WO2022190666A1 - Flowmeter - Google Patents

Flowmeter Download PDF

Info

Publication number
WO2022190666A1
WO2022190666A1 PCT/JP2022/002160 JP2022002160W WO2022190666A1 WO 2022190666 A1 WO2022190666 A1 WO 2022190666A1 JP 2022002160 W JP2022002160 W JP 2022002160W WO 2022190666 A1 WO2022190666 A1 WO 2022190666A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
channel
sensor chip
base material
flow path
Prior art date
Application number
PCT/JP2022/002160
Other languages
French (fr)
Japanese (ja)
Inventor
憲士朗 長坂
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2022190666A1 publication Critical patent/WO2022190666A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow

Definitions

  • the present disclosure relates to flow meters.
  • Patent Literature 1 describes a flowmeter that includes a channel unit that configures a channel and a sensor chip that is attached to the channel unit.
  • a sensor chip is a chip on which a heater, a first temperature sensor, and a second temperature sensor are mounted. The heater heats the fluid flowing through the channel. The temperature detected by the first temperature sensor and the temperature detected by the second temperature sensor can be used to measure the flow rate of the fluid flowing through the channel.
  • the wall between the sensor chip and the flow path is thin, heat is easily conducted between the fluid flowing through the flow path and the sensor chip. As a result, the measurement accuracy of the flowmeter is improved.
  • the wall between the sensor chip and the channel is thin, the increased pressure within the channel may cause the wall to flex. When the wall flexes, the sensor chip flexes. In this case, the sensor chip may be damaged.
  • a flow meter for solving the above problems is a flow meter for measuring the flow rate of a fluid, comprising a flow path unit forming a flow path through which the fluid flows, and a sensor chip attached to the flow path unit.
  • the flow channel unit has walls that partition the flow channel, at least one wall of the walls is a thin portion that is the thinnest portion, and the sensor chip includes a heater and a first temperature It has a sensor and a second temperature sensor, the sensor chip is attached to the thin portion, and the thin portion is made of resin.
  • a flow meter for solving the above problems is a flow meter for measuring the flow rate of a fluid, comprising a flow path unit forming a flow path through which the fluid flows, and a sensor chip attached to the flow path unit.
  • the sensor chip has a heater, a first temperature sensor, and a second temperature sensor; a metal foil located in the
  • Sectional drawing which shows 1st Embodiment of a flowmeter. Sectional view of the flowmeter cut along line 2-2. Sectional drawing which removed the case from FIG. Sectional drawing which shows 2nd Embodiment of a flowmeter. Sectional drawing which shows 3rd Embodiment of a flowmeter. Sectional drawing which shows 4th Embodiment of a flowmeter. Sectional drawing which shows 5th Embodiment of a flow meter. Sectional drawing which shows 6th Embodiment of a flow meter. Sectional drawing which shows 7th Embodiment of a flowmeter. Sectional view of the flowmeter cut along line 10-10. Sectional drawing which removed the case from FIG.
  • the flow meter is a thermal type flow meter.
  • the flow meter 11 is electrically connected to an external processing section 12 .
  • the flow meter 11 outputs the detection result of the flow meter 11 to the processing section 12 .
  • the flow rate of the fluid is measured by the processing unit 12 processing the detection result of the flowmeter 11 .
  • the processing unit 12 includes a circuit that executes software processing for measuring the flow rate of fluid from the detection result of the flowmeter 11 .
  • the processing unit 12 may comprise a hardware circuit such as an ASIC, for example.
  • Flow meter 11 may include processing unit 12 .
  • the flow meter 11 is connected to the first external channel 13 and the second external channel 14 .
  • the flow meter 11 relays between the first external channel 13 and the second external channel 14 .
  • the flowmeter 11 is a flowmeter for measuring the flow rate of the fluid flowing from the first external flow path 13 to the second external flow path 14 or the flow rate of the fluid flowing from the second external flow path 14 to the first external flow path 13. be.
  • fluid flows from the first external channel 13 towards the second external channel 14 . Therefore, in the first embodiment, the direction from the first external channel 13 to the second external channel 14 in the flow meter 11 is represented as the flow direction A1 in which the fluid flows.
  • each of the first external flow path 13 and the second external flow path 14 has a tube 15 and a connection member 16.
  • a connection member 16 is attached to one end of the tube 15 .
  • the tube 15 is connected to the flowmeter 11 by inserting the connection member 16 into the flowmeter 11 .
  • the fluid flowing through the first external channel 13 and the second external channel 14 may be liquid or gas.
  • the flow meter 11 can measure the flow rate in the range of 10 nanoliters/minute to 10 milliliters/minute. In the first embodiment, the flow meter 11 can measure the flow rate in a minute range from 10 nanoliters/minute to 100 microliters/minute.
  • the flowmeter 11 includes a channel unit 21 and a sensor section 22 .
  • the flowmeter 11 further includes a case 23.
  • the channel unit 21 constitutes a channel 24 .
  • the channel 24 extends linearly.
  • the channel 24 extends in the flow direction A1.
  • the channel 24 is connected to the first external channel 13 and the second external channel 14 .
  • One end of the channel 24 is connected to the first external channel 13 , and the other end of the channel 24 is connected to the second external channel 14 .
  • Flow meter 11 measures the flow rate of fluid passing through channel 24 .
  • the channel unit 21 includes a first base material 25 and a second base material 26 .
  • the first base material 25 has recesses 27 that form the flow paths 24 .
  • the recess 27 extends linearly in the first base material 25 .
  • the recesses 27 extend in the flow direction A1 in the first base material 25 .
  • the first base material 25 has a facing surface 28 that faces the second base material 26 .
  • a recess 27 is formed in the facing surface 28 .
  • the first base material 25 is made of resin, for example.
  • the first base material 25 is made of acrylic (PMMA), for example.
  • the first base material 25 is not limited to resin, and may be made of glass, for example.
  • the material forming the first base material 25 may be the same as or different from the material forming the second base material 26 .
  • the second base material 26 is adhered to the first base material 25 so as to cover the recess 27 . Specifically, the second base material 26 is adhered to the facing surface 28 of the first base material 25 . The second base material 26 is adhered to the first base material 25 by, for example, an adhesive. By bonding the second base material 26 to the first base material 25 , the concave portion 27 is covered with the second base material 26 . Thereby, the flow path 24 is configured.
  • the second base material 26 is, for example, a film.
  • the second base material 26 is made of resin, for example.
  • the second substrate 26 is made of, for example, vinyl chloride (PVC), high density polyethylene (HDPE), polyacetal (POM), acrylic (PMMA), polyamide 6 (PA6), or the like.
  • the resin forming the second base material 26 is preferably a material with low water absorption, high thermal conductivity, and high Young's modulus.
  • the thickness of the second base material 26 is smaller than the thickness of the first base material 25 in the first embodiment.
  • the thickness of the first base material 25 and the thickness of the second base material 26 compared here are the lengths in the direction in which the first base material 25 and the second base material 26 are laminated.
  • the shape of the channel unit 21 and the channel 24 is rectangular when viewed from the flow direction A1 or its opposite direction. Therefore, the channel unit 21 has a first outer surface 31, a second outer surface 32, a third outer surface 33, and a fourth outer surface 34 as outer peripheral surfaces.
  • the channel unit 21 has a first inner surface 36, a second inner surface 37, a third inner surface 38, and a fourth inner surface 39 as inner peripheral surfaces.
  • the inner peripheral surface of the channel unit 21 is a surface forming the channel 24 . That is, the first inner surface 36 , the second inner surface 37 , the third inner surface 38 , and the fourth inner surface 39 constitute the flow path 24 .
  • the first base material 25 has a first outer surface 31, a second outer surface 32 and a third outer surface 33.
  • the first substrate 25 has a first interior surface 36 , a second interior surface 37 and a third interior surface 38 .
  • the first inner surface 36 , the second inner surface 37 and the third inner surface 38 are surfaces forming the recess 27 .
  • Second substrate 26 has a fourth outer surface 34 .
  • Second substrate 26 has a fourth inner surface 39 .
  • the first base material 25 has a first wall 41 , a second wall 42 and a third wall 43 as part of walls that partition the flow path 24 .
  • the first wall 41 , the second wall 42 and the third wall 43 constitute the recess 27 .
  • the first wall 41 is connected to the second wall 42 and the third wall 43 .
  • First wall 41 includes a first outer surface 31 and a first inner surface 36 .
  • the second wall 42 faces the third wall 43 .
  • Second wall 42 includes facing surface 28 , second outer surface 32 and second inner surface 37 .
  • Third wall 43 includes facing surface 28 , third outer surface 33 and third inner surface 38 .
  • the second base material 26 has a fourth wall 44 as part of the wall that partitions the channel 24 .
  • a fourth wall 44 is adhered to the second wall 42 and the third wall 43 .
  • the fourth wall 44 is adhered to the facing surface 28 .
  • the fourth wall 44 covers the recess 27 .
  • the fourth wall 44 faces the first wall 41 .
  • Fourth wall 44 includes a fourth outer surface 34 and a fourth inner surface 39 .
  • the channel unit 21 has a first wall 41 , a second wall 42 , a third wall 43 and a fourth wall 44 as walls that partition the channel 24 . That is, the walls that partition the flow path 24 include a plurality of walls (first wall 41, second wall 42, third wall 43, and fourth wall 44 in this embodiment).
  • the walls that partition the flow path 24 include a plurality of walls (first wall 41, second wall 42, third wall 43, and fourth wall 44 in this embodiment).
  • the distance is the thickness of the wall that partitions the channel 24 .
  • the thickness of the wall that partitions the channel 24 is the length in the direction perpendicular to the inner peripheral surface of the channel unit 21 and the outer peripheral surface of the channel unit 21 .
  • the thickness of the wall that partitions the flow path 24 is not uniform, and varies depending on the shape of the flow path unit 21 and the shape of the flow path 24 . That is, in the first embodiment, the thickness of the first wall 41, the thickness of the second wall 42, the thickness of the third wall 43, and the thickness of the fourth wall 44 are not uniform.
  • the thickness of the first wall 41 is the first thickness W1.
  • the thickness of the second wall 42 is the second thickness W2.
  • the thickness of the third wall 43 is the third thickness W3.
  • the thickness of the fourth wall 44 is the fourth thickness W4.
  • the first thickness W1 is the distance between the first outer surface 31 and the first inner surface 36.
  • a second thickness W2 is the distance between the second outer surface 32 and the second inner surface 37 .
  • a third thickness W3 is the distance between the third outer surface 33 and the third inner surface 38 .
  • a fourth thickness W4 is the distance between the fourth outer surface 34 and the fourth inner surface 39 .
  • the fourth thickness W4 is the smallest among the first thickness W1, the second thickness W2, the third thickness W3, and the fourth thickness W4. Therefore, in the first embodiment, the fourth wall 44 corresponds to the thinnest portion among the walls that partition the flow path 24 .
  • at least one of the walls defining the channel 24 is a thin portion. That is, at least one wall (this In an embodiment, the fourth wall 44) is a thinned portion.
  • the fourth thickness W4 is also the thickness of the second base material 26 .
  • the first thickness W1 is, for example, 1 mm or more.
  • the fourth thickness W4 is, for example, 10 micrometers or more and 300 micrometers or less.
  • the sensor section 22 is attached to the channel unit 21 .
  • the sensor section 22 is attached to the second base material 26 .
  • the sensor unit 22 is attached to the surface of the second base material 26 opposite to the surface that contacts the first base material 25 . That is, the sensor section 22 is attached to the fourth outer surface 34 .
  • the sensor section 22 has a sensor chip 51 and a support section 52 .
  • the sensor chip 51 is attached to the channel unit 21 by attaching the sensor section 22 to the channel unit 21 .
  • sensor chip 51 is attached to second substrate 26 .
  • the sensor chip 51 is attached to the second base material 26 by covering the sensor section 22 and the flow path unit 21 with the case 23 in a state in which the sensor section 22 and the flow path unit 21 are stacked.
  • the sensor chip 51 is positioned near the channel 24 by attaching the sensor section 22 to the channel unit 21 .
  • the sensor chip 51 is attached to the fourth wall 44 , which is the thinnest portion of the walls that partition the flow path 24 .
  • the fourth wall 44 corresponds to the thin portion.
  • the thin portion is the portion between the channel 24 and the sensor chip 51 in the wall that partitions the channel 24 .
  • the thickness of the thin portion is, for example, 10 micrometers or more and 300 micrometers or less. If the thickness of the thin portion is less than 10 micrometers, the thin portion tends to bend, although this depends on the type of resin that constitutes the thin portion. When the thickness of the thin portion exceeds 300 micrometers, there are difficulties in heat conduction.
  • the sensor chip 51 has a heater 53, a first temperature sensor 54, a second temperature sensor 55, and a substrate 56.
  • the heater 53 , first temperature sensor 54 and second temperature sensor 55 are mounted on the substrate 56 .
  • the heater 53 , the first temperature sensor 54 , and the second temperature sensor 55 come into contact with the channel unit 21 by attaching the sensor section 22 to the channel unit 21 .
  • the heater 53 , the first temperature sensor 54 and the second temperature sensor 55 are in contact with the second substrate 26 .
  • the heater 53 generates heat when energized.
  • the heater 53 heats the fluid flowing through the flow path 24 by generating heat.
  • heater 53 heats the fluid through second substrate 26 .
  • the first temperature sensor 54 and the second temperature sensor 55 are positioned on the substrate 56 so as to sandwich the heater 53 therebetween.
  • the first temperature sensor 54, the heater 53, and the second temperature sensor 55 are arranged in this order in the flow direction A1.
  • a first temperature sensor 54 and a second temperature sensor 55 detect the temperature of the fluid flowing through the channel 24 .
  • the sensor chip 51 heats the fluid and detects the temperature of the fluid through the thin fourth wall 44 .
  • the detection result of the first temperature sensor 54 and the detection result of the second temperature sensor 55 are sent to the processing unit 12 .
  • the processing unit 12 obtains the temperature distribution of the fluid from the detection result of the first temperature sensor 54 and the detection result of the second temperature sensor 55 . Thereby, the flow rate of the fluid flowing through the channel 24 is measured.
  • the support portion 52 supports the sensor chip 51 .
  • the support portion 52 is provided so as to surround the sensor chip 51 .
  • the support portion 52 has an exposure opening 57 through which the sensor chip 51 is exposed.
  • the support portion 52 contacts the channel unit 21 by attaching the sensor portion 22 to the channel unit 21 .
  • the support portion 52 contacts the second base material 26 .
  • the case 23 covers the channel unit 21 and the sensor section 22.
  • the case 23 protects the flow path unit 21 and the sensor section 22 by covering the flow path unit 21 and the sensor section 22 .
