoresistor 24 for temperature detection is formed in a place that is not a diaphragm region. 25 is a wiring of a p-type high concentration impurity layer, 26 is an aluminum wiring, and 1 to 16 are aluminum contact pads.

【0012】差圧検出用ダイアフラム31ならびに4個
の動圧検出用ダイアフラム32、4個の静圧検出用ダイ
アフラム33のそれぞれの表面付近に形成されたp型の
ピエゾ抵抗は、ボロンを拡散して応力に対して最も敏感
な<110>方向に作り込まれる。ピエゾ抵抗は、長手
方向に引張応力が働いた場合に抵抗値が増加する。この
方向に配列したゲージをLゲージと呼ぶ。また、横手方
向に引張応力が働いた場合に抵抗値が減少する。この方
向に配列したゲージをTゲージと呼ぶ。図1の例では差
圧検出用ダイアフラム31上のピエゾ抵抗4個をすべて
ダイアフラム支持部近傍に配置し、長手方向がダイアフ
ラムの半径方向と平行となる2個のLゲージ21a、2
1c、長手方向がダイアフラムの接線方向と平行となる
2個のTゲージ21b、21dを配置している。動圧検
出用ダイアフラム32上にはLゲージ22a、22c、
Tゲージ22b、22dを配置している。静圧検出用ダ
イアフラム33上にはLゲージ23a、23c、Tゲー
ジ23b、23dを配置している。ピエゾ抵抗の配置方
法は図1の例の他、Lゲージ2個とTゲージ2個をすべ
てを剛体部近傍に配置する方法、Lゲージをダイアフラ
ム支持部近傍に2個、剛体部近傍に2個配置する方法、
Tゲージをダイアフラム支持部近傍に2個、剛体部近傍
に2個配置する方法がある。
The p-type piezoresistors formed near the respective surfaces of the differential pressure detecting diaphragm 31 and the four dynamic pressure detecting diaphragms 32 and the four static pressure detecting diaphragms 33 diffuse boron to diffuse. It is formed in the <110> direction that is most sensitive to stress. The piezo resistance increases when a tensile stress acts in the longitudinal direction. Gauges arranged in this direction are called L gauges. Further, when a tensile stress acts in the lateral direction, the resistance value decreases. Gauges arranged in this direction are called T gauges. In the example of FIG. 1, all four piezoresistors on the differential pressure detecting diaphragm 31 are arranged near the diaphragm support, and two L gauges 21a, 2b whose longitudinal direction is parallel to the radial direction of the diaphragm.
1c, two T gauges 21b and 21d whose longitudinal direction is parallel to the tangential direction of the diaphragm are arranged. L gauges 22a and 22c are provided on the diaphragm 32 for detecting dynamic pressure.
T gauges 22b and 22d are arranged. The L gauges 23a and 23c and the T gauges 23b and 23d are arranged on the static pressure detection diaphragm 33. The method of arranging the piezoresistors is, in addition to the example shown in FIG. 1, a method of arranging all two L gauges and two T gauges near the rigid part, two L gauges near the diaphragm support part and two L gauges near the rigid part. How to place,
There is a method of arranging two T gauges near the diaphragm support portion and two T gauges near the rigid body portion.

