JPH0732015B2 - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JPH0732015B2
JPH0732015B2 JP1088833A JP8883389A JPH0732015B2 JP H0732015 B2 JPH0732015 B2 JP H0732015B2 JP 1088833 A JP1088833 A JP 1088833A JP 8883389 A JP8883389 A JP 8883389A JP H0732015 B2 JPH0732015 B2 JP H0732015B2
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
gelled
alkaline battery
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1088833A
Other languages
Japanese (ja)
Other versions
JPH02267856A (en
Inventor
浩司 芳澤
璋 太田
晃 三浦
成二 峠
芳明 新田
佐知子 末次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1088833A priority Critical patent/JPH0732015B2/en
Publication of JPH02267856A publication Critical patent/JPH02267856A/en
Publication of JPH0732015B2 publication Critical patent/JPH0732015B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は亜鉛を負極の主活物質とし、アルカリ水溶液を
電解液とする電池の電池内で発生する水素ガスによる電
池内圧の上昇を抑制し、保存性,貯蔵性に優れた電池を
提供するものである。
TECHNICAL FIELD The present invention suppresses an increase in battery internal pressure due to hydrogen gas generated in a battery of a battery using zinc as a negative electrode main active material and an alkaline aqueous solution as an electrolytic solution, and preserves the battery. It provides a battery with excellent storage and storage properties.

従来の技術 従来よりこの種のアルカリ電池は、電池の保存中あるい
は部分放電後において亜鉛の自己消耗や腐食による水素
ガスの発生が見られる為、亜鉛にインジウムアルミニウ
ム,鉛を含む合金に1.5重量%の水銀を添加してアマル
ガム化し、電池内圧の上昇を抑止いていた。これによ
り、保存中の電池内圧の上昇を防ぎ、貯蔵性を確保して
電池の性能劣化の少ない実用電池として普及している。
Conventional technology Conventional alkaline batteries of this type have been found to generate hydrogen gas due to self-depletion and corrosion of zinc during storage of the battery or after partial discharge, so 1.5% by weight of alloy containing indium aluminum and lead in zinc. The above-mentioned mercury was added to form an amalgam, and the rise in the internal pressure of the battery was suppressed. As a result, the internal pressure of the battery is prevented from rising during storage, the storability is ensured, and the battery is widely used as a practical battery with little performance deterioration.

しかしながら、近年の低公害化の社会的ニーズが高まる
中で、使用する水銀量をより低下させ、さらに水銀を使
用せずに上記の実用性能を確保しなければならず、その
ための研究開発が従来から行われてきている。しかし、
水銀量の低減はある程度可能であっても、本質的な解決
を可能とする手段は見当たらないのが現状であり、水銀
をほとんど使用せずに負極亜鉛の十分な耐食性を確保す
るのは至難と考えられている。
However, with the recent increasing social needs for low pollution, it is necessary to further reduce the amount of mercury used and to secure the above-mentioned practical performance without using mercury. Has been done since. But,
Even though it is possible to reduce the amount of mercury to some extent, it is the current situation that no means that can essentially solve the problem is found, and it is extremely difficult to secure sufficient corrosion resistance of the negative electrode zinc without using mercury. It is considered.

発明が解決しようとする課題 このような亜鉛にインジウム,アルミニウム,鉛を含む
亜鉛合金に添加する水銀量を1.5重量%より低減し、無
汞化亜鉛あるいは0.05重量%(500ppm)汞化の極低汞化
亜鉛を用いて電池を構成すると、電池保存中あるいは部
分的に電池を放電させた後に亜鉛から腐食反応に伴う水
素ガスの発生が助長し、電池内圧の著しい増加がみられ
る。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention By reducing the amount of mercury added to a zinc alloy containing indium, aluminum, and lead to zinc to less than 1.5% by weight, it is possible to reduce unremoved zinc or 0.05% by weight (500 ppm) to an extremely low level. When a battery is constructed using zinc hydride, hydrogen gas is generated from zinc due to the corrosion reaction during storage of the battery or after the battery is partially discharged, and the internal pressure of the battery is significantly increased.

水素ガス発生を助長させる原因は、もともと水銀には亜
鉛に対し水素過電圧を高め腐食反応を抑制する作用があ
るが、その水銀の絶対量を極限にまで減少させたことに
起因すると考えられる。
It is considered that the cause of promoting the generation of hydrogen gas is that mercury originally has an action of increasing hydrogen overvoltage to zinc and suppressing a corrosion reaction, but that the absolute amount of mercury is reduced to the limit.

このような電池内での著しい内圧の上昇が生じると、電
解液の漏液につながり、電池の保存性や貯蔵性大きく損
ない、実用性能が確保できなくなるという問題があっ
た。
When such a significant increase in internal pressure occurs in the battery, there is a problem in that the electrolyte leaks, the storage property and storage property of the battery are significantly impaired, and practical performance cannot be ensured.

本発明はこのような問題点を解決するもので、無汞化で
あるいは極低汞化亜鉛を用いた電池の電池保存中、ある
いは部分放電後に発生する水素ガスをゲル状アルカリ電
解液中にフッ素系界面活性剤及び亜鉛合金腐食抑制剤を
混入することにより抑制し、電池内圧の上昇を抑え、良
好な保存性や貯蔵性を有した電池を提供することを目的
とする。
The present invention is to solve such a problem, hydrogen gas generated during gel battery storage of a battery using unremoved or ultra-low zinc content, or after partial discharge fluorine in the gel-like alkaline electrolyte solution. An object of the present invention is to provide a battery that suppresses an increase in battery internal pressure by mixing a system surfactant and a zinc alloy corrosion inhibitor and suppresses the increase in battery internal pressure, and that has good storability and storability.

課題を解決するための手段 この問題を解決するため本発明は、負極の主活物質とし
て無汞化あるいは、水銀量500ppmまでの低汞化亜鉛金粉
を用い、これをゲル状アルカリ電解液に混合してなるゲ
ル状亜鉛負極を備えたアルカリ電池において、前記ゲル
状アルカリ電解液中に、フッ素系界面活性剤及び亜鉛合
金腐食抑制剤を含有させたものである。ここでのフッ素
系界面活性剤の含有量は、ゲル状亜鉛負極に対して0.01
〜1重量部とし、また、前記亜鉛合金腐食抑制剤は0.01
〜10重量部であることが好ましい。
Means for Solving the Problem In order to solve this problem, the present invention uses unreduced or low-graded zinc gold powder with a mercury content of up to 500 ppm as the main active material of the negative electrode, and mixes this with a gel-like alkaline electrolyte. In the alkaline battery provided with the gelled zinc negative electrode, the gelled alkaline electrolyte contains a fluorine-based surfactant and a zinc alloy corrosion inhibitor. The content of the fluorine-based surfactant here is 0.01 with respect to the gelled zinc negative electrode.
~ 1 part by weight, and the zinc alloy corrosion inhibitor is 0.01
It is preferably ˜10 parts by weight.

作用 この構成により、ゲル状アルカリ電解液中に混入したフ
ッ素系界面活性剤及び亜鉛合金腐食防止剤により、発生
する水素ガスを減少させることが可能となり、結果とし
て電池の耐漏液性が向上する。
Function With this configuration, the hydrogen gas generated can be reduced by the fluorine-based surfactant and the zinc alloy corrosion inhibitor mixed in the gelled alkaline electrolyte, and as a result, the liquid leakage resistance of the battery is improved.

本発明で用いるフッ素系界面活性剤及び亜鉛合金腐食防
止剤の作用機構は不明確であるが、下記のように推察さ
れる。
The action mechanism of the fluorine-based surfactant and the zinc alloy corrosion inhibitor used in the present invention is unclear, but it is presumed as follows.

亜鉛のアルカリ電解液中での腐食反応は次式で示される
が、フッ素系界面活性剤が負極表面に吸着し被膜を形成
すると、 アノード反応 Zn+40H-→Zn(OH)4 -2+2e- カソード反応 2H2O+2e-→2OH-+H2 アノード反応の原因となる水酸化イオンの亜鉛負極への
接近が妨害されまたカソード反応に必要な水分子が亜鉛
負極表面近傍に存在できなくなり、亜鉛の腐食が抑えら
れる。一方、亜鉛の腐食反応は、酸化亜鉛もしくは水酸
化亜鉛などの亜鉛の放電生成物の共存により助長される
ことが知られている。ここで用いる亜鉛合金腐食抑制剤
の作用機構は明確ではないが、この抑制剤はこれら亜鉛
の放電生成物に作用し、亜鉛の腐食を抑えると考えられ
る。また、亜鉛合金腐食抑制剤のこのような効果は、フ
ッ素系界面活性剤の共存下で相乗効果を発揮する。
When the corrosion reaction in the alkaline electrolyte of zinc is represented by the following formula, a fluorine-based surfactant to form adsorbed film on the surface of the negative electrode, the anode reaction Zn + 40H - → Zn (OH ) 4 -2 + 2e - cathodic reaction 2H 2 O + 2e → 2OH + H 2 The hydroxide ions that cause the anodic reaction are prevented from approaching the zinc negative electrode, and the water molecules necessary for the cathode reaction cannot exist near the surface of the zinc negative electrode, and zinc corrosion is suppressed. To be On the other hand, it is known that the corrosion reaction of zinc is promoted by the coexistence of a discharge product of zinc such as zinc oxide or zinc hydroxide. Although the mechanism of action of the zinc alloy corrosion inhibitor used here is not clear, it is considered that this inhibitor acts on these zinc discharge products to suppress zinc corrosion. Further, such an effect of the zinc alloy corrosion inhibitor exerts a synergistic effect in the coexistence of the fluorosurfactant.