  • the case 23 has a first case member 61 and a second case member 62 .
  • the first case member 61 and the second case member 62 are configured to be assembled with each other.
  • the first case member 61 and the second case member 62 are assembled so as to sandwich the channel unit 21 and the sensor section 22 .
  • the channel unit 21 and the sensor section 22 are held in contact with each other.
  • the sensor section 22 can be removed from the channel unit 21 .
  • the flow meter 11 is configured such that the sensor section 22 can be replaced.
  • a clamp may be provided to hold the channel unit 21 and the sensor section 22 in contact with each other.
  • the sensor section 22 may be attached to the channel unit 21 by, for example, an adhesive without using the case 23 .
  • the case 23 has a first opening 63 and a second opening 64 .
  • the first opening 63 and the second opening 64 are configured by assembling the first case member 61 and the second case member 62 together.
  • the first opening 63 and the second opening 64 may be provided in the first case member 61 or may be provided in the second case member 62 .
  • the first opening 63 and the second opening 64 communicate with both ends of the channel 24 respectively.
  • the first opening 63 communicates with one end of the channel 24 . Therefore, the first external channel 13 and the channel 24 are connected through the first opening 63 .
  • the second opening 64 communicates with the other end of the channel 24 . Therefore, the second external channel 14 and the channel 24 are connected through the second opening 64 .
  • the case 23 has an opening 65 that communicates with the exposure opening 57 while holding the channel unit 21 and the sensor section 22 .
  • the opening 65 is provided in the second case member 62 . That is, when the channel unit 21 and the sensor section 22 are held by the case 23 , the sensor chip 51 is exposed through the exposure opening 57 and the opening 65 . That is, a cavity facing the sensor chip 51 is formed in the case 23 .
  • the cavity reduces the possibility of heat diffusion from the sensor chip 51 . That is, by providing the cavity, the measurement accuracy of the flowmeter 11 is improved.
  • the sensor chip 51 heats the fluid and detects the temperature of the fluid through the walls that partition the flow path 24 .
  • the position of the sensor chip 51 is preferably closer to the channel 24 . The reason for this is that the smaller the distance between the sensor chip 51 and the channel 24 , that is, the thinner the wall with which the sensor chip 51 contacts, the more heat is conducted between the fluid flowing through the channel 24 and the sensor chip 51 . This is because it becomes easier. This improves the measurement accuracy of the flow meter 11 .
  • the walls defining the flow path 24 may bend. That is, in the first embodiment, the first wall 41, the second wall 42, the third wall 43, and the fourth wall 44 may bend. In particular, the thin portion, which is the thinnest portion of the wall that partitions the flow path 24, tends to bend. Therefore, in the first embodiment, the fourth wall 44 is easily bent.
  • a sensor chip 51 is attached to the thin fourth wall 44 from the viewpoint of heat conduction. Therefore, when the fourth wall 44 bends, the sensor chip 51 bends. If the sensor chip 51 bends, the sensor chip 51 may be damaged.
  • the fourth wall 44 that is, the second base material 26 is made of resin.
  • the second base material 26 is made of resin with a high Young's modulus. Therefore, even if the pressure inside the flow path 24 increases, the fourth wall 44 is less likely to bend. Therefore, the sensor chip 51 is less likely to bend. Therefore, the sensor chip 51 is less likely to be damaged.
  • the flowmeter 11 includes a channel unit 21 forming the channel 24 and a sensor chip 51 attached to the channel unit 21 .
  • the channel unit 21 has walls that partition the channels 24 . At least one of the walls defining the flow path 24 is a thin portion, which is the thinnest portion.
  • the sensor chip 51 has a heater 53, a first temperature sensor 54, and a second temperature sensor 55, and is attached to the fourth wall 44 corresponding to the thin portion.
  • the fourth wall 44 is made of resin.
  • the fourth wall 44 is made of resin, it is difficult to bend even if the pressure inside the flow path 24 increases. Therefore, the sensor chip 51 is less likely to be damaged. Furthermore, another effect is that the fourth wall 44 is strong because it is made of resin. Therefore, even if the fourth wall 44 receives an impact when replacing the sensor section 22 with respect to the channel unit 21, the fourth wall 44 is less likely to be damaged.
  • the channel unit 21 includes a first base material 25 having a concave portion 27 forming the channel 24, a second base material 26 adhered to the first base material 25 so as to cover the concave portion 27, Consists of The first base material 25 has a first wall 41 , a second wall 42 and a third wall 43 as part of the walls forming the flow path 24 .
  • the second base material 26 has a fourth wall 44 as part of the walls that form the channel 24 .
  • the recess 27 is composed of a first wall 41 , a second wall 42 and a third wall 43 . According to the above configuration, it becomes easier to manufacture the channel unit 21 .
  • the heater 53 is positioned between the first temperature sensor 54 and the second temperature sensor 55 in the direction in which the flow path 24 extends, that is, the flow direction A1.
  • the first temperature sensor 54 and the second temperature sensor 55 can detect the temperature of the fluid at two points, upstream of the flow path 24 and downstream of the flow path 24 . Thereby, the flow rate of the fluid can be measured.
  • the flowmeter 11 includes a case 23 that covers the flow channel unit 21 and the sensor chip 51 .
  • the case 23 has a first case member 61 and a second case member 62 that can be attached to the first case member 61 . According to the above configuration, the case 23 can protect the channel unit 21 and the sensor chip 51 .
  • the sensor chip 51 can be removed from the channel unit 21 by separating the first case member 61 and the second case member 62 . Thereby, the sensor chip 51 can be replaced with respect to the channel unit 21 .
  • the second embodiment differs from the first embodiment in that the sensor section 22 is attached to the first base material 25 .
  • the configuration different from that of the first embodiment will be mainly described, and the description of other configurations will be omitted.
  • the thickness of the first base material 25 is smaller than the thickness of the second base material 26 . Therefore, in the second embodiment, the first wall 41 of the walls that partition the flow path 24 corresponds to the thin portion. Therefore, in the second embodiment, the sensor chip 51 is attached to the first wall 41 by attaching the sensor portion 22 to the first base material 25 .
  • the first base material 25 is made of, for example, vinyl chloride (PVC), high density polyethylene (HDPE), polyacetal (POM), acrylic (PMMA), polyamide 6 (PA6), or the like.
  • the resin forming the first base material 25 is preferably a material with low water absorption, high thermal conductivity, and high Young's modulus.
  • the second base material 26 is made of acrylic (PMMA), for example.
  • the second base material 26 is not limited to resin, and may be made of glass, for example.
  • the first wall 41 Since the first wall 41 is made of resin, it is difficult to bend even if the pressure inside the flow path 24 increases. Therefore, the sensor chip 51 is less likely to be damaged. Furthermore, as another effect, since the first wall 41 is made of resin, it has strength. Therefore, even if the first wall 41 receives an impact when replacing the sensor section 22 with respect to the channel unit 21, the first wall 41 is less likely to be damaged.
  • the flow channel unit 21 is not configured to include the first base material 25 and the second base material 26, but is composed of a single base material 67. different in that respect.
  • the configuration different from that of the first embodiment will be mainly described, and the description of other configurations will be omitted.
  • the channel unit 21 has a channel 24 in the third embodiment.
  • the flow channel unit 21 is configured by a single base material 67 instead of including the first base material 25 and the second base material 26 that are adhered to each other.
  • the base material 67 has walls that partition the flow paths 24 .
  • the base material 67 has, for example, a first wall 41 , a second wall 42 , a third wall 43 , and a fourth wall 44 as walls that partition the flow path 24 .
  • the first wall 41 is connected to the second wall 42 and the third wall 43 .
  • a fourth wall 44 is connected to the second wall 42 and the third wall 43 .
  • the 1st wall 41, the 2nd wall 42, the 3rd wall 43, and the 4th wall 44 are comprised integrally.
  • the substrate 67 is a one-piece piece of resin, for example.
  • the channel 24 is provided so as to penetrate the base material 67 .
  • the base material 67 is made of, for example, vinyl chloride (PVC), high density polyethylene (HDPE), polyacetal (POM), acrylic (PMMA), polyamide 6 (PA6), or the like.
  • the following effects are obtained. (3-1) Since the channel unit 21 is composed of the single base material 67, the strength of the channel unit 21 is improved.
  • the fourth embodiment differs from the first embodiment in that the channel unit 21 has a metal foil 71 .
  • the configuration different from that of the first embodiment will be mainly described, and the description of other configurations will be omitted.
  • the channel unit 21 has a metal foil 71 in the fourth embodiment.
  • a metal foil 71 is positioned between the sensor chip 51 and the channel 24 .
  • the metal foil 71 is positioned between the heater 53 , the first temperature sensor 54 , the second temperature sensor 55 and the flow path 24 .
  • the metal foil 71 is embedded in the walls that partition the flow paths 24 .
  • the metal foil 71 is embedded in the wall (the fourth wall 44 in this embodiment) that defines the channel 24 located between the sensor chip 51 and the channel 24 .
  • the metal foil 71 is embedded in the thin portion, that is, the fourth wall 44 .
  • the metal foil 71 is, for example, SUS, aluminum, or the like.
  • the channel unit 21 has a metal foil 71 between the sensor chip 51 and the channel 24 .
  • the metal foil 71 facilitates heat conduction between the fluid flowing through the channel 24 and the sensor chip 51 . This improves the measurement accuracy of the flow meter 11 . Another effect is that the metal foil 71 can improve the rigidity of the fourth wall 44 . That is, the fourth wall 44 becomes difficult to bend.
  • the metal foil 71 is positioned between the heater 53 , the first temperature sensor 54 , the second temperature sensor 55 and the channel 24 . According to the above configuration, the metal foil 71 effectively conducts the heat of the heater 53 to the fluid flowing through the flow path 24 . Moreover, the metal foil 71 allows the first temperature sensor 54 and the second temperature sensor 55 to accurately detect the temperature of the fluid flowing through the flow path 24 .
  • the metal foil 71 is embedded in the walls that partition the channel 24 . According to the above configuration, the metal foil 71 is less likely to rust. Therefore, a metal that easily rusts, such as aluminum, can be used as the metal foil 71 .
  • a fifth embodiment will be described.
  • the number of metal foils 71 is different from that in the fourth embodiment.
  • the configuration different from that of the fourth embodiment will be mainly described, and the description of other configurations will be omitted.
  • the channel unit 21 has a plurality of metal foils 71 in the fifth embodiment.
  • the channel unit 21 has, for example, three metal foils 71, but may have four or more, or may have two.
  • a plurality of metal foils 71 are positioned between the sensor chip 51 and the channel 24 .
  • the multiple metal foils 71 are embedded in the walls that partition the flow paths 24 .
  • the plurality of metal foils 71 are embedded in the thin portion, that is, the fourth wall 44 .
  • a plurality of metal foils 71 are arranged in the flow direction A1 on the fourth wall 44 .
  • a first metal foil which is one of the plurality of metal foils 71 , is positioned between the heater 53 and the channel 24 .
  • a second metal foil which is one of the plurality of metal foils 71 , is positioned between the first temperature sensor 54 and the channel 24 .
  • a third metal foil which is one of the plurality of metal foils 71 , is positioned between the second temperature sensor 55 and the channel 24 . That is, in the fifth embodiment, the metal foil 71 is divided so as to correspond to the heater 53, the first temperature sensor 54, and the second temperature sensor 55, respectively, as compared with the fourth embodiment.
  • the following effects are obtained.
  • the channel unit 21 has a metal foil 71 in the sixth embodiment.
  • a metal foil 71 is positioned between the sensor chip 51 and the channel 24 .
  • the metal foil 71 is positioned between the sensor section 22 and the second base material 26 .
  • the metal foil 71 is positioned between the fourth wall 44 and the sensor chip 51 . That is, in the sixth embodiment, the metal foil 71 is sandwiched between the sensor section 22 and the second base material 26 without being embedded in the second base material 26 .
  • the metal foil 71 is provided over the sensor chip 51 and the support portion 52 . That is, in the sixth embodiment, heat is more easily diffused from the sensor chip 51 by the metal foil 71 than in the fourth embodiment, but the effect (4-1) described above can be obtained. According to the sixth embodiment, the following effects are obtained.
  • the flow channel unit 21 is easier to manufacture than the configuration in which the metal foil 71 is embedded in the fourth wall 44 .
  • a seventh embodiment will be described.
  • the thickness of the wall that partitions the flow path 24 is different from that in the fourth embodiment.
  • the configuration different from that of the fourth embodiment will be mainly described, and the description of other configurations will be omitted.
  • the first wall 41 is the thinnest among the walls that partition the channel 24. As shown in FIGS. Therefore, in the seventh embodiment, not the fourth wall 44 but the first wall 41 corresponds to the thin portion.
  • the first thickness W1 is the smallest among the first thickness W1, the second thickness W2, the third thickness W3, and the fourth thickness W4.
  • the sensor chip 51 is attached to the fourth wall 44 as in the fourth embodiment. That is, in the seventh embodiment, the sensor chip 51 is not attached to the thin portion.
  • the metal foil 71 is positioned between the sensor chip 51 and the channel 24.
  • the metal foil 71 is embedded in walls that partition the flow path 24 . Specifically, the metal foil 71 is embedded in the fourth wall 44 .
  • the sensor chip 51 is not attached to the thin portion, but the metal foil 71 is positioned between the sensor chip 51 and the channel 24. Therefore, even if the sensor chip 51 is not attached to the thin portion, heat is easily conducted between the fluid flowing through the channel 24 and the sensor chip 51 .
  • the flowmeter 11 includes a flow path unit 21 forming a flow path 24 and a sensor chip 51 attached to the flow path unit 21 .
  • the sensor chip 51 has a heater 53 , a first temperature sensor 54 and a second temperature sensor 55 .
  • the channel unit 21 has a wall that partitions the channel 24 and a metal foil 71 positioned between the sensor chip 51 and the channel 24 .
  • the metal foil 71 facilitates heat conduction between the fluid flowing through the channel 24 and the sensor chip 51 . Therefore, the thickness of the fourth wall 44 can be set so that it is difficult to bend. Thereby, even if the pressure in the flow path 24 increases, the fourth wall 44 is less likely to bend. Therefore, the sensor chip 51 is less likely to be damaged.
  • the first to seventh embodiments can be modified and implemented as follows.
  • the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment, the sixth embodiment, the seventh embodiment, and the following modifications are combined with each other within a technically consistent range. can be implemented.
  • the shape of the channel unit 21 is not limited to a rectangular shape, and may be polygonal or circular.
  • the shape of the flow path 24 is not limited to a rectangular shape when viewed from the flow direction A1 or the opposite direction. It may be polygonal or circular.