【0013】21a〜21d、22a〜22d、23a
〜23dのピエゾ抵抗は図3に示すように3組のホイー
トストンブリッジを構成する。ここで、差圧検出用ダイ
アフラム31と21a〜21dのブリッジで構成される
部分を差圧センサ、動圧検出用ダイアフラム32と22
a〜22dのプリッジで構成される部分を動圧センサ、
静圧検出用ダイアフラム33と23a〜23dのプリッ
ジで構成される部分を静圧センサと呼ぶ。ダイアフラム
に圧力が印加されると、それぞれのダイアフラムがたわ
み、ダイアフラム上に形成されたピエゾ抵抗で構成され
る各ブリッジが上面と下面の圧力差にほぼ比例したセン
サ出力V1、V2、V3を発生する。ここで、差圧センサ
はダイアフラムの上面と下面の圧力差(差圧)を測定す
るのに対し、動圧センサは脈動圧が重畳したダイアフラ
ム上面の圧力と絞り機構を通って平滑化されたダイアフ
ラム上面の圧力との差(動圧)、静圧センサはダイアフラ
ムの上面と密閉された一定圧力部分との圧力差(静圧)
を測定することになる。
21a to 21d, 22a to 22d, 23a
The piezoresistors of .about.23d constitute three sets of Wheatstone bridges as shown in FIG. Here, a portion composed of the bridge of the differential pressure detecting diaphragms 31 and 21a to 21d is referred to as a differential pressure sensor, and the dynamic pressure detecting diaphragms 32 and 22 are connected.
a part composed of the bridges a to 22d is a dynamic pressure sensor,
The portion composed of the static pressure detecting diaphragm 33 and the bridge of 23a to 23d is called a static pressure sensor. When pressure is applied to the diaphragms, each of the diaphragms bends, and each bridge composed of piezoresistors formed on the diaphragm produces sensor outputs V 1 , V 2 , V 3 which are almost proportional to the pressure difference between the upper surface and the lower surface. Occurs. Here, the differential pressure sensor measures the pressure difference (differential pressure) between the upper surface and the lower surface of the diaphragm, while the dynamic pressure sensor measures the pressure on the upper surface of the diaphragm on which the pulsating pressure is superimposed and the diaphragm smoothed through the throttle mechanism. The difference between the upper surface pressure (dynamic pressure) and the static pressure sensor is the pressure difference (static pressure) between the upper surface of the diaphragm and the sealed constant pressure part
Will be measured.

【0014】一方、ダイアフラムと同一基板上に集積化
される温度検出用のピエゾ抵抗24も同様にボロンを拡
散することで形成されるが、応力変化に対してほとんど
抵抗変化を示さない<100>方向に配列することで、
温度に対してのみ感度をもたせるようにする。ピエゾ抵
抗24からなる部分を温度センサと呼び、図3に示した
ように差圧センサ、静圧センサのピエゾ抵抗ブリッジと
結線される。
On the other hand, the piezoresistor 24 for temperature detection, which is integrated on the same substrate as the diaphragm, is also formed by diffusing boron, but shows almost no change in resistance to stress change. By arranging in the direction,
Make it sensitive only to temperature. A portion composed of the piezoresistor 24 is called a temperature sensor, and is connected to a piezoresistive bridge of a differential pressure sensor and a static pressure sensor as shown in FIG.

【0015】ピエゾ抵抗の配列間ならびにアルミニウム
のコンタクトパッド1〜16への配線には、より高濃度
にボロンを拡散したp型不純物拡散層25とアルミニウ
ム配線26を併用する。本実施例ではダイアフラムの外
側やピエゾ抵抗から離れた場所等、温度ヒステリシスの
影響が比較的小さい所については、抵抗値の小さいアル
ミニウム配線を使用しているが、この他、コンタクトパ
ッドを除くすべての配線を高濃度不純物層とする配線方
法も可能である。
For the wiring between the piezoresistors and to the aluminum contact pads 1 to 16, a p-type impurity diffusion layer 25 in which boron is diffused at a higher concentration and an aluminum wiring 26 are used in combination. In the present embodiment, aluminum wiring having a small resistance value is used in places where the influence of temperature hysteresis is relatively small, such as outside the diaphragm or in a place apart from the piezoresistor. A wiring method in which the wiring is a high-concentration impurity layer is also possible.

