JPH07320737A - Non-sintered nickel electrode for alkaline storage battery and manufacture thereof - Google Patents

Non-sintered nickel electrode for alkaline storage battery and manufacture thereof

Info

Publication number
JPH07320737A
JPH07320737A JP6131433A JP13143394A JPH07320737A JP H07320737 A JPH07320737 A JP H07320737A JP 6131433 A JP6131433 A JP 6131433A JP 13143394 A JP13143394 A JP 13143394A JP H07320737 A JPH07320737 A JP H07320737A
Authority
JP
Japan
Prior art keywords
active material
solution
hydroxide
particles
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6131433A
Other languages
Japanese (ja)
Other versions
JP3272151B2 (en
Inventor
Shigekazu Yasuoka
茂和 安岡
Mutsumi Yano
睦 矢野
Katsuhiko Niiyama
克彦 新山
Mitsuzo Nogami
光造 野上
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP13143394A priority Critical patent/JP3272151B2/en
Publication of JPH07320737A publication Critical patent/JPH07320737A/en
Application granted granted Critical
Publication of JP3272151B2 publication Critical patent/JP3272151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance conductivity of an electrode plate and active material utilization factor by protecting an unstable inner layer with a relatively stable outer layer. CONSTITUTION:A nickel hydroxide particle or a solid solution particle mainly comprising nickel hydroxide, whose surface is covered with a cobalt hydroxide layer is used as an active material. The cobalt hydroxide layer consists of two layers of an inner layer mainly comprising alpha-Co(OH)2 and an outer layer mainly comprising beta-Co(OH)2. When a nickel electrode is manufactured, the solid solution particle is immersed in a cobalt compound aqueous solution, an alkaline aqueous solution is added to the solution until pH of the solution becomes 9-10, then mixed to produce an active material intermediate product in which a covering layer mainly comprising alpha-Co(OH)2 is formed on the surface of the solid solution particle. The intermediate product is immersed in a cobalt compound aqueous solution, an alkaline aqueous solution is added to the solution until pH of the solution becomes 11-12, then mixed to produce the active material in which a covering layer mainly comprising beta-Co(OH)2 is formed on the surface of the intermediate product particle. The active material obtained is filled in a conductive substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は活物質利用率の高いアル
カリ蓄電池用非焼結式ニッケル極及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-sintered nickel electrode for alkaline storage batteries having a high utilization rate of active material and a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】アルカ
リ蓄電池用ニッケル極の代表的なものとしては、ニッケ
ル粉末を穿穴鋼板などに焼結させて得た焼結基板の細孔
内に溶液含浸法により活物質を充填してなる焼結式ニッ
ケル極と、耐アルカリ性金属繊維焼結体、又は、ニッケ
ル等の耐アルカリ性に優れた金属をめっきした炭素繊維
不織布などからなる多孔性の基体に、水酸化ニッケル粉
末のペーストを充填してなる非焼結式ニッケル極とがあ
る。
BACKGROUND OF THE INVENTION A typical nickel electrode for an alkaline storage battery is a solution impregnated into pores of a sintered substrate obtained by sintering nickel powder on a perforated steel plate or the like. Sintered nickel electrode filled with an active material by the method, and an alkali-resistant metal fiber sintered body, or a porous substrate made of carbon fiber nonwoven fabric plated with a metal having excellent alkali resistance such as nickel, There is a non-sintered nickel electrode formed by filling a paste of nickel hydroxide powder.

【0003】焼結式ニッケル極では、焼結基板の導電性
が良いため、活物質利用率は高い。しかし、焼結基板の
ニッケル粒子間の結合が弱いため、多孔度の大きい焼結
基板を用いると活物質が焼結基板から脱落し易い。した
がって、実用可能な焼結基板は多孔度が80%程度以下
のものに制限される。加えて、ニッケル焼結体を保持す
るための穿穴鋼板等の芯金が必要とされる。これらのた
めに、焼結式ニッケル極には、充填密度が小さいという
問題があった。また、ニッケル焼結体の細孔が10μm
以下と小さいことから、活物質を充填する際に、溶液含
浸操作を繰り返し行う必要があり、極板製造が煩雑であ
るという問題もあった。
The sintered nickel electrode has a high utilization ratio of the active material because the sintered substrate has good conductivity. However, since the bonding between the nickel particles of the sintered substrate is weak, the active material is likely to drop out of the sintered substrate when the sintered substrate having high porosity is used. Therefore, the practicable sintered substrates are limited to those having a porosity of about 80% or less. In addition, a cored bar such as a perforated steel plate for holding the nickel sintered body is required. For these reasons, the sintered nickel electrode has a problem that the packing density is low. Moreover, the pores of the nickel sintered body are 10 μm.
Since it is as small as the following, it is necessary to repeat the solution impregnation operation when filling the active material, and there is also a problem that the production of the electrode plate is complicated.