Abstract

A flowmeter (11) for measuring a flow rate of a fluid is provided with a flow passage unit (21) forming a flow passage (24) through which the fluid flows, and a sensor chip (51) attached to the flow passage unit. The flow passage unit has walls defining the flow passage. At least one wall among the walls defining the flow passage is a thin part, which is the thinnest part. The sensor chip includes a heater (53), a first temperature sensor (54), and a second temperature sensor (55). The sensor chip is attached to the thin part, and the thin part is formed from a resin.

Description

流量計Flowmeter
 本開示は、流量計に関する。 The present disclosure relates to flow meters.
 特許文献1には、流路を構成する流路ユニットと、流路ユニットに取り付けられるセンサチップとを備える流量計が記載されている。センサチップは、ヒータと、第1温度センサと、第2温度センサとが実装されたチップである。ヒータは、流路を流れる流体を加熱する。第1温度センサにより検出した温度と、第2温度センサにより検出した温度とにより、流路を流れる流体の流量を測定できる。 Patent Literature 1 describes a flowmeter that includes a channel unit that configures a channel and a sensor chip that is attached to the channel unit. A sensor chip is a chip on which a heater, a first temperature sensor, and a second temperature sensor are mounted. The heater heats the fluid flowing through the channel. The temperature detected by the first temperature sensor and the temperature detected by the second temperature sensor can be used to measure the flow rate of the fluid flowing through the channel.
米国特許第6813944号明細書U.S. Pat. No. 6,813,944
 流量計においては、センサチップと流路との間の壁が薄いと、流路を流れる流体とセンサチップとの間で熱が伝導しやすくなる。その結果、流量計の測定精度が向上する。その一方、センサチップと流路との間の壁が薄いと、流路内の圧力が大きくなることによって、その壁が撓むことがある。壁が撓むと、センサチップが撓む。この場合、センサチップが破損するおそれがある。 In a flowmeter, if the wall between the sensor chip and the flow path is thin, heat is easily conducted between the fluid flowing through the flow path and the sensor chip. As a result, the measurement accuracy of the flowmeter is improved. On the other hand, if the wall between the sensor chip and the channel is thin, the increased pressure within the channel may cause the wall to flex. When the wall flexes, the sensor chip flexes. In this case, the sensor chip may be damaged.
 上記課題を解決する流量計は、流体の流量を測定するための流量計であって、前記流体が流れる流路を構成する流路ユニットと、前記流路ユニットに取り付けられるセンサチップと、を備え、前記流路ユニットは、前記流路を区画する壁を有し、前記壁のうちの少なくとも1つの壁は、最も薄い部分である薄手部分であり、前記センサチップは、ヒータと、第1温度センサと、第2温度センサと、を有し、前記センサチップは、前記薄手部分に取り付けられ、前記薄手部分は、樹脂で構成される。 A flow meter for solving the above problems is a flow meter for measuring the flow rate of a fluid, comprising a flow path unit forming a flow path through which the fluid flows, and a sensor chip attached to the flow path unit. , the flow channel unit has walls that partition the flow channel, at least one wall of the walls is a thin portion that is the thinnest portion, and the sensor chip includes a heater and a first temperature It has a sensor and a second temperature sensor, the sensor chip is attached to the thin portion, and the thin portion is made of resin.
 上記課題を解決する流量計は、流体の流量を測定するための流量計であって、前記流体が流れる流路を構成する流路ユニットと、前記流路ユニットに取り付けられるセンサチップと、を備え、前記センサチップは、ヒータと、第1温度センサと、第2温度センサと、を有し、前記流路ユニットは、前記流路を区画する壁と、前記センサチップと前記流路との間に位置する金属箔と、を有する。 A flow meter for solving the above problems is a flow meter for measuring the flow rate of a fluid, comprising a flow path unit forming a flow path through which the fluid flows, and a sensor chip attached to the flow path unit. , the sensor chip has a heater, a first temperature sensor, and a second temperature sensor; a metal foil located in the
 本開示の流量計によれば、センサチップが破損するおそれを低減できる。 According to the flowmeter of the present disclosure, it is possible to reduce the risk of damage to the sensor chip.
流量計の第1実施形態を示す断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing which shows 1st Embodiment of a flowmeter. 2-2線で切断した流量計の断面図。Sectional view of the flowmeter cut along line 2-2. 図2からケースを取り外した断面図。Sectional drawing which removed the case from FIG. 流量計の第2実施形態を示す断面図。Sectional drawing which shows 2nd Embodiment of a flowmeter. 流量計の第3実施形態を示す断面図。Sectional drawing which shows 3rd Embodiment of a flowmeter. 流量計の第4実施形態を示す断面図。Sectional drawing which shows 4th Embodiment of a flowmeter. 流量計の第5実施形態を示す断面図。Sectional drawing which shows 5th Embodiment of a flow meter. 流量計の第6実施形態を示す断面図。Sectional drawing which shows 6th Embodiment of a flow meter. 流量計の第7実施形態を示す断面図。Sectional drawing which shows 7th Embodiment of a flowmeter. 10-10線で切断した流量計の断面図。Sectional view of the flowmeter cut along line 10-10. 図10からケースを取り外した断面図。Sectional drawing which removed the case from FIG.
 以下、流量計の一実施形態について図を参照しながら説明する。流量計は、サーマル式の流量計である。
 <第1実施形態>
 図1に示すように、流量計11は、外部の処理部12と電気的に接続される。流量計11は、流量計11の検出結果を処理部12に出力する。流量計11の検出結果を処理部12が処理することによって、流体の流量が測定される。処理部12は、流量計11の検出結果から流体の流量を測定するソフトウェア処理を実行する回路を備える。処理部12は、例えばASICのようなハードウェア回路を備えてもよい。流量計11は、処理部12を含んでもよい。
An embodiment of the flowmeter will be described below with reference to the drawings. The flow meter is a thermal type flow meter.
<First embodiment>
As shown in FIG. 1, the flow meter 11 is electrically connected to an external processing section 12 . The flow meter 11 outputs the detection result of the flow meter 11 to the processing section 12 . The flow rate of the fluid is measured by the processing unit 12 processing the detection result of the flowmeter 11 . The processing unit 12 includes a circuit that executes software processing for measuring the flow rate of fluid from the detection result of the flowmeter 11 . The processing unit 12 may comprise a hardware circuit such as an ASIC, for example. Flow meter 11 may include processing unit 12 .
 流量計11は、第1外部流路13と第2外部流路14とに接続される。流量計11は、第1外部流路13と第2外部流路14とを中継する。流量計11は、第1外部流路13から第2外部流路14に流れる流体、又は、第2外部流路14から第1外部流路13に流れる流体の流量を測定するための流量計である。第1実施形態では、流体は、第1外部流路13から第2外部流路14に向けて流れる。そのため、第1実施形態では、流量計11において第1外部流路13から第2外部流路14に向かう方向を、流体が流れる流動方向A1としてあらわす。 The flow meter 11 is connected to the first external channel 13 and the second external channel 14 . The flow meter 11 relays between the first external channel 13 and the second external channel 14 . The flowmeter 11 is a flowmeter for measuring the flow rate of the fluid flowing from the first external flow path 13 to the second external flow path 14 or the flow rate of the fluid flowing from the second external flow path 14 to the first external flow path 13. be. In the first embodiment, fluid flows from the first external channel 13 towards the second external channel 14 . Therefore, in the first embodiment, the direction from the first external channel 13 to the second external channel 14 in the flow meter 11 is represented as the flow direction A1 in which the fluid flows.
 第1実施形態では、第1外部流路13及び第2外部流路14のそれぞれは、チューブ15と、接続部材16とを有する。チューブ15の一端に接続部材16が取り付けられる。接続部材16が流量計11に挿入されることによって、チューブ15が流量計11と接続される。第1外部流路13及び第2外部流路14を流れる流体は、液体でもよいし、気体でもよい。 In the first embodiment, each of the first external flow path 13 and the second external flow path 14 has a tube 15 and a connection member 16. A connection member 16 is attached to one end of the tube 15 . The tube 15 is connected to the flowmeter 11 by inserting the connection member 16 into the flowmeter 11 . The fluid flowing through the first external channel 13 and the second external channel 14 may be liquid or gas.
 流量計11は、一例として、10ナノリットル/分から10ミリリットル/分の範囲で流量を測定できる。第1実施形態では、流量計11は、10ナノリットル/分から100マイクロリットル/分の微小な範囲で流量を測定できる。 As an example, the flow meter 11 can measure the flow rate in the range of 10 nanoliters/minute to 10 milliliters/minute. In the first embodiment, the flow meter 11 can measure the flow rate in a minute range from 10 nanoliters/minute to 100 microliters/minute.
 流量計11は、流路ユニット21と、センサ部22とを備える。第1実施形態では、流量計11は、さらに、ケース23を備える。
 流路ユニット21は、流路24を構成する。流路24は、直線的に延びる。流路24は、流動方向A1に延びる。流路24は、第1外部流路13と第2外部流路14と接続される。流路24の一端に第1外部流路13が接続され、流路24の他端に第2外部流路14が接続される。流量計11は、流路24を通過する流体の流量を測定する。第1実施形態では、流路ユニット21は、第1基材25と第2基材26とを含んで構成される。
The flowmeter 11 includes a channel unit 21 and a sensor section 22 . In the first embodiment, the flowmeter 11 further includes a case 23. As shown in FIG.
The channel unit 21 constitutes a channel 24 . The channel 24 extends linearly. The channel 24 extends in the flow direction A1. The channel 24 is connected to the first external channel 13 and the second external channel 14 . One end of the channel 24 is connected to the first external channel 13 , and the other end of the channel 24 is connected to the second external channel 14 . Flow meter 11 measures the flow rate of fluid passing through channel 24 . In the first embodiment, the channel unit 21 includes a first base material 25 and a second base material 26 .
 図1及び図2に示すように、第1基材25は、流路24を構成する凹部27を有する。凹部27は、第1基材25において直線的に延びる。凹部27は、第1基材25において流動方向A1に延びる。第1基材25は、第2基材26と対向する対向面28を有する。凹部27は、対向面28に形成される。 As shown in FIGS. 1 and 2, the first base material 25 has recesses 27 that form the flow paths 24 . The recess 27 extends linearly in the first base material 25 . The recesses 27 extend in the flow direction A1 in the first base material 25 . The first base material 25 has a facing surface 28 that faces the second base material 26 . A recess 27 is formed in the facing surface 28 .
 第1基材25は、例えば、樹脂で構成される。第1実施形態では、第1基材25は、例えば、アクリル(PMMA)で構成される。第1基材25は、樹脂に限らず、例えば、ガラスで構成されてもよい。第1基材25を構成する材料は、第2基材26を構成する材料と同じでもよいし、異なっていてもよい。 The first base material 25 is made of resin, for example. In the first embodiment, the first base material 25 is made of acrylic (PMMA), for example. The first base material 25 is not limited to resin, and may be made of glass, for example. The material forming the first base material 25 may be the same as or different from the material forming the second base material 26 .
 第2基材26は、凹部27を覆うように第1基材25に接着される。具体的には、第2基材26は、第1基材25に対して、対向面28に接着される。第2基材26は、例えば、接着剤によって第1基材25に接着される。第1基材25に第2基材26が接着されることによって、凹部27が第2基材26に覆われる。これにより、流路24が構成される。 The second base material 26 is adhered to the first base material 25 so as to cover the recess 27 . Specifically, the second base material 26 is adhered to the facing surface 28 of the first base material 25 . The second base material 26 is adhered to the first base material 25 by, for example, an adhesive. By bonding the second base material 26 to the first base material 25 , the concave portion 27 is covered with the second base material 26 . Thereby, the flow path 24 is configured.
 第2基材26は、例えば、フィルムである。第2基材26は、例えば、樹脂で構成される。第1実施形態では、第2基材26は、例えば、塩化ビニル(PVC)、高密度ポリエチレン(HDPE)、ポリアセタール(POM)、アクリル(PMMA)、ポリアミド6(PA6)などで構成される。第2基材26を構成する樹脂は、吸水率が低く、熱伝導率が高く、ヤング率が高い材料であるとよい。 The second base material 26 is, for example, a film. The second base material 26 is made of resin, for example. In the first embodiment, the second substrate 26 is made of, for example, vinyl chloride (PVC), high density polyethylene (HDPE), polyacetal (POM), acrylic (PMMA), polyamide 6 (PA6), or the like. The resin forming the second base material 26 is preferably a material with low water absorption, high thermal conductivity, and high Young's modulus.
 図3に示すように、第1実施形態では、第2基材26の厚みは、第1基材25の厚みよりも小さい。ここで比較している第1基材25の厚み及び第2基材26の厚みは、第1基材25と第2基材26とが積層される方向での長さである。 As shown in FIG. 3, the thickness of the second base material 26 is smaller than the thickness of the first base material 25 in the first embodiment. The thickness of the first base material 25 and the thickness of the second base material 26 compared here are the lengths in the direction in which the first base material 25 and the second base material 26 are laminated.
 第1実施形態では、流動方向A1又はその反対方向から見た場合に、流路ユニット21及び流路24の形状は、矩形形状である。そのため、流路ユニット21は、外周面として、第1外面31、第2外面32、第3外面33、及び、第4外面34を有する。流路ユニット21は、内周面として、第1内面36、第2内面37、第3内面38、及び、第4内面39を有する。流路ユニット21の内周面は、流路24を構成する面である。すなわち、第1内面36、第2内面37、第3内面38、第4内面39は、流路24を構成する面である。 In the first embodiment, the shape of the channel unit 21 and the channel 24 is rectangular when viewed from the flow direction A1 or its opposite direction. Therefore, the channel unit 21 has a first outer surface 31, a second outer surface 32, a third outer surface 33, and a fourth outer surface 34 as outer peripheral surfaces. The channel unit 21 has a first inner surface 36, a second inner surface 37, a third inner surface 38, and a fourth inner surface 39 as inner peripheral surfaces. The inner peripheral surface of the channel unit 21 is a surface forming the channel 24 . That is, the first inner surface 36 , the second inner surface 37 , the third inner surface 38 , and the fourth inner surface 39 constitute the flow path 24 .
 第1実施形態では、第1基材25は、第1外面31、第2外面32及び第3外面33を有する。第1基材25は、第1内面36、第2内面37及び第3内面38を有する。第1内面36、第2内面37及び第3内面38は、凹部27を構成する面である。第2基材26は、第4外面34を有する。第2基材26は、第4内面39を有する。 In the first embodiment, the first base material 25 has a first outer surface 31, a second outer surface 32 and a third outer surface 33. The first substrate 25 has a first interior surface 36 , a second interior surface 37 and a third interior surface 38 . The first inner surface 36 , the second inner surface 37 and the third inner surface 38 are surfaces forming the recess 27 . Second substrate 26 has a fourth outer surface 34 . Second substrate 26 has a fourth inner surface 39 .
 第1基材25は、流路24を区画する壁の一部として、第1壁41と、第2壁42と、第3壁43とを有する。第1壁41と第2壁42と第3壁43とは、凹部27を構成する。第1壁41は、第2壁42と第3壁43とに接続される。第1壁41は、第1外面31と第1内面36とを含む。第2壁42は、第3壁43と向かい合う。第2壁42は、対向面28と第2外面32と第2内面37とを含む。第3壁43は、対向面28と第3外面33と第3内面38とを含む。 The first base material 25 has a first wall 41 , a second wall 42 and a third wall 43 as part of walls that partition the flow path 24 . The first wall 41 , the second wall 42 and the third wall 43 constitute the recess 27 . The first wall 41 is connected to the second wall 42 and the third wall 43 . First wall 41 includes a first outer surface 31 and a first inner surface 36 . The second wall 42 faces the third wall 43 . Second wall 42 includes facing surface 28 , second outer surface 32 and second inner surface 37 . Third wall 43 includes facing surface 28 , third outer surface 33 and third inner surface 38 .