【0016】次に図4を用いてダイアフラムに圧力が印
加された場合のセンサの動作について説明する。ダイア
フラムの上面と下面の間で圧力差が生じた場合、上面側
がより高圧力ならば図4(a)に示すようにダイアフラ
ムが変形する。ダイアフラム変形時に、ピエゾ抵抗が作
り込まれているダイアフラム表面付近に発生する応力は
図4(b)に示すようになる。ダイアフラム上では、ダ
イアフラム支持部近傍で最大の引張応力σ1が発生す
る。ダイアフラムの外径をX、厚さをhとすれば、差圧
ΔPが印加された時σ1は次の式で表される。
Next, the operation of the sensor when pressure is applied to the diaphragm will be described with reference to FIG. When a pressure difference occurs between the upper surface and the lower surface of the diaphragm, if the upper surface side has a higher pressure, the diaphragm is deformed as shown in FIG. When the diaphragm is deformed, the stress generated near the surface of the diaphragm where the piezoresistor is formed becomes as shown in FIG. On the diaphragm, a maximum tensile stress σ 1 is generated in the vicinity of the diaphragm support. Assuming that the outer diameter of the diaphragm is X and the thickness is h, σ 1 when the differential pressure ΔP is applied is expressed by the following equation.

【0017】[0017]

【数1】σ1=3X2ΔP/(16h2) 図1に示すように、ダイアフラムの支持部近傍にそれぞ
れLゲージ、Tゲージを2個ずつ配置した場合には、差
圧センサの出力V1は次の式で表される。
Σ 1 = 3X 2 ΔP / (16h 2 ) As shown in FIG. 1, when two L gauges and two T gauges are respectively arranged near the support of the diaphragm, the output V of the differential pressure sensor 1 is represented by the following equation.

【0018】[0018]

【数2】V1=(1/2)・π44(1−ν)σ1・V ここで、νはポワソン比、π44は剪断のピエゾ抵抗係
数、Vは励起電圧である。
V 1 = (1 /) · π 44 (1-ν) σ 1 · V where ν is Poisson's ratio, π 44 is the shear piezoresistance coefficient, and V is the excitation voltage.

【0019】次に、センサに脈動圧が重畳した圧力が印
加された時の各センサの感知圧力について説明する。通
常、プラントではパイプライン中にオリフィス等を置
き、そのオリフィス前後の圧力差を測定している。従っ
て、差圧検出用ダイアフラム31の上面の圧力と下面の
圧力はほぼ同期した圧力分布となる。この時、動圧検出
用中空部36内の圧力は絞り機構の存在により脈動圧の
変化に追随できないため、図5の一点鎖線のように平滑
された圧力変化となる。従って、各センサは図5矢印で
示した差圧、動圧、静圧をそれぞれ検出することにな
る。
Next, the sensed pressure of each sensor when the pressure on which the pulsating pressure is superimposed is applied will be described. Usually, in a plant, an orifice or the like is placed in a pipeline, and a pressure difference before and after the orifice is measured. Therefore, the pressure on the upper surface and the pressure on the lower surface of the differential pressure detecting diaphragm 31 have a substantially synchronized pressure distribution. At this time, since the pressure in the dynamic pressure detecting hollow portion 36 cannot follow the change in the pulsating pressure due to the presence of the throttle mechanism, the pressure change becomes smooth as shown by the dashed line in FIG. Therefore, each sensor detects a differential pressure, a dynamic pressure, and a static pressure indicated by arrows in FIG.

【0020】図6(a)〜(d)は上記実施例で示した
圧力センサの製造工程を示す断面図である。以下、製造
工程について説明する。
FIGS. 6A to 6D are cross-sectional views showing the steps of manufacturing the pressure sensor shown in the above embodiment. Hereinafter, the manufacturing process will be described.

【0021】(a)まず、単結晶シリコン52を熱酸
化、ホトリソ、KOHエチングによって差圧検出用中空
部となる貫通穴を形成する。その後、酸化膜を全面エッ
チングし、パイレックスガラス53を陽極接合する。
(A) First, a through hole serving as a differential pressure detecting hollow portion is formed in single crystal silicon 52 by thermal oxidation, photolithography, and KOH etching. Thereafter, the entire surface of the oxide film is etched, and the Pyrex glass 53 is anodically bonded.