上記の如く、本発明の構成を用いれば、フッ素系界面活
性剤と亜鉛合金腐食防止剤との組合せによる防食作用の
相乗効果により、保存後や部分放電後の電池内圧の上昇
を軽減した。良好な貯蔵性を有したアルカリ電池を提供
できることとなる。
As described above, by using the constitution of the present invention, the synergistic effect of the anticorrosion effect of the combination of the fluorine-based surfactant and the zinc alloy corrosion inhibitor can reduce the increase in the internal pressure of the battery after storage or after partial discharge. It is possible to provide an alkaline battery having good storability.

実施例 フッ素系界面活性剤及び亜鉛合金腐食抑制剤を含むゲル
状亜鉛負極を、アルカリマンガン乾電池に適用した例に
ついて説明する。
Example An example in which a gelled zinc negative electrode containing a fluorine-based surfactant and a zinc alloy corrosion inhibitor is applied to an alkaline manganese dry battery will be described.

第1図は、本実施例で用いたアルカリマンガン電池、LR
6の構造断面図である。第1図において1は正極合剤、
2はフッ素系界面活性剤及び下記の実施例1,2,3,4で説
明する腐食抑制剤をゲル電解液中に含む無水銀亜鉛合金
を用いたゲル負極、3はセパレータ、4はゲル負極の集
電子である。5は正極キャップ、6は金属ケース、7は
電池の外装缶、8は樹脂封口体、9は底板である。
FIG. 1 shows the alkaline manganese battery, LR, used in this example.
6 is a structural cross-sectional view of FIG. In FIG. 1, 1 is a positive electrode mixture,
2 is a gel negative electrode using a anhydrous silver-zinc alloy containing a fluorine-based surfactant and a corrosion inhibitor described in Examples 1, 2, 3 and 4 below in a gel electrolyte solution, 3 is a separator, and 4 is a gel negative electrode. It is a current collector. Reference numeral 5 is a positive electrode cap, 6 is a metal case, 7 is a battery outer can, 8 is a resin sealing body, and 9 is a bottom plate.

実施例1 フッ素系界面活性剤及び周期表IIIB族の元素を含む亜鉛
合金腐食抑制剤(以下IIIB族抑制剤と略す)を含むゲル
状亜鉛負極の場合について説明する。
Example 1 A case of a gelled zinc negative electrode containing a fluorine-based surfactant and a zinc alloy corrosion inhibitor containing a group IIIB element of the periodic table (hereinafter abbreviated as a group IIIB inhibitor) will be described.

ゲル状亜鉛負極は以下のようにして調製した。The gelled zinc negative electrode was prepared as follows.

まず、40重量%の水酸化カリウム溶液(ZnOを含む)に
3重量%のポリアクリル酸リーダと1重量%のカルボキ
シメチルセルロースを加えてゲル化する。この後にゲル
状電解に対して重量比で2倍の亜鉛合金を加えるが、亜
鉛合金を加える前に、フッ素系界面活性剤とIIIB族抑制
剤を加えて十分に混合する。これらの量は、亜鉛合金粉
を入れた後に指定された割合になるよう調製する。フッ
素系界面活性剤,IIIB族抑制剤の添加割合は、ゲル状亜
鉛負極全体に対する割合である。また、前記亜鉛合金に
は、インジウム,鉛,アルミニウムを各々0.05重量%含
むものを用いた。フッ素系界面活性剤には、パーフルオ
ロアルキル基とポリオキシエチレン基を両方持つものを
用いた。IIIB族抑制剤は、In2O3・xH2O(75%In2O3)Ga
2O3,Tl2O,ホウ酸カリウムを用いた。以下都合上、In
は In2O3・xH2O(75%In2O3)を示し、同様にGaはGa2O3,Tl
はTl2O,Bはホウ酸カリウムを表わす。
First, 3 wt% of polyacrylic acid leader and 1 wt% of carboxymethylcellulose are added to 40 wt% potassium hydroxide solution (including ZnO) for gelation. After this, a zinc alloy is added in a weight ratio twice that of the gelled electrolysis, but before the zinc alloy is added, the fluorine-based surfactant and the group IIIB inhibitor are added and mixed sufficiently. These amounts are adjusted to the specified ratio after the zinc alloy powder is added. The addition ratio of the fluorine-based surfactant and the group IIIB inhibitor is the ratio with respect to the entire gel zinc negative electrode. Further, as the zinc alloy, one containing 0.05% by weight of indium, lead and aluminum was used. As the fluorinated surfactant, one having both a perfluoroalkyl group and a polyoxyethylene group was used. Group IIIB inhibitors are In 2 O 3 · xH 2 O (75% In 2 O 3 ) Ga
2 O 3 , Tl 2 O and potassium borate were used. In the following, In
Indicates In 2 O 3 · xH 2 O (75% In 2 O 3 ), and similarly Ga is Ga 2 O 3 , Tl
Represents Tl 2 O and B represents potassium borate.

まず、本発明の亜鉛合金に対する腐食抑制効果を調べ
た。実験方法は、第1図で示したアルカリマンガン電池
を試作し、1Ωの定抵抗放電を22分間行う。その後に電
池を分解してゲル状亜鉛負極を2g採取し、10日間,60℃
の温度下で発生した水素ガス量を測定した。ゲル状亜鉛
負極中に投入するIIIB族抑制剤の添加量を1重量%,フ
ッ素系界面活性剤の添加量を0.1重量%もしくは無添加
として得られた結果を表1に示した。比較のために、フ
ッ素系界面活性剤のみ添加したものと、どちらも添加し
ていないものの測定も行った。表1に示したガス発生量
は、IIIB族抑制剤もフッ素系界面活性剤も無添加である
場合を100とした時の指数で示した。
First, the corrosion inhibition effect on the zinc alloy of the present invention was investigated. As an experimental method, the alkaline manganese battery shown in FIG. 1 was prototyped and a constant resistance discharge of 1Ω was performed for 22 minutes. After that, the battery was disassembled, 2 g of the gelled zinc negative electrode was collected, and the temperature was maintained at 60 ° C for 10 days.
The amount of hydrogen gas generated under the temperature was measured. Table 1 shows the results obtained when the amount of the Group IIIB inhibitor added to the gelled zinc negative electrode was 1% by weight and the amount of the fluorine-based surfactant was 0.1% by weight or no addition. For comparison, the measurement was carried out for the case where only the fluorine-based surfactant was added and the case where neither was added. The gas generation amount shown in Table 1 is shown as an index when the case where neither the IIIB group inhibitor nor the fluorosurfactant is added is 100.

しかし、表1から明白なように、フッ素系界面活性剤と
IIIB族抑制剤が共存する場合に限り、ガス発生量の指数
が60以下になる。つまり、どちらか一方だけでは指数が
81〜95程度であったものが共存することにより相乗効果
を発揮し、指数を60以下にすることが可能である。
However, as is clear from Table 1, it is
Only when a Group IIIB inhibitor coexists, the gas generation index becomes 60 or less. In other words, the index will be
The coexistence of those of about 81 to 95 exerts a synergistic effect, and the index can be set to 60 or less.

次にフッ素系界面活性剤の添加量について検討した。実
験方法は、フッ素系界面活性剤の濃度を変化させ、その
時のガス発生量と放電性能を検討した。第1図で示した
アルカリマンガン電池を試作する。ガス発生測定は1
Ω,22分放電後の電池のゲル負極を2g採取し、10日間,60
℃の温度下で発生した水素ガス量を測定する。また、電
池の放電性能に関しては10Ωの連続放電を行った。ゲル
状亜鉛負極中には、IIIB族抑制剤(In2O3・xH2O(75%I
n2O3))が1.0重量%と、フッ素系界面活性剤が指定量
混入されている。得られた結果を第2図に示した。第2
図において実線がガス発生量を示し、破線が10Ω連続放
電時の平均電圧を示した。ガス発生量は、界面活性剤,
抑制剤ともに無添加の場合を100とした指数で示した。
第2図より明白なように、フッ素系界面活性剤の添加量
が増せば(添加量0.05wt%付近まで)ガス発生量は抑え
られ、それを越えるとあまり変化しなくなる。一方、平
均電圧は添加量の増加に伴って徐々に低下し、1重量%
を越えたあたりから急激に低下することがわかる。した
がって、これら両者の関係を考え合わせると、フッ素系
界面活性剤の添加量は0.01〜1.0重量%であることが好
ましい。なお、IIIB族抑制剤として、Ga,Tl,Bを用いた
場合もほぼ同様の濃度領域が好ましいことが実験より得
られた。
Next, the amount of the fluorine-based surfactant added was examined. As the experimental method, the concentration of the fluorine-based surfactant was changed, and the gas generation amount and discharge performance at that time were examined. The alkaline manganese battery shown in FIG. 1 is manufactured as a prototype. Gas generation measurement is 1
Ω, 2 g of the gel negative electrode of the battery after 22 minutes of discharge was sampled for 10 days at 60
The amount of hydrogen gas generated under the temperature of ° C is measured. Regarding the discharge performance of the battery, continuous discharge of 10Ω was performed. The group IIIB inhibitor (In 2 O 3 · xH 2 O (75% I
n 2 O 3 )) is 1.0% by weight, and the specified amount of fluorine-based surfactant is mixed. The obtained results are shown in FIG. Second
In the figure, the solid line shows the amount of gas generated, and the broken line shows the average voltage during 10Ω continuous discharge. The amount of gas generated is
The index is shown with 100 when no inhibitor was added.
As is clear from FIG. 2, the gas generation amount is suppressed when the addition amount of the fluorine-based surfactant is increased (up to the addition amount of about 0.05 wt%), and beyond that, it hardly changes. On the other hand, the average voltage gradually decreased with the increase of the addition amount, and was 1% by weight.
It can be seen that the value drops sharply after passing. Therefore, considering the relationship between these two factors, the addition amount of the fluorine-based surfactant is preferably 0.01 to 1.0% by weight. It was found from experiments that almost the same concentration range is preferable when Ga, Tl, and B are used as the group IIIB inhibitor.