【0004】非焼結式ニッケル極は、焼結式ニッケル極
が有する上述の問題を解決するべく提案されたものであ
る。この非焼結式ニッケル極では、芯金を持たない多孔
度の大きい耐アルカリ性金属繊維焼結体等の基体に活物
質を一回的に充填するので、充填密度の大きいニッケル
極が得られるとともに、極板の製造も簡便である。
The non-sintered nickel electrode has been proposed to solve the above problems of the sintered nickel electrode. In this non-sintered nickel electrode, since the active material is once filled in the base material such as the alkali-resistant metal fiber sintered body having a large porosity and having no core metal, the nickel electrode having a large packing density can be obtained. Also, the production of the electrode plate is simple.

【0005】しかしながら、水酸化ニッケル粉末のみを
基体に充填したのでは、極板の導電性が悪いために活物
質利用率が著しく低く、実用可能なものは得られない。
However, if the substrate is filled with only nickel hydroxide powder, the utilization factor of the active material is remarkably low due to the poor conductivity of the electrode plate, and a practical product cannot be obtained.

【0006】斯かる非焼結式ニッケル極の活物質利用率
を向上させてその実用化を図る試みとしては、導電剤と
しての2価の水酸化コバルト(粉末)を水酸化ニッケル
粉末に添加混合する方法(添加混合法)が提案されてい
る(特開昭61−49374号公報)。
In an attempt to improve the utilization rate of the active material of the non-sintered nickel electrode and put it into practical use, divalent cobalt hydroxide (powder) as a conductive agent is added and mixed with nickel hydroxide powder. A method (addition and mixing method) has been proposed (JP-A-61-49374).

【0007】ところで、水酸化コバルトはペースト中に
偏在し易く、水酸化ニッケル粉末と均一に混合分散しに
くいので、活物質利用率を有効に向上させるためには、
多量の水酸化コバルトを添加する必要がある。しかしな
がら、水酸化コバルトを多量に添加すると活物質たる水
酸化ニッケルの充填量の減少を余儀無くされるので極板
容量が低下する。
By the way, since cobalt hydroxide is apt to be unevenly distributed in the paste and it is difficult to uniformly mix and disperse it with the nickel hydroxide powder, in order to effectively improve the utilization rate of the active material,
It is necessary to add a large amount of cobalt hydroxide. However, when a large amount of cobalt hydroxide is added, the filling amount of nickel hydroxide as an active material is inevitably reduced, so that the electrode plate capacity decreases.

【0008】そこで、近年、上述の添加混合法に代わる
ものとして、水酸化ニッケルの粒子表面に水酸化コバル
トの被覆層(単層)を形成する方法(単コート法)が提
案されている(特開昭62−234867号公報、特開
昭62−237667号公報、特開昭62−22256
6号公報等)。この単コート法は、水酸化ニッケルの粒
子表面にα−Co(OH)2 又はβ−Co(OH)2
被覆層を形成して活物質粒子間の導電性を高めることに
より活物質利用率の向上を図らんとするものである。α
−Co(OH)2 又はβ−Co(OH)2 は、充電時に
酸化されてCoOOHからなる導電性マトリックスを形
成する。
Therefore, in recent years, as an alternative to the above-mentioned addition and mixing method, a method (single coating method) of forming a coating layer (single layer) of cobalt hydroxide on the surface of nickel hydroxide particles has been proposed (special feature). JP-A-62-234867, JP-A-62-237667, and JP-A-62-22256.
No. 6, etc.). In this single coating method, a coating layer of α-Co (OH) 2 or β-Co (OH) 2 is formed on the surface of nickel hydroxide particles to enhance the conductivity between the active material particles, thereby increasing the utilization ratio of the active material. It is intended to improve. α
-Co (OH) 2 or β-Co (OH) 2 is oxidized during charging to form a conductive matrix made of CoOOH.

【0009】ところで、α−Co(OH)2 は、β−C
o(OH)2 に比し、緻密な導電性マトリックスを形成
するので活物質粉末の導電性を高めるための被覆層とし
て好ましい。しかし、本発明者らが検討したところ、α
−Co(OH)2 は不安定であり、電解液(高濃度アル
カリ液)に浸漬するとほとんどβ−Co(OH)2 に変
化してしまうため、上記従来のコーティング法では、緻
密な導電性マトリックスが形成されにくく、活物質利用
率が充分高い非焼結式ニッケル極を得ることが困難であ
ることが分かった。
By the way, α-Co (OH) 2 is β-C
Compared to o (OH) 2 , it forms a dense conductive matrix and is therefore preferable as a coating layer for increasing the conductivity of the active material powder. However, as a result of examination by the present inventors, α
-Co (OH) 2 is unstable, and when it is immersed in an electrolytic solution (high-concentration alkaline solution), most of it changes to β-Co (OH) 2 , so in the above conventional coating method, a dense conductive matrix is used. It has been found that it is difficult to obtain a non-sintered nickel electrode having a sufficiently high active material utilization rate.