【0022】(b)パイレックスガラスをHFでエッチ
ングし、差圧検出用中空部、動圧検出用中空部36、静
圧検出用中空部37、動圧検出用導入口34となる領域
を形成する。その後、n型(100)面単結晶シリコン
基板を陽極接合、研磨によって単結晶シリコン膜52を
形成する。
(B) Pyrex glass is etched with HF to form regions to be a differential pressure detecting hollow portion, a dynamic pressure detecting hollow portion 36, a static pressure detecting hollow portion 37, and a dynamic pressure detecting inlet 34. . Thereafter, an n-type (100) plane single crystal silicon substrate is anodically bonded and polished to form a single crystal silicon film 52.

【0023】(c)単結晶シリコン膜52上に、ボロン
を拡散して、ピエゾ抵抗、p型高濃度不純物層の配線お
よびアルミニウムの配線、コンタクトパッドを形成す
る。
(C) Boron is diffused on the single crystal silicon film 52 to form a piezoresistor, a p-type high-concentration impurity layer wiring, an aluminum wiring, and a contact pad.

【0024】(d)最後に低融点ガラス54を介してポ
スト55を接着する。
(D) Finally, the post 55 is bonded via the low melting point glass 54.

【0025】この圧力センサはその後、図7に示すよう
に出力取り出し用金具(シール金具)56に溶接あるい
は接着し、センサのパッド1〜16と出力取り出し用端
子57をシードワイヤ58でで接続する。この金具はハ
ーメチックシールによって気密構造となっており、最終
的には差圧伝送器へ組み込まれることになる。
The pressure sensor is then welded or bonded to an output take-out fitting (seal fitting) 56 as shown in FIG. 7, and the pads 1 to 16 of the sensor and the output take-out terminal 57 are connected by a seed wire 58. . This metal fitting has an airtight structure by a hermetic seal, and is finally incorporated into a differential pressure transmitter.

【0026】[0026]

【発明の効果】本発明によって、差圧、静圧の他に脈動
圧を加えた3種類の圧力測定が可能となり、1チップの
センサで多様な圧力測定が可能となる。
According to the present invention, three types of pressure measurement can be performed by adding a pulsating pressure in addition to a differential pressure and a static pressure, and various pressure measurements can be performed with a one-chip sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す圧力センサの概略上面
図。
FIG. 1 is a schematic top view of a pressure sensor showing one embodiment of the present invention.

【図2】図1のA−O−B線に沿った概略断面図。FIG. 2 is a schematic sectional view taken along the line AOB of FIG. 1;

【図3】ピエゾ抵抗の結線図。FIG. 3 is a connection diagram of a piezo resistor.

【図4】圧力印加時に発生する応力分布図。FIG. 4 is a diagram showing a distribution of stress generated when pressure is applied.

【図5】圧力印加時に各センサが検出する圧力を説明す
る図。
FIG. 5 is a diagram illustrating a pressure detected by each sensor when pressure is applied.

【図6】圧力センサの製造工程図。FIG. 6 is a manufacturing process diagram of the pressure sensor.

【図7】圧力センサのシール金具への組込図。FIG. 7 is a view of assembling a pressure sensor into a seal fitting.

【符号の説明】[Explanation of symbols]