 第2基材26は、流路24を区画する壁の一部として、第4壁44を有する。第4壁44は、第2壁42と第3壁43とに接着される。具体的には、第4壁44は、対向面28に接着される。これにより、第4壁44は、凹部27を覆う。その結果、第4壁44は、第1壁41と向かい合う。第4壁44は、第4外面34と第4内面39とを含む。 The second base material 26 has a fourth wall 44 as part of the wall that partitions the channel 24 . A fourth wall 44 is adhered to the second wall 42 and the third wall 43 . Specifically, the fourth wall 44 is adhered to the facing surface 28 . Thereby, the fourth wall 44 covers the recess 27 . As a result, the fourth wall 44 faces the first wall 41 . Fourth wall 44 includes a fourth outer surface 34 and a fourth inner surface 39 .
 流路ユニット21は、流路24を区画する壁として、第1壁41と第2壁42と第3壁43と第4壁44とを有する。つまり、流路24を区画する壁は、複数の壁(本実施形態では、第1壁41、第2壁42、第3壁43、第4壁44)を含む。流路ユニット21において、流動方向A1又はその反対方向から見た場合に、流路24を中心とする径方向において、流路ユニット21の内周面と流路ユニット21の外周面との間の距離は、流路24を区画する壁の厚みである。流路24を区画する壁の厚みは、流路ユニット21の内周面及び流路ユニット21の外周面に対して垂直な方向での長さである。 The channel unit 21 has a first wall 41 , a second wall 42 , a third wall 43 and a fourth wall 44 as walls that partition the channel 24 . That is, the walls that partition the flow path 24 include a plurality of walls (first wall 41, second wall 42, third wall 43, and fourth wall 44 in this embodiment). In the channel unit 21, when viewed from the flow direction A1 or the opposite direction, in the radial direction centered on the channel 24, between the inner peripheral surface of the channel unit 21 and the outer peripheral surface of the channel unit 21 The distance is the thickness of the wall that partitions the channel 24 . The thickness of the wall that partitions the channel 24 is the length in the direction perpendicular to the inner peripheral surface of the channel unit 21 and the outer peripheral surface of the channel unit 21 .
 第1実施形態では、流路24を区画する壁の厚みは、一律ではなく、流路ユニット21の形状及び流路24の形状によって、部分ごとに異なる。すなわち、第1実施形態では、第1壁41の厚み、第2壁42の厚み、第3壁43の厚み、及び、第4壁44の厚みは、一律ではない。第1壁41の厚みは、第1厚みW1である。第2壁42の厚みは、第2厚みW2である。第3壁43の厚みは、第3厚みW3である。第4壁44の厚みは、第4厚みW4である。 In the first embodiment, the thickness of the wall that partitions the flow path 24 is not uniform, and varies depending on the shape of the flow path unit 21 and the shape of the flow path 24 . That is, in the first embodiment, the thickness of the first wall 41, the thickness of the second wall 42, the thickness of the third wall 43, and the thickness of the fourth wall 44 are not uniform. The thickness of the first wall 41 is the first thickness W1. The thickness of the second wall 42 is the second thickness W2. The thickness of the third wall 43 is the third thickness W3. The thickness of the fourth wall 44 is the fourth thickness W4.
 第1厚みW1は、第1外面31と第1内面36との間の距離である。第2厚みW2は、第2外面32と第2内面37との間の距離である。第3厚みW3は、第3外面33と第3内面38との間の距離である。第4厚みW4は、第4外面34と第4内面39との間の距離である。 The first thickness W1 is the distance between the first outer surface 31 and the first inner surface 36. A second thickness W2 is the distance between the second outer surface 32 and the second inner surface 37 . A third thickness W3 is the distance between the third outer surface 33 and the third inner surface 38 . A fourth thickness W4 is the distance between the fourth outer surface 34 and the fourth inner surface 39 .
 第1実施形態では、第1厚みW1、第2厚みW2、第3厚みW3、及び、第4厚みW4のうち、第4厚みW4が最も小さい。したがって、第1実施形態では、流路24を区画する壁のうち、第4壁44が最も薄い部分である薄手部分に相当する。このように、流路24を区画する壁のうちの少なくとも1つの壁は、薄手部分である。つまり、流路24を区画する壁を構成する複数の壁(本実施形態では、第1壁41、第2壁42、第3壁43、第4壁44)のうちの少なくとも1つの壁(本実施形態では、第4壁44)は、薄手部分である。第4厚みW4は、第2基材26の厚みでもある。第1厚みW1は、例えば、1ミリメートル以上である。第4厚みW4は、例えば、10マイクロメートル以上300マイクロメートル以下である。 In the first embodiment, the fourth thickness W4 is the smallest among the first thickness W1, the second thickness W2, the third thickness W3, and the fourth thickness W4. Therefore, in the first embodiment, the fourth wall 44 corresponds to the thinnest portion among the walls that partition the flow path 24 . Thus, at least one of the walls defining the channel 24 is a thin portion. That is, at least one wall (this In an embodiment, the fourth wall 44) is a thinned portion. The fourth thickness W4 is also the thickness of the second base material 26 . The first thickness W1 is, for example, 1 mm or more. The fourth thickness W4 is, for example, 10 micrometers or more and 300 micrometers or less.
 図1に示すように、センサ部22は、流路ユニット21に取り付けられる。第1実施形態では、センサ部22は、第2基材26に取り付けられる。具体的には、センサ部22は、第2基材26に対して、第1基材25に接触する面とは反対の面に取り付けられる。すなわち、センサ部22は、第4外面34に取り付けられる。第1実施形態では、センサ部22は、センサチップ51と、支持部52とを有する。 As shown in FIG. 1, the sensor section 22 is attached to the channel unit 21 . In the first embodiment, the sensor section 22 is attached to the second base material 26 . Specifically, the sensor unit 22 is attached to the surface of the second base material 26 opposite to the surface that contacts the first base material 25 . That is, the sensor section 22 is attached to the fourth outer surface 34 . In the first embodiment, the sensor section 22 has a sensor chip 51 and a support section 52 .
 センサチップ51は、センサ部22が流路ユニット21に取り付けられることによって、流路ユニット21に取り付けられる。第1実施形態では、センサチップ51は、第2基材26に取り付けられる。例えば、センサチップ51は、センサ部22と流路ユニット21とが積層する状態で、センサ部22と流路ユニット21とがケース23に覆われることによって、第2基材26に取り付けられる。 The sensor chip 51 is attached to the channel unit 21 by attaching the sensor section 22 to the channel unit 21 . In the first embodiment, sensor chip 51 is attached to second substrate 26 . For example, the sensor chip 51 is attached to the second base material 26 by covering the sensor section 22 and the flow path unit 21 with the case 23 in a state in which the sensor section 22 and the flow path unit 21 are stacked.
 図3に示すように、センサチップ51は、センサ部22が流路ユニット21に取り付けられることによって、流路24の近傍に位置する。第1実施形態では、センサチップ51は、流路24を区画する壁のうち、最も薄い部分である第4壁44に取り付けられる。第1実施形態では、第4壁44は、薄手部分に相当する。すなわち、薄手部分は、流路24を区画する壁のうち、流路24とセンサチップ51との間の部分である。 As shown in FIG. 3 , the sensor chip 51 is positioned near the channel 24 by attaching the sensor section 22 to the channel unit 21 . In the first embodiment, the sensor chip 51 is attached to the fourth wall 44 , which is the thinnest portion of the walls that partition the flow path 24 . In the first embodiment, the fourth wall 44 corresponds to the thin portion. In other words, the thin portion is the portion between the channel 24 and the sensor chip 51 in the wall that partitions the channel 24 .
 薄手部分の厚みは、一例として、10マイクロメートル以上且つ300マイクロメートル以下である。薄手部分を構成する樹脂の種類にもよるが、薄手部分の厚みが10マイクロメートル未満であると、薄手部分が撓みやすくなる。薄手部分の厚みが300マイクロメートルを超えると、熱伝導において難がある。 The thickness of the thin portion is, for example, 10 micrometers or more and 300 micrometers or less. If the thickness of the thin portion is less than 10 micrometers, the thin portion tends to bend, although this depends on the type of resin that constitutes the thin portion. When the thickness of the thin portion exceeds 300 micrometers, there are difficulties in heat conduction.
 図1に示すように、センサチップ51は、ヒータ53と、第1温度センサ54と、第2温度センサ55と、基板56とを有する。ヒータ53、第1温度センサ54、及び、第2温度センサ55は、基板56に実装される。センサ部22が流路ユニット21に取り付けられることによって、ヒータ53、第1温度センサ54、及び、第2温度センサ55が、流路ユニット21に接触する。第1実施形態では、ヒータ53、第1温度センサ54、及び、第2温度センサ55が、第2基材26に接触する。 As shown in FIG. 1, the sensor chip 51 has a heater 53, a first temperature sensor 54, a second temperature sensor 55, and a substrate 56. The heater 53 , first temperature sensor 54 and second temperature sensor 55 are mounted on the substrate 56 . The heater 53 , the first temperature sensor 54 , and the second temperature sensor 55 come into contact with the channel unit 21 by attaching the sensor section 22 to the channel unit 21 . In the first embodiment, the heater 53 , the first temperature sensor 54 and the second temperature sensor 55 are in contact with the second substrate 26 .
 ヒータ53は、通電されることによって、発熱する。ヒータ53は、発熱することによって、流路24を流れる流体を加熱する。第1実施形態では、ヒータ53は、第2基材26を介して流体を加熱する。 The heater 53 generates heat when energized. The heater 53 heats the fluid flowing through the flow path 24 by generating heat. In the first embodiment, heater 53 heats the fluid through second substrate 26 .
 第1温度センサ54及び第2温度センサ55は、基板56上において、ヒータ53を間に挟むように位置する。センサ部22が流路ユニット21に取り付けられる状態では、流動方向A1において、第1温度センサ54、ヒータ53、第2温度センサ55は、この順に並ぶ。第1温度センサ54及び第2温度センサ55は、流路24を流れる流体の温度を検出する。このように、第1実施形態では、センサチップ51は、薄手部分である第4壁44越しに、流体を加熱するとともに、流体の温度を検出する。 The first temperature sensor 54 and the second temperature sensor 55 are positioned on the substrate 56 so as to sandwich the heater 53 therebetween. When the sensor section 22 is attached to the channel unit 21, the first temperature sensor 54, the heater 53, and the second temperature sensor 55 are arranged in this order in the flow direction A1. A first temperature sensor 54 and a second temperature sensor 55 detect the temperature of the fluid flowing through the channel 24 . Thus, in the first embodiment, the sensor chip 51 heats the fluid and detects the temperature of the fluid through the thin fourth wall 44 .
 第1温度センサ54の検出結果及び第2温度センサ55の検出結果は、処理部12に送信される。処理部12は、第1温度センサ54の検出結果及び第2温度センサ55の検出結果から流体の温度分布を得る。これにより、流路24を流れる流体の流量が測定される。 The detection result of the first temperature sensor 54 and the detection result of the second temperature sensor 55 are sent to the processing unit 12 . The processing unit 12 obtains the temperature distribution of the fluid from the detection result of the first temperature sensor 54 and the detection result of the second temperature sensor 55 . Thereby, the flow rate of the fluid flowing through the channel 24 is measured.
 支持部52は、センサチップ51を支持する。支持部52は、センサチップ51を囲むように設けられる。支持部52は、センサチップ51を露出させる露出口57を有する。支持部52は、センサ部22が流路ユニット21に取り付けられることによって、流路ユニット21に接触する。第1実施形態では、支持部52は、第2基材26に接触する。 The support portion 52 supports the sensor chip 51 . The support portion 52 is provided so as to surround the sensor chip 51 . The support portion 52 has an exposure opening 57 through which the sensor chip 51 is exposed. The support portion 52 contacts the channel unit 21 by attaching the sensor portion 22 to the channel unit 21 . In the first embodiment, the support portion 52 contacts the second base material 26 .
 図1及び図2に示すように、ケース23は、流路ユニット21及びセンサ部22を覆う。ケース23は、流路ユニット21及びセンサ部22を覆うことによって、流路ユニット21及びセンサ部22を保護する。 As shown in FIGS. 1 and 2, the case 23 covers the channel unit 21 and the sensor section 22. The case 23 protects the flow path unit 21 and the sensor section 22 by covering the flow path unit 21 and the sensor section 22 .
 ケース23は、第1ケース部材61と、第2ケース部材62とを有する。第1ケース部材61と第2ケース部材62とは、互いに組み付け可能に構成される。第1ケース部材61と第2ケース部材62とは、流路ユニット21及びセンサ部22を挟むように組み付けられる。第1ケース部材61と第2ケース部材62とが組み付けられることによって、流路ユニット21及びセンサ部22は、互いに接触した状態で保持される。換言すると、第1ケース部材61と第2ケース部材62とが分離されると、流路ユニット21からセンサ部22が取り外し可能となる。このように、流量計11は、センサ部22を交換可能に構成される。 The case 23 has a first case member 61 and a second case member 62 . The first case member 61 and the second case member 62 are configured to be assembled with each other. The first case member 61 and the second case member 62 are assembled so as to sandwich the channel unit 21 and the sensor section 22 . By assembling the first case member 61 and the second case member 62, the channel unit 21 and the sensor section 22 are held in contact with each other. In other words, when the first case member 61 and the second case member 62 are separated, the sensor section 22 can be removed from the channel unit 21 . Thus, the flow meter 11 is configured such that the sensor section 22 can be replaced.
 ケース23に代えて、流路ユニット21及びセンサ部22を互いに接触する状態で保持するクランプが設けられてもよい。また、ケース23を用いず、例えば、接着剤によって流路ユニット21にセンサ部22が取り付けられてもよい。 Instead of the case 23, a clamp may be provided to hold the channel unit 21 and the sensor section 22 in contact with each other. Alternatively, the sensor section 22 may be attached to the channel unit 21 by, for example, an adhesive without using the case 23 .
 ケース23は、第1開口63と、第2開口64とを有する。第1実施形態では、第1開口63及び第2開口64は、第1ケース部材61と第2ケース部材62とが組み付けられることによって構成される。第1開口63及び第2開口64は、第1ケース部材61に設けられてもよいし、第2ケース部材62に設けられてもよい。 The case 23 has a first opening 63 and a second opening 64 . In the first embodiment, the first opening 63 and the second opening 64 are configured by assembling the first case member 61 and the second case member 62 together. The first opening 63 and the second opening 64 may be provided in the first case member 61 or may be provided in the second case member 62 .
 第1開口63及び第2開口64は、流路24の両端とそれぞれ通じる。第1開口63は、流路24の一端と通じる。そのため、第1開口63を通じて、第1外部流路13と流路24とが接続される。第2開口64は、流路24の他端と通じる。そのため、第2開口64を通じて、第2外部流路14と流路24とが接続される。 The first opening 63 and the second opening 64 communicate with both ends of the channel 24 respectively. The first opening 63 communicates with one end of the channel 24 . Therefore, the first external channel 13 and the channel 24 are connected through the first opening 63 . The second opening 64 communicates with the other end of the channel 24 . Therefore, the second external channel 14 and the channel 24 are connected through the second opening 64 .