【0010】本発明は、斯かる知見に基づきなされたも
のであって、その目的とするところは、極板の導電性が
高いために活物質利用率が極めて高いアルカリ蓄電池用
非焼結式ニッケル極及びその製造方法を提供するにあ
る。
The present invention has been made on the basis of such findings, and an object of the present invention is to provide non-sintered nickel for an alkaline storage battery, which has a very high utilization ratio of active material due to the high conductivity of the electrode plate. A pole and its manufacturing method are provided.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るアルカリ蓄電池用非焼結式ニッケル極
(以下、「本発明電極」と称する。)は、水酸化コバル
ト層で表面が被覆された水酸化ニッケル粒子又は水酸化
ニッケルを主成分とする固溶体粒子を活物質とするアル
カリ蓄電池用非焼結式ニッケル極において、前記水酸化
コバルト層が、α−Co(OH)2 を主体とする内層
と、β−Co(OH)2 を主体とする外層との2層構造
をなすものである。
The non-sintered nickel electrode for an alkaline storage battery according to the present invention (hereinafter, referred to as "the electrode of the present invention") for achieving the above object is a cobalt hydroxide layer whose surface is In a non-sintered nickel electrode for an alkaline storage battery having coated nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component as an active material, the cobalt hydroxide layer is mainly composed of α-Co (OH) 2 . And an outer layer mainly composed of β-Co (OH) 2 , forming a two-layer structure.

【0012】α−Co(OH)2 を主体とする内層は、
α−Co(OH)2 を主成分として含有する層であり、
実質的にα−Co(OH)2 のみからなる層であっても
よい。一方、β−Co(OH)2 を主体とする内層は、
β−Co(OH)2 を主成分として含有する層であり、
実質的にβ−Co(OH)2 のみからなる層であっても
よい。
The inner layer mainly composed of α-Co (OH) 2 is
a layer containing α-Co (OH) 2 as a main component,
It may be a layer consisting essentially of α-Co (OH) 2 . On the other hand, the inner layer mainly composed of β-Co (OH) 2 is
A layer containing β-Co (OH) 2 as a main component,
It may be a layer consisting essentially of β-Co (OH) 2 .

【0013】水酸化ニッケルを主成分とする固溶体粒子
としては、水酸化ニッケルとともに、水酸化亜鉛、水酸
化コバルト、水酸化カドミウム、水酸化カルシウム、水
酸化バリウム、水酸化マンガンなどを1種又は2種以上
共沈させたものが例示される。
As solid solution particles containing nickel hydroxide as a main component, zinc hydroxide, cobalt hydroxide, cadmium hydroxide, calcium hydroxide, barium hydroxide, manganese hydroxide and the like may be used alone or in combination with nickel hydroxide. Examples of co-precipitated seeds are given.

【0014】また、本発明に係るアルカリ蓄電池用非焼
結式ニッケル極の製造方法(以下、「本発明方法」と称
する。)は、水酸化ニッケル粒子又は水酸化ニッケルを
主成分とする固溶体粒子をコバルト化合物の水溶液に浸
漬し、アルカリ水溶液を液のpHが9〜10になるまで
添加し、攪拌混合し、前記水酸化ニッケル粒子又は前記
固溶体粒子の表面にα−Co(OH)2 を析出させて、
前記水酸化ニッケル粒子又は前記固溶体粒子の表面にα
−Co(OH)2 を主体とする被覆層が形成された活物
質中間体を作製するステップ1と、前記活物質中間体を
コバルト化合物の水溶液に浸漬し、アルカリ水溶液を液
のpHが11〜12になるまで添加し、攪拌混合し、前
記活物質中間体の粒子表面にβ−Co(OH)2 を析出
させて、前記活物質中間体の粒子表面にβ−Co(O
H)2 を主体とする被覆層が形成された活物質を作製す
るステップ2と、前記活物質を導電性基板に充填するス
テップ3とを備えてなる。
The method for producing a non-sintered nickel electrode for an alkaline storage battery according to the present invention (hereinafter referred to as "the method of the present invention") comprises nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component. Is immersed in an aqueous solution of a cobalt compound, an alkaline aqueous solution is added until the pH of the solution becomes 9 to 10, and the mixture is stirred and mixed to deposit α-Co (OH) 2 on the surface of the nickel hydroxide particles or the solid solution particles. Let me
Α on the surface of the nickel hydroxide particles or the solid solution particles
Step 1 of producing an active material intermediate in which a coating layer mainly containing -Co (OH) 2 is formed, and the active material intermediate is immersed in an aqueous solution of a cobalt compound, and an alkaline aqueous solution is adjusted to a pH of 11 to 11. 12 to 12 and mixed with stirring to precipitate β-Co (OH) 2 on the surface of particles of the active material intermediate, and β-Co (O) on the surface of particles of the active material intermediate.
H) 2 is included in the step 2 of producing an active material having a coating layer formed thereon, and the step 3 of filling the conductive substrate with the active material.

