JPH0279367A - Electrochemical battery equipped with alkaline electrolyte and zinc negative electrode - Google Patents

Electrochemical battery equipped with alkaline electrolyte and zinc negative electrode

Info

Publication number
JPH0279367A
JPH0279367A JP1192421A JP19242189A JPH0279367A JP H0279367 A JPH0279367 A JP H0279367A JP 1192421 A JP1192421 A JP 1192421A JP 19242189 A JP19242189 A JP 19242189A JP H0279367 A JPH0279367 A JP H0279367A
Authority
JP
Japan
Prior art keywords
electrochemical cell
indium
zinc
battery
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1192421A
Other languages
Japanese (ja)
Inventor
Rene Vignaud
ルネ・ビニヨー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wonder SA
Compagnie Industrielle des Piles Electriques CIPEL SA
Original Assignee
Wonder SA
Compagnie Industrielle des Piles Electriques CIPEL SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wonder SA, Compagnie Industrielle des Piles Electriques CIPEL SA filed Critical Wonder SA
Publication of JPH0279367A publication Critical patent/JPH0279367A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PURPOSE: To provide a pollution-free battery by making zinc beads contain indium thereon and specifying the amount of content of organic compounds. CONSTITUTION: A battery C is configured, being equipped with a zinc electrode containing, for example, 50ppm of C6 F13 C2 H4 (C2 H4 O)14 OH and 0.2% of Indium. Hereat although the battery C has a smaller content of a stabilizing chemical compound compared to battery A; the battery C has a rate of zinc corrosion of 1μl/gd, its discharge characteristics shows a remarkably improved discharging, and the drop in voltage after 1 hour is not observed. Having thus described the invention, the zinc electrode does not contain mercury, cadmium and lead, but contains indium of 0.005 to 1% by weight, extending on the surface of zinc beads, and also at least one organic stabilizing chemical compound of 1ppm to 1000ppm selected from the group consisting of poly-fluoride compounds of ethoxyfluoro alcohols and compounds of polyethoxy alcohol-alkyls. Thus in an alkaline battery having a zinc negative electrode, a clean battery can be obtained.

Description

【発明の詳細な説明】 本発明は、アルカリ電解質及び亜鉛負極を備えた電気化
学電池、及び特に負極がアルカリ溶液によって腐食され
得る、亜鉛/二酸化マンガン、亜鉛/酸化銀又i亜鉛/
空気形式のアルカリ−吹型池に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an electrochemical cell with an alkaline electrolyte and a zinc negative electrode, and in particular with zinc/manganese dioxide, zinc/silver oxide or zinc/
Pertains to air-type alkaline-blown ponds.

この種の一次電池は高エネルギを得ることを可能ならし
めはするが、アルカリ電解質内で反応性のそれらの負極
の可腐食性のために、在庫中に電解質内への陰極の局部
可溶化から生じる電池の容量損失として現れるかなりの
程度の安定性の減退を示す。さらに電解質の放出及び時
には電池の安1”t    − 全弁の破裂を引起こすガス圧を生じる気体水素のかなり
の量の連続的放出も現れる。これらの有害現象の重要性
は例えば熱帯国における在庫中の温度上昇の場合に増大
する。
Although this type of primary cells makes it possible to obtain high energies, due to the corrosive nature of their negative electrodes, which are reactive in alkaline electrolytes, there is a risk of local solubilization of the negative electrodes in the electrolyte during storage. It shows a significant degree of stability degradation manifested as a resulting battery capacity loss. In addition, there is also a continuous release of considerable amounts of gaseous hydrogen, which generates gas pressures that cause the release of electrolyte and sometimes even the rupture of the battery's safety valves. increases in case of an increase in temperature inside.

この種の現象を防ぐため数十年以来あらゆる電池製造業
層は亜鉛電極をアマルガムにし、場合によってはカドミ
ウム及び鉛を添加している。事実水銀と鉛は水素放出過
電圧を降下させ又は云ムかえれば亜鉛の腐食を防ぐため
の単純りつ有効な手段であり、カドミウムはさらに導電
性を向上させる役割も果す。
To prevent this type of phenomenon, for several decades now all battery manufacturers have amalgamated zinc electrodes, sometimes adding cadmium and lead. In fact, mercury and lead are simple and effective means to reduce hydrogen release overpotentials or, in other words, prevent corrosion of the zinc, and cadmium also serves to improve conductivity.

確かにこれらの元素、水銀、カドミ1クム、鉛は各電池
内に少量導入されるが、多(の文献はこれらの元素が環
境内に拡散することによって生じる危険並びにこれらの
元素が食物連鎖内に再発見されるという極めて重大な危
険について警告を発り。
While it is true that these elements, mercury, cadmium, and lead, are introduced in small amounts into each battery, many literatures indicate the dangers posed by the dispersion of these elements into the environment, as well as the risk that these elements may enter the food chain. warning of the grave danger of being rediscovered.