次に、IIIB族抑制剤の添加量の変化に伴うガス発生量及
び放電性能について検討した。実験方法は、第1図で示
したアルカリマンガン電池を試作し、1Ωの定抵抗放電
を22分間行う。その後に電池を電解しゲル状亜鉛負極を
2g採取し、10日間,60℃の温度化で発生した水素ガス量
を測定する。また、電池の放電性能に関しては、10Ωの
連続放電を行った。ゲル状亜鉛負極中にはフッ素系界面
活性剤が0.1重量%とIIIB族抑制剤(In2O3・xH2O(75%
In2O3))が指定量混入されている。得られた結果を第
3図に示した。第3図において実線がガス発生量を示
し、破線が10Ω連続放電時の平均電圧を示した。ガス発
生量は界面活性剤,抑制剤ともに無添加の場合を100と
した指数である。第3図より明白なように、0.1重量%
までIIIB族抑制剤の添加量が増せばガス発生量は抑えら
れ、その後はほぼ一定となる。一方、平均電圧は抑制剤
の添加量が増すにつれて徐々に低下し、10重量%を越え
ると急激に低下する。これら2つの現象を考え合せる
と、IIIB族抑制剤の添加量は0.01〜10重量%が好まし
い。なお、Ga,Tl,Bについてもほぼ同様の添加量領域が
好ましいことがわかった。
Next, the gas generation amount and the discharge performance with the change of the addition amount of the group IIIB inhibitor were examined. As an experimental method, the alkaline manganese battery shown in FIG. 1 was prototyped and a constant resistance discharge of 1Ω was performed for 22 minutes. After that, the battery is electrolyzed to form a gel zinc negative electrode.
Collect 2g and measure the amount of hydrogen gas generated by heating at 60 ℃ for 10 days. Regarding the discharge performance of the battery, continuous discharge of 10Ω was performed. The gel-type zinc negative electrode contained 0.1% by weight of a fluorine-based surfactant and a group IIIB inhibitor (In 2 O 3 · xH 2 O (75%
In 2 O 3 )) is mixed in the specified amount. The obtained results are shown in FIG. In FIG. 3, the solid line shows the gas generation amount, and the broken line shows the average voltage during 10Ω continuous discharge. The amount of gas generated is an index with 100 when neither surfactant nor inhibitor is added. As is clear from FIG. 3, 0.1% by weight
Until the addition amount of IIIB group inhibitor is increased, the gas generation amount is suppressed, and thereafter becomes almost constant. On the other hand, the average voltage gradually decreases as the amount of inhibitor added increases, and sharply decreases when it exceeds 10% by weight. Considering these two phenomena together, the addition amount of the group IIIB inhibitor is preferably 0.01 to 10% by weight. It was also found that the similar addition amount regions are preferable for Ga, Tl, and B.

最後にIn,Ga,Tl,B(IIIB族抑制剤)の組合せによる腐食
抑制効果について検討した。実験方法は、第1図に示し
たアルカリ電池を試作し、1Ωの定抵抗放電を22分間行
う。その後に電池を分解し、ゲル状亜鉛負極を2g採取し
て10日間60℃の温度下で発生した水素ガス量を測定す
る。得られた結果を表2に示した。添加したIIIB族抑制
剤の種類と添加量及びフッ素系界面活性剤の添加量も表
中に示した。また、ガス発生量は、界面活性剤,IIIB族
抑制剤ともに無添加の場合を100とした時の指数で示し
た。表より明らかなように抑制剤を組合せることによっ
てもガス発生は抑制され、また組合せ,添加量を微妙に
変化させることによって、より抑制される可能性があ
る。表2において、漏液個数については、それぞれの種
類の電池を各20個試作し、1Ω定抵抗放電を22分間行な
う。放電後60℃の温度下で2ヶ月間保存した後、電池の
漏液状態を観察した。フッ素系界面活性剤,IIIB族抑制
剤両者を含まない場合においては、相当数漏液している
が、本発明による両者を含んだものは漏液しないことが
わかる。
Finally, the corrosion inhibition effect of the combination of In, Ga, Tl, B (IIIB group inhibitor) was investigated. As an experimental method, the alkaline battery shown in FIG. 1 was prototyped and a constant resistance discharge of 1Ω was performed for 22 minutes. After that, the battery is disassembled, 2 g of the gelled zinc negative electrode is sampled, and the amount of hydrogen gas generated at a temperature of 60 ° C. for 10 days is measured. The obtained results are shown in Table 2. The type and amount of the added Group IIIB inhibitor and the amount of the fluorine-containing surfactant are also shown in the table. In addition, the amount of gas generated is shown as an index when 100 is obtained when neither the surfactant nor the group IIIB inhibitor is added. As is clear from the table, the gas generation is suppressed by combining the inhibitors, and it may be further suppressed by subtly changing the combination and the addition amount. In Table 2, regarding the number of leaked liquids, 20 batteries of each type were made as prototypes and 1Ω constant resistance discharge was performed for 22 minutes. After discharging, the battery was stored at a temperature of 60 ° C. for 2 months, and then the leaked state of the battery was observed. It can be seen that when neither the fluorine-based surfactant nor the group IIIB inhibitor is contained, a considerable number of liquids are leaked, but those containing both according to the present invention do not leak.

このように、フッ素系界面活性剤とIIIB族の元素を含む
亜鉛合金腐食抑制剤を含有したゲル状亜鉛負極を用いる
ことにより、無水銀あるいは極低汞化亜鉛の電池は、ガ
ス発生による電池内圧の上昇を抑制し、耐漏液性を向上
されることが可能である。
As described above, by using a gelled zinc negative electrode containing a fluorine-based surfactant and a zinc alloy corrosion inhibitor containing a Group IIIB element, a battery of anhydrous silver or ultra-low zinc content can be used to reduce the internal pressure of the battery due to gas generation. It is possible to suppress the rise of the liquid crystal and improve the liquid leakage resistance.

実施例2 フッ素系界面活性剤及び周期表IVB族の元素を含む亜鉛
合金腐食抑制剤(以下IVB族抑制剤と略す)を含むゲル
状亜鉛負極の場合について説明する。
Example 2 A case of a gelled zinc negative electrode containing a fluorine-based surfactant and a zinc alloy corrosion inhibitor containing a group IVB element of the periodic table (hereinafter abbreviated as a group IVB inhibitor) will be described.

ゲル状亜鉛負極は以下のようにして調製した。まず、40
重量%の水酸化カリウム溶液(ZnOを含む)に3重量%
のポリアクリル酸リーダと1重量%のカルボキシメチル
セルロースを加えてゲル化する。この後にゲル状電解液
に対して重量比で2倍の亜鉛合金を加えるが、亜鉛合金
を加える前に、フッ素系界面活性剤とIVB族抑制剤を加
えて十分に混合する。これらの量は、亜鉛合金粉を入れ
た後に指定された割合になるように調製する。フッ素系
界面活性剤,IVB族抑制剤の添加割合は、ゲル状亜鉛負極
全体に対する割合である。また、前記亜鉛合金は、イン
ジウム,鉛,アルミニウムを各々0.05重量%含むものを
用いた。フッ素系界面活性剤には、パーフルオロアルキ
ル基とポリオキシエチレン基を両方持つものを用いた。
IVB族抑制剤は、Pb(OH)2,GeO2,SnO2を用いた。以下都
合上、PbはPb(OH)2を示し、同様にGeはGeO2,SnはSnO2
を表わす。
The gelled zinc negative electrode was prepared as follows. First, 40
3 wt% in a wt% potassium hydroxide solution (including ZnO)
Gelation is carried out by adding the polyacrylic acid leader of 1. and 1% by weight of carboxymethyl cellulose. After that, a zinc alloy is added to the gel electrolyte in a weight ratio of 2 times, but before the zinc alloy is added, the fluorine-based surfactant and the IVB group inhibitor are added and thoroughly mixed. These amounts are adjusted to the specified ratio after the zinc alloy powder is added. The addition ratio of the fluorine-based surfactant and the group IVB inhibitor is the ratio with respect to the entire gel zinc negative electrode. The zinc alloy used was one containing 0.05% by weight of indium, lead and aluminum. As the fluorinated surfactant, one having both a perfluoroalkyl group and a polyoxyethylene group was used.
Pb (OH) 2 , GeO 2 , and SnO 2 were used as the group IVB inhibitors. For the sake of convenience, Pb means Pb (OH) 2 , and Ge is GeO 2 and Sn is SnO 2 as well.
Represents

まず、本発明の亜鉛合金に対する腐食抑制効果を調べ
た。実験方法は、第1図で示したアルカリマンガン電池
を試作し、1Ωの定抵抗放電を22分間行う。その後に電
池を分解してゲル状亜鉛負極を2g採取し、10日間,60℃
の温度下で発生した水素ガス量を測定した。ゲル状亜鉛
負極中に投入するIVB族抑制剤の添加量を1重量%,フ
ッ素系界面活性剤の添加量を0.1重量%もしくは無添加
として得られた結果を表3に示した。比較のために、フ
ッ素系界面活性剤のみ添加したものと、どちらも添加し
ていないものの測定も行った。表3に示したガス発生量
は、IVB族抑制剤もフッ素系界面剤も無添加である場合
を100とした時の指数で示した。
First, the corrosion inhibition effect on the zinc alloy of the present invention was investigated. As an experimental method, the alkaline manganese battery shown in FIG. 1 was prototyped and a constant resistance discharge of 1Ω was performed for 22 minutes. After that, the battery was disassembled, 2 g of the gelled zinc negative electrode was collected, and the temperature was maintained at 60 ° C for 10 days.
The amount of hydrogen gas generated under the temperature was measured. Table 3 shows the results obtained by adding 1% by weight of the group IVB inhibitor added to the gelled zinc negative electrode and 0.1% by weight of the fluorine-based surfactant or not adding it. For comparison, the measurement was carried out for the case where only the fluorine-based surfactant was added and the case where neither was added. The gas generation amount shown in Table 3 is an index when the case where neither the IVB group inhibitor nor the fluorine-based interfacial agent is added is 100.