 ケース23は、流路ユニット21及びセンサ部22を保持する状態で、露出口57と通じる開放口65を有する。第1実施形態では、開放口65は、第2ケース部材62に設けられる。すなわち、流路ユニット21及びセンサ部22がケース23で保持されている場合、センサチップ51は、露出口57と開放口65とを通じて露出される。すなわち、ケース23内に、センサチップ51と面する空洞が形成されている。空洞によって、センサチップ51から熱が拡散するおそれが低減される。すなわち、空洞を設けることによって、流量計11の測定精度が向上する。 The case 23 has an opening 65 that communicates with the exposure opening 57 while holding the channel unit 21 and the sensor section 22 . In the first embodiment, the opening 65 is provided in the second case member 62 . That is, when the channel unit 21 and the sensor section 22 are held by the case 23 , the sensor chip 51 is exposed through the exposure opening 57 and the opening 65 . That is, a cavity facing the sensor chip 51 is formed in the case 23 . The cavity reduces the possibility of heat diffusion from the sensor chip 51 . That is, by providing the cavity, the measurement accuracy of the flowmeter 11 is improved.
 次に、第1実施形態の作用について説明する。
 センサチップ51は、流路24を区画する壁越しに、流体を加熱するとともに、流体の温度を検出する。センサチップ51の位置は、流路24に近いほど好ましい。その理由は、センサチップ51と流路24との間の距離が小さいほど、すなわちセンサチップ51が接触する壁が薄いほど、流路24を流れる流体とセンサチップ51との間で熱が伝導しやすくなるためである。これにより、流量計11の測定精度が向上する。
Next, operation of the first embodiment will be described.
The sensor chip 51 heats the fluid and detects the temperature of the fluid through the walls that partition the flow path 24 . The position of the sensor chip 51 is preferably closer to the channel 24 . The reason for this is that the smaller the distance between the sensor chip 51 and the channel 24 , that is, the thinner the wall with which the sensor chip 51 contacts, the more heat is conducted between the fluid flowing through the channel 24 and the sensor chip 51 . This is because it becomes easier. This improves the measurement accuracy of the flow meter 11 .
 流路24を流れる流体の流量が増えると、流路24内の圧力が大きくなる。流路24内の圧力が大きくなると、流路24を区画する壁が撓むおそれがある。すなわち、第1実施形態では、第1壁41、第2壁42、第3壁43、及び、第4壁44が撓むおそれがある。特に、流路24を区画する壁のうち、最も薄い部分である薄手部分が撓みやすい。したがって、第1実施形態では、第4壁44が撓みやすい。 When the flow rate of the fluid flowing through the channel 24 increases, the pressure inside the channel 24 increases. When the pressure inside the flow path 24 increases, the walls defining the flow path 24 may bend. That is, in the first embodiment, the first wall 41, the second wall 42, the third wall 43, and the fourth wall 44 may bend. In particular, the thin portion, which is the thinnest portion of the wall that partitions the flow path 24, tends to bend. Therefore, in the first embodiment, the fourth wall 44 is easily bent.
 薄手部分である第4壁44には、熱伝導の観点から、センサチップ51が取り付けられている。そのため、第4壁44が撓むと、センサチップ51が撓む。センサチップ51が撓むと、センサチップ51が破損するおそれがある。この点、第4壁44は、すなわち第2基材26は、樹脂で構成されている。特に、第1実施形態では、第2基材26は、ヤング率の高い樹脂で構成されている。そのため、流路24内の圧力が高くなったとしても、第4壁44が撓みにくい。そのため、センサチップ51が撓みにくい。したがって、センサチップ51が破損しにくい。 A sensor chip 51 is attached to the thin fourth wall 44 from the viewpoint of heat conduction. Therefore, when the fourth wall 44 bends, the sensor chip 51 bends. If the sensor chip 51 bends, the sensor chip 51 may be damaged. In this regard, the fourth wall 44, that is, the second base material 26 is made of resin. In particular, in the first embodiment, the second base material 26 is made of resin with a high Young's modulus. Therefore, even if the pressure inside the flow path 24 increases, the fourth wall 44 is less likely to bend. Therefore, the sensor chip 51 is less likely to bend. Therefore, the sensor chip 51 is less likely to be damaged.
 次に、第1実施形態の効果について説明する。
 (1-1)流量計11は、流路24を構成する流路ユニット21と、流路ユニット21に取り付けられるセンサチップ51とを備える。流路ユニット21は、流路24を区画する壁を有する。流路24を区画する壁のうちの少なくとも1つの壁は、最も薄い部分である薄手部分である。センサチップ51は、ヒータ53と、第1温度センサ54と、第2温度センサ55と、を有し、薄手部分に相当する第4壁44に取り付けられる。第4壁44は、樹脂で構成される。
Next, effects of the first embodiment will be described.
(1-1) The flowmeter 11 includes a channel unit 21 forming the channel 24 and a sensor chip 51 attached to the channel unit 21 . The channel unit 21 has walls that partition the channels 24 . At least one of the walls defining the flow path 24 is a thin portion, which is the thinnest portion. The sensor chip 51 has a heater 53, a first temperature sensor 54, and a second temperature sensor 55, and is attached to the fourth wall 44 corresponding to the thin portion. The fourth wall 44 is made of resin.
 上記構成によれば、第4壁44は、樹脂で構成されているため、流路24内の圧力が大きくなっても撓みにくい。したがって、センサチップ51が破損しにくくなる。
 さらに、別の効果として、第4壁44は、樹脂で構成されているため、強度がある。そのため、流路ユニット21に対してセンサ部22を交換する場合に、第4壁44が衝撃を受けたとしても、第4壁44が破損しにくい。
According to the above configuration, since the fourth wall 44 is made of resin, it is difficult to bend even if the pressure inside the flow path 24 increases. Therefore, the sensor chip 51 is less likely to be damaged.
Furthermore, another effect is that the fourth wall 44 is strong because it is made of resin. Therefore, even if the fourth wall 44 receives an impact when replacing the sensor section 22 with respect to the channel unit 21, the fourth wall 44 is less likely to be damaged.
 (1-2)流路ユニット21は、流路24を構成する凹部27を有する第1基材25と、凹部27を覆うように第1基材25に接着される第2基材26と、を含んで構成される。第1基材25は、流路24を構成する壁の一部として、第1壁41と第2壁42と第3壁43とを有する。第2基材26は、流路24を構成する壁の一部として、第4壁44を有する。凹部27は、第1壁41と第2壁42と第3壁43とによって構成される。上記構成によれば、流路ユニット21を製造しやすくなる。 (1-2) The channel unit 21 includes a first base material 25 having a concave portion 27 forming the channel 24, a second base material 26 adhered to the first base material 25 so as to cover the concave portion 27, Consists of The first base material 25 has a first wall 41 , a second wall 42 and a third wall 43 as part of the walls forming the flow path 24 . The second base material 26 has a fourth wall 44 as part of the walls that form the channel 24 . The recess 27 is composed of a first wall 41 , a second wall 42 and a third wall 43 . According to the above configuration, it becomes easier to manufacture the channel unit 21 .
 (1-3)ヒータ53は、流路24が延びる方向、すなわち流動方向A1において、第1温度センサ54と第2温度センサ55との間に位置する。上記構成によれば、第1温度センサ54と第2温度センサ55とによって、流路24の上流箇所と流路24の下流箇所との2点で流体の温度を検出できる。これにより、流体の流量を測定できる。 (1-3) The heater 53 is positioned between the first temperature sensor 54 and the second temperature sensor 55 in the direction in which the flow path 24 extends, that is, the flow direction A1. According to the above configuration, the first temperature sensor 54 and the second temperature sensor 55 can detect the temperature of the fluid at two points, upstream of the flow path 24 and downstream of the flow path 24 . Thereby, the flow rate of the fluid can be measured.
 (1-4)流量計11は、流路ユニット21とセンサチップ51とを覆うケース23を備える。ケース23は、第1ケース部材61と、第1ケース部材61に組み付け可能な第2ケース部材62とを有する。上記構成によれば、ケース23によって、流路ユニット21とセンサチップ51とを保護できる。 (1-4) The flowmeter 11 includes a case 23 that covers the flow channel unit 21 and the sensor chip 51 . The case 23 has a first case member 61 and a second case member 62 that can be attached to the first case member 61 . According to the above configuration, the case 23 can protect the channel unit 21 and the sensor chip 51 .
 さらに、別の効果として、第1ケース部材61と第2ケース部材62とを分離させることによって、流路ユニット21からセンサチップ51を取り外すことができる。これにより、流路ユニット21に対してセンサチップ51を交換できる。 Furthermore, as another effect, the sensor chip 51 can be removed from the channel unit 21 by separating the first case member 61 and the second case member 62 . Thereby, the sensor chip 51 can be replaced with respect to the channel unit 21 .
 <第2実施形態>
 次に、第2実施形態について説明する。第2実施形態では、第1実施形態と比較して、センサ部22が第1基材25に取り付けられる点で異なる。第2実施形態では、第1実施形態と異なる構成について主に説明し、その他の構成については説明を省略する。
<Second embodiment>
Next, a second embodiment will be described. The second embodiment differs from the first embodiment in that the sensor section 22 is attached to the first base material 25 . In the second embodiment, the configuration different from that of the first embodiment will be mainly described, and the description of other configurations will be omitted.
 図4に示すように、第2実施形態では、第1基材25の厚みは、第2基材26の厚みよりも小さい。そのため、第2実施形態では、流路24を区画する壁のうち、第1壁41が薄手部分に相当する。そのため、第2実施形態では、第1基材25にセンサ部22が取り付けられることによって、第1壁41にセンサチップ51が取り付けられる。 As shown in FIG. 4 , in the second embodiment, the thickness of the first base material 25 is smaller than the thickness of the second base material 26 . Therefore, in the second embodiment, the first wall 41 of the walls that partition the flow path 24 corresponds to the thin portion. Therefore, in the second embodiment, the sensor chip 51 is attached to the first wall 41 by attaching the sensor portion 22 to the first base material 25 .
 第2実施形態では、第1基材25は、例えば、塩化ビニル(PVC)、高密度ポリエチレン(HDPE)、ポリアセタール(POM)、アクリル(PMMA)、ポリアミド6(PA6)などで構成される。第1基材25を構成する樹脂は、吸水率が低く、熱伝導率が高く、ヤング率が高い材料であるとよい。第2実施形態では、第2基材26は、例えば、アクリル(PMMA)で構成される。第2基材26は、樹脂に限らず、例えば、ガラスで構成されてもよい。 In the second embodiment, the first base material 25 is made of, for example, vinyl chloride (PVC), high density polyethylene (HDPE), polyacetal (POM), acrylic (PMMA), polyamide 6 (PA6), or the like. The resin forming the first base material 25 is preferably a material with low water absorption, high thermal conductivity, and high Young's modulus. In the second embodiment, the second base material 26 is made of acrylic (PMMA), for example. The second base material 26 is not limited to resin, and may be made of glass, for example.
 第2実施形態によれば、以下の効果が得られる。
 (2-1)第1壁41は、樹脂で構成されているため、流路24内の圧力が大きくなっても撓みにくい。したがって、センサチップ51が破損しにくくなる。さらに、別の効果として、第1壁41は、樹脂で構成されているため、強度がある。そのため、流路ユニット21に対してセンサ部22を交換する場合に、第1壁41が衝撃を受けたとしても、第1壁41が破損しにくい。
According to the second embodiment, the following effects are obtained.
(2-1) Since the first wall 41 is made of resin, it is difficult to bend even if the pressure inside the flow path 24 increases. Therefore, the sensor chip 51 is less likely to be damaged. Furthermore, as another effect, since the first wall 41 is made of resin, it has strength. Therefore, even if the first wall 41 receives an impact when replacing the sensor section 22 with respect to the channel unit 21, the first wall 41 is less likely to be damaged.
 <第3実施形態>
 次に、第3実施形態について説明する。第3実施形態では、第1実施形態と比較して、流路ユニット21が、第1基材25と第2基材26とを含む構成ではなく、単一の基材67で構成されている点で異なる。第3実施形態では、第1実施形態と異なる構成について主に説明し、その他の構成については説明を省略する。
<Third Embodiment>
Next, a third embodiment will be described. In the third embodiment, as compared with the first embodiment, the flow channel unit 21 is not configured to include the first base material 25 and the second base material 26, but is composed of a single base material 67. different in that respect. In the third embodiment, the configuration different from that of the first embodiment will be mainly described, and the description of other configurations will be omitted.
 図5に示すように、第3実施形態では、流路ユニット21は、流路24を有する。第3実施形態では、流路ユニット21は、互いに接着される第1基材25と第2基材26とを含んで構成されるのではなく、単一の基材67によって構成される。基材67は、流路24を区画する壁を有する。基材67は、流路24を区画する壁として、例えば、第1壁41と、第2壁42と、第3壁43と、第4壁44とを有する。第1壁41は、第2壁42と第3壁43とに接続される。第4壁44は、第2壁42と第3壁43とに接続される。したがって、第3実施形態では、第1壁41と第2壁42と第3壁43と第4壁44とが、一体的に構成される。一例では、基材67は、例えば樹脂のワンピース品である。流路24は、基材67を貫通するように設けられる。 As shown in FIG. 5, the channel unit 21 has a channel 24 in the third embodiment. In the third embodiment, the flow channel unit 21 is configured by a single base material 67 instead of including the first base material 25 and the second base material 26 that are adhered to each other. The base material 67 has walls that partition the flow paths 24 . The base material 67 has, for example, a first wall 41 , a second wall 42 , a third wall 43 , and a fourth wall 44 as walls that partition the flow path 24 . The first wall 41 is connected to the second wall 42 and the third wall 43 . A fourth wall 44 is connected to the second wall 42 and the third wall 43 . Therefore, in 3rd Embodiment, the 1st wall 41, the 2nd wall 42, the 3rd wall 43, and the 4th wall 44 are comprised integrally. In one example, the substrate 67 is a one-piece piece of resin, for example. The channel 24 is provided so as to penetrate the base material 67 .
 基材67は、例えば、塩化ビニル(PVC)、高密度ポリエチレン(HDPE)、ポリアセタール(POM)、アクリル(PMMA)、ポリアミド6(PA6)などで構成される。 The base material 67 is made of, for example, vinyl chloride (PVC), high density polyethylene (HDPE), polyacetal (POM), acrylic (PMMA), polyamide 6 (PA6), or the like.
 第3実施形態によれば、以下の効果が得られる。
 (3-1)流路ユニット21が単一の基材67で構成されるため、流路ユニット21の強度が向上する。
According to the third embodiment, the following effects are obtained.
(3-1) Since the channel unit 21 is composed of the single base material 67, the strength of the channel unit 21 is improved.
 <第4実施形態>
 次に、第4実施形態について説明する。第4実施形態では、第1実施形態と比較して、流路ユニット21が金属箔71を有する点で異なる。第4実施形態では、第1実施形態と異なる構成について主に説明し、その他の構成については説明を省略する。
<Fourth Embodiment>
Next, a fourth embodiment will be described. The fourth embodiment differs from the first embodiment in that the channel unit 21 has a metal foil 71 . In the fourth embodiment, the configuration different from that of the first embodiment will be mainly described, and the description of other configurations will be omitted.
 図6に示すように、第4実施形態では、流路ユニット21は、金属箔71を有する。金属箔71は、センサチップ51と流路24との間に位置する。詳述すると、金属箔71は、ヒータ53、第1温度センサ54、及び、第2温度センサ55と、流路24との間に位置する。第4実施形態では、金属箔71は、流路24を区画する壁に埋め込まれている。つまり、金属箔71は、センサチップ51と流路24との間に位置する流路24を区画する壁(本実施形態では、第4壁44)に埋め込まれている。具体的には、金属箔71は、薄手部分、すなわち第4壁44に埋め込まれている。金属箔71は、例えば、SUS、アルミなどである。 As shown in FIG. 6, the channel unit 21 has a metal foil 71 in the fourth embodiment. A metal foil 71 is positioned between the sensor chip 51 and the channel 24 . Specifically, the metal foil 71 is positioned between the heater 53 , the first temperature sensor 54 , the second temperature sensor 55 and the flow path 24 . In the fourth embodiment, the metal foil 71 is embedded in the walls that partition the flow paths 24 . In other words, the metal foil 71 is embedded in the wall (the fourth wall 44 in this embodiment) that defines the channel 24 located between the sensor chip 51 and the channel 24 . Specifically, the metal foil 71 is embedded in the thin portion, that is, the fourth wall 44 . The metal foil 71 is, for example, SUS, aluminum, or the like.