ている。事実消費者によって投棄された電池は2つのタ
イプの運命をたどる。一方ではごみ捨て場ないし汚水処
理場に堆積され、電池容器が一定期間中味を保護し次い
で腐食し、水銀の放射性物質は流水により溶出される。
ing. In fact, batteries discarded by consumers suffer two types of fate. On the one hand, it is deposited in garbage dumps or sewage treatment plants, where the battery container protects the taste for a period of time and then corrodes, and the radioactive mercury is leached out by running water.

他方では焼却炉で処理され、水銀は蒸発して大気中に煙
と共に拡散し、付近に再凝結する。
On the other hand, it is processed in incinerators, where the mercury evaporates and diffuses into the atmosphere with smoke, where it recondenses nearby.

どちらの場合にも水銀は環境内にもどる。In both cases, mercury returns to the environment.

水銀、カドミウム又は鉛を含有する使用済み電池を回収
することがしばしば推奨されるが、これは管理がさらに
危険な凝縮廃棄物となるから即想的な解決法であるとは
思われない。
Although it is often recommended to collect used batteries containing mercury, cadmium or lead, this does not seem to be an immediate solution as it results in condensed waste which is even more dangerous to manage.

従って電池内のこの種の金属の凝縮を無くすべきことを
一般に要求する規則4越えてそれらを完全に除去する方
法を見い出すことが大切である。
It is therefore important to go beyond Rule 4, which generally requires that such metal condensation in batteries be eliminated, and find ways to completely eliminate them.

しかし亜鉛に対して3単回%以ドの低い水銀含有量は電
池保存のためにすでに不充分であり、様々な代替え方法
がすでに試みられてぎた。
However, low mercury contents of less than 3% relative to zinc are already insufficient for battery preservation, and various alternative methods have already been tried.

1958年4月26日付日9本公告第1958−320
4号は、亜鉛電極にインジウムを含む種々の物質を加え
る提案をしている。フランス特許第FR−A−2511
395号はガリウムを推奨している。しかし両方の場合
共、5%にアマルガム化された亜鉛電極の場合より腐食
速度が100倍も早いことから、充分な結果を与えるに
は到らなかった。インジウム又はガリウム、の添加に加
えて、鉛又はカドミウムを加える必要があり、しかも一
定量の水銀の保存も必要であることが判明した。
Announcement No. 1958-320 dated April 26, 1958
No. 4 proposes adding various materials including indium to the zinc electrode. French Patent No. FR-A-2511
No. 395 recommends gallium. However, in both cases the corrosion rate was 100 times faster than with the 5% amalgamated zinc electrode, giving unsatisfactory results. It has been found that in addition to the addition of indium or gallium, it is necessary to add lead or cadmium, and also to store a certain amount of mercury.

フランス特許第111−A−2156662号では電池
に様々な有機化合物例えばジェタノールアミン、オレイ
ン酸、モノラウリルエーテル、アミン、第四級アミン化
合物及びエチレン第4−シトを含む重合体を導入するこ
とを提案している。これらはすべて水銀を部分的に代替
えするためのものである。
French Patent No. 111-A-2156662 describes the introduction into batteries of various organic compounds such as jetanolamine, oleic acid, monolauryl ethers, amines, quaternary amine compounds and polymers containing ethylene 4-site. is suggesting. All of these are intended to partially replace mercury.

ヨーロッパ特許出願第[P−八−020!i 783号
は亜鉛の重囲に対して0.001重量%から0.8重量
%のエチレンオキシド重合体を0.005重量%から0
.1ffi 1%のインジウムと共に添加する技術を開
示している。亜鉛電極の水銀含有量は3重金%から0.
04重量%の範囲の値、さらに好ましくは約2%から約
0.08%の範囲に切りつめられる。この特許出願のも
うひとつの特徴は、エチレンオキシド重合体とインジウ
ムの両方が一緒に添加された場合であっても、0.04
%以下の水銀量は電池の安定性にとって不足であること
である。
European Patent Application No. [P-8-020! i No. 783 contains 0.001% to 0.8% by weight of ethylene oxide polymer based on the weight of zinc and 0.005% to 0% by weight.
.. 1ffi discloses a technique for doping with 1% indium. The mercury content of zinc electrodes ranges from 3% to 0% heavy metal.
0.04% by weight, more preferably from about 2% to about 0.08%. Another feature of this patent application is that even when both ethylene oxide polymer and indium are added together, 0.04
% or less is insufficient for the stability of the battery.