PbをIVB族抑制剤として使用した場合、フッ素系界面活
性剤で混入しない時でもガス発生量が抑えられる。しか
し、表3から明白なように、フッ素系界面活性剤とIVB
族抑制剤が共存する場合に限り、ガス発生量の指数が60
以下になる場合に限り、ガス発生量の指数が60以下にな
る。つまり、どちらか一方だけでは指数が80〜96程度で
あったものが共存することにより相乗効果を発揮し、指
数を60以下にすることが可能である。
When Pb is used as a Group IVB inhibitor, the amount of gas generated can be suppressed even when it is not mixed with a fluorine-based surfactant. However, as is clear from Table 3, the fluorosurfactant and IVB
The gas generation index is 60 only when a group inhibitor is present.
The gas generation index will be 60 or less if and only if: That is, the coexistence of the index values of about 80 to 96 with only one of them causes a synergistic effect, and the index value can be 60 or less.

次にフッ素系界面活性剤の添加量について検討した。実
験方法は、フッ素系界面活性剤の濃度を変化させ、その
時のガス発生量と放電性能を検討した。実施例1で示し
たものと同様に、第1図で示したアルカリマンガン電池
を試作する。ガス発生測定は1Ω,22分放電後の電池の
ゲル負極を2g採取し、10日間,60℃の温度下で発生した
水素ガス量を測定する。また、電池の放電性能に関して
は10Ωの連続放電を行った。ゲル状亜鉛負極中には、IV
B族抑制剤(Pb(OH)2)が1.0重量%と、フッ素系界面活
性剤が指定量混入されている。得られた結果を第4図に
示した。第4図において実線がガス発生量を示し、破線
が10Ω連続放電時の平均電圧を示した。ガス発生量に関
しては、界面活性剤,抑制剤ともに無添加の場合を100
とした指数で示した。第4図より明白なように、フッ素
系界面活性剤の添加量が増せば(添加量0.1wt%付近ま
で)ガス発生量は抑えられ、それを越えるとあまり変化
しなくなる。一方、平均電圧は添加量の増加に伴って徐
々に低下し、1重量%を越えたあたりから急激に低下す
ることがわかる。したかって、これら両者の関係を考え
合わせると、フッ素系界面活性剤の添加量は0.01〜1.0
重量%であることが好ましい。なお、IVB族抑制剤とし
てGe,Snを用いた場合もほぼ同様の濃度領域が好ましい
ことが実験より得られた。
Next, the amount of the fluorine-based surfactant added was examined. As the experimental method, the concentration of the fluorine-based surfactant was changed, and the gas generation amount and discharge performance at that time were examined. Similar to the one shown in Example 1, the alkaline manganese battery shown in FIG. 1 is prototyped. For gas generation measurement, 2 g of the gel negative electrode of the battery after discharging for 1 Ω for 22 minutes is sampled, and the amount of hydrogen gas generated at a temperature of 60 ° C. for 10 days is measured. Regarding the discharge performance of the battery, continuous discharge of 10Ω was performed. IV in the gelled zinc negative electrode
The group B inhibitor (Pb (OH) 2 ) is 1.0% by weight, and the specified amount of fluorine-based surfactant is mixed. The obtained results are shown in FIG. In FIG. 4, the solid line shows the gas generation amount, and the broken line shows the average voltage during 10Ω continuous discharge. Regarding the amount of gas generated, 100 is obtained when neither surfactant nor inhibitor is added.
It was shown by the index. As is clear from FIG. 4, the gas generation amount is suppressed if the addition amount of the fluorine-based surfactant is increased (up to the addition amount of about 0.1 wt%), and beyond that, it hardly changes. On the other hand, it can be seen that the average voltage gradually decreases with an increase in the amount of addition, and sharply decreases after exceeding 1% by weight. Therefore, considering the relationship between these two, the addition amount of the fluorine-based surfactant is 0.01 to 1.0.
It is preferably in the weight%. It was found from experiments that almost the same concentration range is preferable when Ge or Sn is used as the group IVB inhibitor.

次に、IVB族抑制剤の添加量の変化に伴うガス発生量及
び放電性能について検討した。実験方法は、第1図で示
したアルカリマンガン電池を試作し、1Ωの定抵抗放電
を22分間行う。その後に電池を分解しゲル状亜鉛負極を
2g採取し、10日間,60℃の温度化で発生した水素ガス量
を測定する。また、電池の放電性能に関しては、10Ωの
連続放電を行った。ゲル状亜鉛負極中にはフッ素系界面
活性剤が0.1重量%とIVB族抑制剤(Pb(OH2))が指定
量混入されている。得られた結果を第5図に示した。第
5図において実線がガス発生量を示し、破線が10Ω連続
放電時の平均電圧を示した。ガス発生量に関しては界面
活性剤,抑制剤ともに無添加の場合を100とした指数で
ある。第5図より明白なように、0.1重量%までIVB族抑
制剤の添加量が増せばガス発生量は抑えられ、その後は
ほぼ一定となる。一方、平均電圧は抑制剤の添加量が増
すにつれて徐々に低下し、10重量%を越えると急激に低
下する。これら2つの現象を考え合せるとIVB族抑制剤
の添加量は0.01〜10重量%が好ましい。なお、Ge,Snに
ついてもほぼ同様に添加量領域が好ましいことがわかっ
た。
Next, the amount of gas generated and the discharge performance with changes in the amount of IVB group inhibitor added were investigated. As an experimental method, the alkaline manganese battery shown in FIG. 1 was prototyped and a constant resistance discharge of 1Ω was performed for 22 minutes. After that, the battery is disassembled and the gel zinc negative electrode is attached.
Collect 2g and measure the amount of hydrogen gas generated by heating at 60 ℃ for 10 days. Regarding the discharge performance of the battery, continuous discharge of 10Ω was performed. The gel-type zinc negative electrode contains 0.1% by weight of a fluorosurfactant and a specified amount of a group IVB inhibitor (Pb (OH 2 )). The obtained results are shown in FIG. In FIG. 5, the solid line shows the gas generation amount, and the broken line shows the average voltage during 10Ω continuous discharge. The amount of gas generated is an index with 100 when neither surfactant nor inhibitor is added. As is clear from FIG. 5, when the addition amount of the IVB group inhibitor is increased to 0.1% by weight, the gas generation amount is suppressed, and thereafter it becomes almost constant. On the other hand, the average voltage gradually decreases as the amount of inhibitor added increases, and sharply decreases when it exceeds 10% by weight. Considering these two phenomena, the addition amount of the group IVB inhibitor is preferably 0.01 to 10% by weight. It was found that the addition amount regions of Ge and Sn are also preferably almost the same.

最後に、Pb,Ge,Sn(IVB族抑制剤)の組合せによる腐食
抑制効果について検討した。実験方法は、第1図に示し
たアルカリ電池を試作し、1Ωの定抵抗放電を22分間行
う。その後に電池を分解しゲル状亜鉛負極を2g採取して
10日間60℃の温度下で発生した水素ガス量を測定する。
得られた結果を表4に示した。添加したIVB族抑制剤の
種類と添加量及びフッ素系界面活性剤の添加量も表中に
示した。また、ガス発生量に関しては、界面活性剤,IVB
族抑制剤ともに無添加の場合を100とした時の指数で示
した。
Finally, the corrosion inhibition effect by the combination of Pb, Ge, and Sn (IVB group inhibitor) was examined. As an experimental method, the alkaline battery shown in FIG. 1 was prototyped and a constant resistance discharge of 1Ω was performed for 22 minutes. After that, the battery was disassembled and 2g of gel zinc negative electrode was sampled.
Measure the amount of hydrogen gas generated at a temperature of 60 ° C for 10 days.
The obtained results are shown in Table 4. The type and amount of the added Group IVB inhibitor and the amount of the fluorinated surfactant are also shown in the table. In addition, regarding the gas generation amount, surfactant, IVB
The index is based on 100 when no group inhibitor is added.

表より明らかなように抑制剤を組合せることによっても
ガス発生は抑制され、また組合せ,添加量を微妙に変化
させることによって、より抑制される可能性がある。表
4において、漏液個数については、それぞれの種類の電
池を各20個試作し、1Ω定抵抗放電を22分間行なう。放
電後60℃の温度下で2ヶ月保存した後、電池の漏液状態
を観察した。フッ素系界面活性剤、IVB族抑制剤両者を
含まない場合においては、相当数漏液しているが、本発
明による両者を含んだものは漏液しないことがわかる。
As is clear from the table, the gas generation is suppressed by combining the inhibitors, and it may be further suppressed by subtly changing the combination and the addition amount. In Table 4, regarding the number of leaked liquids, 20 batteries of each type were made as prototypes and 1Ω constant resistance discharge was performed for 22 minutes. After discharging, the battery was stored at a temperature of 60 ° C. for 2 months, and then the leaked state of the battery was observed. It can be seen that, when neither the fluorine-based surfactant nor the IVB group inhibitor is contained, a considerable number of liquids are leaked, but those containing both according to the present invention do not leak.