【0015】液のpHが9〜10の領域では、コバルト
化合物とアルカリ水溶液との反応により、主にα−Co
(OH)2 が水酸化ニッケル粒子又は固溶体粒子の表面
に析出する。また、液のpHが11〜12の領域では、
コバルト化合物とアルカリ水溶液との反応により、主に
β−Co(OH)2 が析出する。
When the pH of the liquid is in the range of 9 to 10, the reaction between the cobalt compound and the alkaline aqueous solution mainly causes α-Co.
(OH) 2 is deposited on the surface of the nickel hydroxide particles or the solid solution particles. In the region where the pH of the liquid is 11 to 12,
Due to the reaction between the cobalt compound and the alkaline aqueous solution, β-Co (OH) 2 is mainly deposited.

【0016】本発明方法におけるコバルト化合物として
は、硝酸コバルト、塩酸コバルト、硫酸コバルト等の水
溶性のコバルト塩が例示され、またアルカリ水溶液とし
ては、水酸化ナトリウム、水酸化カリウム、水酸化リチ
ウムの各水溶液などが例示される。
Examples of the cobalt compound in the method of the present invention include water-soluble cobalt salts such as cobalt nitrate, cobalt hydrochloride and cobalt sulfate, and examples of the alkaline aqueous solution include sodium hydroxide, potassium hydroxide and lithium hydroxide. An aqueous solution is exemplified.

【0017】[0017]

【作用】本発明電極においては、不安定なα−Co(O
H)2 を主体とする内層が比較的安定なβ−Co(O
H)2 を主体とする外層で保護されているので、アルカ
リ電解液を注液した際に内層中のα−Co(OH)2
β−Co(OH)2 に変化しにくい。このため、充電時
に比較的緻密なCoOOHからなる導電性マトリックス
が極板内に形成されることとなり、ニッケル極の導電性
が向上する。
In the electrode of the present invention, unstable α-Co (O
Β-Co (O) having a relatively stable inner layer mainly composed of (H) 2
Since H) 2 is mainly protected by the outer layer, α-Co (OH) 2 in the inner layer hardly changes to β-Co (OH) 2 when the alkaline electrolyte is injected. For this reason, a relatively dense conductive matrix made of CoOOH is formed in the electrode plate during charging, and the conductivity of the nickel electrode is improved.

【0018】[0018]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.

【0019】(実施例)硝酸ニッケル、硝酸亜鉛及び硝
酸コバルトの各水溶液を硝酸ニッケル:硝酸亜鉛:硝酸
コバルトの重量比が95:2:3となるように混合して
得たニッケル液と、20重量%水酸化ナトリウム水溶液
と20重量%アンモニア水とを重量比5:1で混合して
得たアルカリ水溶液とを、水を張った水槽中に同時に添
加し、生成した共沈物を、濾過し、水洗し、乾燥して、
水酸化ニッケルを主成分とする固溶体粉末を作製した。
(Example) A nickel solution obtained by mixing aqueous solutions of nickel nitrate, zinc nitrate and cobalt nitrate in a weight ratio of nickel nitrate: zinc nitrate: cobalt nitrate of 95: 2: 3, and 20 An aqueous alkaline solution obtained by mixing a 20% by weight aqueous sodium hydroxide solution and a 20% by weight aqueous ammonia solution at a weight ratio of 5: 1 was simultaneously added to a water tank filled with water, and the coprecipitate formed was filtered. Wash with water, dry,
A solid solution powder containing nickel hydroxide as a main component was prepared.

【0020】この固溶体粉末を硝酸コバルト水溶液中に
浸漬し、液のpHを測定しながらpH9になるまで1N
水酸化ナトリウム水溶液を滴下し、次いで攪拌混合しな
がら1時間反応させた後、濾過し、水洗し、真空乾燥し
て、水酸化ニッケル粒子の表面にα−Co(OH)2
主体とする被覆層が形成された活物質中間体を作製した
(ステップ1)。pH測定には、自動温度補償機能を備
えたガラス電極pHメータを用いた(以下におけるpH
測定においても同じものを用いた。)。
This solid solution powder is dipped in an aqueous solution of cobalt nitrate, and while measuring the pH of the solution, 1N until pH 9 is reached.
An aqueous solution of sodium hydroxide was added dropwise, and the mixture was reacted for 1 hour while stirring and mixing, then filtered, washed with water, and dried in vacuum to coat the surfaces of nickel hydroxide particles with α-Co (OH) 2 as a main component. An active material intermediate having a layer was prepared (step 1). For the pH measurement, a glass electrode pH meter equipped with an automatic temperature compensation function was used.
The same thing was used in the measurement. ).