フランス特許第FR−^−256732Q号で本出願人
は亜鉛に対して0.01重量%〜1重量%のエトキシル
フルオロアルコール系有機ポリフッ化化合物を添加する
ことによって亜鉛電極を安定化する方法を開示している
。本出願人はまたフランス特許第FR−A、−2583
580号においてポリニドキシルアルコール−アルキル
系の別の化合物をo、ooi%から1重−〇    − 量%の濃度で添加することを提案している。この両方の
先1:l技術の場合、亜鉛腐食の問題は解決されたりれ
ども電池電圧レベルは低下し、さらに電圧レベルの低下
が電流の必要を通す、つまり電流が高くなればそれだけ
電圧が降下することが観察された。
In French Patent No. FR-^-256732Q, the applicant discloses a method for stabilizing zinc electrodes by adding 0.01% to 1% by weight of an ethoxylfluoroalcohol-based organic polyfluorinated compound relative to zinc. are doing. The applicant also has French Patent No. FR-A, -2583
No. 580 proposes adding other compounds of the polynidoxyl alcohol-alkyl series in concentrations of from 0.00% to 1% by weight. In the case of 1:1 technology, which solves the zinc corrosion problem, the battery voltage level decreases, and the lower voltage level passes the current requirement, meaning that the higher the current, the lower the voltage. It was observed that

本発明の目的はこの欠点を是正し、亜鉛負電極をもつア
ルカリ電池で、「清潔な」電池つまり水銀、カドミウム
及び鉛を全く含有せず、しかも亜鉛が5%アマルガム化
されている電池と同等の性能を提供するものを提供する
ことである。
The aim of the present invention is to rectify this drawback and to provide an alkaline battery with a zinc negative electrode that is equivalent to a "clean" battery, i.e. a battery that does not contain any mercury, cadmium and lead, but is amalgamated with 5% zinc. The goal is to provide products that provide the same performance.

I1立lL 本発明はアルカリN解質と亜鉛負極を持つ電気化学電池
であって、前記亜鉛電極が水銀、カドミウム及び鉛を含
まず、亜鉛粒子面上に広がる0、 005重量%から1
重石%のインジウムを含み、さらにエトキシルフルオロ
アルコール系のポリフッ化物化合物及びポリニドキシル
アルコール及びアルコイル系の化合物から選択された1
ppHlから11000ppの少なくとも1つの有機安
定化化合物を含有する。
The present invention is an electrochemical cell having an alkaline N solute and a zinc negative electrode, wherein the zinc electrode does not contain mercury, cadmium, or lead, and has a concentration of 0.005% to 1% by weight spread over the surface of the zinc particles.
1 containing % indium and further selected from ethoxylfluoroalcohol-based polyfluoride compounds and polynidoxyl alcohol and alcoyl-based compounds.
Contains from ppHl to 11000 pp of at least one organic stabilizing compound.

この亜鉛粒上のインジウムの表面分布は電極内に塩化物
のようなインジウムの塩又は好ましくは水酸化インジウ
ムを用いて液相としてどのように含まれるかによる。
This surface distribution of indium on the zinc grains depends on how it is contained in the electrode as a liquid phase using a salt of indium such as chloride or preferably indium hydroxide.

この含有方法は亜鉛−インジウム合金を用いた場合と比
較して有効性/量の比を向上させることができる。
This method of inclusion can improve the effectiveness/amount ratio compared to using a zinc-indium alloy.

好ましくは、前記有機化合物の含有量は10ppmから
200ppmの範囲内にあり、インジウムの含有lは金
属の1世に対して0.03%から0.2%の間にある。
Preferably, the content of the organic compound is in the range from 10 ppm to 200 ppm, and the content of indium is between 0.03% and 0.2%, based on the first generation of the metal.

好ましい具体例として、本発明電池は以下のような含有
量であってもよい。
As a preferred specific example, the battery of the present invention may have the following content.

インジウム0.03%と有機化合物50ppmu   
O,2%と     1100pp〃0.1%と   
   10ppm 0.05%と      10ppm 第1の変形具体例では、前記有機化合物は下記の式(1
)に一致する。
Indium 0.03% and organic compound 50ppmu
O,2% and 1100pp〃0.1%
10ppm 0.05% and 10ppm In a first variant embodiment, the organic compound has the following formula (1
) matches.

Co F2o、1−  (CH2)、−(CH2CH2
0)、−OH但し nは4から20の範囲、好ましくは6から8の範囲にあ
り、 pは1から10の範囲にあり、好ましくは2に近く、q
は3から40の範囲、好ましくは10から12の範囲に
ある。
Co F2o, 1- (CH2), -(CH2CH2
0), -OH where n is in the range 4 to 20, preferably in the range 6 to 8, p is in the range 1 to 10, preferably close to 2, and q
is in the range 3 to 40, preferably in the range 10 to 12.

例えば式は次のようであってもよい。For example, the expression may be as follows.

