JPH0313692Y2 - - Google Patents

Info

Publication number
JPH0313692Y2
JPH0313692Y2 JP1984111094U JP11109484U JPH0313692Y2 JP H0313692 Y2 JPH0313692 Y2 JP H0313692Y2 JP 1984111094 U JP1984111094 U JP 1984111094U JP 11109484 U JP11109484 U JP 11109484U JP H0313692 Y2 JPH0313692 Y2 JP H0313692Y2
Authority
JP
Japan
Prior art keywords
flow path
fluid
measured
fluid flow
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984111094U
Other languages
Japanese (ja)
Other versions
JPS6126123U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11109484U priority Critical patent/JPS6126123U/en
Publication of JPS6126123U publication Critical patent/JPS6126123U/en
Application granted granted Critical
Publication of JPH0313692Y2 publication Critical patent/JPH0313692Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【考案の詳細な説明】 技術分野 本考案は、高分子圧電体膜を検出素子として用
いたフルイデイツク流量計に関する。
[Detailed Description of the Invention] Technical Field The present invention relates to a fluidic flowmeter using a polymeric piezoelectric film as a detection element.

背景技術 気体および液体を含む流体の流量測定のための
流量計として、フルイデイツク流量計が知られて
いる。
BACKGROUND ART A fluidic flowmeter is known as a flowmeter for measuring the flow rate of fluids including gas and liquid.

フルイデイツク流量計は、コアンダ(coanda)
効果を利用して流体発振器を構成し、その発振周
波数を主噴流と比例するように設計して当該発振
周波数から流体の流量を計測するものである。コ
アンダ効果とは、壁に囲まれた狭い空間に噴流が
吹き出した場合に、噴流が周囲の流体をまき込
み、このまき込み現象を仲介して生じた噴流と壁
との干渉により、噴流が一方の壁に付着して安定
するという現象(噴流の壁付着現象)をいい、流
体発振器は、噴出ノズルからの噴流に対し、流れ
の側面に設けた制御ノズルから主噴流のエネルギ
ーより小さなエネルギーを持つ流体を吹き出すこ
とにより、主噴流の付着壁を変えることができる
という一種のスイツチ素子による増幅作用と適当
なフイードバツク機構を組み合わせることにより
構成される。これには、代表例として壁に付着し
た噴流の一部を制御ノズルに帰還して発振させる
帰還発振型(第1図)と、制御ノズルを適当な管
路で接続して発振させる弛張発振型(第2図)と
がある。
Fluidytsk flow meter is Coanda
A fluid oscillator is configured by utilizing this effect, and the oscillation frequency is designed to be proportional to the main jet flow, and the flow rate of the fluid is measured from the oscillation frequency. The Coanda effect is when a jet blows into a narrow space surrounded by walls, the jet mixes up the surrounding fluid, and this entrainment phenomenon mediates the interference between the jet and the wall, causing the jet to flow in one direction. This is a phenomenon in which the jet becomes stable by adhering to a wall (wall adhesion phenomenon), and a fluid oscillator generates a jet from a jet nozzle that has less energy than the main jet from a control nozzle installed on the side of the flow. It is constructed by combining the amplification effect of a type of switch element, which can change the adhesion wall of the main jet by blowing out fluid, and a suitable feedback mechanism. Typical examples of this are the feedback oscillation type (Figure 1), in which a part of the jet adhering to the wall is returned to the control nozzle for oscillation, and the relaxation oscillation type, in which the control nozzle is connected to the control nozzle to oscillate. (Figure 2).

第1図を参照して、この帰還発振型のフルイデ
イツク流量計は、絞り部1を有する配管2の与え
る被測定流体流路の、該絞り部1の下流側には、
該流路とほぼ直交する方向(図面の厚さ方向)に
延在する柱状物体(ターゲツト)3を配置し、且
つ該柱状物体配置部の下流の対向する一対の管壁
には、振動制御のための流体流入口4a,4b、
を開口させ、更に絞り部直後の管壁に流出口5
a,5bを開口させ、これらの間に一対の帰還流
路6a,6bを構成してなる。
Referring to FIG. 1, this feedback oscillation type fluidic flowmeter has a fluid flow path to be measured provided by a piping 2 having a constriction part 1, on the downstream side of the constriction part 1.
A columnar object (target) 3 extending in a direction substantially perpendicular to the flow path (thickness direction in the drawing) is disposed, and a pair of opposing pipe walls downstream of the columnar object placement section is provided with a vibration control device. Fluid inlets 4a, 4b for
and an outlet 5 on the pipe wall immediately after the constriction part.
a, 5b are opened, and a pair of return channels 6a, 6b are formed between these.