 第4実施形態によれば、以下の効果が得られる。
 (4-1)流路ユニット21は、センサチップ51と流路24との間に、金属箔71を有する。
According to the fourth embodiment, the following effects are obtained.
(4-1) The channel unit 21 has a metal foil 71 between the sensor chip 51 and the channel 24 .
 上記構成によれば、金属箔71によって、流路24を流れる流体とセンサチップ51との間で熱が伝導しやすくなる。これにより、流量計11の測定精度が向上する。また、別の効果として、金属箔71によって、第4壁44の剛性を向上できる。すなわち、第4壁44が撓みにくくなる。 According to the above configuration, the metal foil 71 facilitates heat conduction between the fluid flowing through the channel 24 and the sensor chip 51 . This improves the measurement accuracy of the flow meter 11 . Another effect is that the metal foil 71 can improve the rigidity of the fourth wall 44 . That is, the fourth wall 44 becomes difficult to bend.
 (4-2)金属箔71は、ヒータ53、第1温度センサ54、及び、第2温度センサ55と、流路24との間に位置する。
 上記構成によれば、金属箔71によって、流路24を流れる流体に対して、ヒータ53の熱が効果的に伝導される。また、金属箔71によって、流路24を流れる流体の温度を、第1温度センサ54及び第2温度センサ55が精度よく検出できる。
(4-2) The metal foil 71 is positioned between the heater 53 , the first temperature sensor 54 , the second temperature sensor 55 and the channel 24 .
According to the above configuration, the metal foil 71 effectively conducts the heat of the heater 53 to the fluid flowing through the flow path 24 . Moreover, the metal foil 71 allows the first temperature sensor 54 and the second temperature sensor 55 to accurately detect the temperature of the fluid flowing through the flow path 24 .
 (4-3)金属箔71は、流路24を区画する壁に埋め込まれている。
 上記構成によれば、金属箔71が錆びにくくなる。そのため、例えばアルミといった錆びやすい金属を金属箔71として採用できる。
(4-3) The metal foil 71 is embedded in the walls that partition the channel 24 .
According to the above configuration, the metal foil 71 is less likely to rust. Therefore, a metal that easily rusts, such as aluminum, can be used as the metal foil 71 .
 <第5実施形態>
 次に、第5実施形態について説明する。第5実施形態では、第4実施形態と比較して、金属箔71の数が異なる。第5実施形態では、第4実施形態と異なる構成について主に説明し、その他の構成については説明を省略する。
<Fifth Embodiment>
Next, a fifth embodiment will be described. In the fifth embodiment, the number of metal foils 71 is different from that in the fourth embodiment. In the fifth embodiment, the configuration different from that of the fourth embodiment will be mainly described, and the description of other configurations will be omitted.
 図7に示すように、第5実施形態では、流路ユニット21は、複数の金属箔71を有する。流路ユニット21は、例えば、3枚の金属箔71を有するが、4枚以上でもよいし、2枚でもよい。複数の金属箔71は、センサチップ51と流路24との間に位置する。第5実施形態では、複数の金属箔71は、流路24を区画する壁に埋め込まれている。具体的には、複数の金属箔71は、薄手部分、すなわち第4壁44に埋め込まれている。複数の金属箔71は、第4壁44において流動方向A1に並ぶ。 As shown in FIG. 7, the channel unit 21 has a plurality of metal foils 71 in the fifth embodiment. The channel unit 21 has, for example, three metal foils 71, but may have four or more, or may have two. A plurality of metal foils 71 are positioned between the sensor chip 51 and the channel 24 . In the fifth embodiment, the multiple metal foils 71 are embedded in the walls that partition the flow paths 24 . Specifically, the plurality of metal foils 71 are embedded in the thin portion, that is, the fourth wall 44 . A plurality of metal foils 71 are arranged in the flow direction A1 on the fourth wall 44 .
 複数の金属箔71のうちの1枚である第1金属箔は、ヒータ53と流路24との間に位置する。複数の金属箔71のうちの1枚である第2金属箔は、第1温度センサ54と流路24との間に位置する。複数の金属箔71のうちの1枚である第3金属箔は、第2温度センサ55と流路24との間に位置する。すなわち、第5実施形態では、第4実施形態と比べて、金属箔71は、ヒータ53、第1温度センサ54、及び、第2温度センサ55のそれぞれに対応するように、分割されている。 A first metal foil, which is one of the plurality of metal foils 71 , is positioned between the heater 53 and the channel 24 . A second metal foil, which is one of the plurality of metal foils 71 , is positioned between the first temperature sensor 54 and the channel 24 . A third metal foil, which is one of the plurality of metal foils 71 , is positioned between the second temperature sensor 55 and the channel 24 . That is, in the fifth embodiment, the metal foil 71 is divided so as to correspond to the heater 53, the first temperature sensor 54, and the second temperature sensor 55, respectively, as compared with the fourth embodiment.
 第5実施形態によれば、以下の効果が得られる。
 (5-1)ヒータ53、第1温度センサ54、第2温度センサ55のそれぞれに対応するように金属箔71が分割されているため、第4実施形態と比べて、ヒータ53の熱が金属箔71を介して第1温度センサ54と第2温度センサ55とに伝導しにくくなる。これにより、第1温度センサ54と第2温度センサ55とは、流体の温度を精度よく検出できる。
According to the fifth embodiment, the following effects are obtained.
(5-1) Since the metal foil 71 is divided so as to correspond to the heater 53, the first temperature sensor 54, and the second temperature sensor 55, the heat of the heater 53 is Conduction to the first temperature sensor 54 and the second temperature sensor 55 via the foil 71 becomes difficult. Thereby, the first temperature sensor 54 and the second temperature sensor 55 can accurately detect the temperature of the fluid.
 <第6実施形態>
 次に、第6実施形態について説明する。第6実施形態では、第4実施形態と比較して、金属箔71の位置が異なる。第6実施形態では、第4実施形態と異なる構成について主に説明し、その他の構成については説明を省略する。
<Sixth embodiment>
Next, a sixth embodiment will be described. In the sixth embodiment, the position of the metal foil 71 is different from that in the fourth embodiment. In the sixth embodiment, the configuration different from that of the fourth embodiment will be mainly described, and the description of other configurations will be omitted.
 図8に示すように、第6実施形態では、流路ユニット21は、金属箔71を有する。金属箔71は、センサチップ51と流路24との間に位置する。第6実施形態では、金属箔71は、センサ部22と第2基材26との間に位置する。具体的には、金属箔71は、第4壁44とセンサチップ51との間に位置する。すなわち、第6実施形態では、金属箔71は、第2基材26に埋め込まれずに、センサ部22と第2基材26とに挟まれている。 As shown in FIG. 8, the channel unit 21 has a metal foil 71 in the sixth embodiment. A metal foil 71 is positioned between the sensor chip 51 and the channel 24 . In the sixth embodiment, the metal foil 71 is positioned between the sensor section 22 and the second base material 26 . Specifically, the metal foil 71 is positioned between the fourth wall 44 and the sensor chip 51 . That is, in the sixth embodiment, the metal foil 71 is sandwiched between the sensor section 22 and the second base material 26 without being embedded in the second base material 26 .
 金属箔71は、センサチップ51と支持部52とにわたって設けられる。すなわち、第6実施形態では、第4実施形態と比べ、金属箔71によってセンサチップ51から熱が拡散しやすいが、上述した(4-1)の効果が得られる。第6実施形態によれば、以下の効果が得られる。 The metal foil 71 is provided over the sensor chip 51 and the support portion 52 . That is, in the sixth embodiment, heat is more easily diffused from the sensor chip 51 by the metal foil 71 than in the fourth embodiment, but the effect (4-1) described above can be obtained. According to the sixth embodiment, the following effects are obtained.
 (6-1)第4壁44とセンサチップ51との間に金属箔71が位置するため、金属箔71が第4壁44に埋め込まれる構成と比べ、流路ユニット21を製造しやすい。
 (6-2)金属箔71がセンサチップ51と支持部52とにわたって設けられるため、第4壁44の剛性を一層向上できる。すなわち、第4壁44が撓みにくくなる。
(6-1) Since the metal foil 71 is positioned between the fourth wall 44 and the sensor chip 51 , the flow channel unit 21 is easier to manufacture than the configuration in which the metal foil 71 is embedded in the fourth wall 44 .
(6-2) Since the metal foil 71 is provided over the sensor chip 51 and the support portion 52, the rigidity of the fourth wall 44 can be further improved. That is, the fourth wall 44 becomes difficult to bend.
 <第7実施形態>
 次に、第7実施形態について説明する。第7実施形態では、第4実施形態と比較して、流路24を区画する壁の厚みが異なる。第7実施形態では、第4実施形態と異なる構成について主に説明し、その他の構成については説明を省略する。
<Seventh embodiment>
Next, a seventh embodiment will be described. In the seventh embodiment, the thickness of the wall that partitions the flow path 24 is different from that in the fourth embodiment. In the seventh embodiment, the configuration different from that of the fourth embodiment will be mainly described, and the description of other configurations will be omitted.
 図9、図10、及び、図11に示すように、第7実施形態では、流路24を区画する壁のうち、第1壁41が最も薄い。そのため、第7実施形態では、第4壁44ではなく、第1壁41が、薄手部分に相当する。第7実施形態では、第1厚みW1、第2厚みW2、第3厚みW3、及び、第4厚みW4のうち、第1厚みW1が最も小さい。センサチップ51は、第4実施形態と同様に、第4壁44に取り付けられる。すなわち、第7実施形態では、センサチップ51は、薄手部分に取り付けられていない。 As shown in FIGS. 9, 10, and 11, in the seventh embodiment, the first wall 41 is the thinnest among the walls that partition the channel 24. As shown in FIGS. Therefore, in the seventh embodiment, not the fourth wall 44 but the first wall 41 corresponds to the thin portion. In the seventh embodiment, the first thickness W1 is the smallest among the first thickness W1, the second thickness W2, the third thickness W3, and the fourth thickness W4. The sensor chip 51 is attached to the fourth wall 44 as in the fourth embodiment. That is, in the seventh embodiment, the sensor chip 51 is not attached to the thin portion.
 金属箔71は、センサチップ51と流路24との間に位置する。金属箔71は、流路24を区画する壁に埋め込まれている。具体的には、金属箔71は、第4壁44に埋め込まれている。 The metal foil 71 is positioned between the sensor chip 51 and the channel 24. The metal foil 71 is embedded in walls that partition the flow path 24 . Specifically, the metal foil 71 is embedded in the fourth wall 44 .
 第7実施形態では、センサチップ51が薄手部分に取り付けられていないが、センサチップ51と流路24との間に金属箔71が位置している。そのため、センサチップ51が薄手部分に取り付けられていなくとも、流路24を流れる流体とセンサチップ51との間で熱が伝導しやすい。 In the seventh embodiment, the sensor chip 51 is not attached to the thin portion, but the metal foil 71 is positioned between the sensor chip 51 and the channel 24. Therefore, even if the sensor chip 51 is not attached to the thin portion, heat is easily conducted between the fluid flowing through the channel 24 and the sensor chip 51 .
 第7実施形態によれば、以下の効果が得られる。
 (7-1)流量計11は、流路24を構成する流路ユニット21と、流路ユニット21に取り付けられるセンサチップ51とを備える。センサチップ51は、ヒータ53と、第1温度センサ54と、第2温度センサ55と、を有する。流路ユニット21は、流路24を区画する壁と、センサチップ51と流路24との間に位置する金属箔71とを有する。
According to the seventh embodiment, the following effects are obtained.
(7-1) The flowmeter 11 includes a flow path unit 21 forming a flow path 24 and a sensor chip 51 attached to the flow path unit 21 . The sensor chip 51 has a heater 53 , a first temperature sensor 54 and a second temperature sensor 55 . The channel unit 21 has a wall that partitions the channel 24 and a metal foil 71 positioned between the sensor chip 51 and the channel 24 .
 上記構成によれば、金属箔71によって、流路24を流れる流体とセンサチップ51との間で熱が伝導しやすくなる。そのため、第4壁44を、撓みにくい厚みにできる。これにより、流路24内の圧力が大きくなっても、第4壁44が撓みにくい。したがって、センサチップ51が破損しにくくなる。 According to the above configuration, the metal foil 71 facilitates heat conduction between the fluid flowing through the channel 24 and the sensor chip 51 . Therefore, the thickness of the fourth wall 44 can be set so that it is difficult to bend. Thereby, even if the pressure in the flow path 24 increases, the fourth wall 44 is less likely to bend. Therefore, the sensor chip 51 is less likely to be damaged.
 第1実施形態から第7実施形態は、以下のように変更して実施できる。第1実施形態、第2実施形態、第3実施形態、第4実施形態、第5実施形態、第6実施形態、第7実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施できる。 The first to seventh embodiments can be modified and implemented as follows. The first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment, the sixth embodiment, the seventh embodiment, and the following modifications are combined with each other within a technically consistent range. can be implemented.
 ・流動方向A1又はその反対方向から見た場合に、流路ユニット21の形状は、矩形状に限らず、多角形でもよいし、円形でもよい。
 ・流動方向A1又はその反対方向から見た場合に、流路24の形状は、矩形状に限らない。多角形でもよいし、円形でもよい。
- When viewed from the flow direction A1 or the opposite direction, the shape of the channel unit 21 is not limited to a rectangular shape, and may be polygonal or circular.
- The shape of the flow path 24 is not limited to a rectangular shape when viewed from the flow direction A1 or the opposite direction. It may be polygonal or circular.
 ・明細書及び/又は特許請求の範囲に開示された全ての特徴は、当初の開示の目的のために、ならびに、実施形態及び/又は特許請求の範囲における特徴の組み合わせから独立して特許請求の範囲に記載の発明を限定する目的のために、互いに別個にかつ独立して開示されることを意図したものである。全ての数値範囲又は構成要素の集合を表す記載は、当初の開示の目的のため、ならびに特許請求の範囲に記載の発明を限定する目的のために、特に数値範囲の限定として、全ての可能な中間値又は中間的構成要素を開示するものである。 - All features disclosed in the specification and/or claims are for the purposes of the original disclosure and claimed independently of any combination of features in the embodiments and/or claims. They are intended to be disclosed separately and independently of each other for the purpose of limiting the scope of the invention. Statements representing all numerical ranges or collections of elements are for the purposes of the initial disclosure and for the purposes of limiting the claimed invention, and specifically as limitations on numerical ranges, all possible Intermediate values or intermediate components are disclosed.
 11 流量計
 12 処理部
 13 第1外部流路
 14 第2外部流路
 15 チューブ
 16 接続部材
 21 流路ユニット
 22 センサ部
 23 ケース
 24 流路
 25 第1基材
 26 第2基材
 27 凹部
 28 対向面
 31 第1外面
 32 第2外面
 33 第3外面
 34 第4外面
 36 第1内面
 37 第2内面
 38 第3内面
 39 第4内面
 41 第1壁
 42 第2壁
 43 第3壁
 44 第4壁
 51 センサチップ
 52 支持部
 53 ヒータ
 54 第1温度センサ
 55 第2温度センサ
 56 基板
 57 露出口
 61 第1ケース部材
 62 第2ケース部材
 63 第1開口
 64 第2開口
 65 開放口
 67 基材
 71 金属箔
 A1 流動方向
 W1 第1厚み
 W2 第2厚み
 W3 第3厚み
 W4 第4厚み
REFERENCE SIGNS LIST 11 flow meter 12 processing section 13 first external flow path 14 second external flow path 15 tube 16 connecting member 21 flow path unit 22 sensor section 23 case 24 flow path 25 first substrate 26 second substrate 27 concave portion 28 opposing surface 31 first outer surface 32 second outer surface 33 third outer surface 34 fourth outer surface 36 first inner surface 37 second inner surface 38 third inner surface 39 fourth inner surface 41 first wall 42 second wall 43 third wall 44 fourth wall 51 sensor Chip 52 Supporting Part 53 Heater 54 First Temperature Sensor 55 Second Temperature Sensor 56 Substrate 57 Exposure Port 61 First Case Member 62 Second Case Member 63 First Opening 64 Second Opening 65 Open Port 67 Base Material 71 Metal Foil A1 Flow Direction W1 First thickness W2 Second thickness W3 Third thickness W4 Fourth thickness