CF   CH(02H40)、OH 但しqは12に近い。CF CH (02H40), OH However, q is close to 12.

また次の混合物を含んでもよい。It may also contain a mixture of:

C6F 13C2H4(C2H40) 140 ト1及
び C、oF 21C2[」 4  (C2ト14 0 )
 140 Hこれは次の化合物に対応する平均分子質饅
を与える。
C6F 13C2H4 (C2H40) 140 To1 and C, oF 21C2 ['' 4 (C2 To14 0)
140 H This gives the average molecular weight corresponding to the following compound.

C7F15C2H4(C2H40)140H第2の変形
具体例では、前記有機化合物は以1・の式(2)を満足
する。
C7F15C2H4(C2H40)140H In the second modified example, the organic compound satisfies the following formula (2).

CnF2n−1−(OH2) 、 −(OH20H20
) 、 −OH但しnは4から20の範囲、好ましくは
6から8の範囲にあり、 pは1から10の範囲にあり、好まし、くは2に近く、
qは3から40の範囲、好ましくは10から12の範囲
にある。
CnF2n-1-(OH2), -(OH20H20
), -OH, where n is in the range of 4 to 20, preferably in the range of 6 to 8, p is in the range of 1 to 10, preferably close to 2,
q ranges from 3 to 40, preferably from 10 to 12.

第3の具体例では、前記有機化合物は次の式(3)を満
足する。
In a third specific example, the organic compound satisfies the following formula (3).

第4の変形具体例では、前記有機化合物は次の式(4)
を満足する。  − R−8−(CH2) 2− (0−CH2−CH,−)
。−OH但しRは枝分れしてもしなくてもよいアルキル
基、アリール基、又はアルギルアリール基であり、nは
2から100の範囲内にある。
In a fourth modified example, the organic compound has the following formula (4):
satisfy. - R-8-(CH2) 2- (0-CH2-CH,-)
. -OH, where R is an alkyl group, an aryl group, or an argylaryl group, which may or may not be branched, and n is within the range of 2 to 100.

Rは好ましくはおよそ12個の炭素原子をもつアルキル
基であり、及び/又は nは2からおよび20の範囲内にある。
R is preferably an alkyl group having approximately 12 carbon atoms and/or n is in the range from 2 to 20.

基Rは枝分れされ、特に第三級基によって構成される。The radical R is branched and in particular constituted by tertiary groups.

詳しい説明 アルカリ電池Aは水銀、カドミウム及び鉛を含まずに構
成されるが、負極は1100ppの安定化化合物CF 
CH(02H40)140Hをも含有するゲル内に拡散
された純亜鉛粉末によって構成された。
Detailed Description Alkaline battery A is constructed without mercury, cadmium and lead, but the negative electrode contains 1100 pp of stabilizing compound CF.
It was composed of pure zinc powder dispersed within a gel that also contained CH(02H40)140H.

アルカリ電解質と接触したこの電極の腐食速度が初めに
測定された。この速度は60℃の温度で1日(d)1グ
ラム(lの亜鉛について発生するマイクロリットル(成
)単位の水素量によって判定された。(参考のため挙げ
れば、5%にアマルガム化された亜鉛をもつ先行技術電
池はおよそ1.5IIi/gdの腐食速度をもち、この
値がほとんどの場合受入れられている)。電池Aの腐食
速度はおよそ11J1/adで、これは極めて満足のい
く値である。
The corrosion rate of this electrode in contact with an alkaline electrolyte was first measured. This rate was determined by the amount of hydrogen in microliters evolved per gram (l) of zinc per day (d) at a temperature of 60°C. Prior art cells with zinc have a corrosion rate of approximately 1.5 IIi/gd, which value is accepted in most cases).Battery A has a corrosion rate of approximately 11 J1/ad, which is a very satisfactory value. It is.

つぎに電池を苛酷な条件の下で、つまり5オームの抵抗
を通して放電する。図はこれに対応する放電曲線Aを示
す(Y軸はボルト単位の電圧(V)、X軸は時単位の時
間(h)を表わす)。
The battery is then discharged under harsh conditions, ie through a 5 ohm resistor. The figure shows the corresponding discharge curve A (Y-axis represents voltage (V) in volts, X-axis represents time (h) in hours).

1時間後に60ミリボルトの谷が現れることが分かる。It can be seen that a trough of 60 millivolts appears after one hour.

先行技術のアルカリ電池Bは有機安定化化合物なしで構
成されたが、ゲルは亜鉛の重量の0.2%の濃度のイン
ジウムを含有した。電池Bの腐食速度は30/jj2 
/ gdで、これは良好な電池保存性としては高すぎる
。しかし放電曲線Bは受入れられる。
Prior art alkaline cell B was constructed without organic stabilizing compounds, but the gel contained indium at a concentration of 0.2% by weight of zinc. The corrosion rate of battery B is 30/jj2
/ gd, which is too high for good battery storage. However, discharge curve B is accepted.