このような構成において被測定流体を矢印7の
方向に流すと、第1図に示す時点においては、絞
り部1を通過した主噴流はコアンダ効果により一
方(図では上側)の管壁に付着して安定化し、矢
印8aのように進行するが、その一部は、矢印1
8aのように帰還流路6aを通り、絞り部直後の
開口5aを通つて、流出し主噴流に推力を及ぼ
す。この推力と流体の慣性により、次の時点にお
いては主噴流は下の管壁に沿う矢印8bのように
流れを換え、結局矢印8aと8bの間を振動しつ
つ流動することとなる。
When the fluid to be measured flows in the direction of the arrow 7 in such a configuration, at the time shown in Fig. 1, the main jet that has passed through the constriction part 1 adheres to one (the upper side in the figure) of the pipe wall due to the Coanda effect. It stabilizes and progresses as shown by arrow 8a, but a part of it progresses as shown by arrow 1.
8a, it passes through the return flow path 6a and flows out through the opening 5a immediately after the constriction part, exerting a thrust on the main jet flow. Due to this thrust and the inertia of the fluid, at the next point in time, the main jet changes its flow along the lower pipe wall as shown by arrow 8b, and eventually flows while oscillating between arrows 8a and 8b.

また、第2図に示す弛張発振型のフルイデイツ
ク流量計は、絞り部1直後の管壁に流出口15
a,15bを開口させ、これら開口をバイパス管
路16により接続してなり、その他の点は第1図
の構成とほぼ同様である。また振動制御用流体の
管路16を通しての流動が、第1図の場合の推力
と異なり、主として絞り部を通過した主噴流によ
る開口15aあるいは15bに対する吸引力によ
り行なわれる点を除いて、帰還発振型とほぼ同様
な原理により行なわれ、矢印8a,8b間での流
体振動が発生する。
In addition, the relaxation oscillation type fluidic flowmeter shown in FIG.
a and 15b are opened, and these openings are connected by a bypass conduit 16; other points are substantially the same as the configuration shown in FIG. 1. Also, unlike the thrust force in the case of FIG. 1, the flow of the vibration control fluid through the pipe line 16 is performed mainly by the suction force against the opening 15a or 15b by the main jet that has passed through the constriction part. This is done based on almost the same principle as the mold, and fluid vibration occurs between arrows 8a and 8b.

フルイデイツク流量計は、流体流量が上記した
流体振動の周波数にほぼ比例する事実を利用した
ものであり、適当な検出素子により流体振動周波
数を測定することにより流体流量の測定が行なわ
れる。第1図および第2図の場合を通じて、柱状
物体3は必ずしも必須ではないが、流体振動を速
やかに且つ安定的に起させるために有効であり、
また振動検出素子を配置するための保持部材とし
ても利用することができる(特開昭57−66313号
公報)。
The fluidic flow meter utilizes the fact that the fluid flow rate is approximately proportional to the frequency of the fluid vibration described above, and the fluid flow rate is measured by measuring the fluid vibration frequency with a suitable detection element. In the cases shown in FIGS. 1 and 2, the columnar object 3 is not necessarily essential, but it is effective for causing fluid vibration to occur quickly and stably.
It can also be used as a holding member for arranging a vibration detection element (Japanese Unexamined Patent Publication No. 57-66313).

また第1図あるいは第2図に示すようなバイパ
ス流路6a,16aあるいは別途流入口を設けた
バイパス流路に電磁弁を挿入する等の方法により
制御流体流を積極的に駆動し且つその振動を検出
素子による主噴流の流体振動と同期させることに
より、流体振動をより確実且つ安定的に発生させ
ることも可能である(特開昭59−68624号公報)。
In addition, the control fluid flow can be actively driven and vibrated by a method such as inserting a solenoid valve into the bypass flow paths 6a, 16a shown in FIG. 1 or 2 or a bypass flow path provided with a separate inlet. It is also possible to generate fluid vibrations more reliably and stably by synchronizing the fluid vibrations of the main jet flow with the detection element (Japanese Patent Laid-Open No. 59-68624).

このようなフルイデイツク流量計においては、
流体振動を確実に検出可能な、流体検出素子が望
まれることは云うまでもない。従来は、このよう
な検出素子として、熱線式流速計、歪ゲージ、磁
歪あるいは電歪素子、圧電素子等が提案されてい
るが、配置の容易性、あるいは検出感度等の点に
おいて必ずしも満足すべきものではない。なかで
も、最も優れた感度を示すものは、熱線式検出計
であるが、この場合は、配置が必ずしも容易では
ないほか、外部からのエネルギー供給が必要であ
り、その他、腐食性あるいは可燃性流体等への適
用に問題がある。また圧電素子の使用も考慮され
ている(特開昭57−66313号公報)が、ここで考
慮されているのは、柱状物体の一部を構成するよ
うな剛体圧電素子、すなわちPZTなどのセラミ
ツク圧電体であるため、やはり配置に問題があ
り、特に高周波数側での測定精度が低い点、機械
的強度等に問題がある。
In such a fluidic flow meter,
Needless to say, a fluid detection element that can reliably detect fluid vibrations is desired. Conventionally, hot wire current meters, strain gauges, magnetostrictive or electrostrictive elements, piezoelectric elements, etc. have been proposed as such detection elements, but none of them are necessarily satisfactory in terms of ease of arrangement or detection sensitivity. isn't it. Among them, the one that shows the best sensitivity is the hot wire type detector, but in this case it is not necessarily easy to arrange, requires an external energy supply, and is not used with corrosive or flammable fluids. There is a problem in applying it to etc. The use of piezoelectric elements is also considered (Japanese Patent Laid-Open No. 57-66313), but what is being considered here is a rigid piezoelectric element that forms part of a columnar object, that is, a ceramic such as PZT. Since it is a piezoelectric material, there are problems with its placement, particularly low measurement accuracy on the high frequency side, and problems with mechanical strength.

考案の目的 本考案の目的は、高感度で、機械的強度に富
み、且つ構成も容易な検出素子を含むフルイデイ
ツク流量計を提供することにある。
Purpose of the invention The purpose of the present invention is to provide a fluidic flowmeter that includes a detection element that is highly sensitive, has high mechanical strength, and is easy to configure.

考案の概要 本考案者らは、上述の目的で研究した結果、検
出素子として、高分子圧電体膜を用いることによ
り、所望個所に接着することにより簡単に配置可
能であり、且つ成形加工が容易で機械的耐久性が
優れ、しかも熱線と比較しても遜色がない感度を
有する検出素子が得られることが見出された。
Summary of the invention As a result of research for the above-mentioned purpose, the inventors found that by using a polymeric piezoelectric film as a detection element, it can be easily placed by adhering it to a desired location, and it can be easily molded. It has been found that a detection element with excellent mechanical durability and a sensitivity comparable to that of a hot wire can be obtained.

本考案のフルイデイツク流量計は、このような
知見に基づくものであり、より詳しくは、絞り部
を有する被測定流体流路配管と、該流路の絞り部
下流に配置された高分子圧電体膜とからなり、絞
り部下流での流れ方向と直交する方向での流体振
動を検出し、該流体振動の周波数に対応する流体
流量を測定するようにしたことを特徴とするもの
である。
The fluidic flowmeter of the present invention is based on such knowledge, and more specifically, it consists of a fluid flow path piping to be measured having a constriction section, and a polymer piezoelectric film disposed downstream of the constriction section of the flow path. The present invention is characterized in that fluid vibration in a direction perpendicular to the flow direction downstream of the throttle portion is detected, and a fluid flow rate corresponding to the frequency of the fluid vibration is measured.

以下、図面を参照して、本考案を実施例につい
て、更に詳しく説明する。
Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.

実施例 第3図は、本考案を第1図に示した帰還発振型
フルイデイツク流量計への適用した実施例の概略
構成を示す流路方向の模式断面図である。
Embodiment FIG. 3 is a schematic sectional view in the direction of the flow path showing a schematic configuration of an embodiment in which the present invention is applied to the feedback oscillation type fluidic flowmeter shown in FIG. 1.

この例では、絞り部1を有する配管2からな
り、絞り下流に柱状ターゲツト3を設けたフルイ
デイツク流量計の、該ターゲツト3の上下面(セ
ンサA)、ターゲツト3の上下延長方向の絞り部
下流管壁(センサB)にポリビニリデンフロライ
ド(PVDF)圧電体膜を接着により付着し、ある
いはターゲツト3の下流側面にPVDF膜の一端を
接着して吹き流し状に配置(センサC)すること
により3つのセンサ系を構成した。使用した
PVDF膜は、両面にA1電極を設けた厚さ9μmの
ものを、6mm×18mmに切断して用いた。
In this example, a fluidic flowmeter is constructed of a piping 2 having a constriction part 1 and has a columnar target 3 provided downstream of the constriction. By adhering a polyvinylidene fluoride (PVDF) piezoelectric film to the wall (sensor B), or by gluing one end of the PVDF film to the downstream side of target 3 and arranging it like a windsock (sensor C), three A sensor system was constructed. used
A 9 μm thick PVDF membrane with A1 electrodes on both sides was cut into 6 mm x 18 mm.

流体として空気を用い、流量を変化させて、各
センサからの出力信号を、スペクトラムアナライ
ザとプロツタに接続し、周波数と波形を観測し
た。
Using air as the fluid, we varied the flow rate and connected the output signals from each sensor to a spectrum analyzer and plotter to observe the frequency and waveform.

なお、センサAとCは、いずれも上記のPVDF
膜に加わる圧力の差に基づく出力電圧であり、セ
ンサBの場合は、PVDF膜の左右への撓み(図で
は便宜上、上下に振動する如く示してあるが、実
際には特性上、左右振動の方が好ましい)により
両面電極間に生ずる出力電圧を測定したものであ
る。
In addition, both sensors A and C are made of the above PVDF.
This is the output voltage based on the difference in pressure applied to the membrane, and in the case of sensor B, the PVDF membrane is deflected from side to side (for convenience, it is shown as vibrating up and down in the figure, but in reality, due to its characteristics, it is caused by the lateral vibration). The output voltage generated between the double-sided electrodes was measured using the method (which is more preferable).

周波数特性測定結果を、コントロールループ内
の熱線による出力測定結果とともに第4図に示
す。
The frequency characteristic measurement results are shown in FIG. 4 together with the output measurement results using the hot wire in the control loop.

いずれのセンサにおいても、層流域と乱流域の
遷移領域に相当する6〜8Hzでは出力の乱れが生
ずるが他の領域では良好な周波数特性を示す。ま
たセンサAとCは、1Hz以下から40Hzまでの測定
が可能であることが確認されており(実験装置の
制約上、それ以上の周波数での測定はできなかつ
た)、センサBの測定周波数の上限は、20Hz前後
であつたが、これはPVDF膜の流路方向長さを小
さくすることにより向上可能である。他方、この
高分子圧電体膜の可撓性を積極的に利用したセン
サBは、他のものに比べて、30倍程度の大きな
Vppを示し、測定感度が特に優れていることがわ
かる。
In either sensor, output disturbance occurs at 6 to 8 Hz, which corresponds to the transition region between the laminar region and the turbulent region, but exhibits good frequency characteristics in other regions. In addition, it has been confirmed that sensors A and C are capable of measuring from 1 Hz or less to 40 Hz (measurements at higher frequencies were not possible due to limitations of the experimental equipment), and sensor B's measurement frequency was The upper limit was around 20 Hz, but this can be improved by reducing the length of the PVDF membrane in the flow path direction. On the other hand, Sensor B, which actively utilizes the flexibility of this polymer piezoelectric film, has a sensor B that is approximately 30 times larger than other sensors.
It can be seen that the measurement sensitivity is particularly excellent.

考案の効果 上述したように、本考案によれば、成形加工が
容易で機械的耐久性にも優れ、且つ接着により所
望個所に容易に設置可能な高分子圧電体膜を流体
検出素子として用い、これを被測定流体流路の絞
り下流側に配置することにより、最大の感度を示
すが配置等において問題の残る熱線センサに比べ
ても遜色がない高感度を有する流体センサ系を含
むフルイデイツク流量計が構成される。また
PZTなどのセラミツク圧電体を使用する場合に
比べて流れを乱さずに面全体で圧力を受けること
ができ、この点でも高感度が得られる。
Effects of the invention As described above, according to the invention, a piezoelectric polymer film that is easy to mold, has excellent mechanical durability, and can be easily installed at a desired location by adhesive is used as a fluid detection element. By placing this on the downstream side of the throttle in the fluid flow path to be measured, a fluidic flowmeter that includes a fluid sensor system that exhibits maximum sensitivity but is comparable to hot wire sensors that have problems in placement etc. is configured. Also
Compared to the case of using ceramic piezoelectric materials such as PZT, pressure can be applied to the entire surface without disturbing the flow, and high sensitivity can also be obtained in this respect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、それぞれ帰還発振型お
よび弛張発振型のフルイデイツク流量計の流路方
向模式断面図、第3図は本考案をフルイデイツク
流量計へ適用した実施例を示す流路方向模式断面
図、第4図は実施例による出力信号の周波数特性
を示すグラフである。 1……絞り部、2……流路配管、3……柱状物
体(ターゲツト)、A,B,C……PVDF膜。
1 and 2 are schematic sectional views in the flow path direction of feedback oscillation type and relaxation oscillation type fluidic flowmeters, respectively, and FIG. 3 is a schematic sectional view in the flow path direction showing an example in which the present invention is applied to a fluidic flowmeter. The cross-sectional view and FIG. 4 are graphs showing the frequency characteristics of the output signal according to the embodiment. 1... Throttle section, 2... Channel piping, 3... Columnar object (target), A, B, C... PVDF membrane.

Claims (1)

【実用新案登録請求の範囲】 1 絞り部を有する被測定流体流路配管と、該流
路の絞り部下流に配置された高分子圧電体膜と
からなり、絞り部下流での流れ方向と直交する
方向での流体振動を検出し、該流体振動の周波
数に対応する流体流量を測定するようにしたフ
ルイデイツク流量計。 2 被測定流体流路の絞り部下流のほぼ中央部
に、該流路とほぼ直交して延在する柱状物体を
配置してなる実用新案登録請求の範囲第1項に
記載の流量計。 3 被測定流体流路配管の絞り部下流の拡開する
管壁部に高分子圧電体膜を付着してなる実用新
案登録請求の範囲第1項または第2項に記載の
流量計。 4 前記柱状物体の被測定流体流路とほぼ平行な
壁部に高分子圧電体膜を付着してなる実用新案
登録請求の範囲第2項に記載の流量計。 5 前記柱状物体の被測定流体流路下流側の壁部
に高分子圧電体膜を吹流し状に付着してなる実
用新案登録請求の範囲第2項に記載の流量計。 6 高分子圧電体膜がバイモルフ形態をなす実用
新案登録請求の範囲第1項ないし第5項のいず
れかに記載の流量計。 7 被測定流体流路配管の絞り部直後の管壁の一
対の対向個所に振動制御流体流路の流出口を開
口させてなる実用新案登録請求の範囲第1項な
いし第5項のいずれかに記載の流量計。 8 該一対の振動制御流体流路が、高分子圧電体
膜配置部よりも下流の管壁に開口した一対の流
体流入口のそれぞれと連通しており、帰還発振
型のフルイデイツク流量計を構成する実用新案
登録請求の範囲第7項に記載の流量計。 9 該一対の振動制御流体流路が、被測定流体の
主たる流路をバイパスする一本の管路により接
続されてなり、弛張発振型のフルイデイツク流
路計を構成する実用新案登録請求の範囲第7項
に記載の流量計。
[Claims for Utility Model Registration] 1. Consisting of a fluid flow path piping to be measured having a constriction portion and a polymer piezoelectric film disposed downstream of the constriction portion of the flow path, the pipe is perpendicular to the flow direction downstream of the constriction portion. A fluidic flow meter that detects fluid vibration in a direction of vibration and measures a fluid flow rate corresponding to the frequency of the fluid vibration. 2. The flowmeter according to claim 1, wherein a columnar object extending substantially perpendicular to the flow path is disposed approximately at the center of the flow path of the fluid to be measured downstream of the constriction portion. 3. The flowmeter according to claim 1 or 2, wherein a polymer piezoelectric film is attached to the expanding tube wall downstream of the constriction portion of the fluid flow path piping to be measured. 4. The flowmeter according to claim 2, wherein a polymer piezoelectric film is attached to a wall portion of the columnar object that is substantially parallel to the fluid flow path to be measured. 5. The flowmeter according to claim 2, wherein a polymeric piezoelectric film is attached in the form of a windsock to the downstream wall of the measured fluid flow path of the columnar object. 6. The flowmeter according to any one of claims 1 to 5, wherein the polymeric piezoelectric film has a bimorph form. 7. Any one of claims 1 to 5 for registering a utility model in which the outlet of the vibration control fluid flow path is opened at a pair of opposing locations on the pipe wall immediately after the constriction part of the fluid flow path piping to be measured. Flow meter as described. 8. The pair of vibration control fluid flow paths communicate with each of a pair of fluid inlets opened in the pipe wall downstream of the polymer piezoelectric membrane arrangement portion, and constitute a feedback oscillation type fluidic flowmeter. A flowmeter according to claim 7 of the utility model registration claim. 9. The utility model registration claim No. 9 constitutes a relaxation oscillation type fluidic flow meter, in which the pair of vibration control fluid flow paths are connected by a single pipe line that bypasses the main flow path of the fluid to be measured. Flow meter described in item 7.
JP11109484U 1984-07-24 1984-07-24 fluidic flow meter Granted JPS6126123U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11109484U JPS6126123U (en) 1984-07-24 1984-07-24 fluidic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11109484U JPS6126123U (en) 1984-07-24 1984-07-24 fluidic flow meter

Publications (2)

Publication Number Publication Date
JPS6126123U JPS6126123U (en) 1986-02-17
JPH0313692Y2 true JPH0313692Y2 (en) 1991-03-28

Family

ID=30670204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11109484U Granted JPS6126123U (en) 1984-07-24 1984-07-24 fluidic flow meter

Country Status (1)

Country Link
JP (1) JPS6126123U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119635B2 (en) * 1990-06-28 1995-12-20 山武ハネウエル株式会社 Flow measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51150362A (en) * 1975-06-18 1976-12-23 Nissan Motor Co Ltd Discharge meter
JPS5766313A (en) * 1980-10-09 1982-04-22 Tokyo Gas Co Ltd Method and device of target sensing type for sensing vibration of fluid
JPS58169030A (en) * 1982-03-31 1983-10-05 Ohkura Electric Co Ltd Karman's vortex street flowmeter
JPS5968624A (en) * 1982-10-13 1984-04-18 Tokyo Gas Co Ltd Method and device for switching jetting fluid in fluidic flowmeter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601381Y2 (en) * 1979-04-20 1985-01-16 トキコ株式会社 Flow rate/flow rate detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51150362A (en) * 1975-06-18 1976-12-23 Nissan Motor Co Ltd Discharge meter
JPS5766313A (en) * 1980-10-09 1982-04-22 Tokyo Gas Co Ltd Method and device of target sensing type for sensing vibration of fluid
JPS58169030A (en) * 1982-03-31 1983-10-05 Ohkura Electric Co Ltd Karman's vortex street flowmeter
JPS5968624A (en) * 1982-10-13 1984-04-18 Tokyo Gas Co Ltd Method and device for switching jetting fluid in fluidic flowmeter

Also Published As

Publication number Publication date
JPS6126123U (en) 1986-02-17

Similar Documents

Publication Publication Date Title
US8091434B2 (en) Fluidic oscillator flow meter
US4186599A (en) Vortex shedding flowmeter assembly
US8201462B2 (en) Recirculation type oscillator flow meter
US8733162B2 (en) Resonant flow sensor and uses and production methods for the same
JPH08233627A (en) Flow-rate sensor device and operating method thereof
JPS6220488B2 (en)
JPH0313692Y2 (en)
US4843889A (en) Trapped-vortex pair flowmeter
JP2001133307A (en) Inflow and outflow symmetric flowmeter
Svedin et al. A lift-force flow sensor designed for acceleration insensitivity
JPS604094Y2 (en) Fluid element type flow rate detection device
WO2019143239A1 (en) Coriolis flow sensor
JPS6215811B2 (en)
Zeng et al. Micro Coriolis Mass Flow Sensor with Piezoelectric Transducers for Both Actuation and Readout
US11644355B2 (en) Mass flow rate measurement device
JPS6252811B2 (en)
JP2530824B2 (en) Fluid logic element type flow meter
JPS6216655Y2 (en)
JPH06235652A (en) Mass flowmeter
JPH08219840A (en) Coriolis mass flow meter
JPH07209038A (en) Fluid flowmeter
Haneveld et al. MEMS-based micro-coriolis mass flow sensor
JP2813654B2 (en) Fluid vibration detection sensor in fluid vibration type flow meter
JPS6340820A (en) Flow rate detector
JP2002039830A (en) Coriolis flowmeter