Claims (9)

  1.  流体の流量を測定するための流量計であって、
     前記流体が流れる流路を構成する流路ユニットと、
     前記流路ユニットに取り付けられるセンサチップと、を備え、
     前記流路ユニットは、前記流路を区画する壁を有し、
     前記壁のうちの少なくとも1つの壁は、最も薄い部分である薄手部分であり、
     前記センサチップは、ヒータと、第1温度センサと、第2温度センサと、を有し、
     前記センサチップは、前記薄手部分に取り付けられ、
     前記薄手部分は、樹脂で構成される
     流量計。
    A flow meter for measuring the flow rate of a fluid, comprising:
    a channel unit configuring a channel through which the fluid flows;
    a sensor chip attached to the channel unit,
    The channel unit has a wall that partitions the channel,
    at least one of said walls is a thin portion being the thinnest portion;
    The sensor chip has a heater, a first temperature sensor, and a second temperature sensor,
    The sensor chip is attached to the thin portion,
    The flowmeter, wherein the thin portion is made of resin.
  2.  流体の流量を測定するための流量計であって、
     前記流体が流れる流路を構成する流路ユニットと、
     前記流路ユニットに取り付けられるセンサチップと、を備え、
     前記センサチップは、ヒータと、第1温度センサと、第2温度センサと、を有し、
     前記流路ユニットは、前記流路を区画する壁と、前記センサチップと前記流路との間に位置する金属箔と、を有する
     流量計。
    A flow meter for measuring the flow rate of a fluid, comprising:
    a channel unit configuring a channel through which the fluid flows;
    a sensor chip attached to the channel unit,
    The sensor chip has a heater, a first temperature sensor, and a second temperature sensor,
    The flow meter, wherein the flow path unit includes a wall that partitions the flow path, and a metal foil positioned between the sensor chip and the flow path.
  3.  前記壁のうちの少なくとも1つの壁は、最も薄い部分である薄手部分であり、
     前記センサチップは、前記薄手部分に取り付けられ、
     前記薄手部分は、樹脂で構成される
     請求項2に記載の流量計。
    at least one of said walls is a thin portion being the thinnest portion;
    The sensor chip is attached to the thin portion,
    The flowmeter according to claim 2, wherein the thin portion is made of resin.
  4.  前記金属箔は、前記壁に埋め込まれている請求項2又は請求項3に記載の流量計。 The flowmeter according to claim 2 or 3, wherein the metal foil is embedded in the wall.
  5.  前記金属箔は、第1金属箔であり、
     前記流路ユニットは、第2金属箔と、第3金属箔と、を有し、
     前記第1金属箔は、前記ヒータと前記流路との間に位置し、
     前記第2金属箔は、前記第1温度センサと前記流路との間に位置し、
     前記第3金属箔は、前記第2温度センサと前記流路との間とに位置する
     請求項4に記載の流量計。
    The metal foil is a first metal foil,
    The channel unit has a second metal foil and a third metal foil,
    The first metal foil is positioned between the heater and the flow path,
    The second metal foil is positioned between the first temperature sensor and the flow path,
    5. The flow meter of Claim 4, wherein the third metal foil is positioned between the second temperature sensor and the flow path.
  6.  前記金属箔は、前記壁と前記センサチップとの間に位置する請求項2又は請求項3に記載の流量計。 The flowmeter according to claim 2 or 3, wherein the metal foil is positioned between the wall and the sensor chip.
  7.  前記流路ユニットは、前記流路を構成する凹部を有する第1基材と、前記凹部を覆うように前記第1基材に接着される第2基材と、を含んで構成され、
     前記第1基材は、前記壁の一部を有し、
     前記第2基材は、前記壁の一部を有し、
     前記凹部は、前記第1基材が有する前記壁の一部によって構成される
     請求項1から請求項6の何れか一項に記載の流量計。
    The channel unit includes a first base material having a recess forming the channel, and a second base material adhered to the first base material so as to cover the recess,
    The first substrate has a portion of the wall,
    The second substrate has a portion of the wall,
    The flowmeter according to any one of claims 1 to 6, wherein the recess is configured by part of the wall of the first base material.
  8.  前記ヒータは、前記流路が延びる方向において、前記第1温度センサと前記第2温度センサとの間に位置する請求項1から請求項7の何れか一項に記載の流量計。 The flowmeter according to any one of claims 1 to 7, wherein the heater is positioned between the first temperature sensor and the second temperature sensor in the direction in which the flow path extends.
  9.  前記流路ユニットと前記センサチップとを覆うケースを備え、
     前記ケースは、第1ケース部材と、前記第1ケース部材に組み付け可能な第2ケース部材と、を有する
     請求項1から請求項8の何れか一項に記載の流量計。
    A case covering the flow path unit and the sensor chip,
    The flowmeter according to any one of claims 1 to 8, wherein the case has a first case member and a second case member that can be attached to the first case member.
PCT/JP2022/002160 2021-03-12 2022-01-21 Flowmeter WO2022190666A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021040274A JP2022139760A (en) 2021-03-12 2021-03-12 Flowmeter
JP2021-040274 2021-03-12