このように、フッ素系界面活性剤とIVB族の元素を含む
亜鉛合金腐食抑制剤を含有したゲル状亜鉛負極を用いる
ことにより、無水銀あるいは極状低汞化亜鉛の電池は、
ガス発生による電池内圧の上昇を抑制し、耐漏液性を向
上させることが可能である。
Thus, by using a gelled zinc negative electrode containing a zinc alloy corrosion inhibitor containing a fluorine-based surfactant and a Group IVB element, a battery of anhydrous silver or polar zinc reduction is
It is possible to suppress an increase in battery internal pressure due to gas generation and improve liquid leakage resistance.

実施例3 フッ素系界面活性剤及び周期表IIIA族の元素を含む亜鉛
合金腐食抑制剤(以下IIIA族抑制剤と略す)を含むゲル
状亜鉛負極の場合について説明する。
Example 3 A case of a gelled zinc negative electrode containing a fluorine-based surfactant and a zinc alloy corrosion inhibitor containing a group IIIA element of the periodic table (hereinafter abbreviated as a group IIIA inhibitor) will be described.

ゲル状亜鉛負極は以下のようにして調製した。まず、40
重量%の水酸化カリウム溶液(ZnOを含む)に3重量%
のポリアクリル酸リーダと1重量%のカルボキシメチル
セルロースを加えてゲル化する。この後にゲル状電解液
に対して重量比で2倍の亜鉛合金を加えるが、亜鉛合金
を加える前に、フッ素系界面活性剤とIIIA族抑制剤を加
えて十分に混合する。これらの量は、亜鉛合金粉を入れ
た後に指定された割合になるように調製する。フッ素系
界面活性剤,IIIA族抑制剤の添加割合は、ゲル状亜鉛負
極全体に対する割合である。また、前記亜鉛合金は、イ
ンジウム,鉛,アルミニウムを各々0.05重量%含むもの
を用いた。フッ素系界面活性剤には、パーフルオロアル
キル基とポリオキシエチレン基を両方持つものを用い
た。IIIA族抑制剤はSc2O3,Y2O3,La2O3,CeO2,Nd
2O3,Sm2O3を用いた。以下都合上SCはSc2O3,YはY2O3,Ce
はCeO2,NdはNd2O3,SmはSm2O3を表わす。
The gelled zinc negative electrode was prepared as follows. First, 40
3 wt% in a wt% potassium hydroxide solution (including ZnO)
Gelation is carried out by adding the polyacrylic acid leader of 1. and 1% by weight of carboxymethyl cellulose. After that, a zinc alloy is added to the gel electrolyte in a weight ratio of 2 times, but before the zinc alloy is added, the fluorine-based surfactant and the group IIIA inhibitor are added and thoroughly mixed. These amounts are adjusted to the specified ratio after the zinc alloy powder is added. The addition ratio of the fluorine-based surfactant and the group IIIA inhibitor is the ratio with respect to the entire gel zinc negative electrode. The zinc alloy used was one containing 0.05% by weight of indium, lead and aluminum. As the fluorinated surfactant, one having both a perfluoroalkyl group and a polyoxyethylene group was used. Group IIIA inhibitors are Sc 2 O 3 , Y 2 O 3 , La 2 O 3 , CeO 2 , Nd
2 O 3 and Sm 2 O 3 were used. For convenience sake, SC is Sc 2 O 3 ,, Y is Y 2 O 3 , Ce
Represents CeO 2 , Nd represents Nd 2 O 3 , and Sm represents Sm 2 O 3 .

まず、本発明の亜鉛合金に対する腐食抑制効果を調べ
た。実験方法は第1図で示したアルカリマンガン電池を
試作し、1Ωの定抵抗放電を22分間行う。その後に電池
を分解しゲル状亜鉛負極を2g採取し、10日間,60℃の温
度下で発生した水素ガス量を測定した。ゲル状亜鉛負極
中に投入するIIIA族抑制剤の添加量を1重量%,フッ素
系界面活性剤の添加量を0.1重量%もしくは無添加とし
て得られた結果を表5に示した。比較のために、フッ素
系界面活性剤のみ添加したものと、どちらも添加してい
ないものの測定も行った。表5に示したガス発生量は、
IIIA族抑制剤もフッ素系界面活性剤も無添加である場合
を100とした時の指数で示した。Y,NbをIIIA族抑制剤と
して使用した場合、フッ素系界面活性剤が混入しない時
でもガス発生量が抑えられる。
First, the corrosion inhibition effect on the zinc alloy of the present invention was investigated. As an experimental method, the alkaline manganese battery shown in FIG. 1 was prototyped and a constant resistance discharge of 1Ω was performed for 22 minutes. After that, the battery was disassembled, 2 g of the gelled zinc negative electrode was sampled, and the amount of hydrogen gas generated at a temperature of 60 ° C. for 10 days was measured. Table 5 shows the results obtained when the amount of the Group IIIA inhibitor added to the gelled zinc negative electrode was 1% by weight and the amount of the fluorine-based surfactant added was 0.1% by weight or no addition. For comparison, the measurement was carried out for the case where only the fluorine-based surfactant was added and the case where neither was added. The gas generation amount shown in Table 5 is
The index is shown based on 100 when neither the group IIIA inhibitor nor the fluorosurfactant is added. When Y and Nb are used as the group IIIA inhibitor, the gas generation amount can be suppressed even when the fluorine-based surfactant is not mixed.

しかし、表5から明白なように、フッ素系界面活性剤と
ランタノイド系を含むIIIA族抑制剤が共存する場合に限
り、ガス発生量の指数が60以下になる。つまり、どちら
か一方だけでは指数が80〜95程度であったものが共存す
ることにより相乗効果を発揮し、指数を60以下にするこ
とが可能である。
However, as is clear from Table 5, the index of gas generation amount becomes 60 or less only when the fluorosurfactant and the group IIIA inhibitor containing the lanthanoid system coexist. That is, the coexistence of the index values of about 80 to 95 with only one of them causes a synergistic effect, and the index value can be reduced to 60 or less.

次にフッ素系界面活性剤の添加量について検討した。実
験方法は、フッ素系界面活性剤の濃度を変化させ、その
時のガス発生量と放電性能を検討した。実施例1で示し
たものと同様に、第1図で示したアルカリマンガン電池
を試作する。ガス発生測定は1Ω,22分放電後の電池の
ゲル負極を2g採取し、10日間,60℃の温度下で発生した
水素ガス量を測定する。また、電池の放電性能に関して
は10Ωの連続放電を行った。ゲル状亜鉛負荷中には、II
IA族抑制剤(Y2O3)が1.0重量%と、フッ素系界面活性
剤が指定量混入されている。得られた結果を第6図に示
した。第6図において実線がガス発生量を示し、破線が
10Ω連続放電時の平均電圧を示した。ガス発生量に関し
ては、界面活性剤,抑制剤ともに無添加の場合を100と
した指数で示した。第4図より明白なように、フッ素系
界面活性剤の添加量が増せば(添加量0.05wt%付近ま
で)ガス発生量は抑えられ、それを越えるとあまり変化
しなくなる。一方、平均電圧は添加量の増加に伴って徐
々に低下し、1重量%を越えたあたりから急激に低下す
ることがわかる。したがって、これら両者の関係を考え
合わせると、フッ素系界面活性剤の添加量は0.01〜1.0
重量%であることが好ましい。なお、IIIA族抑制剤とし
てY,La,Ce,Nd,Smを用いた場合もほぼ同様の濃度領域が
好ましいことが実験より得られた。
Next, the amount of the fluorine-based surfactant added was examined. As the experimental method, the concentration of the fluorine-based surfactant was changed, and the gas generation amount and discharge performance at that time were examined. Similar to the one shown in Example 1, the alkaline manganese battery shown in FIG. 1 is prototyped. For gas generation measurement, 2 g of the gel negative electrode of the battery after discharging for 1 Ω for 22 minutes is sampled, and the amount of hydrogen gas generated at a temperature of 60 ° C. for 10 days is measured. Regarding the discharge performance of the battery, continuous discharge of 10Ω was performed. II during gel zinc loading
The group IA inhibitor (Y 2 O 3 ) is 1.0% by weight, and the specified amount of fluorine-based surfactant is mixed. The obtained results are shown in FIG. In FIG. 6, the solid line shows the gas generation amount, and the broken line shows
The average voltage during 10Ω continuous discharge is shown. The amount of gas generated is shown as an index with 100 when neither surfactant nor inhibitor is added. As is clear from FIG. 4, when the amount of the fluorine-based surfactant added is increased (up to the amount added of around 0.05 wt%), the gas generation amount is suppressed, and beyond that, it hardly changes. On the other hand, it can be seen that the average voltage gradually decreases with an increase in the amount of addition, and sharply decreases after exceeding 1% by weight. Therefore, considering the relationship between these two, the addition amount of the fluorine-based surfactant is 0.01 to 1.0.
It is preferably in the weight%. It was found from experiments that almost the same concentration range is preferable when Y, La, Ce, Nd, and Sm are used as the group IIIA inhibitor.