【0021】次いで、上記活物質中間体を硝酸コバルト
水溶液中に浸漬し、液のpHを測定しながらpH11に
なるまで1N水酸化ナトリウム水溶液を滴下し、次いで
攪拌混合しながら1時間反応させた後、濾過、水洗、真
空乾燥して、水酸化ニッケル粒子の表面にβ−Co(O
H)2 を主体とする被覆層が形成された活物質を作製し
た(ステップ2)。
Then, the above active material intermediate is immersed in an aqueous solution of cobalt nitrate, 1N aqueous sodium hydroxide solution is added dropwise until pH 11 while measuring the pH of the solution, and then the mixture is reacted with stirring for 1 hour. , Filtration, washing with water, and vacuum drying, and then β-Co (O
An active material having a coating layer mainly composed of H) 2 was formed (step 2).

【0022】このようして得た活物質90重量部を1重
量%メチルセルロース水溶液20重量部と混練してスラ
リーを調製し、このスラリーをニッケル発泡体に充填し
て電極A(本発明電極)を作製した(ステップ3)。
90 parts by weight of the thus obtained active material was kneaded with 20 parts by weight of a 1% by weight methylcellulose aqueous solution to prepare a slurry, and this slurry was filled in a nickel foam to form an electrode A (electrode of the present invention). It was produced (step 3).

【0023】(比較例)実施例と同様にして作製した固
溶体粉末を硝酸コバルト水溶液中に浸漬し、液のpHを
測定しながらpH9、10、11、12又は13になる
まで1N水酸化ナトリウム水溶液を滴下し、次いで攪拌
混合しながら1時間反応させた後、濾過し、水洗し、真
空乾燥して、固溶体粒子の表面に水酸化コバルト層が形
成された5種類の活物質を作製した。
Comparative Example A solid solution powder prepared in the same manner as in the example was dipped in an aqueous cobalt nitrate solution, and while measuring the pH of the solution, a 1N sodium hydroxide aqueous solution was added until the pH reached 9, 10, 11, 12 or 13. Was added dropwise, and then the mixture was reacted with stirring and mixing for 1 hour, then filtered, washed with water, and vacuum dried to prepare five types of active materials in which a cobalt hydroxide layer was formed on the surface of solid solution particles.

【0024】これら5種類の活物質の水酸化コバルト層
について下記の条件でX線回折測定を行った。X線回折
図を図1〜図3に示す。図1より、pH=9,10では
α−Co(OH)2 が、図2より、pH=11,12で
はβ−Co(OH)2 が、また図3より、pH=13で
は不活性なCoHO2 が、主として生成することが分か
る。
X-ray diffraction measurement was carried out on the cobalt hydroxide layer of these five kinds of active materials under the following conditions. The X-ray diffraction patterns are shown in FIGS. From FIG. 1, α-Co (OH) 2 is inactive at pH = 9 and 10, β-Co (OH) 2 is inactive at pH = 11 and 12 from FIG. 2, and inactive at pH = 13 from FIG. It can be seen that CoHO 2 is mainly produced.

【0025】〈測定条件〉 対陰極 Cu 管電圧 40kV 管電流 100mA フィルター Ni 走査速度 2.00°/分 発散スリット 1°<Measurement conditions> Anticathode Cu tube voltage 40 kV tube current 100 mA filter Ni scanning speed 2.00 ° / min divergence slit 1 °

【0026】次いで、これらの各活物質を用いたこと以
外は実施例と同様にして、順に電極B1(pH=9),
B2(pH=10),B3(pH=11),B4(pH
=12),B5(pH=13)を作製した(単コート
法)。また、実施例と同様にして作製した固溶体粉末8
1重量部を、水酸化コバルト9重量部および1重量%メ
チルセルロース水溶液20重量部と混練してスラリーを
調製し、このスラリーをニッケル発泡体に充填して電極
B6を作製した(添加混合法)。
Then, the electrode B1 (pH = 9) and the electrode B1 (pH = 9) were sequentially prepared in the same manner as in the example except that these active materials were used.
B2 (pH = 10), B3 (pH = 11), B4 (pH
= 12), B5 (pH = 13) were produced (single coat method). Further, solid solution powder 8 produced in the same manner as in the example.
1 part by weight was kneaded with 9 parts by weight of cobalt hydroxide and 20 parts by weight of a 1% by weight methylcellulose aqueous solution to prepare a slurry, and this slurry was filled in a nickel foam to prepare an electrode B6 (addition and mixing method).