1〜16…圧力センサ出力取り出し用アルミコンタクト
パッド、21a〜21d…差圧検出用ピエゾ抵抗、22
a〜22d…動圧検出用ピエゾ抵抗、23a〜23d…
静圧検出用ピエゾ抵抗、24…温度検出用ピエゾ抵抗、
25…p型高濃度不純物層配線、26…アルミニウム配
線、31…差圧検出用ダイアフラム、32…動圧検出用
ダイアフラム、33…静圧検出用ダイアフラム、34…
動圧検出用導入口、35…差圧検出用導入口、36…動
圧検出用中空部、37…静圧検出用中空部、38…差圧
検出用中空部、51…単結晶シリコン基板、52…単結
晶シリコン膜、53…パイレックスガラス層、54…低
融点ガラス層、55…ポスト、56…ハーメチックシー
ル、57…出力取り出し用端子、58…リードワイヤ。
1 to 16: aluminum contact pads for extracting pressure sensor output, 21a to 21d: piezoresistors for detecting differential pressure, 22
a to 22d: piezoresistors for detecting dynamic pressure, 23a to 23d:
Piezo resistor for detecting static pressure, 24 ... Piezo resistor for detecting temperature,
25 ... p-type high concentration impurity layer wiring, 26 ... aluminum wiring, 31 ... diaphragm for detecting differential pressure, 32 ... diaphragm for detecting dynamic pressure, 33 ... diaphragm for detecting static pressure, 34 ...
Inlet for detecting dynamic pressure, 35: Inlet for detecting differential pressure, 36: Hollow for detecting dynamic pressure, 37: Hollow for detecting static pressure, 38: Hollow for detecting differential pressure, 51: Single crystal silicon substrate, 52: single crystal silicon film, 53: Pyrex glass layer, 54: low melting point glass layer, 55: post, 56: hermetic seal, 57: output terminal, 58: lead wire.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 単結晶シリコン基板の一方の面上に、凹
部を有する中間層と、この凹部を覆うように上記単結晶
シリコン基板の一方の面側に配置され、少なくとも1個
のピエゾ抵抗が形成された単結晶シリコン膜とを有し、
上記単結晶シリコン膜を圧力に応じて変位するダイアフ
ラムとする半導体圧力センサにおいて、上記ダイアフラ
ムと中間層の凹部とにより形成された空間部に中間層の
凹部で形成された圧力導入口を備えることを特徴とする
半導体圧力センサ。
An intermediate layer having a concave portion on one surface of a single crystal silicon substrate, and an intermediate layer disposed on one surface side of the single crystal silicon substrate so as to cover the concave portion, wherein at least one piezoresistor is provided. Having a single-crystal silicon film formed,
In a semiconductor pressure sensor having a diaphragm that displaces the single-crystal silicon film in accordance with pressure, a pressure inlet formed by a recess in the intermediate layer is provided in a space formed by the diaphragm and the recess in the intermediate layer. Characteristic semiconductor pressure sensor.
【請求項2】 請求項1記載の半導体圧力センサにおい
て、上記圧力導入口はつづら折り構造であることを特徴
とする半導体圧力センサ。
2. The semiconductor pressure sensor according to claim 1, wherein said pressure inlet has a zigzag structure.
【請求項3】 請求項1、2記載の半導体圧力センサに
おいて、上記ダイアフラムとは別に、圧力導入口のない
ダイアフラムと中間層の凹部とからなる空間部が形成さ
れ、このダイアフラム上には静圧検出素子としてピエゾ
抵抗が形成されていることを特徴とする半導体圧力セン
サ。
3. A semiconductor pressure sensor according to claim 1, wherein a space portion comprising a diaphragm having no pressure inlet and a concave portion of the intermediate layer is formed separately from the diaphragm, and a static pressure is formed on the diaphragm. A semiconductor pressure sensor, wherein a piezoresistor is formed as a detection element.
【請求項4】 請求項1〜3記載の半導体圧力センサに
おいて、上記ダイアフラムと中間層の凹部とにより形成
された空間部の少なくとも一つが、単結晶シリコン基板
の前記凹部を有する中間層側とは反対の面へ貫通する圧
力導入口を備え、このダイアフラム上には差圧検出素子
としてピエゾ抵抗が形成されていることを特徴とする半
導体圧力センサ。
4. The semiconductor pressure sensor according to claim 1, wherein at least one of the spaces formed by the diaphragm and the recess of the intermediate layer is formed on a single-crystal silicon substrate on the side of the intermediate layer having the recess. A semiconductor pressure sensor having a pressure introduction port penetrating to an opposite surface, and having a piezoresistor formed as a differential pressure detecting element on the diaphragm.
【請求項5】 請求項1〜4記載の半導体圧力センサに
おいて、ピエゾ抵抗が形成された同一シリコン膜上に、
温度検出素子としてピエゾ抵抗が形成されていることを
特徴とする半導体圧力センサ。
5. The semiconductor pressure sensor according to claim 1, wherein the piezoresistor is formed on the same silicon film.
A semiconductor pressure sensor, wherein a piezoresistor is formed as a temperature detecting element.
JP30199199A 1999-10-25 1999-10-25 Semiconductor pressure sensor Pending JP2001124645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30199199A JP2001124645A (en) 1999-10-25 1999-10-25 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30199199A JP2001124645A (en) 1999-10-25 1999-10-25 Semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JP2001124645A true JP2001124645A (en) 2001-05-11

Family

ID=17903576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30199199A Pending JP2001124645A (en) 1999-10-25 1999-10-25 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JP2001124645A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100622704B1 (en) 2004-08-26 2006-09-14 주식회사 케이이씨 Pressure sensor for measuring multi-pressure
JP2006258674A (en) * 2005-03-18 2006-09-28 Hitachi Ltd Device for measuring mechanical quantity
CN104931074A (en) * 2014-03-20 2015-09-23 精工爱普生株式会社 Physical quantity sensor, pressure sensor, altimeter, electronic apparatus and moving object
WO2022030176A1 (en) * 2020-08-03 2022-02-10 株式会社村田製作所 Pressure sensor chip, pressure sensor, and methods for manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100622704B1 (en) 2004-08-26 2006-09-14 주식회사 케이이씨 Pressure sensor for measuring multi-pressure
JP2006258674A (en) * 2005-03-18 2006-09-28 Hitachi Ltd Device for measuring mechanical quantity
JP4617943B2 (en) * 2005-03-18 2011-01-26 株式会社日立製作所 Mechanical quantity measuring device
CN104931074A (en) * 2014-03-20 2015-09-23 精工爱普生株式会社 Physical quantity sensor, pressure sensor, altimeter, electronic apparatus and moving object
WO2022030176A1 (en) * 2020-08-03 2022-02-10 株式会社村田製作所 Pressure sensor chip, pressure sensor, and methods for manufacturing same

Similar Documents

Publication Publication Date Title
US7775117B2 (en) Combined wet-wet differential and gage transducer employing a common housing
US4986127A (en) Multi-functional sensor
US7503221B2 (en) Dual span absolute pressure sense die
US5012677A (en) Differential pressure transmitter
US4574640A (en) Integrated dual-range pressure transducer
JPH09232595A (en) Pressure detection device
US6634113B1 (en) Tilt sensor and method of forming such device
JP2001124645A (en) Semiconductor pressure sensor
JPH09329516A (en) Semiconductor pressure sensor and composite transmitter using it
US7661317B2 (en) High pressure transducer having an H shaped cross-section
JP3238001B2 (en) Composite sensor and composite transmitter using the same
JPH10142086A (en) Semiconductor pressure sensor, its manufacturing method, and differential pressure transmitter using the same
JPH0758795B2 (en) Pressure sensor
JP3330831B2 (en) Strain detection sensor
JP2002116106A (en) Semiconductor pressure sensor
JPS583081Y2 (en) Diffusion type semiconductor pressure sensor
US7559248B2 (en) High pressure transducer having an H shaped cross-section
JPH10132682A (en) Semiconductor pressure sensor, its manufacture, and compound transmitter using it
CN212988661U (en) MEMS pressure chip
JP2512220B2 (en) Multi-function sensor
JPH06102128A (en) Semiconductor composite function sensor
JP2689744B2 (en) Compound sensor, compound transmitter and plant system using the same
JPH0786617A (en) Semiconductor pressure sensor
JPH11142269A (en) Semiconductor, pressure sensor and composite transmitter using the same
JPH01184433A (en) Semiconductor pressure transducer