次に、IIIA族抑制剤の添加量の変化に伴うガス発生量及
び放電性能について検討した。実験方法は、第1図で示
したアルカリマンガン電池を試作し、1Ωの定抵抗放電
を22分間行う。その後に電池を分解してゲル状亜鉛負極
を2g採取し、10日間,60℃の温度化で発生した水素ガス
量を測定する。また、電池の放電性能に関しては、10Ω
の連続放電を行った。ゲル状亜鉛負極中にはフッ素系界
面活性剤が0.1重量%とIIA族抑制剤(Y2O3)が指定量混
入されている。得られた結果を第7図に示した。第7図
において実線がガス発生量を示し、破線が10Ω連続放電
時の平均電圧を示した。ガス発生量に関しては界面活性
剤,抑制剤ともに無添加の場合を100とした指数であ
る。第7図より明白なように、0.05重量%までIIIA族抑
制剤の添加量が増せばガス発生量は抑えられ、その後は
ほぼ一定となる。一方、平均電圧は抑制剤の添加量が増
すにつれて徐々に低下し、10重量%を越えると急激に低
下する。これら2つの現象を考え合せるとIIIA族抑制剤
の添加量は0.01〜10重量%が好ましい。なお、Sc,La,C
e,Nd,Smについてもほぼ同様の添加量領域が好ましいこ
とがわかった。
Next, the gas generation amount and the discharge performance with the change of the addition amount of the group IIIA inhibitor were examined. As an experimental method, the alkaline manganese battery shown in FIG. 1 was prototyped and a constant resistance discharge of 1Ω was performed for 22 minutes. After that, the battery is disassembled and 2 g of the gelled zinc negative electrode is sampled, and the amount of hydrogen gas generated at a temperature of 60 ° C. for 10 days is measured. Also, regarding the discharge performance of the battery, 10Ω
Was continuously discharged. The gelled zinc negative electrode contains 0.1% by weight of a fluorosurfactant and a specified amount of a group IIA inhibitor (Y 2 O 3 ). The obtained results are shown in FIG. 7. In FIG. 7, the solid line shows the gas generation amount, and the broken line shows the average voltage during 10Ω continuous discharge. The amount of gas generated is an index with 100 when neither surfactant nor inhibitor is added. As is clear from FIG. 7, when the addition amount of the group IIIA inhibitor is increased up to 0.05% by weight, the gas generation amount is suppressed, and thereafter it becomes almost constant. On the other hand, the average voltage gradually decreases as the amount of inhibitor added increases, and sharply decreases when it exceeds 10% by weight. Considering these two phenomena, the addition amount of the group IIIA inhibitor is preferably 0.01 to 10% by weight. In addition, Sc, La, C
For e, Nd, and Sm, it was found that similar addition amount regions are preferable.

最後にIIIA族抑制剤であるSc,La,Nd,Sm,Y,Ceの一部の組
合せによる腐食抑制効果について検討した。実験方法
は、第1図に示したアルカリ電池を試作し、1Ωの定抵
抗放電を22分間行う。その後に電池を分解しゲル状亜鉛
負極を2g採取して10日間60℃の温度下で発生した水素ガ
ス量を測定する。得られた結果を表6に示した。添加し
たIIIA族抑制剤の種類と添加量及びフッ素系界面活性剤
の添加量も表中に示した。また、ガス発生量に関して
は、界面活性剤,IIIA族抑制剤ともに無添加の場合を100
とした時の指数で示した。
Finally, the corrosion inhibiting effect of some combinations of Group IIIA inhibitors Sc, La, Nd, Sm, Y, Ce was investigated. As an experimental method, the alkaline battery shown in FIG. 1 was prototyped and a constant resistance discharge of 1Ω was performed for 22 minutes. After that, the battery is disassembled, 2 g of the gelled zinc negative electrode is sampled, and the amount of hydrogen gas generated at a temperature of 60 ° C. for 10 days is measured. The obtained results are shown in Table 6. The type and amount of the added Group IIIA inhibitor and the amount of the fluorinated surfactant are also shown in the table. Regarding the amount of gas generated, 100% is obtained when neither surfactant nor IIIA inhibitor is added.
It was shown by the index when.

表より明らかなように抑制剤を組合せることによっても
ガス発生は抑制され、また組合せ,添加量を微妙に変化
させることによって、より抑制される可能性がある。表
6において、漏液個数については、それぞれの種類の電
池を各20個試作し、1Ω定抵抗放電を22分間行なう。放
電後60℃の温度下で2ヶ月保存した後、電池の漏液状態
を観察した。フッ素系界面活性剤、IIIA族抑制剤両者を
含まない場合においては、相当数漏液しているが、本発
明による両者を含んだものは漏液しないことがわかる。
As is clear from the table, the gas generation is suppressed by combining the inhibitors, and it may be further suppressed by subtly changing the combination and the addition amount. In Table 6, regarding the number of leaked liquids, 20 batteries of each type were made as prototypes and 1Ω constant resistance discharge was performed for 22 minutes. After discharging, the battery was stored at a temperature of 60 ° C. for 2 months, and then the leaked state of the battery was observed. It can be seen that, when neither the fluorosurfactant nor the group IIIA inhibitor is contained, a considerable number of liquids are leaked, but those containing both according to the present invention do not leak.

このように、フッ素系界面活性剤とIIIA族の元素を含む
亜鉛合金腐食抑制剤を含有したゲル状亜鉛負極を用いる
ことにより、無水銀あるいは極低水銀亜鉛の電池は、ガ
ス発生による電池内圧の上昇を抑制し、耐漏液性を向上
させることが可能である。
Thus, by using a gelled zinc negative electrode containing a zinc alloy corrosion inhibitor containing a fluorine-based surfactant and a Group IIIA element, a battery of anhydrous silver or ultra-low mercury zinc can be used to reduce the battery internal pressure due to gas generation. It is possible to suppress the rise and improve the liquid leakage resistance.

実施例4 フッ素系界面活性剤及び、亜鉛合金腐食抑制剤として水
酸化リチウムを含有させたゲル状亜鉛負極の場合につい
て説明する。
Example 4 A case of a gelled zinc negative electrode containing a fluorine-based surfactant and lithium hydroxide as a zinc alloy corrosion inhibitor will be described.

ゲル状亜鉛負極は以下のようにして調製した。まず、40
重量%の水酸化カリウム溶液(ZnOを含む)に3重量%
のポリアクリル酸リーダと1重量%のカルボキシメチル
セルロースを加えてゲル化する。この後にゲル状電解液
に対して重量比で2倍の亜鉛合金を加えるが、亜鉛合金
を加える前に、フッ素系界面活性剤と水酸化リチウムを
加えて十分に混合する。これらの量は、亜鉛合金粉を入
れた後に指定された割合になるように調製する。フッ素
系界面活性剤,水酸化リチウムの添加割合は、ゲル状亜
鉛負極全体に対する割合である。また、前記亜鉛合金に
は、インジウム,鉛,アルミニウムを各々0.05重量%含
むものを用いた。フッ素系界面活性剤には、パーフルオ
ロアルキル基とポリオキシエチレン基の両方持つものを
用いた。
The gelled zinc negative electrode was prepared as follows. First, 40
3 wt% in a wt% potassium hydroxide solution (including ZnO)
Gelation is carried out by adding the polyacrylic acid leader of 1. and 1% by weight of carboxymethyl cellulose. After this, a zinc alloy is added to the gel electrolyte in a weight ratio of 2 times. Before the zinc alloy is added, the fluorine-based surfactant and lithium hydroxide are added and thoroughly mixed. These amounts are adjusted to the specified ratio after the zinc alloy powder is added. The addition ratio of the fluorine-based surfactant and lithium hydroxide is the ratio with respect to the whole gel zinc negative electrode. Further, as the zinc alloy, one containing 0.05% by weight of indium, lead and aluminum was used. As the fluorinated surfactant, one having both a perfluoroalkyl group and a polyoxyethylene group was used.

まず、本発明の亜鉛合金に対する腐食抑制効果を調べ
た。実験方法は、第1図で示したアルカリマンガン電池
を試作し、1Ωの定抵抗放電を22分間行う。その後に電
池を分解してゲル状亜鉛負極を2g採取し、10日間,60℃
の温度下で発生した水素ガス量を測定した。ゲル状亜鉛
負極中に投入する水酸化チリウムの添加量を0.5重量
%,フッ素界面活性剤の添加量を0.1重量%もしくは無
添加として得られた結果を表7に示した。
First, the corrosion inhibition effect on the zinc alloy of the present invention was investigated. As an experimental method, the alkaline manganese battery shown in FIG. 1 was prototyped and a constant resistance discharge of 1Ω was performed for 22 minutes. After that, the battery was disassembled, 2 g of the gelled zinc negative electrode was collected, and the temperature was maintained at 60 ° C for 10 days.
The amount of hydrogen gas generated under the temperature was measured. Table 7 shows the results obtained when the addition amount of thylium hydroxide added to the gelled zinc negative electrode was 0.5% by weight and the addition amount of the fluorosurfactant was 0.1% by weight or no addition.

比較のために、フッ素系界面活性剤のみ添加したもの
と、どちらかも添加していないものの測定も行った。表
7に示したガス発生量は、水酸化チリウム,フッ素系界
面活性剤,両者とも無添加である場合を100とした時の
指数で示した。表7より明白なように、フッ素系界面活
性剤と水酸化リチウムが共存する場合に限りガス発生量
の指数が51と大幅に減少する。つまり、どちらか一方だ
けでは指数が78〜81程度であったものが共存することに
より相乗効果を発揮し、ガス発生量を大幅に抑制するこ
とができる。
For comparison, measurements were also carried out for the case where only the fluorine-based surfactant was added and the case where neither was added. The gas generation amount shown in Table 7 is shown as an index when 100 is assumed when neither thylium hydroxide nor a fluorine-containing surfactant is added. As is clear from Table 7, the index of gas generation amount is greatly reduced to 51 only when the fluorine-based surfactant and lithium hydroxide coexist. In other words, the coexistence of the index values of about 78 to 81 with only one of them causes a synergistic effect, and the gas generation amount can be significantly suppressed.

次にフッ素系界面活性剤の添加量について検討した。実
験方法は、フッ素系界面活性剤の濃度を変化させ、その
時のガス発生量と放電性能を検討した。実施例1で示し
たものと同様に、第1図で示したアルカリマンガン電池
を試作する。ガス発生測定は1Ω,22分放電後の電池の
ゲル負極を2g採取し、10日間,60℃の温度下で発生した
水素ガス量を測定する。また、電池の放電性能に関して
は10Ωの連続放電を行った。ゲル状亜鉛負荷中には、水
酸化リチウムが0.5重量%と、フッ素系界面活性剤が指
定量混入されている。得られた結果を第8図に示した。
第8図において実線がガス発生量を示し、破線が10Ω連
続放電時の平均電圧を示した。ガス発生量に関しては、
界面活性剤,水酸化リチウムともに無添加の場合を100
とした指数で示した。第8図より明白なように、フッ素
系界面活性剤の添加量が増せば(添加量0.05wt%付近ま
で)ガス発生量は抑えられ、それを越えるとあまり変化
しなくなる。一方、平均電圧は添加量の増加に伴って徐
々に低下し、1重量%を越えたあたりから急激に低下す
ることがわかる。したがって、これら両者の関係を考え
合せると、フッ素系界面活性剤の添加量は0.01〜1.0重
量%であることが好ましい。
Next, the amount of the fluorine-based surfactant added was examined. As the experimental method, the concentration of the fluorine-based surfactant was changed, and the gas generation amount and discharge performance at that time were examined. Similar to the one shown in Example 1, the alkaline manganese battery shown in FIG. 1 is prototyped. For gas generation measurement, 2 g of the gel negative electrode of the battery after discharging for 1 Ω for 22 minutes is sampled, and the amount of hydrogen gas generated at a temperature of 60 ° C. for 10 days is measured. Regarding the discharge performance of the battery, continuous discharge of 10Ω was performed. During loading of gel-like zinc, 0.5% by weight of lithium hydroxide and a specified amount of fluorine-based surfactant were mixed. The obtained results are shown in FIG.
In FIG. 8, the solid line shows the gas generation amount, and the broken line shows the average voltage during 10Ω continuous discharge. Regarding the amount of gas generated,
100% when neither surfactant nor lithium hydroxide is added
It was shown by the index. As is clear from FIG. 8, the gas generation amount is suppressed when the addition amount of the fluorine-based surfactant is increased (up to the addition amount of around 0.05 wt%), and beyond that, it hardly changes. On the other hand, it can be seen that the average voltage gradually decreases with an increase in the amount of addition, and sharply decreases after exceeding 1% by weight. Therefore, considering the relationship between both, it is preferable that the addition amount of the fluorine-based surfactant is 0.01 to 1.0% by weight.

次に、水酸化リチウムの添加量の変化に伴うガス発生量
及び放電性能について検討した。実験方法は、第1図で
示したアルカリマンガン電池を試作し、1Ωの定抵抗放
電を22分間行う。その後に電池を分解してゲル状亜鉛負
極を2g採用し、10日間,60℃の温度化で発生した水素ガ
ス量を測定する。また、電池の放電性能に関しては、10
Ωの連続放電を行った。ゲル状亜鉛負極中にはフッ素系
界面活性剤が0.1重量%と水酸化リチウムが指定量混入
されている。得られた結果を第9図に示した。第9図に
おいて実線がガス発生量を示し、破線が10Ω連続放電時
の平均電圧を示した。ガス発生量に関しては界面活性
剤,水酸化リチウムともに無添加の場合を100とした指
数である。第9図より明らかなように、0.05重量%まで
水酸化リチウムの添加量が増せばガス発生量は抑えら
れ、その後は一定となる。一方、平均電圧は水酸化リチ
ウウの添加量が増すにつれて徐々に低下し、10重量%を
越えると急激に低下する。これら2つの現象を考え合せ
ると水酸化リチウムの添加量は0.01〜10重量%が好まし
い。
Next, the amount of gas generated and the discharge performance with changes in the amount of lithium hydroxide added were examined. As an experimental method, the alkaline manganese battery shown in FIG. 1 was prototyped and a constant resistance discharge of 1Ω was performed for 22 minutes. After that, the battery is disassembled and 2 g of a gelled zinc negative electrode is adopted, and the amount of hydrogen gas generated at a temperature of 60 ° C. for 10 days is measured. Also, regarding the discharge performance of the battery,
A continuous discharge of Ω was performed. The gelled zinc negative electrode contains 0.1% by weight of a fluorosurfactant and a specified amount of lithium hydroxide. The obtained results are shown in FIG. In FIG. 9, the solid line shows the gas generation amount, and the broken line shows the average voltage during 10Ω continuous discharge. The amount of gas generated is an index with 100 when neither surfactant nor lithium hydroxide is added. As is clear from FIG. 9, if the amount of lithium hydroxide added is increased up to 0.05% by weight, the amount of gas generation is suppressed, and thereafter it becomes constant. On the other hand, the average voltage gradually decreases as the amount of lithium hydroxide added increases, and sharply decreases when it exceeds 10% by weight. Considering these two phenomena, the addition amount of lithium hydroxide is preferably 0.01 to 10% by weight.

このように、フッ素系界面活性剤と亜鉛合金腐食抑制剤
として水酸化リチウムを含有したゲル状亜鉛負極を用い
ることにより、無水銀あるいは極低汞化亜鉛の電池は、
ガス発生による電池内圧の上昇を抑制して耐漏液性を向
上させることが可能である。
Thus, by using a gelled zinc negative electrode containing lithium hydroxide as a fluorine-based surfactant and a zinc alloy corrosion inhibitor, a battery of anhydrous silver or extremely low zinc halide,
It is possible to suppress the rise in the internal pressure of the battery due to the generation of gas and improve the liquid leakage resistance.

発明の効果 以上のように本発明によれば、アルカリ電池においてゲ
ル状亜鉛負極中に、フッ素系界面活性剤及び亜鉛合金腐
食抑制剤を含有することで、無汞化亜鉛あるいは、極低
汞化亜鉛を使用しても、電池内圧の上昇を抑制して耐漏
液性が向上するという効果が得られる。
EFFECTS OF THE INVENTION As described above, according to the present invention, in a gelled zinc negative electrode in an alkaline battery, a fluorine-based surfactant and a zinc alloy corrosion inhibitor are contained, whereby zinc-free or extremely low-leveling is achieved. Even if zinc is used, it is possible to obtain the effect of suppressing the rise in internal pressure of the battery and improving the liquid leakage resistance.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例における電池の断面図であり、
第2図から第9図は腐食抑制剤の添加量とガス発生指数
及び放電時の平均電圧との関係を示す図である。 1……正極合剤、2……フッ素系界面活性剤及び亜鉛合
金腐食抑制剤をゲル電解液中に含む無水銀亜鉛合金を用
いたゲル状負極、3……セパレータ。
FIG. 1 is a sectional view of a battery according to an embodiment of the present invention,
2 to 9 are graphs showing the relationship between the amount of corrosion inhibitor added, the gas generation index, and the average voltage during discharge. 1 ... Positive electrode mixture, 2 ... Gel-like negative electrode using anhydrous silver-zinc alloy containing gel-electrolytic solution containing fluorochemical surfactant and zinc alloy corrosion inhibitor, 3 ... Separator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 峠 成二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 新田 芳明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 末次 佐知子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Seiji Toge, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Yoshiaki Nitta, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Suetsugu Sachiko 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】負極の主活物質として無汞化あるいは、水
銀量500ppmまでの低汞化亜鉛金粉を用い、これをゲル状
アルカリ電解液に混合してなるゲル状亜鉛負極を備えた
アルカリ電池であって、前記ゲル状アルカリ電解液中
に、フッ素系界面活性剤及び、周期表IIIB族の元素を含
む亜鉛合金腐食抑制剤を含有させたことを特徴とするア
ルカリ電池。
1. An alkaline battery provided with a gel-like zinc negative electrode obtained by using unreduced or low-definition zinc gold powder having a mercury content of up to 500 ppm as a main active material of a negative electrode and mixing this with a gel-like alkaline electrolyte. An alkaline battery, wherein the gelled alkaline electrolyte contains a fluorine-based surfactant and a zinc alloy corrosion inhibitor containing an element of Group IIIB of the periodic table.
【請求項2】亜鉛合金腐食抑制剤は、インジウム,ガリ
ウム,タリウム,ホウ素の群の中の少なくとも1つの酸
化物か水酸化物、またはそのアルカリ金属塩であること
を特徴とする特許請求の範囲第1項記載のアルカリ電
池。
2. The zinc alloy corrosion inhibitor is at least one oxide or hydroxide selected from the group of indium, gallium, thallium and boron, or an alkali metal salt thereof. The alkaline battery according to item 1.
【請求項3】フッ素系界面活性剤は、ゲル状亜鉛負極に
対して含有量が0.01〜1重量%であることを特徴とする
特許請求の範囲第1項記載のアルカリ電池。
3. The alkaline battery according to claim 1, wherein the content of the fluorine-based surfactant is 0.01 to 1% by weight with respect to the gelled zinc negative electrode.
【請求項4】亜鉛合金腐食抑制剤は、総量でゲル状亜鉛
負極に対して0.01〜10重量%であることを特徴とする特
許請求の範囲第1項または第2項記載のアルカリ電池。
4. The alkaline battery according to claim 1, wherein the total amount of the zinc alloy corrosion inhibitor is 0.01 to 10% by weight with respect to the gelled zinc negative electrode.
【請求項5】負極の生活物質として無汞化あるいは、水
銀量500ppmまでの低汞化亜鉛金粉を用い、これをゲル状
アルカリ電解液に混合してなるゲル状亜鉛負極を備えた
アルカリ電池であって、前記ゲル状アルカリ電池液中に
フッ素系界面活性剤及び周期表IVB族の元素を含む亜鉛
合金腐食抑制剤を含有させたことを特徴とするアルカリ
電池。
5. An alkaline battery provided with a gelled zinc negative electrode prepared by mixing a gelled alkaline electrolyte with unblended or low-graded zinc gold powder having a mercury content of up to 500 ppm as a living material for the negative electrode. An alkaline battery characterized in that the gelled alkaline battery liquid contains a fluorine-based surfactant and a zinc alloy corrosion inhibitor containing an element of Group IVB of the periodic table.
【請求項6】亜鉛合金腐食抑制剤は、鉛,スズ,ゲルマ
ニウムの群の中の少なくとも1つの酸化物か水酸化物、
またはそのアルカリ金属塩であることを特徴とする特許
請求の範囲第5項記載のアルカリ電池。
6. A zinc alloy corrosion inhibitor is at least one oxide or hydroxide from the group of lead, tin and germanium,
Alternatively, the alkaline battery according to claim 5, which is an alkali metal salt thereof.
【請求項7】フッ素系界面活性剤は、ゲル状亜鉛負極に
対して含有量が0.01〜1重量%であることを特徴とする
特許請求の範囲第5項記載のアルカリ電池。
7. The alkaline battery according to claim 5, wherein the content of the fluorine-based surfactant is 0.01 to 1% by weight with respect to the gelled zinc negative electrode.
【請求項8】亜鉛合金腐食抑制剤は、総量でゲル状亜鉛
負極に対して0.01〜10重量%であることを特徴とする特
許請求の範囲第5項または第6項記載のアルカリ電池。
8. The alkaline battery according to claim 5, wherein the total amount of the zinc alloy corrosion inhibitor is 0.01 to 10% by weight with respect to the gelled zinc negative electrode.
【請求項9】負極の主活物質として無汞化あるいは、水
銀量500ppmまでの低汞化亜鉛金粉を用い、これをゲル状
アルカリ電解液に混合してなるゲル状亜鉛負極を備えた
アルカリ電池であって、前記ゲル状アルカリ電解液中に
フッ素系界面活性剤及びランタノイド系を含む周期表II
IA族の元素を含む亜鉛合金腐食抑制剤を含有させたこと
を特徴とするアルカリ電池。
9. An alkaline battery provided with a gel-like zinc negative electrode obtained by using unreduced or low-definition zinc gold powder having a mercury content of up to 500 ppm as a main active material of the negative electrode and mixing this with a gel-like alkaline electrolyte. The periodic table II containing a fluorosurfactant and a lanthanoid system in the gelled alkaline electrolyte.
An alkaline battery comprising a zinc alloy corrosion inhibitor containing a Group IA element.
【請求項10】亜鉛合金腐食抑制剤は、スカンジウム,
イットリウム,ランタン,セリウム,ネオジウム,サマ
リウムの群の中の少なくとも1つの酸化物か水酸化物、
またはそのアルカリ金属塩であることを特徴とする特許
請求の範囲第9項記載のアルカリ電池。
10. A zinc alloy corrosion inhibitor is scandium,
At least one oxide or hydroxide from the group of yttrium, lanthanum, cerium, neodymium, samarium,
The alkaline battery according to claim 9, which is also an alkali metal salt thereof.
【請求項11】フッ素系界面活性剤は、ゲル状亜鉛負極
に対して含有量が0.01〜1重量%であることを特徴とす
る特許請求の範囲第9項記載のアルカリ電池。
11. The alkaline battery according to claim 9, wherein the content of the fluorine-based surfactant is 0.01 to 1% by weight with respect to the gelled zinc negative electrode.
【請求項12】亜鉛合金腐食抑制剤は、総量でゲル状亜
鉛負極に対して0.01〜10重量%であることを特徴とする
特許請求の範囲第9項または第10項記載のアルカリ電
池。
12. The alkaline battery according to claim 9, wherein the total amount of the zinc alloy corrosion inhibitor is 0.01 to 10% by weight with respect to the gelled zinc negative electrode.
【請求項13】負極の生活物質として無汞化あるいは、
水銀量500ppmまでの低汞化亜鉛金粉を用い、これをゲル
状アルカリ電解液に混合してなるゲル状亜鉛負極を備え
たアルカリ電池であって、前記ゲル状アルカリ電解液中
に、フッ素系界面活性剤及び、亜鉛合金腐食抑制剤とし
て水酸化リチウムを含有させたことを特徴とするアルカ
リ電池。
13. A method for producing a negative electrode as a living substance,
An alkaline battery comprising a gelled zinc negative electrode obtained by mixing low-grade zinc-gold powder with a mercury content of up to 500 ppm into a gelled alkaline electrolyte, wherein the gelled alkaline electrolyte contains a fluorine-based interface. An alkaline battery comprising an activator and lithium hydroxide as a zinc alloy corrosion inhibitor.
【請求項14】フッ素系界面活性剤は、ゲル状亜鉛負極
に対して含有量が0.01〜1重量%であることを特徴とす
る特許請求の範囲第13項記載のアルカリ電池。
14. The alkaline battery according to claim 13, wherein the content of the fluorine-based surfactant is 0.01 to 1% by weight based on the gelled zinc negative electrode.
【請求項15】水酸化リチウムは、その総量がゲル状亜
鉛負極に対して0.01〜10重量%であることを特徴とする
特許請求の範囲第13項記載のアルカリ電池。
15. The alkaline battery according to claim 13, wherein the total amount of lithium hydroxide is 0.01 to 10% by weight with respect to the gelled zinc negative electrode.
JP1088833A 1989-04-07 1989-04-07 Alkaline battery Expired - Lifetime JPH0732015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1088833A JPH0732015B2 (en) 1989-04-07 1989-04-07 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1088833A JPH0732015B2 (en) 1989-04-07 1989-04-07 Alkaline battery

Publications (2)

Publication Number Publication Date
JPH02267856A JPH02267856A (en) 1990-11-01
JPH0732015B2 true JPH0732015B2 (en) 1995-04-10

Family

ID=13953948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1088833A Expired - Lifetime JPH0732015B2 (en) 1989-04-07 1989-04-07 Alkaline battery

Country Status (1)

Country Link
JP (1) JPH0732015B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016183373A1 (en) * 2015-05-13 2016-11-17 Spectrum Brands, Inc. Alkaline cell with improved discharge efficiency

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135776A (en) * 1991-11-13 1993-06-01 Hitachi Maxell Ltd Cylindrical alkaline battery
JP3553104B2 (en) * 1992-08-04 2004-08-11 株式会社エスアイアイ・マイクロパーツ Alkaline battery
JPH0785877A (en) * 1993-09-10 1995-03-31 Toshiba Battery Co Ltd Button type alkaline battery
JP3490799B2 (en) * 1995-05-31 2004-01-26 三洋電機株式会社 Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP4083482B2 (en) * 2001-08-09 2008-04-30 三洋化成工業株式会社 Gelling agent for alkaline battery and alkaline battery
JP2009170157A (en) 2008-01-11 2009-07-30 Panasonic Corp Aa alkaline battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124147A (en) * 1984-07-11 1986-02-01 Fuji Elelctrochem Co Ltd Alkaline battery
JPS6127063A (en) * 1984-07-04 1986-02-06 ソシエテ・レ・ピレ・ワンデール Method of stabilizing primary electrochemical generator
JPH0279367A (en) * 1988-07-25 1990-03-19 Cipel Electrochemical battery equipped with alkaline electrolyte and zinc negative electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127063A (en) * 1984-07-04 1986-02-06 ソシエテ・レ・ピレ・ワンデール Method of stabilizing primary electrochemical generator
JPS6124147A (en) * 1984-07-11 1986-02-01 Fuji Elelctrochem Co Ltd Alkaline battery
JPH0279367A (en) * 1988-07-25 1990-03-19 Cipel Electrochemical battery equipped with alkaline electrolyte and zinc negative electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016183373A1 (en) * 2015-05-13 2016-11-17 Spectrum Brands, Inc. Alkaline cell with improved discharge efficiency
EP3295498B1 (en) * 2015-05-13 2023-09-06 Varta Consumer Batteries GmbH & Co. KGaA Alkaline cell with improved discharge efficiency

Also Published As

Publication number Publication date
JPH02267856A (en) 1990-11-01

Similar Documents

Publication Publication Date Title
EP0510239A1 (en) Zinc-alkaline batteries
JPH0732015B2 (en) Alkaline battery
JP2525719B2 (en) Electrochemical primary battery having a stabilized reactive negative electrode made of zinc, aluminum or magnesium, and its stabilized negative electrode
JPH0371559A (en) Zinc alkaline battery
JPH02297863A (en) Alkaline battery
JPH05151975A (en) Alkaline zinc battery
JP2792100B2 (en) Zinc alloy for alkaline zinc battery and alkaline zinc battery using the same
JPH05174826A (en) Zinc alkaline battery
JPH0750612B2 (en) Zinc alkaline battery
JP2755977B2 (en) Alkaline battery
JPH0760685B2 (en) Zinc alkaline battery
JPH031456A (en) Zinc alkaline battery
JP2798680B2 (en) Alkaline battery
JP2935855B2 (en) Alkaline battery
JPS61193362A (en) Zinc alkaline battery
JPS63239769A (en) Zinc alkaline cell
JPS63276871A (en) Zinc alkali cell
JPS6240157A (en) Zinc alkaline battery
JPS6180758A (en) Alkali battery
JPH0777131B2 (en) Zinc alkaline battery
JPH02270265A (en) Zinc alkaline battery
JPH0719601B2 (en) Zinc alloy for alkaline zinc battery, method for producing the same, and alkaline zinc battery using the same
JPH10214618A (en) Alkaline battery
JPH07254407A (en) Unamalgamated zinc alkaline battery
JPH0574460A (en) Zinc alkaline battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080410

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 14

EXPY Cancellation because of completion of term