Publications (1)

Publication Number Publication Date
WO2022190666A1 true WO2022190666A1 (en) 2022-09-15

Family

ID=83226654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002160 WO2022190666A1 (en) 2021-03-12 2022-01-21 Flowmeter

Country Status (2)

Country Link
JP (1) JP2022139760A (en)
WO (1) WO2022190666A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532099A (en) * 2000-05-04 2003-10-28 ゼンジリオン アクチエンゲゼルシャフト Flow sensor for liquid
WO2007025001A1 (en) * 2005-08-26 2007-03-01 Honeywell International Inc. Method of thermally coupling a flow tube or like component to a thermal sensor and sensor systems formed thereby
JP2016156650A (en) * 2015-02-23 2016-09-01 サーパス工業株式会社 Thermal type flowmeter, and manufacturing method for the same
US20200033376A1 (en) * 2017-04-06 2020-01-30 Inje University Industry-Academic Cooperation Foundation Device for measuring microfluid flow velocity by using ultra thin film, having separable structure
WO2020131557A1 (en) * 2018-12-20 2020-06-25 Edwards Lifesciences Corporation Thermal mass fluid flow sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532099A (en) * 2000-05-04 2003-10-28 ゼンジリオン アクチエンゲゼルシャフト Flow sensor for liquid
WO2007025001A1 (en) * 2005-08-26 2007-03-01 Honeywell International Inc. Method of thermally coupling a flow tube or like component to a thermal sensor and sensor systems formed thereby
JP2016156650A (en) * 2015-02-23 2016-09-01 サーパス工業株式会社 Thermal type flowmeter, and manufacturing method for the same
US20200033376A1 (en) * 2017-04-06 2020-01-30 Inje University Industry-Academic Cooperation Foundation Device for measuring microfluid flow velocity by using ultra thin film, having separable structure
WO2020131557A1 (en) * 2018-12-20 2020-06-25 Edwards Lifesciences Corporation Thermal mass fluid flow sensor

Also Published As

Publication number Publication date
JP2022139760A (en) 2022-09-26

Similar Documents

Publication Publication Date Title
US6729181B2 (en) Flow sensor in a housing
CN101216331B (en) Packaging methods and systems for measuring multiple measurands including bi-directional flow
JP2007086063A (en) Flowmeter
KR20130038805A (en) Flowrate sensor and flowrate detection device
US8033180B2 (en) Flow sensor apparatus and method with media isolated electrical connections
JP4158980B2 (en) Multi vortex flowmeter
US7861602B2 (en) Explosion-proof high temperature compatible, multi-vortex flow meter
KR20080015926A (en) Flow sensor
JP6898271B2 (en) Integrated pressure and temperature sensor
WO2022190666A1 (en) Flowmeter
JP6632902B2 (en) Pressure detector
JP2016125896A (en) Measuring apparatus
US11965762B2 (en) Flow sensor
CN112105901A (en) Pressure transducer, system and method
CN106908107B (en) Flow sensing assembly with high dynamic range
JP5601271B2 (en) Flow sensor
US7013738B2 (en) Flow sensor
JP3232482B2 (en) Kalman vortex sensor-Manifold holder for capsule-
JP3248840B2 (en) Karman vortex flowmeter
JP3895948B2 (en) Flow sensor
JP5756274B2 (en) Flow sensor
JP2019086381A (en) Thermal flowmeter
JP7178780B2 (en) pressure sensor
JP2022139760A5 (en)
JPH0225446B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766633

Country of ref document: EP

Kind code of ref document: A1