【0027】〔試験セルの作製〕電極A及びB1〜B6
のいずれかを試験電極とし、この試験電極に比べて充分
大きな電気化学容量を有する水素吸蔵合金電極を対極と
し、これらをセパレータ(ポリアミド不織布)を介して
重ね合わせて積層体とした後、この積層体をポリエチレ
ン製の袋に入れ、押圧力40kgfで加圧して電極体を
作製し、電解液(比重1.23のKOH水溶液)をセパ
レータに注液して、試験セル(開放型単極セル)を作製
した。水素吸蔵合金電極としては、MmNi3.2 Co
1.0 Mn0.6Al0.2 90重量部を1重量%ポリビニル
アルコール水溶液と混練してスラリーを調製し、このス
ラリーを開孔度40%のパンチングメタルに塗布し、乾
燥したものを用いた。
[Preparation of Test Cell] Electrodes A and B1 to B6
One of them as a test electrode, a hydrogen storage alloy electrode having a sufficiently large electrochemical capacity as compared with this test electrode as a counter electrode, and these are laminated through a separator (polyamide non-woven fabric) to form a laminate. Put the body in a polyethylene bag, pressurize with a pressing force of 40 kgf to make an electrode body, inject the electrolyte solution (KOH aqueous solution with a specific gravity of 1.23) into the separator, and test cell (open type single electrode cell) Was produced. As a hydrogen storage alloy electrode, MmNi 3.2 Co
90 parts by weight of 1.0 Mn 0.6 Al 0.2 was kneaded with a 1% by weight aqueous solution of polyvinyl alcohol to prepare a slurry, and this slurry was applied to a punching metal having a porosity of 40% and dried.

【0028】〔各電極の活物質利用率〕各試験セルを
0.1Cの電流で15時間充電した後、1/3Cの電流
で1.0Vまで放電して、各試験セルの容量を測定し、
各試験セルに用いた試験電極の活物質利用率を下式より
算出した。結果を表1に示す。
[Active Material Utilization Rate of Each Electrode] Each test cell was charged with a current of 0.1 C for 15 hours, then discharged to a voltage of 1.0 V with a current of 1/3 C, and the capacity of each test cell was measured. ,
The active material utilization rate of the test electrode used in each test cell was calculated by the following formula. The results are shown in Table 1.

【0029】活物質利用率(%)=試験セルの放電容量
(mAh)×100/{活物質重量(g)×活物質の単
位重量当たりの理論容量(mAh/g)}
Utilization rate of active material (%) = discharge capacity of test cell (mAh) × 100 / {weight of active material (g) × theoretical capacity per unit weight of active material (mAh / g)}

【0030】[0030]

【表1】 [Table 1]

【0031】表1に示すように、コーティング法による
電極A及び電極B1〜B5は、添加混合法による電極B
6に比べて活物質利用率が高く、なかでも2コート法で
作製した電極A(本発明電極)は、単コート法で作製し
た電極B1〜B5に比し、活物質利用率が格段高い。電
極B6の活物質利用率が低いのは、水酸化コバルトがペ
ースト中に偏在し易く、水酸化ニッケル粉末と均一に混
合分散しにくいからである。電極Aの活物質利用率が特
に高いのは、内層に多量に存在するα−Co(OH)2
がβ−Co(OH)2 を主体とする外層により保護され
ているため、電解液に触れてもβ−Co(OH)2 に変
化しにくく、充電により緻密なCoOOHからなる導電
性マトリックスが形成されるからである。
As shown in Table 1, the electrodes A and B1 to B5 prepared by the coating method are the electrodes B prepared by the additive mixing method.
6 has a higher utilization rate of the active material, and in particular, the electrode A (invention electrode) produced by the 2-coat method has a much higher utilization rate of the active material than the electrodes B1 to B5 produced by the single-coat method. The reason why the active material utilization rate of the electrode B6 is low is that cobalt hydroxide is likely to be unevenly distributed in the paste and is difficult to be uniformly mixed and dispersed with the nickel hydroxide powder. The active material utilization rate of the electrode A is particularly high because α-Co (OH) 2 present in a large amount in the inner layer.
So that if protected by an outer layer composed mainly of β-Co (OH) 2, liquid hardly varies β-Co (OH) 2 to touch the electrolysis, the conductive matrix comprised of dense CoOOH by charge formation Because it is done.

【0032】なお、単コート法で作製した電極B1〜B
5の中では、α−Co(OH)2 が多く生成するpH=
9又は10で作製した電極B1,B2は、β−Co(O
H)2 が多く生成するpH=11又は12で作製した電
極B3,B4に比べて、活物質利用率が高い。
The electrodes B1 to B prepared by the single coating method
In the case of 5, the amount of α-Co (OH) 2 produced is large.
The electrodes B1 and B2 produced in 9 or 10 are β-Co (O
The active material utilization rate is higher than that of the electrodes B3 and B4 produced at pH = 11 or 12 where a large amount of H) 2 is produced.

【0033】上記実施例では、本発明方法として、ステ
ップ1におけるpHを9、ステップ2におけるpHを1
1とする場合を一例として説明したが、各ステップにお
けるpHは本発明で規制する範囲であればよく、例えば
ステップ1におけるpHを10、ステップ2におけるp
Hを12とした場合でも、電極Aと同様の活物質利用率
の高い電極が得られることを確認した。
In the above-mentioned embodiment, the method of the present invention has a pH of 9 in step 1 and a pH of 1 in step 2.
Although the case where the pH is set to 1 has been described as an example, the pH in each step may be within the range regulated by the present invention.
It was confirmed that even when H was 12, an electrode having a high utilization ratio of the active material similar to the electrode A was obtained.

【0034】また、上記実施例では、水酸化ニッケルと
水酸化亜鉛と水酸化コバルトとを共沈させて得た固溶体
粒子を水酸化コバルト層で被覆したものを活物質として
用いた場合を例に挙げて説明したが、水酸化ニッケル粒
子又は他の水酸化ニッケルを主成分として含有する固溶
体粒子を本発明で規制する2層構造の水酸化コバルト層
で被覆したものを活物質として用いた場合にも、活物質
利用率の高いニッケル極が得られることを確認した。
Further, in the above-mentioned examples, the case where solid solution particles obtained by coprecipitating nickel hydroxide, zinc hydroxide and cobalt hydroxide and coated with a cobalt hydroxide layer was used as an active material was taken as an example. As described above, when nickel hydroxide particles or other solid solution particles containing nickel hydroxide as a main component are coated with a cobalt hydroxide layer having a two-layer structure regulated by the present invention, the active material is used. It was also confirmed that a nickel electrode having a high utilization rate of the active material can be obtained.

【0035】[0035]

【発明の効果】本発明電極は、α−Co(OH)2 に富
む内層がβ−Co(OH)2 に富む外層により保護され
ているので、内層中のα−Co(OH)2 がβ−Co
(OH) 2 に変化しにくく、充電により緻密な導電性マ
トリックスが形成される。このため、本発明電極は活物
質利用率が高い。
The electrode of the present invention is α-Co (OH)2Wealth
The inner layer is β-Co (OH)2Protected by a rich outer layer
Therefore, α-Co (OH) in the inner layer2Is β-Co
(OH) 2It is difficult to change to
Tricks are formed. Therefore, the electrode of the present invention is
High quality utilization rate.

【0036】また、本発明方法によれば、活物質利用率
の高い本発明電極を作製することが可能になる。
Further, according to the method of the present invention, the electrode of the present invention having a high utilization rate of the active material can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例でpH=9又は10で作製した活物質の
X線回折図である。
FIG. 1 is an X-ray diffraction diagram of an active material produced at pH = 9 or 10 in Examples.

【図2】実施例でpH=11又は12で作製した活物質
のX線回折図である。
FIG. 2 is an X-ray diffraction diagram of the active material produced at pH = 11 or 12 in Examples.

【図3】実施例でpH=13で作製した活物質のX線回
折図である。
FIG. 3 is an X-ray diffraction diagram of the active material prepared in Example at pH = 13.

フロントページの続き (72)発明者 野上 光造 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内Front page continuation (72) Inventor Kozo Nogami 2-5-5 Keihan Hon-dori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihan-hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水酸化コバルト層で表面が被覆された水酸
化ニッケル粒子又は水酸化ニッケルを主成分とする固溶
体粒子を活物質とするアルカリ蓄電池用非焼結式ニッケ
ル極において、前記水酸化コバルト層が、α−Co(O
H)2 を主体とする内層と、β−Co(OH)2 を主体
とする外層との2層構造をなすことを特徴とするアルカ
リ蓄電池用非焼結式ニッケル極。
1. A non-sintered nickel electrode for an alkaline storage battery, comprising a nickel hydroxide particle whose surface is coated with a cobalt hydroxide layer or a solid solution particle containing nickel hydroxide as a main component as an active material. The layer is α-Co (O
A non-sintered nickel electrode for an alkaline storage battery, which has a two-layer structure of an inner layer mainly composed of H) 2 and an outer layer mainly composed of β-Co (OH) 2 .
【請求項2】水酸化ニッケル粒子又は水酸化ニッケルを
主成分とする固溶体粒子をコバルト化合物の水溶液に浸
漬し、アルカリ水溶液を液のpHが9〜10になるまで
添加し、攪拌混合し、前記水酸化ニッケル粒子又は前記
固溶体粒子の表面にα−Co(OH)2 を析出させて、
前記水酸化ニッケル粒子又は前記固溶体粒子の表面にα
−Co(OH)2 を主体とする被覆層が形成された活物
質中間体を作製するステップ1と、 前記活物質中間体をコバルト化合物の水溶液に浸漬し、
アルカリ水溶液を液のpHが11〜12になるまで添加
し、攪拌混合し、前記活物質中間体の粒子表面にβ−C
o(OH)2 を析出させて、前記活物質中間体の粒子表
面にβ−Co(OH)2 を主体とする被覆層が形成され
た活物質を作製するステップ2と、 前記活物質を導電性基板に充填するステップ3とを備え
ることを特徴とするアルカリ蓄電池用非焼結式ニッケル
極の製造方法。
2. Nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component are immersed in an aqueous solution of a cobalt compound, an alkaline aqueous solution is added until the pH of the solution becomes 9 to 10, and the mixture is stirred and mixed. Α-Co (OH) 2 is deposited on the surface of the nickel hydroxide particles or the solid solution particles,
Α on the surface of the nickel hydroxide particles or the solid solution particles
Step 1 of producing an active material intermediate in which a coating layer mainly composed of —Co (OH) 2 is formed, and immersing the active material intermediate in an aqueous solution of a cobalt compound,
The alkaline aqueous solution was added until the pH of the solution became 11 to 12, and the mixture was stirred and mixed, and β-C was added to the surface of the particles of the active material intermediate.
Step 2 of producing an active material in which a coating layer mainly composed of β-Co (OH) 2 is formed by depositing o (OH) 2 on the particle surface of the active material intermediate, and conducting the active material. 3. A method for manufacturing a non-sintered nickel electrode for an alkaline storage battery, the method comprising: filling a flexible substrate.
【請求項3】水酸化コバルト層で表面が被覆された、水
酸化ニッケル粒子又は水酸化ニッケルを主体とする固溶
体粒子からなるアルカリ蓄電池用活物質であって、前記
水酸化コバルト層が、α−Co(OH)2 を主体とする
内層と、β−Co(OH)2を主体とする外層との2層
構造をなすことを特徴とするアルカリ蓄電池用活物質。
3. An alkaline storage battery active material comprising nickel hydroxide particles or solid solution particles mainly comprising nickel hydroxide, the surface of which is coated with a cobalt hydroxide layer, wherein the cobalt hydroxide layer is α- Co (OH) and an inner layer mainly 2, beta-Co (OH) active material for an alkaline storage battery, characterized in that forming a two-layer structure of 2 mainly outer layer.
JP13143394A 1994-05-20 1994-05-20 Non-sintered nickel electrode for alkaline storage battery and method for producing the same Expired - Fee Related JP3272151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13143394A JP3272151B2 (en) 1994-05-20 1994-05-20 Non-sintered nickel electrode for alkaline storage battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13143394A JP3272151B2 (en) 1994-05-20 1994-05-20 Non-sintered nickel electrode for alkaline storage battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07320737A true JPH07320737A (en) 1995-12-08
JP3272151B2 JP3272151B2 (en) 2002-04-08

Family

ID=15057854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13143394A Expired - Fee Related JP3272151B2 (en) 1994-05-20 1994-05-20 Non-sintered nickel electrode for alkaline storage battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3272151B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040007A (en) * 1996-06-19 2000-03-21 Tanaka Chemical Corporation Nickel hydroxide particles having an α- or β-cobalt hydroxide coating layer for use in alkali batteries and a process for producing the nickel hydroxide
JP2014169201A (en) * 2013-03-04 2014-09-18 Tanaka Chemical Corp Assembly of particle and production method of the same
JP2022180552A (en) * 2017-09-11 2022-12-06 株式会社田中化学研究所 Positive electrode active material for alkaline storage battery and method for manufacturing positive electrode active material for alkaline storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040007A (en) * 1996-06-19 2000-03-21 Tanaka Chemical Corporation Nickel hydroxide particles having an α- or β-cobalt hydroxide coating layer for use in alkali batteries and a process for producing the nickel hydroxide
JP2014169201A (en) * 2013-03-04 2014-09-18 Tanaka Chemical Corp Assembly of particle and production method of the same
JP2022180552A (en) * 2017-09-11 2022-12-06 株式会社田中化学研究所 Positive electrode active material for alkaline storage battery and method for manufacturing positive electrode active material for alkaline storage battery

Also Published As

Publication number Publication date
JP3272151B2 (en) 2002-04-08

Similar Documents

Publication Publication Date Title
JP2005310580A (en) Non-sintered positive electrode for alkaline storage battery, and alkaline storage battery
JP3397890B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3433050B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3490818B2 (en) Paste nickel electrode for alkaline storage batteries
JP3272151B2 (en) Non-sintered nickel electrode for alkaline storage battery and method for producing the same
JP3469766B2 (en) Non-sintered nickel electrodes and batteries for sealed alkaline storage batteries
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3433049B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP2001043855A (en) Non-sintered nickel electrode for alkali storage battery
JP3481068B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3433066B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3272152B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3443209B2 (en) Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same
JP3249366B2 (en) Paste nickel electrode for alkaline storage batteries
JP3490825B2 (en) Nickel electrode for alkaline storage battery
JP3234492B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3541584B2 (en) Method for producing active material for nickel electrode of alkaline storage battery
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3397889B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH1021909A (en) Non-sintered nickel electrode for alkaline storage battery
JPH10270040A (en) Non-sintered nickel electrode for alkaline storage battery
JPH1173956A (en) Non-sintered nickel electrode for alkaline storage battery
JP3234491B2 (en) Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees