JPH07321282A - Semiconductor device, method of fabricating the same and fabricating apparatus - Google Patents

Semiconductor device, method of fabricating the same and fabricating apparatus

Info

Publication number
JPH07321282A
JPH07321282A JP6115372A JP11537294A JPH07321282A JP H07321282 A JPH07321282 A JP H07321282A JP 6115372 A JP6115372 A JP 6115372A JP 11537294 A JP11537294 A JP 11537294A JP H07321282 A JPH07321282 A JP H07321282A
Authority
JP
Japan
Prior art keywords
semiconductor device
electrode
wiring layer
semiconductor substrate
stacked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6115372A
Other languages
Japanese (ja)
Other versions
JP3370183B2 (en
Inventor
Yoshihiko Nemoto
義彦 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11537294A priority Critical patent/JP3370183B2/en
Publication of JPH07321282A publication Critical patent/JPH07321282A/en
Application granted granted Critical
Publication of JP3370183B2 publication Critical patent/JP3370183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To simplify a structure, realize high reliability and improve integration density by exposing an electrode pad at the side surface of a laminated semiconductor substrate and mutually connect the pad and semiconductor substrate with a wiring layer formed at the side surface thereof to form the integrated circuit function. CONSTITUTION:A semiconductor substrate 8 on which an electrode pad 9 is formed is stacked in a plurality sheets. The electrode pad 9 is exposed at the side surface of the stacked semiconductor substrate 8 and these are mutually connected with a wiring layer 10,formed at the side surface thereofto form an integrated circuit function. As explained above, since the semiconductor substrate 8 is stacked in direct without using wiring substrate and the electrode pad 9 exposed at the side surface is mutually connected with the gas deposition method, the volume occupied by the semiconductor device can be made very small to obtain a very small size and high functional semiconductor device can be obtained. Moreover, since the constitution is simplified, high reliable device can be fabricated easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体装置の電極形
成方法、および該方法により形成された半導体装置およ
び製造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode forming method for a semiconductor device, a semiconductor device formed by the method, and a manufacturing apparatus.

【0002】[0002]

【従来の技術】近年、半導体装置、特にLSIの高密度
集積化はめざましいものであるが、横方向の面積を微細
にすることによる集積化には限界があり、縦方向に積層
することにより、集積化および高速化を図ることが検討
されている。図18は従来の半導体チップを積層した構
造の半導体装置(以下、積層型半導体装置と称す)の構
造を示す断面図である。図において、1は半導体チッ
プ、2は半導体チップ1を搭載した配線基板、3は配線
基板2に配設された配線層、4は半導体チップ1の電極
と配線基板2の配線層3とを接続するワイヤ、5は配線
基板2に設けられたスルーホール、6はスルーホール5
に埋め込んで2枚の配線基板2の配線層3を相互接続す
る、例えば半田等の接合材、7はスルーホール5に差し
込んで2枚の配線基板2の配線層3を相互接続し、かつ
外部端子となるピンである。
2. Description of the Related Art In recent years, high density integration of semiconductor devices, particularly LSI, has been remarkable, but there is a limit to integration by miniaturizing an area in the horizontal direction. Consideration is being given to integration and speeding up. FIG. 18 is a sectional view showing a structure of a conventional semiconductor device having a structure in which semiconductor chips are stacked (hereinafter referred to as a stacked semiconductor device). In the figure, 1 is a semiconductor chip, 2 is a wiring board on which the semiconductor chip 1 is mounted, 3 is a wiring layer arranged on the wiring board 2, and 4 is an electrode of the semiconductor chip 1 and the wiring layer 3 of the wiring board 2 are connected. Wire 5 is a through hole provided in the wiring board 2, 6 is a through hole 5
To connect the wiring layers 3 of the two wiring boards 2 to each other, for example, a bonding material such as solder, 7 is inserted into the through hole 5 to connect the wiring layers 3 of the two wiring boards 2 to each other, and A pin that becomes a terminal.

【0003】図18に示すように、半導体チップ1は別
の配線基板2に一旦搭載され、この配線基板2を積層し
て配線層3を相互接続したものである。
As shown in FIG. 18, a semiconductor chip 1 is once mounted on another wiring board 2, the wiring boards 2 are laminated and the wiring layers 3 are interconnected.

【0004】[0004]

【発明が解決しようとする課題】従来の半導体装置は、
以上のように構成されているため、別途配線基板2を設
けていることにより部品点数が増加し一体化した半導体
素子としては構造が複雑となる。このため信頼性の低下
と製造コストの増加を招き、実用化には困難なものであ
った。
The conventional semiconductor device is
Since it is configured as described above, the number of parts is increased by providing the wiring board 2 separately, and the structure becomes complicated as an integrated semiconductor element. For this reason, the reliability is lowered and the manufacturing cost is increased, which is difficult to put into practical use.

【0005】この発明は上記のような問題点を解消する
ためになされたものであって、構造が単純で信頼性が高
く、集積度の向上した積層型半導体装置を得ることを目
的としており、さらにこの積層型半導体装置に適した製
造方法、製造装置を提供することを目的としている。
The present invention has been made to solve the above problems, and an object thereof is to obtain a stacked semiconductor device having a simple structure, high reliability, and improved integration. Further, it is an object of the present invention to provide a manufacturing method and a manufacturing apparatus suitable for this laminated semiconductor device.

【0006】[0006]

【課題を解決するための手段】この発明に係る請求項1
記載の半導体装置は、素子構成され電極パッドが形成さ
れた半導体基板が複数枚積層され、上記電極パッドが、
上記積層された半導体基板の側面に露出し、しかもこの
側面に形成された配線層によって相互接続されて、一体
の回路機能を構成したものである。
[Means for Solving the Problems] Claim 1 according to the present invention
The semiconductor device described is a semiconductor substrate in which a plurality of semiconductor substrates on which element pads are formed are formed, and the electrode pads are
It is exposed on the side surface of the stacked semiconductor substrates and interconnected by a wiring layer formed on this side surface to form an integrated circuit function.

【0007】この発明に係る請求項2記載の半導体装置
の製造方法は、素子構成され、周辺部分に電極パッドが
形成された半導体基板を複数枚積層する工程と、次いで
上記積層された半導体基板の側面の表面部分を研磨等に
より除去して上記電極パッドを露出させる工程と、次い
で、ガスデポジション法により金属超微粒子をノズルよ
り吹き付けて、上記積層された半導体基板の側面に配線
層を形成して上記電極パッドを相互接続する工程とを有
するものである。
According to a second aspect of the present invention, there is provided a method of manufacturing a semiconductor device, which comprises a step of laminating a plurality of semiconductor substrates each having an element structure and electrode pads formed on a peripheral portion thereof, and then a step of forming the laminated semiconductor substrates. A step of removing the surface portion of the side surface by polishing or the like to expose the electrode pad, and then spraying ultrafine metal particles from a nozzle by a gas deposition method to form a wiring layer on the side surface of the laminated semiconductor substrate. And connecting the electrode pads to each other.

【0008】この発明に係る請求項3記載の半導体装置
は、素子構成された半導体基板上に、配線層が絶縁膜を
介して互いに交差する交差部を有して形成され、上記絶
縁膜が上記交差部にのみ形成されたものである。
According to a third aspect of the present invention, in a semiconductor device according to the present invention, a wiring layer is formed on a semiconductor substrate having an element structure so as to have intersecting portions that intersect each other with an insulating film interposed therebetween, and the insulating film is formed as described above. It is formed only at the intersection.

【0009】この発明に係る請求項4記載の半導体装置
は、積層された半導体基板の側面に、配線層が絶縁膜を
介して互いに交差する交差部を有して形成され、上記絶
縁膜が上記交差部にのみ形成されたものである。
According to a fourth aspect of the present invention, in the semiconductor device according to the fourth aspect, the wiring layers are formed on the side surfaces of the stacked semiconductor substrates so as to have intersecting portions intersecting each other with the insulating film interposed therebetween, and the insulating film is formed. It is formed only at the intersection.

【0010】この発明に係る請求項5記載の半導体装置
の製造方法は、ガスデポジション法により超微粒子をノ
ズルより吹き付けて、半導体基板上に成膜する技術を用
い、交差部で下層となる配線層を金属超微粒子の吹き付
けにより形成し、次いで、絶縁膜を絶縁材料の超微粒子
の吹き付けにより上記交差部における上記配線層上に形
成し、さらに、上記交差部で上層となる配線層を金属超
微粒子の吹き付けにより形成するものである。
A semiconductor device manufacturing method according to a fifth aspect of the present invention uses a technique of spraying ultrafine particles from a nozzle by a gas deposition method to form a film on a semiconductor substrate, and a wiring which becomes a lower layer at an intersection. A layer is formed by spraying ultrafine metal particles, and then an insulating film is formed on the wiring layer at the intersection by spraying ultrafine particles of an insulating material. It is formed by spraying fine particles.

【0011】この発明に係る請求項6記載の半導体装置
は、積層された半導体基板における側面、または最上層
の半導体基板の主面にバンプ電極が形成されたものであ
る。
According to a sixth aspect of the present invention, a bump electrode is formed on a side surface of a stacked semiconductor substrate or a main surface of the uppermost semiconductor substrate.

【0012】この発明に係る請求項7記載の半導体装置
は、貫通孔を有し、この貫通孔内から接続される配線層
が形成された搭載基板の上記貫通孔内にバンプ電極上層
部を差し入れて導電性接合材により接合することによ
り、積層された半導体基板における側面、または最上層
の半導体基板の主面を上記搭載基板に接合させたもので
ある。
A semiconductor device according to a seventh aspect of the present invention has a through hole, and the bump electrode upper layer portion is inserted into the through hole of the mounting substrate on which the wiring layer connected from the through hole is formed. And a conductive bonding material is used to bond the side surfaces of the stacked semiconductor substrates or the main surface of the uppermost semiconductor substrate to the mounting substrate.

【0013】この発明に係る請求項8記載の半導体装置
は、バンプ電極の頭頂部を除いて、積層された半導体基
板を封止樹脂で覆ったものである。
The semiconductor device according to the eighth aspect of the present invention is one in which the laminated semiconductor substrates are covered with a sealing resin except for the tops of the bump electrodes.