こうして本発明電池CがC6F13C2H4(C2I」
40 ) 140 H50pDmとインジウム0.2%
を含有する亜鉛電極を備えて構成された。
In this way, the battery C of the present invention is C6F13C2H4 (C2I"
40) 140 H50pDm and indium 0.2%
It was constructed with a zinc electrode containing.

アルカリ電解質溶液をミキサに入れ、前記溶液はカルボ
ギシーメブールセルローズによって構成されるゲル化剤
と共に酸化亜鉛を飽和さけた水酸化カリウム(゛ある。
An alkaline electrolyte solution is placed in a mixer, and the solution is mixed with potassium hydroxide saturated with zinc oxide along with a gelling agent constituted by carboxylic cellulose.

ミキサ°の回転中に亜鉛粉末が添加され、次に塩化イン
ジウムの濃縮液と有機安定化化合物が加えられる。数分
間の均質化の後、陽極ゲルが調製され、このゲルは使用
前に数日間保存に適している。
While the mixer is rotating, zinc powder is added, followed by indium chloride concentrate and organic stabilizing compounds. After a few minutes of homogenization, an anodic gel is prepared, which is suitable for storage for several days before use.

驚いたことに、電池へと比較して安定化化合物含有量は
減少しているにもかかわらず、電池Cの亜鉛腐食速度は
1111/gdで、インジウムを同一比率含有する電池
Bの腐食速度は30/1111 / t)(Iであるこ
とが観察された。
Surprisingly, despite the reduced stabilizing compound content compared to the battery, the zinc corrosion rate for battery C was 1111/gd, while the corrosion rate for battery B containing the same proportion of indium was 1111/gd. 30/1111/t) (I).

放電曲線Cは際立った放電の向上を示しそして1時間後
に電圧の落込みはない。従ってその容量は厳格な条件の
下で規則化され、そのカットオフ電圧は高い。
Discharge curve C shows a marked discharge enhancement and no drop in voltage after 1 hour. Therefore, its capacitance is regulated under strict conditions and its cut-off voltage is high.

最後に、本発明電池りが電池Cと同一形式でつくられた
が、インジウムの濃度と安定化化合物の量ははるかに低
く、インジウム0,05%、安定化化合物ioppmで
ある。
Finally, a battery according to the invention was made in the same format as battery C, but the concentration of indium and the amount of stabilizing compounds were much lower: 0.05% indium, iopm of stabilizing compounds.

腐食速度は3pf!、/l)dで、その放電曲線りは全
く正常である。
Corrosion rate is 3pf! , /l)d, and its discharge curve is completely normal.

こうして2つの添加物の量が極めて少量であっても、そ
れらの間には驚くべぎ結合効果が存在する。
Thus, even if the amounts of the two additives are extremely small, a surprising binding effect exists between them.

優れた放電曲線をもつ本発明電池の他の変形具体例では
、亜鉛粉末が0,03%のインジウムと1100ppの
安定化化合物を添加して処理されるとぎ、腐食速度はI
ce/adから2ρ/(ldであるのに、0.03%の
インジウムが存在するだけで100g/gdとなること
が観察された。
In another embodiment of the cell according to the invention, which has an excellent discharge curve, when the zinc powder is treated with the addition of 0.03% indium and 1100 pp stabilizing compounds, the corrosion rate is
Although ce/ad to 2ρ/(ld), it was observed that the presence of only 0.03% indium resulted in 100 g/gd.

勿論本発明は上記具体例に限定されない。有機化合物0
6 F1302 H4(C2H40) 140HLl:
上に挙げた他の化合物の1つに置き換えられてもよい。
Of course, the present invention is not limited to the above specific examples. Organic compounds 0
6 F1302 H4 (C2H40) 140HLl:
It may also be replaced by one of the other compounds listed above.

同様に亜鉛電極をつくるさい、塩化インジウムは水酸化
インジウムに置ぎ換えることができる。
Similarly, indium chloride can be replaced with indium hydroxide when making zinc electrodes.

上記有機化合物、特に例として使用した化合物はその無
害性を特徴とする。それらの存在はNMR(核磁気共鳴
)スペクトルによって確1−することかできる。
The organic compounds mentioned above, in particular those used as examples, are characterized by their non-toxicity. Their presence can be confirmed by NMR (nuclear magnetic resonance) spectra.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は先行技術による電池及び本発明電池の放電曲線を
表す。 A、B・・・・・・先行技術のアルカリ電池、C,D・
・・・・・本発明電池。
The drawing represents the discharge curves of a battery according to the prior art and a battery of the invention. A, B...Prior art alkaline battery, C, D...
...Battery of the present invention.

Claims (16)

【特許請求の範囲】[Claims] (1)アルカリ電解質及び亜鉛負極を備えた電気化学電
池であって、前記亜鉛電極が水銀、カドミウム及び鉛を
含まず、亜鉛粒子面上に広がる0.005重量%から1
重量%のインジウムを含み、さらにエトキシルフルオロ
アルコール系のポリフッ化化合物及びポリエトキシルア
ルコール−アルキルスルフィド系の化合物から選択され
た1ppmから1000ppmの少なくとも1つの有機
安定化化合物を含有する電気化学電池。
(1) An electrochemical cell comprising an alkaline electrolyte and a zinc negative electrode, wherein the zinc electrode does not contain mercury, cadmium, or lead, and has a range of 0.005% by weight to 1% by weight spread over the surface of the zinc particles.
% by weight of indium, and further contains from 1 ppm to 1000 ppm of at least one organic stabilizing compound selected from polyfluorinated compounds of the ethoxylfluoroalcohol type and compounds of the polyethoxyl alcohol-alkyl sulfide type.
(2)前記有機化合物の濃度が10ppmから200p
pmの範囲にある請求項1に記載の電気化学電池。
(2) The concentration of the organic compound is 10 ppm to 200 p.
An electrochemical cell according to claim 1, wherein the electrochemical cell is in the pm range.
(3)インジウムの濃度が金属重量に対して0.03%
から0.2%の範囲にある請求項1に記載の電気化学電
池。
(3) Indium concentration is 0.03% based on metal weight
2. The electrochemical cell of claim 1, wherein the electrochemical cell is in the range of 0.2% to 0.2%.
(4)0.03%のインジウムと50ppmの有機化合
物を含む請求項1に記載の電気化学電池。
4. The electrochemical cell of claim 1, comprising 0.03% indium and 50 ppm organic compounds.
(5)0.2%のインジウムと100ppmの有機化合
物を含む請求項1に記載の電気化学電池。
5. The electrochemical cell of claim 1, comprising 0.2% indium and 100 ppm organic compound.
(6)0.1%のインジウムと10ppmの有機化合物
を含む請求項1に記載の電気化学電池。
(6) The electrochemical cell of claim 1, comprising 0.1% indium and 10 ppm organic compound.
(7)0.05%のインジウムと10ppmの有機化合
物を含む請求項1に記載の電気化学電池。
(7) The electrochemical cell of claim 1, comprising 0.05% indium and 10 ppm organic compound.
(8)前記有機化合物が下記の式(1): C_nF_2_n_+_1−(CH_2)_p−(CH
_2CH_2O)_q−OH (式中、nは4から20の範囲、好ましくは6から8の
範囲にあり、pは1から10の範囲にあり、好ましくは
2に近く、そしてqは3から40の範囲、好ましくは1
0から12の範囲にある) を満足する請求項1に記載の電気化学電池。
(8) The organic compound has the following formula (1): C_nF_2_n_+_1-(CH_2)_p-(CH
_2CH_2O)_q-OH (wherein n ranges from 4 to 20, preferably from 6 to 8, p ranges from 1 to 10, preferably close to 2, and q ranges from 3 to 40) range, preferably 1
The electrochemical cell according to claim 1, wherein the electrochemical cell satisfies the following (in the range of 0 to 12).
(9)前記有機化合物が式: C_6F_1_3C_2H_4(C_2H_4O)_q
OH(式中、qは12に近い) を満足する請求項8に記載の電気化学電池。
(9) The organic compound has the formula: C_6F_1_3C_2H_4(C_2H_4O)_q
The electrochemical cell according to claim 8, which satisfies OH (wherein q is close to 12).
(10)前記亜鉛電極が C_6F_1_3C_2H_4(C_2H_4O)_1
_4OH及び C_1_0F_2_1C_2H_4(C_2H_4O)
_1_4OHの混合物であつて、化合物: C_7F_1_5C_2H_4(C_2H_4O)_1
_4OHに相当する平均分子質量をもつ混合物を含む請
求項1に記載の電気化学電池。
(10) The zinc electrode is C_6F_1_3C_2H_4(C_2H_4O)_1
_4OH and C_1_0F_2_1C_2H_4 (C_2H_4O)
A mixture of _1_4OH and the compound: C_7F_1_5C_2H_4(C_2H_4O)_1
Electrochemical cell according to claim 1, comprising a mixture with an average molecular mass corresponding to _4OH.
(11)前記有機化合物がF記の式(2):C_nF_
2_n_−_1−(CH_2)_p−(CH_2CH_
2O)_q−OH(式中、nは4から20の範囲、好ま
しくは6から8の範囲にあり、pは1から10の範囲に
あり、好ましくは2に近く、そしてqは3から40の範
囲、好ましくは10から12の範囲にある) を満足する請求項1に記載の電気化学電池。
(11) The organic compound has the formula (2) of F: C_nF_
2_n_-_1-(CH_2)_p-(CH_2CH_
2O)_q-OH (where n ranges from 4 to 20, preferably from 6 to 8, p ranges from 1 to 10, preferably close to 2, and q ranges from 3 to 40) 2. The electrochemical cell according to claim 1, wherein the electrochemical cell satisfies the following: (10 to 12).
(12)前記有機化合物が下記の式(3):▲数式、化
学式、表等があります▼ を満足する請求項1に記載の電気化学電池。
(12) The electrochemical cell according to claim 1, wherein the organic compound satisfies the following formula (3): ▲There are mathematical formulas, chemical formulas, tables, etc.▼.
(13)前記有機化合物が下記の式(4):R−S−(
CH_2)_2−(O−CH_2−CH_2−)_n−
OH(式中、Rは枝分れしてもしなくてもよいアルキル
基、アリール基又はアルキルアリール基であり、そして
nは2から100の範囲にある) を満足する請求項1に記載の電気化学電池。
(13) The organic compound has the following formula (4): R-S-(
CH_2)_2-(O-CH_2-CH_2-)_n-
OH (wherein R is an alkyl group, an aryl group, or an alkylaryl group, which may be branched or unbranched, and n is in the range of 2 to 100). chemical battery.
(14)Rがおよそ12個の炭素原子をもつアルキル基
であり、及び/又はnが2からおよそ20の範囲にある
請求項13に記載の電気化学電池。
14. The electrochemical cell of claim 13, wherein R is an alkyl group having approximately 12 carbon atoms and/or n ranges from 2 to approximately 20.
(15)前記基Rが枝分れされている請求項14に記載
の電気化学電池。
(15) The electrochemical cell according to claim 14, wherein the group R is branched.
(16)インジウムを塩化物のようなインジウム塩又は
水酸化インジウムを用いて液相として負極内に含有させ
る請求項1に記載の電気化学電池を製造する方法。
(16) The method for manufacturing an electrochemical cell according to claim 1, wherein indium is contained in the negative electrode as a liquid phase using an indium salt such as chloride or indium hydroxide.
JP1192421A 1988-07-25 1989-07-25 Electrochemical battery equipped with alkaline electrolyte and zinc negative electrode Pending JPH0279367A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8810013 1988-07-25
FR8810013A FR2634594B1 (en) 1988-07-25 1988-07-25 ELECTROCHEMICAL GENERATOR WITH ALKALINE ELECTROLYTE AND ZINC NEGATIVE ELECTRODE

Publications (1)

Publication Number Publication Date
JPH0279367A true JPH0279367A (en) 1990-03-19

Family

ID=9368738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1192421A Pending JPH0279367A (en) 1988-07-25 1989-07-25 Electrochemical battery equipped with alkaline electrolyte and zinc negative electrode

Country Status (4)

Country Link
JP (1) JPH0279367A (en)
CH (1) CH679713A5 (en)
DE (1) DE3923751C2 (en)
FR (1) FR2634594B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267856A (en) * 1989-04-07 1990-11-01 Matsushita Electric Ind Co Ltd Alkaline battery
EP0474382A1 (en) 1990-08-14 1992-03-11 Eveready Battery Company, Inc. Substantially mercury-free electrochemical cells
JPH0785877A (en) * 1993-09-10 1995-03-31 Toshiba Battery Co Ltd Button type alkaline battery

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168018A (en) * 1990-05-17 1992-12-01 Matsushita Electric Industrial Co., Ltd. Method of manufacturing zinc-alkaline batteries
JP3215448B2 (en) * 1991-03-12 2001-10-09 三洋電機株式会社 Zinc alkaline battery
JP3215446B2 (en) * 1991-03-12 2001-10-09 三洋電機株式会社 Zinc alkaline battery
JPH0738306B2 (en) * 1991-04-22 1995-04-26 松下電器産業株式会社 Zinc alkaline battery
JP3018715B2 (en) * 1992-02-26 2000-03-13 松下電器産業株式会社 Manufacturing method of zinc alkaline battery
JP3553104B2 (en) 1992-08-04 2004-08-11 株式会社エスアイアイ・マイクロパーツ Alkaline battery
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
FR2734408B1 (en) * 1995-05-19 1997-06-20 Europ Accumulateurs GAS RECOMBINANT ACCUMULATOR AND METHOD FOR REDUCING FLOATING CHARGE CURRENT
WO1998028805A1 (en) 1996-12-23 1998-07-02 Aer Energy Resources, Inc. Mercury-free zinc anode for electrochemical cell and method for making same
US6602629B1 (en) 2000-05-24 2003-08-05 Eveready Battery Company, Inc. Zero mercury air cell
ES2229956B2 (en) * 2004-10-26 2006-12-01 Celaya Emparanza Y Galdos, S.A. (Cegasa) AN ELECCHEMICAL ELEMENT AND METHODOLOGY FOR THE SELECTION OF SOME OF ITS COMPONENTS.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1086309B (en) * 1954-12-04 1960-08-04 Martin Hans Process for the production of a galvanic primary or secondary element
JPS53103127A (en) * 1977-02-21 1978-09-08 Seiko Instr & Electronics Alkaline battery
FR2567328B1 (en) * 1984-07-04 1986-07-11 Wonder METHOD FOR STABILIZING PRIMARY ELECTROCHEMICAL GENERATORS WITH REACTIVE ZINC, ALUMINUM OR MAGNESIUM ANODES AND ANODE FOR SUCH A GENERATOR STABILIZED BY THIS PROCESS
IE57432B1 (en) * 1985-02-12 1992-09-09 Duracell Int Cell corrosion reduction
JPS61203564A (en) * 1985-03-07 1986-09-09 Toshiba Corp Alkaline battery
FR2583580B1 (en) * 1985-06-18 1987-08-07 Wonder PROCESS FOR THE STABILIZATION OF PRIMARY ELECTROCHEMICAL GENERATORS WITH REACTIVE ANODES OF ZINC, ALUMINUM OR MAGNESIUM; STABILIZED ANODE OBTAINED BY THIS METHOD AND GENERATOR COMPRISING SUCH ANODE
CA1267189A (en) * 1985-06-28 1990-03-27 Jerrold Winger Alkaline cell employing a zinc electrode with reduced mercury additive

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267856A (en) * 1989-04-07 1990-11-01 Matsushita Electric Ind Co Ltd Alkaline battery
JPH0732015B2 (en) * 1989-04-07 1995-04-10 松下電器産業株式会社 Alkaline battery
EP0474382A1 (en) 1990-08-14 1992-03-11 Eveready Battery Company, Inc. Substantially mercury-free electrochemical cells
JPH04351843A (en) * 1990-08-14 1992-12-07 Eveready Battery Co Inc Alkali electrochemical tank which does not substantially contain mercury
JPH0785877A (en) * 1993-09-10 1995-03-31 Toshiba Battery Co Ltd Button type alkaline battery

Also Published As

Publication number Publication date
CH679713A5 (en) 1992-03-31
DE3923751C2 (en) 1999-05-20
DE3923751A1 (en) 1990-02-08
FR2634594B1 (en) 1993-06-18
FR2634594A1 (en) 1990-01-26

Similar Documents

Publication Publication Date Title
JPH0279367A (en) Electrochemical battery equipped with alkaline electrolyte and zinc negative electrode
Lakshmi Priya et al. Corrosion behaviour of aluminium in rain water containing garlic extract
CA1256158A (en) Process for stabilizing primary electrochemical generators with reactive anodes made from zinc, aluminium or magnesium and an anode for such a generator stabilized by this process
Dirkse et al. The corrosion of zinc in KOH solutions
US3630951A (en) Bubble compositions
Nazeer et al. Inhibition effect of cysteine and glycine towards the corrosion of Cu10Ni alloy in sulfide polluted saltwater: electrochemical and impedance study
US3877993A (en) Dry cell with corrosion inhibitor
CA1267189A (en) Alkaline cell employing a zinc electrode with reduced mercury additive
NO178506B (en) Alkaline battery, as well as process for making it
JP2525719B2 (en) Electrochemical primary battery having a stabilized reactive negative electrode made of zinc, aluminum or magnesium, and its stabilized negative electrode
JPH02273464A (en) Zinc-alkaline battery
JPS61203564A (en) Alkaline battery
US3963520A (en) Primary cell corrosion inhibitor
JPH0371559A (en) Zinc alkaline battery
JPS5960860A (en) Manganese dry cell
JPS63254671A (en) Zinc alkaline cell
AU635872B2 (en) Process for the electroextraction of zinc
JP2808822B2 (en) Manufacturing method of zinc alkaline battery
Hemmingsen et al. The reaction of the sulphite/bisulphite couple on SMO steel under anaerobic conditions
Vasconcelos et al. Evidence of conformational changes in fulvic acids from dialysis
JPS62213067A (en) Manganese dry cell
Viera et al. Comparative study of the effect of oxygen and oxygen/ozone mixtures on the electrochemical behaviour of different metals
Llongueras et al. Electrochemical Study on the Corrosion of X70 Pipeline Steel in H2S Containing Solutions
JP2798680B2 (en) Alkaline battery
JPH02174067A (en) Alkaline battery