【0014】この発明に係る請求項9記載の半導体装置
の製造方法は、積層された半導体基板における側面また
は最上層の半導体基板の主面にガスデポジション法によ
り金属超微粒子をノズルより吹き付けてバンプ電極を形
成するものである。
According to a ninth aspect of the present invention, there is provided a method for manufacturing a semiconductor device, wherein bumps are produced by spraying ultrafine metal particles from a nozzle onto a side surface of a stacked semiconductor substrate or a main surface of the uppermost semiconductor substrate by a gas deposition method. It forms an electrode.

【0015】この発明に係る請求項10記載の半導体装
置は、バンプ電極が電極パッド上以外の所定の領域に形
成され、上記バンプ電極と上記電極パッドとを接続する
導電膜から成る引き出し線が形成されたものである。
According to a tenth aspect of the present invention, in the semiconductor device according to the tenth aspect, the bump electrode is formed in a predetermined region other than on the electrode pad, and a lead line made of a conductive film connecting the bump electrode and the electrode pad is formed. It was done.

【0016】この発明に係る請求項11記載の半導体装
置は、素子構成された半導体基板上に、電極パッドとバ
ンプ電極と導電膜から成る引き出し線とを有し、上記バ
ンプ電極が上記電極パッド上以外の所定の領域に形成さ
れ、上記バンプ電極と上記電極パッドとを接続するよう
に上記引き出し線が形成されたものである。
A semiconductor device according to an eleventh aspect of the present invention has an electrode pad, a bump electrode, and a lead line made of a conductive film on a semiconductor substrate having elements, and the bump electrode is on the electrode pad. The lead line is formed in a predetermined region other than the above and connects the bump electrode and the electrode pad.

【0017】この発明に係る請求項12記載の半導体装
置の製造方法は、半導体基板の主面または積層された半
導体基板の側面に、ガスデポジション法により金属超微
粒子をノズルより吹き付けてバンプ電極を形成する半導
体装置の製造方法において、上記半導体基板における上
記バンプ電極形成面と上記ノズルとを互いに平行な面内
で相対的に走査しながら、上記金属超微粒子を吹き付け
て、予め形成された電極パッド領域から引き出し線を形
成し、所定の位置で静止して、所定の高さまで上記金属
超微粒子を堆積させて上記バンプ電極を形成するか、あ
るいは逆に、所定の位置に上記バンプ電極を形成した後
連続して上記引き出し線を上記電極パッド領域まで形成
するものである。
According to a twelfth aspect of the present invention, there is provided a method of manufacturing a semiconductor device, wherein ultrafine metal particles are sprayed from a nozzle by a gas deposition method onto a main surface of a semiconductor substrate or side surfaces of stacked semiconductor substrates to form bump electrodes. In the method for manufacturing a semiconductor device to be formed, the electrode pads previously formed by spraying the ultrafine metal particles while relatively scanning the bump electrode formation surface of the semiconductor substrate and the nozzle in planes parallel to each other. A lead line is formed from the area, and it is stationary at a predetermined position and the ultrafine metal particles are deposited to a predetermined height to form the bump electrode, or conversely, the bump electrode is formed at a predetermined position. The lead line is formed continuously up to the electrode pad region.

【0018】この発明に係る請求項13記載の半導体装
置は、バンプ電極、引き出し線または配線層が、複数種
の金属による多層構造で構成されたものである。
A semiconductor device according to a thirteenth aspect of the present invention is such that the bump electrode, the lead wire, or the wiring layer has a multilayer structure made of a plurality of kinds of metals.

【0019】この発明に係る請求項14記載の半導体装
置は、多層構造のバンプ電極、引き出し線または配線層
の最下層がTiまたはCrで構成されたものである。
According to a fourteenth aspect of the present invention, in the semiconductor device according to the fourteenth aspect, the lowermost layer of the bump electrode, the lead wire or the wiring layer having a multi-layer structure is made of Ti or Cr.

【0020】この発明に係る請求項15記載の半導体装
置の製造装置は、複数種の原料をそれぞれ加熱蒸発させ
て超微粒子を生成する複数の超微粒子生成手段と、生成
された上記複数種の超微粒子をそれぞれ成膜室内に輸送
する複数の輸送手段と、上記成膜室内の複数のノズルか
ら連続的に上記複数種の超微粒子をそれぞれ被処理基板
上に吹き付けて堆積させ、多層構造の膜を形成する手段
とを有するものである。
According to a fifteenth aspect of the present invention, in a semiconductor device manufacturing apparatus, a plurality of ultrafine particle producing means for producing ultrafine particles by heating and evaporating a plurality of types of raw materials, respectively, and a plurality of produced ultrafine particles. A plurality of transportation means for transporting the fine particles into the film forming chamber and a plurality of nozzles in the film forming chamber are used to continuously spray and deposit the plurality of types of ultrafine particles on the substrate to be processed to form a multi-layered film. And means for forming.

【0021】この発明に係る請求項16記載の半導体装
置は、積層された半導体基板の間に放熱板を設け、この
放熱板の一部を上記半導体基板側面よりも突出させ、上
記放熱板の突出していない上記積層された半導体基板側
面に配線層を形成したものである。
According to a sixteenth aspect of the present invention, in the semiconductor device according to the sixteenth aspect, a heat radiating plate is provided between the stacked semiconductor substrates, and a part of the heat radiating plate is projected from the side surface of the semiconductor substrate, and the heat radiating plate is projected. A wiring layer is formed on the side surface of the stacked semiconductor substrate which is not formed.

【0022】この発明に係る請求項17記載の半導体装
置は、積層された半導体基板の間に放熱板を設け、この
放熱板の一部を上記半導体基板側面よりも突出させ、上
記放熱板の突出していない上記積層された半導体基板側
面に配線層を形成し、バンプ電極の頭頂部と上記放熱板
の突出部分とを除いて封止樹脂で覆ったものである。
According to a seventeenth aspect of the present invention, in the semiconductor device according to the seventeenth aspect, a heat radiating plate is provided between the stacked semiconductor substrates, a part of the heat radiating plate is projected from the side surface of the semiconductor substrate, and the heat radiating plate is projected. A wiring layer is formed on the side surface of the stacked semiconductor substrate, which is not stacked, and is covered with a sealing resin except for the top of the bump electrode and the protruding portion of the heat dissipation plate.

【0023】[0023]

【作用】この発明に係る半導体装置は、複数枚の半導体
基板を別途配線基板を用いることなく直接積層し、電極
パッドを側面に露出させて配線層により相互接続して一
体の回路機能を構成したため、極めて小さい容積に集約
された高機能な半導体装置が得られる。また構造が簡単
であるため、信頼性も向上する。
In the semiconductor device according to the present invention, a plurality of semiconductor substrates are directly laminated without using a separate wiring substrate, and the electrode pads are exposed on the side surface and interconnected by the wiring layer to form an integrated circuit function. It is possible to obtain a highly functional semiconductor device integrated into an extremely small volume. Moreover, since the structure is simple, reliability is also improved.

【0024】また、積層された半導体基板の側面の表面
部分を除去して電極パッドを側面に露出させ、ガスデポ
ジション法(以下、G・D法と称す)により電極パッド
間を相互接続する配線層を上記側面に形成する。このよ
うにG・D法を用いることにより、積層された半導体基
板の側面に配線層を形成でき、複数枚の半導体基板を、
側面で電極パッド間を配線層により接続することで一体
の半導体装置とする。これにより非常で小型で高機能な
積層型半導体装置を容易に製造できる。
Wiring for removing the surface portions of the side surfaces of the stacked semiconductor substrates to expose the electrode pads on the side surfaces and interconnecting the electrode pads by a gas deposition method (hereinafter referred to as G / D method). A layer is formed on the side surface. By using the G / D method in this way, a wiring layer can be formed on the side surface of the stacked semiconductor substrates, and a plurality of semiconductor substrates can be formed.
By connecting the electrode pads by a wiring layer on the side surface, an integrated semiconductor device is obtained. This makes it possible to easily manufacture an extremely small and highly functional stacked semiconductor device.

【0025】また、半導体基板上で配線層に交差部を設
けたため、配線層が電気的に分離して交差でき、半導体
装置の設計上の自由度が向上する。
Further, since the wiring layer has the intersecting portion on the semiconductor substrate, the wiring layers can be electrically separated and intersect with each other, and the degree of freedom in designing the semiconductor device is improved.

【0026】さらに、積層された半導体基板の側面に形
成される配線層に交差部を設けたため、電極パッド間の
相互接続の自由度が増し、半導体装置の設計上の自由度
が向上する。
Further, since the wiring layer formed on the side surface of the stacked semiconductor substrates is provided with the intersection, the degree of freedom in interconnection between the electrode pads is increased, and the degree of freedom in designing the semiconductor device is improved.

【0027】また、G・D法により、下層の配線層を形
成後、交差部となる領域にのみ絶縁膜を形成し、さらに
上層の配線層を形成するため、連続的に容易に、交差部
を有した配線層の形成が行える。
Further, since the lower wiring layer is formed by the G / D method, the insulating film is formed only in the region to be the intersection, and the upper wiring layer is further formed, so that the intersection can be easily and continuously formed. It is possible to form a wiring layer having

【0028】また、複数枚積層された半導体基板の側面
または上面にバンプ電極を設けたため、非常に小型で高
機能な積層型半導体装置の外部の電子装置への接続を確
実に行える。また、バンプ電極は、積層された半導体基
板の上面だけでなく側面にも形成できるため、外部への
取り出し電極の数が増えるとともに、半導体装置の設計
上の自由度も向上する。
Further, since the bump electrodes are provided on the side surface or the upper surface of the laminated semiconductor substrates, the extremely small and highly functional laminated semiconductor device can be surely connected to the external electronic device. Further, since the bump electrodes can be formed not only on the upper surface of the stacked semiconductor substrates but also on the side surfaces, the number of electrodes taken out to the outside is increased and the degree of freedom in designing the semiconductor device is improved.

【0029】さらに、バンプ電極を貫通孔に差し入れて
搭載基板に接合するため、非常に小型で高機能な積層型
半導体装置を確実に外部へ接続することができる。ま
た、積層された半導体基板の側面と上面との各面につい
て搭載基板との接合が可能で、半導体装置の設計上の自
由度が向上する。さらにまた、側面と搭載基板との接合
の場合、側面に露出した電極パッド間の相互接続は、側
面に形成された配線層と、搭載基板に形成された配線層
との双方を用いることができ、電極パッド間の相互接続
の自由度が極めて大きくなり設計上の自由度が向上する
とともに、外部への取り出し電極の数も多くなる。
Further, since the bump electrode is inserted into the through hole and joined to the mounting substrate, the very small and highly functional laminated semiconductor device can be surely connected to the outside. Further, it is possible to bond the side surface and the upper surface of the stacked semiconductor substrates to the mounting substrate, and the degree of freedom in designing the semiconductor device is improved. Furthermore, in the case of joining the side surface and the mounting board, the interconnection between the electrode pads exposed on the side surface can use both the wiring layer formed on the side surface and the wiring layer formed on the mounting board. The degree of freedom of interconnection between the electrode pads is extremely increased, and the degree of freedom in design is improved, and the number of extraction electrodes to the outside is increased.

【0030】また、バンプ電極の頭頂部を除いて樹脂で
封止したため、非常に小型で高機能な積層型の樹脂封止
型半導体装置が得られる。
Further, since the bump electrode is sealed with resin except the top portion thereof, a very small and highly functional laminated resin-sealed semiconductor device can be obtained.

【0031】また、G・D法によりバンプ電極を形成す
るため、積層された半導体基板の側面または上面にバン
プ電極が形成されて、外部と接続される上記のような積
層型半導体装置が、容易に製造できる。
Further, since the bump electrodes are formed by the G / D method, the stacked semiconductor device as described above, in which the bump electrodes are formed on the side surface or the upper surface of the stacked semiconductor substrates and connected to the outside, is easy. Can be manufactured.

【0032】また、引き出し線を設けてバンプ電極を電
極パッド上以外の領域に形成したため、バンプ電極の形
成位置が限定されることなく、半導体装置の設計上の自
由度が向上する。また搭載基板に搭載する際、搭載基板
側も、貫通孔の位置が限定されないため設計上の自由度
が向上する。
Further, since the lead line is provided and the bump electrode is formed in a region other than the electrode pad, the position where the bump electrode is formed is not limited, and the degree of freedom in designing the semiconductor device is improved. Further, when mounting on the mounting board, the position of the through hole is not limited on the mounting board side, so that the degree of freedom in design is improved.

【0033】また、G・D法により引き出し線とバンプ
電極とを連続的に形成するため、自由度の高い電極構造
を容易に製造できる。
Further, since the lead line and the bump electrode are continuously formed by the G / D method, the electrode structure having a high degree of freedom can be easily manufactured.

【0034】また、バンプ電極、引き出し線または配線
層を多層構造としたため、主体となる金属層の下層に下
地の金属層を形成でき、適当な材料を選ぶことにより、
半導体基板や電極パッドとの密着力を高め、相互拡散を
防止する。さらに、最下層にTiまたはCrから成る金
属層を用いることにより、上記効果が確実に得られる。
Further, since the bump electrode, the lead wire or the wiring layer has a multi-layer structure, the underlying metal layer can be formed below the main metal layer, and by selecting an appropriate material,
Improves adhesion to semiconductor substrates and electrode pads and prevents mutual diffusion. Furthermore, by using a metal layer made of Ti or Cr as the lowermost layer, the above effect can be reliably obtained.

【0035】また、G・D装置を、複数の超微粒子生成
手段を持ち、複数の輸送手段により複数種の超微粒子を
複数のノズルに輸送し、連続的に吹き付けて多層構造の
膜を形成する手段を持つように構成したため、同一成膜
室で連続的に容易に多層構造の膜を形成でき、多層構造
のバンプ電極、引き出し線、配線層および交差部を有す
る配線層の製造が容易にできる。
Further, the GD apparatus has a plurality of ultrafine particle generating means, and a plurality of kinds of ultrafine particles are transported to a plurality of nozzles by a plurality of transportation means and continuously sprayed to form a multi-layered film. Since it is configured to have a means, it is possible to continuously and easily form a film having a multi-layer structure in the same film forming chamber, and it is possible to easily manufacture a bump electrode, a lead wire, a wiring layer and a wiring layer having an intersecting portion having a multi-layer structure. .

【0036】また、積層された半導体基板の間に放熱板
を設け、この放熱板の一部を半導体基板の側面よりも突
出させたため、非常に小型で高機能でしかも放熱性が良
く信頼性の高い積層型半導体装置が得られる。さらにこ
のような放熱板を持つ積層型半導体装置でバンプ電極が
形成されたものを、バンプ電極の頭頂部と放熱板の突出
部分を除いて封止樹脂で覆ったため、上記同様の効果を
持つ積層型の樹脂封止型半導体装置が得られる。
Further, since a heat radiating plate is provided between the stacked semiconductor substrates and a part of the heat radiating plate is protruded from the side surface of the semiconductor substrate, it is very small and has high functionality, good heat dissipation and good reliability. A highly stacked semiconductor device can be obtained. Further, a laminated semiconductor device having such a heat dissipation plate, on which bump electrodes are formed, is covered with sealing resin except for the tops of the bump electrodes and the protruding parts of the heat dissipation plate. A resin-sealed semiconductor device of the mold is obtained.

【0037】[0037]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図について説明
する。なお、従来の技術と重複する箇所は適宜その説明
を省略する。図1は、この発明の実施例1による半導体
装置の構造および製造方法を示す斜視図である。図に示
すように、半導体基板8は、複数枚積層され、端面に露
出された電極パッド9は配線層10により相互接続され
て一体的な積層型半導体装置を構成する。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. Note that the description of the same parts as those of the conventional technique will be appropriately omitted. 1 is a perspective view showing a structure and a manufacturing method of a semiconductor device according to a first embodiment of the present invention. As shown in the figure, a plurality of semiconductor substrates 8 are stacked, and the electrode pads 9 exposed on the end faces are interconnected by a wiring layer 10 to form an integrated stacked semiconductor device.

【0038】このような積層型半導体装置は、次のよう
に製造する。まず、素子構成され周辺に電極パッド9が
形成された半導体基板8を複数枚、例えばポリイミド等
の材料を用いて貼り合わせる。次に積層されて立体構造
となった半導体装置の側面に、例えば研磨等の方法を施
して、電極パッド9を表面に露出させる。次に、G・D
法により、ノズル11から金属超微粒子12を吹き付け
て、配線層10を形成して所定の電極パッド9を相互接
続する。これにより一体の回路機能を構成する積層型半
導体装置となる。
Such a stacked semiconductor device is manufactured as follows. First, a plurality of semiconductor substrates 8 each having an element structure and having electrode pads 9 formed on the periphery thereof are attached to each other by using a material such as polyimide. Next, the side surfaces of the semiconductor devices which are stacked and have a three-dimensional structure are subjected to a method such as polishing to expose the electrode pads 9 on the surface. Next, G ・ D
By the method, the ultrafine metal particles 12 are sprayed from the nozzle 11 to form the wiring layer 10 and interconnect the predetermined electrode pads 9. As a result, the stacked semiconductor device has an integrated circuit function.

【0039】G・D法とは、基板上に超微粒子をノズル
より吹き付けて成膜する、近年開発された技術であり、
その概要を以下に説明する。まず、不活性ガスで加圧し
た超微粒子生成室内で、金属等の原料を加熱、蒸発させ
る。すると、蒸発した金属原子は不活性ガスとの衝突に
よって冷却されて凝縮し、高純度の超微粒子を生成す
る。そして圧力の高い超微粒子生成室とは別に圧力の低
い生膜室を設け、上記のようにして生成した超微粒子を
この両室間の圧力差を利用することによって不活性ガス
と共に輸送管を経て細いノズルから高速に噴射させる。
この噴射された超微粒子を、減圧下に置かれた被処理基
板上に衝突、付着させることにより成膜させるのがG・
D法である。
The GD method is a technique developed in recent years, in which ultrafine particles are sprayed from a nozzle onto a substrate to form a film.
The outline will be described below. First, a raw material such as a metal is heated and evaporated in an ultrafine particle generation chamber pressurized with an inert gas. Then, the vaporized metal atoms are cooled by the collision with the inert gas and condensed to generate high-purity ultrafine particles. In addition to the ultrafine particle production chamber with high pressure, a low-pressure biofilm chamber is provided, and the ultrafine particles produced as described above are passed through the transport pipe together with the inert gas by utilizing the pressure difference between the two chambers. Eject at high speed from a thin nozzle.
It is possible to form a film by colliding and adhering the jetted ultrafine particles on a substrate to be processed placed under reduced pressure.
Method D.

【0040】以上のように、上記実施例1によると、半
導体基板8を、別途配線基板を用いないで直接積層し端
面に露出された電極パッド9をG・D法により相互接続
したため、半導体装置の占有する容積が極めて小さくで
き、非常に小型で高機能な半導体装置が得られる。また
構造が簡単になるため、信頼性の高いものが容易に製造
できる。
As described above, according to the first embodiment, the semiconductor substrate 8 is directly laminated without using a separate wiring substrate and the electrode pads 9 exposed on the end faces are interconnected by the G / D method. Can occupy a very small volume, and a very small and highly functional semiconductor device can be obtained. Further, since the structure is simple, a highly reliable one can be easily manufactured.

【0041】なお、G・D法による配線層10は、図1
に示すような半導体基板8の積層方向に平行なものに限
るものではなく、図2に示すようなものでも良い。
The wiring layer 10 formed by the G / D method is shown in FIG.
The structure shown in FIG. 2 is not limited to the one parallel to the stacking direction of the semiconductor substrates 8 and may be the one shown in FIG.

【0042】実施例2.上記実施例1で示した積層型半
導体装置において、電極パッド9をG・D法により相互
接続する際、交差部を設けたものについて以下に示す。
図3は、この発明の実施例2による半導体装置の構造を
示す側面図である。図において、13は配線層10の交
差部であり、この交差部13の断面構造を図4に示す。
図3および図4に示すように、下層となる配線層10a
と上層となる配線層10bとが交差する交差部13で
は、配線層10a上に絶縁膜14が形成され、その上に
配線層10bが形成される。このように、積層型半導体
装置の電極パッド9を相互接続する配線層10を、絶縁
膜14を介することにより互いに電気的に分離して交差
させるようにしたため、電極パッド9の相互接続の自由
度が増し、半導体装置の設計上の自由度が向上する。
Example 2. The following is a description of the laminated semiconductor device shown in the first embodiment, in which the electrode pads 9 are provided with the intersections when they are interconnected by the G / D method.
Second Embodiment FIG. 3 is a side view showing the structure of a semiconductor device according to a second embodiment of the present invention. In the figure, 13 is an intersection of the wiring layer 10, and the cross-sectional structure of this intersection 13 is shown in FIG.
As shown in FIGS. 3 and 4, the lower wiring layer 10a
At the intersection 13 where the wiring layer 10b and the upper wiring layer 10b intersect, the insulating film 14 is formed on the wiring layer 10a, and the wiring layer 10b is formed thereon. In this way, the wiring layers 10 interconnecting the electrode pads 9 of the stacked semiconductor device are electrically separated from each other by interposing the insulating film 14, so that the wiring layers 10 intersect each other. And the degree of freedom in designing the semiconductor device is improved.

【0043】また、上記のような交差部13の形成は、
G・D法で行うことができる。G・D法では金属だけに
限らずAl23等の絶縁材料も形成可能であるため、ま
ず、交差部13において下層となる配線層10aをG・
D法により形成し、次に絶縁膜14をG・D法により交
差部13にのみ形成し、更に、配線層10bをG・D法
により形成する。
The formation of the intersection 13 as described above is
The G / D method can be used. In the G / D method, not only a metal but also an insulating material such as Al 2 O 3 can be formed.
Then, the insulating film 14 is formed only on the intersections 13 by the G.D method, and the wiring layer 10b is further formed by the G.D method.

【0044】なお、上記実施例2で示すような交差部1
3の形成は、積層型半導体装置において側面に形成され
る配線層10に限るものではなく、G・D法で形成され
る配線層であれば一層のみの半導体基板にも広く適用で
き、同様の効果がある。
Incidentally, the intersection 1 as shown in the second embodiment.
The formation of 3 is not limited to the wiring layer 10 formed on the side surface in the laminated semiconductor device, but can be widely applied to a semiconductor substrate having only one wiring layer as long as the wiring layer is formed by the G / D method. effective.

【0045】実施例3.次に、上記実施例1および実施
例2で示した積層型半導体装置の最上層の半導体基板8
の主面に、外部との接続を図るバンプ電極が設けられた
ものを示す。図5はこの発明の実施例3による半導体装
置の構造を示す側面図である。図において、15は積層
された最上層の半導体基板8の主面の電極パッド9上に
形成されたバンプ電極である。
Example 3. Next, the uppermost semiconductor substrate 8 of the stacked semiconductor device shown in the first and second embodiments.
In the figure, a main surface of which is provided with bump electrodes for connection to the outside is shown. 5 is a side view showing the structure of a semiconductor device according to a third embodiment of the present invention. In the figure, 15 is a bump electrode formed on the electrode pad 9 on the main surface of the stacked uppermost semiconductor substrate 8.

【0046】このようなバンプ電極15は、G・D法に
より以下のように形成する。稼動ステージを走査させ
て、電極パッド9をノズル11直下に位置合わせし、超
微粒子生成室で生成された金属超微粒子12を輸送管よ
り導き、それに続くノズル11から高速噴射する。輸送
管に具備されたシャッターにより所定時間、金属超微粒
子12の吹き付けを行って上記電極パッド9上に所定の
高さのバンプ電極15を形成後、次のバンプ電極15を
形成する電極パッド9をノズル11直下に移動させる。
Such a bump electrode 15 is formed by the G · D method as follows. The operation stage is scanned to align the electrode pad 9 directly below the nozzle 11, the ultrafine metal particles 12 produced in the ultrafine particle producing chamber are guided through the transport pipe, and high speed injection is performed from the subsequent nozzle 11. After the metal ultrafine particles 12 are sprayed for a predetermined time by the shutter provided on the transport pipe to form the bump electrode 15 having a predetermined height on the electrode pad 9, the electrode pad 9 for forming the next bump electrode 15 is formed. The nozzle 11 is moved directly below.

【0047】また、図5で示したバンプ電極15が形成
された積層型半導体装置を、図6に示すように、貫通孔
16を設けたフレキシブルフィルム等の搭載基板17に
搭載しても良い。図6に示すように、搭載基板17には
配線層18が両面に設けられて貫通孔16内壁に被着さ
れた金属18aと一体化し、貫通孔16内にバンプ電極
15上層部を差し入れて、このバンプ電極15上層部と
貫通孔16内壁の金属18aとを半田等の導電性接合材
19で接合することにより、半導体装置の搭載を行う。
Further, the laminated semiconductor device having the bump electrodes 15 shown in FIG. 5 may be mounted on a mounting substrate 17 such as a flexible film having through holes 16 as shown in FIG. As shown in FIG. 6, a wiring layer 18 is provided on both surfaces of the mounting substrate 17 and is integrated with a metal 18a adhered to the inner wall of the through hole 16, and the upper layer portion of the bump electrode 15 is inserted into the through hole 16, The semiconductor device is mounted by joining the upper layer portion of the bump electrode 15 and the metal 18a on the inner wall of the through hole 16 with a conductive joining material 19 such as solder.

【0048】さらにまた、図5で示したバンプ電極15
が形成された積層型半導体装置を、図7に示すように、
バンプ電極15頭頂部のみを露出させて封止樹脂20に
より封止しても良い。
Furthermore, the bump electrode 15 shown in FIG.
As shown in FIG. 7, the stacked semiconductor device having the
Only the top of the bump electrode 15 may be exposed and sealed with the sealing resin 20.

【0049】上記実施例3により、極めて狭い領域に集
約された高機能な積層型半導体装置における、外部の電
子装置との接続端子の取り出しが容易に行えるものとな
る。
According to the third embodiment, it is possible to easily take out the connection terminal with the external electronic device in the highly functional stacked semiconductor device integrated in an extremely narrow area.

【0050】実施例4.積層型半導体装置の最上層の半
導体基板8の主面に形成されるバンプ電極15は、電極
パッド9上以外の領域に形成しても良く、図8に示すよ
うに、電極パッド9上より引き出し線21を形成し、こ
れに接続して所定の位置にバンプ電極15を形成しても
良い。
Example 4. The bump electrode 15 formed on the main surface of the uppermost semiconductor substrate 8 of the stacked semiconductor device may be formed in a region other than the electrode pad 9, and as shown in FIG. The line 21 may be formed, and the bump electrode 15 may be formed at a predetermined position by connecting to the line 21.

【0051】図8に示すバンプ電極15および引き出し
線21の形成は、G・D法により以下のように行う。図
9に示すように半導体装置を保持する稼動ステージを走
査しながら、ノズル11より金属超微粒子12を吹き付
けて電極パッド9上より引き出し線21を形成し、所定
の位置で稼動ステージを止めて、バンプ電極15を所定
の高さまで形成する。逆に、初めに所定の位置にバンプ
電極15を形成し、その後、稼動ステージを走査して引
き出し線21を電極パッド9上まで形成しても良い。
The bump electrode 15 and the lead wire 21 shown in FIG. 8 are formed by the G / D method as follows. As shown in FIG. 9, while scanning the operation stage holding the semiconductor device, the ultrafine metal particles 12 are sprayed from the nozzle 11 to form the lead wire 21 on the electrode pad 9, and the operation stage is stopped at a predetermined position. The bump electrode 15 is formed to a predetermined height. On the contrary, the bump electrode 15 may be first formed at a predetermined position, and then the operation stage may be scanned to form the lead line 21 up to the electrode pad 9.

【0052】上記実施例4では、バンプ電極15の形成
位置が電極パッド9上に限定されないため、半導体装置
の設計上の自由度が向上する。また、搭載基板17に搭
載する際、搭載基板17の設計上の自由度も向上する。
また、G・D法により、引き出し線21とバンプ電極1
5とを連続して形成するため、自由度の高い電極構造を
容易に形成できる。
In the fourth embodiment, the position where the bump electrode 15 is formed is not limited to the electrode pad 9, so that the degree of freedom in designing the semiconductor device is improved. Further, when the mounting board 17 is mounted, the degree of freedom in designing the mounting board 17 is improved.
In addition, the lead wire 21 and the bump electrode 1 are formed by the G / D method.
Since 5 and 5 are continuously formed, an electrode structure having a high degree of freedom can be easily formed.

【0053】上記のような、引き出し線21を設けて、
電極パッド9上以外の領域にバンプ電極15を形成した
電極構造は、積層型半導体装置に限らず、一層のみの半
導体基板上に形成しても良く、同様の効果がある。
By providing the lead wire 21 as described above,
The electrode structure in which the bump electrode 15 is formed in a region other than the electrode pad 9 is not limited to the stacked semiconductor device and may be formed on a semiconductor substrate having only one layer, and the same effect can be obtained.

【0054】実施例5.上記実施例3および実施例4で
示したバンプ電極15またはバンプ電極15と引き出し
線21は、積層型半導体装置の最上層の半導体基板8の
主面に形成されたものであるが、図10に示すように、
バンプ電極15を積層された半導体基板8の側面に形成
しても良い。半導体基板8を積層し、研磨等により側面
に電極パッド9を露出させ、G・D法により電極パッド
9間を相互接続する配線層10を形成する際、連続して
引き出し線21およびバンプ電極15を形成する。
Example 5. The bump electrode 15 or the bump electrode 15 and the lead wire 21 shown in the third and fourth embodiments are formed on the main surface of the uppermost semiconductor substrate 8 of the stacked semiconductor device. As shown
The bump electrode 15 may be formed on the side surface of the laminated semiconductor substrate 8. When the semiconductor substrate 8 is stacked, the electrode pads 9 are exposed on the side surfaces by polishing or the like, and the wiring layer 10 for interconnecting the electrode pads 9 is formed by the G / D method, the lead wire 21 and the bump electrode 15 are continuously formed. To form.

【0055】なお、図10では4つの側面のうち1面の
みにバンプ電極15を形成したものを示したが、四面全
てに形成可能である。これにより外部へ取り出せるバン
プ電極15が半導体装置の上面だけでなく側面にも形成
でき、電極数も多くなるという利点があるとともに、半
導体装置の設計上の自由度が向上する。
Although FIG. 10 shows the bump electrode 15 formed on only one of the four side surfaces, it can be formed on all four surfaces. As a result, the bump electrode 15 that can be taken out to the outside can be formed not only on the upper surface of the semiconductor device but also on the side surface, and the number of electrodes is increased, and the degree of freedom in designing the semiconductor device is improved.

【0056】また、上記のように側面にバンプ電極15
が形成された積層型半導体装置を上記実施例3で示した
方法により、貫通孔16を有する搭載基板17に側面を
接合させたものを図11に示す。これにより、電極パッ
ド9を相互接続する配線は、1側面につき、この側面に
形成される配線層10と、搭載基板17の両面にそれぞ
れ形成される二層の配線層18との三層の配線層が利用
できることになり、電極パッド9の相互接続の自由度が
極めて大きくなり、設計上の制約が極めて少なくなる。
また外部へ取り出せる電極数も多くなる。さらに、上記
三層の配線層10,18をそれぞれ信号層、接地層、電
源層に分離して利用することも可能である。
Further, as described above, the bump electrode 15 is formed on the side surface.
FIG. 11 shows a laminated semiconductor device in which the side surface is joined to the mounting substrate 17 having the through hole 16 by the method described in the third embodiment. As a result, the wiring that interconnects the electrode pads 9 is a three-layered wiring consisting of the wiring layer 10 formed on this side surface and the two wiring layers 18 formed on both sides of the mounting substrate 17, for each side surface. With the availability of layers, the freedom of interconnection of the electrode pads 9 is greatly increased and the design constraints are very low.
In addition, the number of electrodes that can be taken out to the outside also increases. Furthermore, it is also possible to separately use the three wiring layers 10 and 18 as a signal layer, a ground layer, and a power supply layer, respectively.

【0057】実施例6.次に、上記実施例1から実施例
5で用いた、G・D法で形成されたバンプ電極15およ
びそれに伴う引き出し線21および電極パッド9の相互
接続のための配線層10において、複数種の異なる金属
を積層した構造のものを示す。図12は、この発明の実
施例6による半導体装置のバンプ電極15の構造および
製造方法を示した断面図である。図12に示すように、
例えばTiやCr等の材料を下地金属層22aとして所
定の位置、例えば金属パッド9上にG・D法により堆積
し、その後、下地金属層22a上にバンプ電極15の主
体となる、例えばAu等の材料をG・D法により堆積す
る。
Example 6. Next, in the wiring layer 10 for interconnecting the bump electrodes 15 formed by the G / D method and the lead lines 21 and the electrode pads 9 used therewith, which are used in the first to fifth embodiments, a plurality of types are used. A structure in which different metals are laminated is shown. FIG. 12 is a cross-sectional view showing the structure and manufacturing method of the bump electrode 15 of the semiconductor device according to the sixth embodiment of the present invention. As shown in FIG.
For example, a material such as Ti or Cr is deposited as a base metal layer 22a at a predetermined position, for example, on the metal pad 9 by the G / D method, and then, as a main body of the bump electrode 15 on the base metal layer 22a, for example, Au or the like. The above materials are deposited by the G / D method.

【0058】図12はバンプ電極15の多層構造につい
て示したが、G・D法で形成されるバンプ電極15、引
き出し線21および配線層10(以下、バンプ電極1
5、引き出し線21および配線層10をまとめて電極配
線層22と称す)のいずれにも適用でき、電極パッド9
や半導体基板8と電極配線層22との密着力を高め、相
互拡散を防止する効果がある。
Although FIG. 12 shows the multilayer structure of the bump electrode 15, the bump electrode 15, the lead wire 21 and the wiring layer 10 (hereinafter referred to as the bump electrode 1) formed by the G / D method.
5, the lead wire 21 and the wiring layer 10 are collectively referred to as an electrode wiring layer 22).
Also, it has the effect of increasing the adhesion between the semiconductor substrate 8 and the electrode wiring layer 22 and preventing mutual diffusion.

【0059】図13は、上記のような多層構造の金属電
極層22形成のためのガスデポジション装置の概略図で
ある。図において、23は超微粒子生成室、24は成膜
室、25は超微粒子生成機構、26は輸送機構、27は
シャッター機構、28はノズル、29は被処理基板、3
0は稼動ステージである。図に示すように超微粒子生成
機構25が複数個設けられ、それに対応して輸送機構2
6、シャッター機構27、ノズル28がそれぞれ複数個
設けられる。これにより、成膜室24から被処理基板2
9を取り出すことなく連続的に、2種類以上の金属をG
・D法により積層して堆積することができる。
FIG. 13 is a schematic view of a gas deposition apparatus for forming the metal electrode layer 22 having the above-mentioned multilayer structure. In the figure, 23 is an ultrafine particle generation chamber, 24 is a film forming chamber, 25 is an ultrafine particle generation mechanism, 26 is a transport mechanism, 27 is a shutter mechanism, 28 is a nozzle, 29 is a substrate to be processed, 3
0 is the operating stage. As shown in the figure, a plurality of ultrafine particle generating mechanisms 25 are provided, and the transport mechanism 2 is correspondingly provided.
6, a plurality of shutter mechanisms 27 and a plurality of nozzles 28 are provided. As a result, the substrate 2 to be processed is removed from the film forming chamber 24.
Continuously remove two or more kinds of metals without removing 9
It can be stacked and deposited by the D method.

【0060】上記のようなガスデポジション装置を用い
ることにより、密着力良好で、かつ下地との相互拡散の
防止された電極配線層22を容易に得ることができ、半
導体装置の信頼性が向上する。また、上記実施例2で示
した配線層10の交差部13の形成も、このようなガス
デポジション装置を用いることにより容易に行える。
By using the above gas deposition apparatus, it is possible to easily obtain the electrode wiring layer 22 which has good adhesion and is prevented from interdiffusion with the base, and the reliability of the semiconductor device is improved. To do. Further, the intersection 13 of the wiring layer 10 shown in the second embodiment can be easily formed by using such a gas deposition apparatus.

【0061】また、図12では二層のバンプ電極15に
ついて示したが、密着力向上のためにTiやCrから成
る密着層を形成し、その上にTiN、W、Ni、Cu等
からなる拡散防止層を形成してさらにその上にAu等の
主体となる金属層を堆積しても良い。さらにまた、この
ようなG・D法による多層構造の電極配線層22は積層
型半導体装置に限らず、一層のみの半導体基板にも広く
適用できるものである。
Although FIG. 12 shows the two-layer bump electrode 15, an adhesion layer made of Ti or Cr is formed to improve the adhesion, and diffusion made of TiN, W, Ni, Cu or the like is formed thereon. It is also possible to form a preventive layer and further deposit a metal layer such as Au as a main component on the preventive layer. Furthermore, such an electrode wiring layer 22 having a multi-layered structure by the G / D method can be widely applied not only to a laminated semiconductor device but also to a semiconductor substrate having only one layer.

【0062】実施例7.上記実施例1から実施例6で用
いたG・D法による電極配線層22は、電極配線層22
形成領域を開口部とするフォトレジスト膜のパターンを
予め形成した後に、G・D法による金属膜の堆積を行
い、その後フォトレジスト膜を除去することによって形
成しても良い。これにより、隣接する他の電極配線層2
2との接触を防いで微細化を促進させる。
Example 7. The electrode wiring layer 22 by the G / D method used in the first to sixth embodiments is the electrode wiring layer 22.
It may be formed by forming a pattern of a photoresist film having an opening in the formation region in advance, depositing a metal film by the G / D method, and then removing the photoresist film. As a result, another adjacent electrode wiring layer 2
Prevents contact with 2 and promotes miniaturization.

【0063】さらに、上記実施例1から実施例6で用い
たG・D法による電極配線層22のうち、バンプ電極1
5に関しては、異なる高さで形成しても良く、信号用、
接地用等用途別に異なる高さのバンプ電極15を用いて
も良い。
Further, among the electrode wiring layers 22 by the G / D method used in the above-mentioned first to sixth embodiments, the bump electrode 1
5 may be formed at different heights, for signals,
The bump electrodes 15 having different heights for different purposes such as grounding may be used.

【0064】実施例8.次に放熱板を設けた積層型半導
体装置について以下に示す。図14はこの発明の実施例
8による半導体装置の構造を示す斜視図である。図に示
すように、半導体基板8と放熱板31とを交互に積層し
て貼り合わせ、放熱板31が突出していない半導体基板
8の側面に、電極パッド9を露出させ、この電極パッド
9間をG・D法により配線層10を形成して相互接続
し、所定の位置にバンプ電極15を形成し、さらにバン
プ電極15形成位置に相当する貫通孔16を持ち配線層
18が形成された搭載基板17と接合したものである。
Example 8. Next, a laminated semiconductor device provided with a heat sink will be described below. 14 is a perspective view showing the structure of a semiconductor device according to an eighth embodiment of the present invention. As shown in the figure, the semiconductor substrate 8 and the heat dissipation plate 31 are alternately laminated and bonded to each other, and the electrode pads 9 are exposed on the side surface of the semiconductor substrate 8 where the heat dissipation plate 31 does not project, and the space between the electrode pads 9 is exposed. A mounting substrate on which the wiring layer 10 is formed by the G / D method and interconnected, the bump electrode 15 is formed at a predetermined position, and the through hole 16 corresponding to the position of the bump electrode 15 is formed and the wiring layer 18 is formed. It is joined with 17.

【0065】この際、放熱板31は、放熱性を良くする
ためG・D法による電極パッド9間の相互接続を行わな
い2方向に、半導体基板8より突出させる。また、放熱
板31は熱伝導を良くするため一般に金属を用いるた
め、その場合、相互接続の配線層10と接触する領域に
切り欠きを設けて、その部分にエポキシ樹脂等の絶縁層
32を埋め込む。
At this time, the heat dissipation plate 31 is projected from the semiconductor substrate 8 in two directions in which the electrode pads 9 are not interconnected by the G / D method in order to improve heat dissipation. Further, since the heat dissipation plate 31 is generally made of metal to improve heat conduction, in that case, a notch is provided in a region of the interconnect which is in contact with the wiring layer 10, and an insulating layer 32 such as an epoxy resin is embedded in the notch. .

【0066】このような放熱板31を設けた積層型半導
体装置は、小型で高機能で、しかも素子から発生する熱
の放熱性も極めて優れている。なお、図14では、電極
パッド9間を相互接続する側面は対面する2面で、放熱
板31の突出方向をそれ以外の相対する2方向とした
が、それに限るものではなく、放熱板31の突出方向は
1方向から3方向まで任意であり、相互接続する側面
は、放熱板31の突出しないどの面であっても良い。ま
た、放熱板31は半導体基板の間全てに設けるものに限
らず、1枚以上であれば効果がある。さらにまた、図1
4で示したような半導体装置を、搭載基板17の外部電
極となる部分以外を封止樹脂で覆っても良い。
The laminated type semiconductor device provided with such a heat dissipation plate 31 is small in size and has a high function, and is also excellent in heat dissipation of heat generated from the element. In FIG. 14, the side faces interconnecting the electrode pads 9 are two facing faces, and the projecting directions of the heat dissipation plate 31 are the other two facing directions, but the present invention is not limited thereto, and the heat dissipation plate 31 is not limited thereto. The projecting direction is arbitrary from one direction to three directions, and the side surfaces that are interconnected may be any surface of the heat dissipation plate 31 that does not project. Further, the heat dissipation plate 31 is not limited to one provided between all the semiconductor substrates, and one or more heat dissipation plates 31 are effective. Furthermore, FIG.
The semiconductor device as shown in FIG. 4 may be covered with a sealing resin except the portion of the mounting substrate 17 which will be the external electrode.

【0067】実施例9.図15は、放熱板を設けた積層
型半導体装置の別例を示すもので、半導体基板8と放熱
板31とを交互に積層して貼り合わせ、放熱板31が突
出していない半導体基板8の側面に電極パッド9を露出
させ、この電極パッド9間を、G・D法により配線層1
0を形成して相互接続し、最上層の半導体基板8の主面
の所定位置にG・D法によりバンプ電極15を形成し、
さらにこのバンプ電極15頭頂部と放熱板31の突出部
を露出させて、その他の部分を樹脂封止したものであ
る。
Example 9. FIG. 15 shows another example of a stacked semiconductor device provided with a heat dissipation plate. The semiconductor substrate 8 and the heat dissipation plate 31 are alternately laminated and bonded together, and the side surface of the semiconductor substrate 8 where the heat dissipation plate 31 does not project. The electrode pad 9 is exposed on the wiring layer 1 and the space between the electrode pads 9 is formed by the G / D method.
0 to form interconnections, and bump electrodes 15 are formed at predetermined positions on the main surface of the uppermost semiconductor substrate 8 by the G / D method.
Further, the top of the bump electrode 15 and the protruding portion of the heat dissipation plate 31 are exposed, and the other portions are resin-sealed.

【0068】このような半導体装置でも、上記実施例8
と同様に、放熱性の優れた小型で高機能なものが得られ
る。また、さらに放熱性を良くするために図16に示す
ように、放熱板31の突出部に通風孔32を設けても良
く、また、図17に示すように、放熱板31の突出部に
冷却水管33を通しても良い。また、上記実施例8およ
び実施例9で用いた放熱板31を中空にして中に通風ま
たは通水しても良く、さらに放熱性が良くなる。
Even in such a semiconductor device, the eighth embodiment
In the same manner as above, it is possible to obtain a small and highly functional product with excellent heat dissipation. Further, in order to further improve heat dissipation, as shown in FIG. 16, a ventilation hole 32 may be provided in the protrusion of the heat dissipation plate 31, and as shown in FIG. 17, the protrusion of the heat dissipation plate 31 is cooled. The water pipe 33 may be used. Further, the heat radiating plate 31 used in the above-mentioned eighth and ninth embodiments may be made hollow to allow ventilation or water to flow therein, and the heat radiation property is further improved.

【0069】[0069]

【発明の効果】以上のように、この発明によれば、複数
枚の半導体基板を直接積層して一体の回路機能を構成し
たため、非常に小型で高機能な半導体装置が得られる。
また構造が簡単であるため、信頼性も向上する。
As described above, according to the present invention, since a plurality of semiconductor substrates are directly laminated to form an integrated circuit function, a very small and highly functional semiconductor device can be obtained.
Moreover, since the structure is simple, reliability is also improved.

【0070】また、半導体基板を複数枚積層し、側面の
表面部分を除去して電極パッドを側面に露出させ、G・
D法により、側面に配線層を形成して電極パッド間の相
互接続を行うため、非常に小型で高機能な積層半導体装
置を容易に製造できる。
Further, by laminating a plurality of semiconductor substrates and removing the surface portions of the side surfaces to expose the electrode pads on the side surfaces, G.
By the method D, a wiring layer is formed on the side surface to connect the electrode pads to each other, so that a very small and highly functional laminated semiconductor device can be easily manufactured.

【0071】また、半導体基板上に形成される配線層に
交差部を設けたため、配線層が電気的に分離して交差で
き、半導体装置の設計上の自由度が向上する。さらに、
積層された半導体基板の側面に形成される配線層に交差
部を設けたため、電極パッド間の相互接続の自由度が増
し、半導体装置の設計上の自由度が向上する。また、こ
のような交差部を設けた配線層をG・D法により形成す
るため、自由度の高い配線層を連続的に容易に形成する
ことができる。
Further, since the wiring layer formed on the semiconductor substrate is provided with the intersecting portion, the wiring layers can be electrically separated and intersect with each other, and the degree of freedom in designing the semiconductor device is improved. further,
Since the wiring layer formed on the side surface of the stacked semiconductor substrates is provided with the intersection, the degree of freedom of interconnection between the electrode pads is increased, and the degree of freedom in designing the semiconductor device is improved. Further, since the wiring layer having such an intersection is formed by the G / D method, the wiring layer having a high degree of freedom can be continuously and easily formed.

【0072】また、積層された半導体基板の側面または
上面にバンプ電極を形成したため、非常に小型で高機能
な積層型半導体装置の外部の電子装置への接続を確実に
行える。また外部への取り出し電極の数が多く、設計上
の自由度の高い半導体装置が得られる。
Further, since the bump electrodes are formed on the side surface or the upper surface of the stacked semiconductor substrates, it is possible to reliably connect the extremely small and highly functional stacked semiconductor device to an external electronic device. Further, since the number of extraction electrodes to the outside is large, a semiconductor device having a high degree of freedom in design can be obtained.

【0073】さらに上記のようなバンプ電極が形成され
た積層型半導体装置を搭載基板に接合することにより、
確実に外部へ接続できる。また、側面と上面との各面に
ついて搭載基板との接合が可能で、設計上の自由度の高
い半導体装置が得られる。また、電極パッド間の相互接
続に、搭載基板に形成された配線層も用いることがで
き、電極パッド間の相互接続の自由度が極めて大きく、
設計上の自由度が高く、しかも外部への取り出し電極の
数の多い半導体装置が得られる。さらにまた、バンプ電
極頭頂部を除いて樹脂封止することにより、外部と確実
に接続でき、非常に小型で高機能な積層型の樹脂封止型
半導体装置が得られる。
Further, by bonding the laminated semiconductor device having the bump electrodes as described above to the mounting substrate,
Can be connected to the outside reliably. Further, it is possible to join the mounting substrate on each of the side surface and the upper surface, and a semiconductor device having a high degree of freedom in design can be obtained. Further, the wiring layer formed on the mounting substrate can be used for the interconnection between the electrode pads, and the degree of freedom in the interconnection between the electrode pads is extremely large,
A semiconductor device having a high degree of freedom in design and a large number of extraction electrodes to the outside can be obtained. Furthermore, by sealing the resin excluding the bump electrode top portion, it is possible to reliably connect to the outside, and it is possible to obtain a very small and highly functional laminated resin-sealed semiconductor device.

【0074】また、G・D法を用いることにより、積層
された半導体基板の側面または上面にバンプ電極を容易
に形成でき、外部と接続される非常に小型で高機能な積
層型半導体装置の製造が容易にできる。
Further, by using the G / D method, bump electrodes can be easily formed on the side surface or the upper surface of the stacked semiconductor substrates, and a very small and highly functional stacked semiconductor device connected to the outside can be manufactured. Can be done easily.

【0075】また、引き出し線を設けてバンプ電極を電
極パッド上以外の領域に形成したため、バンプ電極の形
成位置が限定されることなく半導体装置の設計上の自由
度が向上する。またこれにより搭載基板の貫通孔の位置
も限定されないため、搭載基板の設計上の自由度も向上
する。さらに、上記のような引き出し線とバンプ電極
は、G・D法により連続的に容易に形成できる。
Further, since the lead wire is provided and the bump electrode is formed in a region other than the electrode pad, the position where the bump electrode is formed is not limited, and the degree of freedom in designing the semiconductor device is improved. Further, as a result, the position of the through hole of the mounting board is not limited, so that the degree of freedom in designing the mounting board is improved. Furthermore, the lead lines and the bump electrodes as described above can be easily formed continuously by the G / D method.

【0076】また、電極配線層を多層構造としたため、
半導体基板や電極パッドとの密着力の高い、相互拡散の
防止された電極配線層が得られる。さらに多層構造の電
極配線層の最下層にTiまたはCrを用いることによ
り、上記効果を確実にできる。
Further, since the electrode wiring layer has a multi-layer structure,
It is possible to obtain an electrode wiring layer having high adhesion to a semiconductor substrate or an electrode pad and preventing mutual diffusion. Further, by using Ti or Cr for the lowermost layer of the electrode wiring layer having a multilayer structure, the above effect can be ensured.

【0077】また、G・D装置を、複数種の超微粒子を
同一成膜室の複数種のノズルから連続的に吹き付けて多
層構造の膜を形成するように構成したため、上記のよう
な多層構造の電極配線層および交差部を有する配線層を
容易に形成できる。
Further, since the G / D apparatus is constructed so as to continuously spray a plurality of types of ultrafine particles from a plurality of types of nozzles in the same film forming chamber to form a multi-layered film, the above-mentioned multi-layered structure is formed. The electrode wiring layer and the wiring layer having the intersection can be easily formed.

【0078】また、積層された半導体基板の間に放熱板
を設けることにより、非常に小型で高機能でしかも放熱
性が良く信頼性の高い積層型半導体装置が得られる。さ
らに、放熱板を有しバンプ電極が形成されたものをバン
プ電極の頭頂部と放熱板の突出部分を除いて樹脂封止す
ることにより、上記効果を持つ積層型の樹脂封止型半導
体装置が得られる。
Further, by providing the heat dissipation plate between the laminated semiconductor substrates, it is possible to obtain a laminated semiconductor device which is extremely small in size, has a high function, and has a good heat dissipation property and a high reliability. Furthermore, a laminated resin-encapsulated semiconductor device having the above effect is obtained by resin-sealing a heat-dissipating plate having bump electrodes excluding the top of the bump electrode and the protruding portion of the heat-dissipating plate. can get.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施例1による半導体装置の構造
および製造方法を示す斜視図である。
FIG. 1 is a perspective view showing a structure and a manufacturing method of a semiconductor device according to a first embodiment of the present invention.

【図2】 この発明の実施例1による半導体装置におけ
る配線層の配設例を示す側面図である。
FIG. 2 is a side view showing an arrangement example of wiring layers in the semiconductor device according to the first embodiment of the present invention.

【図3】 この発明の実施例2による半導体装置の構造
を示す側面図である。
FIG. 3 is a side view showing a structure of a semiconductor device according to a second embodiment of the present invention.

【図4】 この発明の実施例2による半導体装置におけ
る配線層の交差部の構造を示す断面図である。
FIG. 4 is a sectional view showing a structure of an intersection of wiring layers in a semiconductor device according to a second embodiment of the present invention.

【図5】 この発明の実施例3による半導体装置の構造
を示す側面図である。
FIG. 5 is a side view showing a structure of a semiconductor device according to a third embodiment of the present invention.

【図6】 図5に示す半導体装置を搭載基板に搭載した
ものを示す断面図である。
FIG. 6 is a cross-sectional view showing what mounts the semiconductor device shown in FIG. 5 on a mounting board.

【図7】 図5に示す半導体装置を樹脂封止したものを
示す断面図である。
FIG. 7 is a cross-sectional view showing the semiconductor device shown in FIG. 5 sealed with resin.

【図8】 この発明の実施例4による半導体装置の構造
を示す斜視図である。
FIG. 8 is a perspective view showing a structure of a semiconductor device according to a fourth embodiment of the present invention.

【図9】 この発明の実施例4による半導体装置の製造
方法を示す断面図である。
FIG. 9 is a sectional view showing the method for manufacturing the semiconductor device according to the fourth embodiment of the present invention.

【図10】 この発明の実施例5による半導体装置の構
造を示す斜視図である。
FIG. 10 is a perspective view showing a structure of a semiconductor device according to a fifth embodiment of the present invention.

【図11】 図10に示す半導体装置を搭載基板に搭載
したものを示す断面図である。
FIG. 11 is a cross-sectional view showing what mounts the semiconductor device shown in FIG. 10 on a mounting board.

【図12】 この発明の実施例6による半導体装置のバ
ンプ電極の構造および製造方法を示す断面図である。
FIG. 12 is a cross-sectional view showing a structure and a manufacturing method of bump electrodes of a semiconductor device according to a sixth embodiment of the present invention.

【図13】 この発明の実施例6による半導体装置の製
造装置の概略図である。
FIG. 13 is a schematic view of a semiconductor device manufacturing apparatus according to a sixth embodiment of the present invention.

【図14】 この発明の実施例8による半導体装置の構
造を示す斜視図である。
FIG. 14 is a perspective view showing a structure of a semiconductor device according to an eighth embodiment of the present invention.

【図15】 この発明の実施例9による半導体装置の構
造を示す断面図である。
FIG. 15 is a sectional view showing a structure of a semiconductor device according to a ninth embodiment of the present invention.

【図16】 この発明の実施例9による半導体装置の変
形例の構造を示す斜視図である。
FIG. 16 is a perspective view showing the structure of a modified example of the semiconductor device according to the ninth embodiment of the present invention.

【図17】 この発明の実施例9による半導体装置の変
形例の構造を示す斜視図である。
FIG. 17 is a perspective view showing the structure of a modified example of the semiconductor device according to the ninth embodiment of the present invention.

【図18】 従来の半導体装置の構造を示す断面図であ
る。
FIG. 18 is a cross-sectional view showing the structure of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

8 半導体基板、9 電極パッド、10 配線層、10
a 下層となる配線層、10b 上層となる配線層、1
1 ノズル、12 金属超微粒子、13 交差部、14
絶縁膜、15 バンプ電極、16 貫通孔、17 搭
載基板、18 配線層、19 導電性接合材、20 封
止樹脂、21 引き出し線、22a 下地金属層、24
成膜室、25 超微粒子生成機構、26 輸送機構、
28 ノズル、29 被処理基板、31 放熱板。
8 semiconductor substrate, 9 electrode pad, 10 wiring layer, 10
a lower wiring layer, 10b upper wiring layer, 1
1 nozzle, 12 ultrafine metal particles, 13 intersection, 14
Insulating film, 15 bump electrode, 16 through hole, 17 mounting substrate, 18 wiring layer, 19 conductive bonding material, 20 sealing resin, 21 lead wire, 22a underlying metal layer, 24
Deposition chamber, 25 ultra-fine particle generation mechanism, 26 transport mechanism,
28 nozzles, 29 substrate to be processed, 31 heat sink.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 素子構成され電極パッドが形成された半
導体基板が複数枚積層され、上記電極パッドが、上記積
層された半導体基板の側面に露出し、しかもこの側面に
形成された配線層によって相互接続されて、一体の回路
機能を構成したことを特徴とする半導体装置。
1. A plurality of semiconductor substrates each having a device structure and having electrode pads formed thereon are stacked, and the electrode pads are exposed on a side surface of the stacked semiconductor substrate and are interconnected by a wiring layer formed on the side surface. A semiconductor device which is connected to form an integrated circuit function.
【請求項2】 素子構成され、周辺部分に電極パッドが
形成された半導体基板を複数枚積層する工程と、次いで
上記積層された半導体基板の側面の表面部分を研磨等に
より除去して上記電極パッドを露出させる工程と、次い
で、ガスデポジション法により金属超微粒子をノズルよ
り吹き付けて、上記積層された半導体基板の側面に配線
層を形成して上記電極パッドを相互接続する工程とを有
することを特徴とする請求項1記載の半導体装置の製造
方法。
2. A step of stacking a plurality of semiconductor substrates each having an element structure and having electrode pads formed on a peripheral portion thereof, and then removing a surface portion of a side surface of the stacked semiconductor substrates by polishing or the like to form the electrode pad. And a step of spraying ultrafine metal particles from a nozzle by a gas deposition method to form a wiring layer on the side surface of the laminated semiconductor substrate and interconnecting the electrode pads. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is manufactured.
【請求項3】 素子構成された半導体基板上に、配線層
が絶縁膜を介して互いに交差する交差部を有して形成さ
れ、上記絶縁膜が上記交差部にのみ形成されたことを特
徴とする半導体装置。
3. A wiring layer is formed on an element-configured semiconductor substrate with intersecting portions that intersect each other with an insulating film interposed therebetween, and the insulating film is formed only at the intersecting portions. Semiconductor device.
【請求項4】 積層された半導体基板の側面に、配線層
が絶縁膜を介して互いに交差する交差部を有して形成さ
れ、上記絶縁膜が上記交差部にのみ形成されたことを特
徴とする請求項1記載の半導体装置。
4. A wiring layer is formed on a side surface of a stacked semiconductor substrate so as to have intersecting portions that intersect each other with an insulating film interposed therebetween, and the insulating film is formed only at the intersecting portions. The semiconductor device according to claim 1.
【請求項5】 ガスデポジション法により超微粒子をノ
ズルより吹き付けて、半導体基板上に成膜する技術を用
い、交差部で下層となる配線層を金属超微粒子の吹き付
けにより形成し、次いで、絶縁膜を絶縁材料の超微粒子
の吹き付けにより上記交差部における上記配線層上に形
成し、さらに、上記交差部で上層となる配線層を金属超
微粒子の吹き付けにより形成することを特徴とする請求
項3または4記載の半導体装置の製造方法。
5. A technique of depositing ultrafine particles from a nozzle by a gas deposition method to form a film on a semiconductor substrate is used to form a lower wiring layer at the intersection by spraying metal ultrafine particles, and then insulating 4. A film is formed on the wiring layer at the intersection by spraying ultrafine particles of an insulating material, and an upper wiring layer at the intersection is formed by spraying ultrafine metal particles. Alternatively, the method for manufacturing a semiconductor device according to the above item 4.
【請求項6】 積層された半導体基板における側面、ま
たは最上層の半導体基板の主面にバンプ電極が形成され
たことを特徴とする請求項1または4記載の半導体装
置。
6. The semiconductor device according to claim 1, wherein bump electrodes are formed on a side surface of the stacked semiconductor substrates or a main surface of the uppermost semiconductor substrate.
【請求項7】 貫通孔を有し、この貫通孔内から接続さ
れる配線層が形成された搭載基板の上記貫通孔内にバン
プ電極上層部を差し入れて導電性接合材により接合する
ことにより、積層された半導体基板における側面、また
は最上層の半導体基板の主面を上記搭載基板に接合させ
たことを特徴とする請求項6記載の半導体装置。
7. A bump electrode upper layer portion is inserted into the through hole of a mounting substrate having a through hole, and a wiring layer connected from the through hole is formed, and is bonded by a conductive bonding material, 7. The semiconductor device according to claim 6, wherein a side surface of the stacked semiconductor substrates or a main surface of the uppermost semiconductor substrate is bonded to the mounting substrate.
【請求項8】 バンプ電極の頭頂部を除いて、積層され
た半導体基板を封止樹脂で覆ったことを特徴とする請求
項6記載の半導体装置。
8. The semiconductor device according to claim 6, wherein the stacked semiconductor substrates are covered with a sealing resin except for the tops of the bump electrodes.
【請求項9】 積層された半導体基板における側面また
は最上層の半導体基板の主面にガスデポジション法によ
り金属超微粒子をノズルより吹き付けてバンプ電極を形
成することを特徴とする請求項6〜8のいずれかに記載
の半導体装置の製造方法。
9. The bump electrode is formed by spraying ultrafine metal particles from a nozzle onto a side surface of the stacked semiconductor substrates or a main surface of the uppermost semiconductor substrate by a gas deposition method. A method for manufacturing a semiconductor device according to any one of 1.
【請求項10】 バンプ電極が電極パッド上以外の所定
の領域に形成され、上記バンプ電極と上記電極パッドと
を接続する導電膜から成る引き出し線が形成されたこと
を特徴とする請求項6〜8のいずれかに記載の半導体装
置。
10. The bump electrode is formed in a predetermined region other than on the electrode pad, and a lead line made of a conductive film connecting the bump electrode and the electrode pad is formed. 9. The semiconductor device according to any one of 8.
【請求項11】 素子構成された半導体基板上に、電極
パッドとバンプ電極と導電膜から成る引き出し線とを有
し、上記バンプ電極が上記電極パッド上以外の所定の領
域に形成され、上記バンプ電極と上記電極パッドとを接
続するように上記引き出し線が形成されたことを特徴と
する半導体装置。
11. A semiconductor substrate having an element structure, which has an electrode pad, a bump electrode, and a lead line made of a conductive film, the bump electrode is formed in a predetermined region other than the electrode pad, and the bump is formed. A semiconductor device, wherein the lead line is formed so as to connect an electrode and the electrode pad.
【請求項12】 半導体基板の主面または積層された半
導体基板の側面に、ガスデポジション法により金属超微
粒子をノズルより吹き付けてバンプ電極を形成する半導
体装置の製造方法において、上記半導体基板における上
記バンプ電極形成面と上記ノズルとを互いに平行な面内
で相対的に走査しながら、上記金属超微粒子を吹き付け
て、予め形成された電極パッド領域から引き出し線を形
成し、所定の位置で静止して、所定の高さまで上記金属
超微粒子を堆積させて上記バンプ電極を形成するか、あ
るいは逆に、所定の位置に上記バンプ電極を形成した後
連続して上記引き出し線を上記電極パッド領域まで形成
することを特徴とする請求項10または11記載の半導
体装置の製造方法。
12. A method of manufacturing a semiconductor device, comprising: forming a bump electrode by spraying ultrafine metal particles from a nozzle onto a main surface of a semiconductor substrate or a side surface of a stacked semiconductor substrate by a gas deposition method. While relatively scanning the surface on which the bump electrode is formed and the nozzle in a plane parallel to each other, the ultrafine metal particles are sprayed to form a lead line from the electrode pad region formed in advance, and the wire is stopped at a predetermined position. Then, the ultrafine metal particles are deposited to a predetermined height to form the bump electrodes, or conversely, the lead electrodes are continuously formed to the electrode pad region after the bump electrodes are formed at predetermined positions. The method for manufacturing a semiconductor device according to claim 10, wherein
【請求項13】 バンプ電極、引き出し線または配線層
が、複数種の金属による多層構造で構成されたことを特
徴とする請求項1、4、6〜8または10のいずれかに
記載の半導体装置。
13. The semiconductor device according to claim 1, wherein the bump electrode, the lead line, or the wiring layer has a multi-layer structure made of a plurality of kinds of metals. .
【請求項14】 多層構造のバンプ電極、引き出し線ま
たは配線層の最下層がTiまたはCrで構成されたこと
を特徴とする請求項13記載の半導体装置。
14. The semiconductor device according to claim 13, wherein the lowermost layer of the multilayer bump electrode, the lead line or the wiring layer is made of Ti or Cr.
【請求項15】 複数種の原料をそれぞれ加熱蒸発させ
て超微粒子を生成する複数の超微粒子生成手段と、生成
された上記複数種の超微粒子をそれぞれ成膜室内に輸送
する複数の輸送手段と、上記成膜室内の複数のノズルか
ら連続的に上記複数種の超微粒子をそれぞれ被処理基板
上に吹き付けて堆積させ、多層構造の膜を形成する手段
とを有することを特徴とする半導体装置の製造装置。
15. A plurality of ultrafine particle generating means for heating and evaporating a plurality of kinds of raw materials to generate ultrafine particles, and a plurality of transportation means for respectively transferring the generated plurality of kinds of ultrafine particles into a film forming chamber. A means for forming a multi-layered film by continuously spraying and depositing the plurality of types of ultrafine particles on the substrate to be processed from a plurality of nozzles in the film forming chamber, respectively. Manufacturing equipment.
【請求項16】 積層された半導体基板の間に放熱板を
設け、この放熱板の一部を上記半導体基板側面よりも突
出させ、上記放熱板の突出していない上記積層された半
導体基板側面に配線層を形成したことを特徴とする請求
項1、4、6、7、10、13または14のいずれかに
記載の半導体装置。
16. A heat dissipation plate is provided between the stacked semiconductor substrates, a part of the heat dissipation plate is projected from a side surface of the semiconductor substrate, and wiring is provided on a side surface of the stacked semiconductor substrate where the heat dissipation plate is not projected. The semiconductor device according to any one of claims 1, 4, 6, 7, 10, 13 or 14, wherein a layer is formed.
【請求項17】 積層された半導体基板の間に放熱板を
設け、この放熱板の一部を上記半導体基板側面よりも突
出させ、上記放熱板の突出していない上記積層された半
導体基板側面に配線層を形成し、バンプ電極の頭頂部と
上記放熱板の突出部分とを除いて封止樹脂で覆ったこと
を特徴とする請求項6記載の半導体装置。
17. A heat radiating plate is provided between the stacked semiconductor substrates, a part of the heat radiating plate is projected from the side surface of the semiconductor substrate, and wiring is provided on the side surface of the stacked semiconductor substrate where the heat radiating plate is not projected. 7. The semiconductor device according to claim 6, wherein a layer is formed and is covered with a sealing resin except for the top of the bump electrode and the protruding portion of the heat dissipation plate.
JP11537294A 1994-05-27 1994-05-27 Semiconductor device and method of manufacturing semiconductor device Expired - Fee Related JP3370183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11537294A JP3370183B2 (en) 1994-05-27 1994-05-27 Semiconductor device and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11537294A JP3370183B2 (en) 1994-05-27 1994-05-27 Semiconductor device and method of manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH07321282A true JPH07321282A (en) 1995-12-08
JP3370183B2 JP3370183B2 (en) 2003-01-27

Family

ID=14660904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11537294A Expired - Fee Related JP3370183B2 (en) 1994-05-27 1994-05-27 Semiconductor device and method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3370183B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142764A1 (en) * 2007-05-18 2008-11-27 Kabushiki Kaisha Nihon Micronics Stacked package and method of forming stacked package
WO2008142763A1 (en) * 2007-05-18 2008-11-27 Kabushiki Kaisha Nihon Micronics Stacked package and method of forming stacked package
JP2010129934A (en) * 2008-11-30 2010-06-10 Sintokogio Ltd Glass circuit board and method of manufacturing the same
JP2012039076A (en) * 2010-08-09 2012-02-23 Headway Technologies Inc Stacked chip package and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142764A1 (en) * 2007-05-18 2008-11-27 Kabushiki Kaisha Nihon Micronics Stacked package and method of forming stacked package
WO2008142763A1 (en) * 2007-05-18 2008-11-27 Kabushiki Kaisha Nihon Micronics Stacked package and method of forming stacked package
JPWO2008142764A1 (en) * 2007-05-18 2010-08-05 株式会社日本マイクロニクス Stacked package and method for forming stacked package
US8203202B2 (en) 2007-05-18 2012-06-19 Kabushiki Kaisha Nihon Micronics Stacked package and method for forming stacked package
JP2010129934A (en) * 2008-11-30 2010-06-10 Sintokogio Ltd Glass circuit board and method of manufacturing the same
JP2012039076A (en) * 2010-08-09 2012-02-23 Headway Technologies Inc Stacked chip package and manufacturing method therefor
US8362602B2 (en) 2010-08-09 2013-01-29 Headway Technologies, Inc. Layered chip package and method of manufacturing same

Also Published As

Publication number Publication date
JP3370183B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
US9633968B2 (en) Microelectronic packages having cavities for receiving microelectronic elements
US7045899B2 (en) Semiconductor device and fabrication method of the same
JP5639368B2 (en) System and method for stacked die embedded chip build-up
US6864165B1 (en) Method of fabricating integrated electronic chip with an interconnect device
KR100533673B1 (en) Semiconductor device, method of manufacture thereof, circuit board, and electronic device
US6759268B2 (en) Semiconductor device and manufacturing method therefor
TWI389285B (en) Semiconductor device and semiconductor module using the same
KR100711675B1 (en) Semiconductor device and manufacturing method thereof
US8394672B2 (en) Method of manufacturing and assembling semiconductor chips with offset pads
JP2006286677A (en) Semiconductor device and its manufacturing method
US20080230892A1 (en) Chip package module
US20040135269A1 (en) Interconnect substrate, semiconductor device, methods of manufacturing the same, circuit board, and electronic equipment
JP4420908B2 (en) Electronic device mounting structure
CN107622996B (en) Three-dimensional high-density fan-out type packaging structure and manufacturing method thereof
TW200910561A (en) Packaging substrate structure with capacitor embedded therein and method for fabricating the same
JP4320492B2 (en) Semiconductor device mounting structure and method of manufacturing semiconductor device mounting structure
JP3370183B2 (en) Semiconductor device and method of manufacturing semiconductor device
TWI614855B (en) Semiconductor assembly with electromagnetic shielding and thermally enhanced characteristics and method of making the same
US6913814B2 (en) Lamination process and structure of high layout density substrate
CN114171406A (en) Packaging method and packaging structure of fan-out type stacked chip
JPH04184962A (en) Semiconductor integrated circuit device
TWI626865B (en) Wiring board with dual stiffeners and dual routing circuitries integrated together and method of making the same
TW202333327A (en) Semiconductor device and method for making the same
KR20230172403A (en) Modular semiconductor devices and electronic devices incorporating the same
JP2003318356A (en) Semiconductor module and method of manufacturing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees