JPH07316651A - Production of sour resistant high strength steel plate excellent in toughness at low temperature - Google Patents

Production of sour resistant high strength steel plate excellent in toughness at low temperature

Info

Publication number
JPH07316651A
JPH07316651A JP6107294A JP10729494A JPH07316651A JP H07316651 A JPH07316651 A JP H07316651A JP 6107294 A JP6107294 A JP 6107294A JP 10729494 A JP10729494 A JP 10729494A JP H07316651 A JPH07316651 A JP H07316651A
Authority
JP
Japan
Prior art keywords
steel
toughness
less
low temperature
sour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6107294A
Other languages
Japanese (ja)
Inventor
Akihiko Kojima
明彦 児島
Yoshio Terada
好男 寺田
Hiroshi Tamehiro
博 為広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6107294A priority Critical patent/JPH07316651A/en
Publication of JPH07316651A publication Critical patent/JPH07316651A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce the steel plate for line pipe by specifying the conditions of heating, rolling, and cooling of a steel slab having an Nb-free specific compo sition and performing inhibition of gamma-grain coarsening, formation of ferrite by working refining of gamma-structure, securing of sour resistance, and strengthening of transformation. CONSTITUTION:A steel slab, consisting of, by weight, 0.04-0.14% C, <=0.6% Si, 0.6-1.6% Mn, <=0.015% P, <=0.001% S, 0.005-0.03% Ti, <=0.06% Al, 0.001-0.005% Ca, 0.001-0.005% N, =0.003% O, and the balance iron and satisfying 0.5<=[Ca](1-124[O]/1.25[S]<=8.0, is used. This steel slab is heated to 900-1150 deg.C. After rolling under the conditions of >=60% cumulative rolling reduction at <=1000 deg.C and >=20% cumulative rolling reduction at a temp. between (Ar3-50 deg.C) and Ar3 is finished, the resulting rolled plate is subjected to accelerated cooling down to 350-600 deg.C at (5 to 40) deg.C/sec cooling rate and then to air cooling. Further, one or more kinds among 0.1-0.5% Ni, 0.1-0.5% Cr, 0.1-0.5% Cu, and 0.01-0.1% V can be incorporated into this steel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れた耐水素誘起割れ
性(耐HIC性)および耐硫化物応力腐食割れ性(耐S
SC性)と米国石油協会(API)規格X65以上の強
度を有し、かつ従来よりも格段に優れた低温靱性を有す
るラインパイプ用鋼板の製造に関するものであり、鉄鋼
業においては厚板ミルに適用することが望ましい。
The present invention relates to excellent hydrogen-induced cracking resistance (HIC resistance) and sulfide stress corrosion cracking resistance (S resistance).
(SC property) and strength of American Petroleum Institute (API) standard X65 or more, and is related to the manufacture of steel sheets for line pipes having significantly better low temperature toughness than before. In the steel industry, it is used for thick plate mills. It is desirable to apply.

【0002】[0002]

【従来の技術】近年、原油・天然ガス井戸への海水の注
入や劣悪資源の開発に伴ってパイプライン環境のサワー
化が進行しており、ラインパイプには優れた耐HIC性
と耐SSC性が求められるようになった。また、輸送効
率の向上や薄肉化による現地溶接施工能率の向上などの
観点から高強度化の要求が年々強まっている。さらに最
近では、−45℃以下の寒冷地でかつサワーな環境に適
用するラインパイプが要求されつつある。
2. Description of the Related Art In recent years, the sourness of the pipeline environment is progressing with the injection of seawater into crude oil and natural gas wells and the development of poor resources, and linepipes have excellent HIC resistance and SSC resistance. Came to be demanded. In addition, demand for higher strength is increasing year by year from the viewpoint of improving transport efficiency and improving the efficiency of on-site welding by reducing the wall thickness. More recently, there is a demand for a line pipe applicable to a sour environment in a cold region of -45 ° C or lower.

【0003】従来、優れた耐HIC性は、例えば特公昭
63−001369号公報、特開昭62−112722
号公報に示されるように、鋼の高純度・高清浄度化、
硫化物系介在物のCa添加による形態制御、連続鋳
造時の軽圧下による中心偏析の低減、加速冷却による
中心偏析部のミクロ組織の改善、などの技術を駆使して
達成されてきた。特に圧延後の加速冷却の適用は中心偏
析部における硬化組織の生成を抑制し、耐HIC性の向
上に非常に有効な手段である。
Conventionally, excellent HIC resistance has been found, for example, in Japanese Examined Patent Publication No. 63-001369 and Japanese Unexamined Patent Publication No. 62-112722.
As shown in Japanese Patent Publication, high purity and high cleanliness of steel,
It has been achieved by making full use of technologies such as morphology control by adding Ca of sulfide inclusions, reduction of center segregation by light reduction during continuous casting, and improvement of microstructure of center segregation part by accelerated cooling. In particular, the application of accelerated cooling after rolling suppresses the formation of a hardened structure in the central segregation portion and is a very effective means for improving the HIC resistance.

【0004】また、高強度を有する耐サワー鋼板におい
ては、例えば特開昭61−147813号公報、特開昭
63−134647号公報、特開平1−096329号
公報、特開平2−008322号公報に示されるように
Nbの析出硬化を積極的に利用して高強度化を達成して
きた。しかしながら、本発明者らの鋭意研究の結果、N
b添加鋼においては、スラブ加熱時に固溶せずに溶け残
った粗大なNb析出物(Nb炭窒化物)が鋼板中でクラ
スターを形成し、これらがHICの起点となって耐HI
C性を劣化させることが明らかになった。Nb析出物を
スラブ加熱時の限定された時間内で完全に固溶させるた
めにはかなりの高温に加熱する必要があり、加熱γ粒の
粗大化やエネルギーコストの増大が伴っていた。
Further, sour-resistant steel sheets having high strength are disclosed in, for example, JP-A-61-147813, JP-A-63-134647, JP-A-1-096329, and JP-A-2-008322. As shown, high strength has been achieved by positively utilizing precipitation hardening of Nb. However, as a result of earnest research by the present inventors, N
In the b-added steel, coarse Nb precipitates (Nb carbonitrides) that did not form a solid solution and remained when the slab was heated form clusters in the steel sheet, and these become the starting points of HIC and are resistant to HI resistance.
It became clear that the C property was deteriorated. It was necessary to heat the Nb precipitates to a considerably high temperature in order to form a solid solution completely within the limited time during the heating of the slab, and the heating γ grains were coarsened and the energy cost was increased.

【0005】一方、特開昭62−182221号公報に
示されるようにNbを添加しない鋼に加速冷却を適用す
ることにより高強度な耐サワー鋼板を製造する技術があ
る。ラインパイプの低温靱性としては脆性亀裂伝播停止
特性を現わすBDWTT(Battelle Drop
Weight Tear Test)特性が重要であ
る。特開昭62−182221号公報に示されるBDW
TT特性は−30℃を保証するレベルであり、最近要求
されつつある−45℃以下の寒冷地でかつサワーな環境
においての定温靱性は保証できない。
On the other hand, as disclosed in Japanese Patent Laid-Open No. 62-182221, there is a technique for producing a high-strength sour-resistant steel sheet by applying accelerated cooling to steel to which Nb is not added. The low temperature toughness of line pipes is BDWTT (Battelle Drop), which shows brittle crack propagation stopping properties.
The Weight Tear Test characteristic is important. BDW shown in JP-A-62-182221
The TT characteristic is a level that guarantees -30 ° C, and constant temperature toughness cannot be guaranteed in a cold region of -45 ° C or lower and a sour environment which is recently required.

【0006】[0006]

【発明が解決しようとする課題】本発明は優れた耐HI
C性および耐SSC(ともにNACE環境)とAPI規
格X65以上の強度を有し、格段に優れた低温靱性(B
DWTT 85% Shear FATT≦−45℃)
を有するラインパイプ用鋼板の製造法を提供することを
目的とする。
The present invention provides excellent HI resistance.
C temperature and SSC resistance (both in NACE environment) and strength of API standard X65 or more, and outstanding low temperature toughness (B
DWTT 85% Shear FATT ≤-45 ° C)
It aims at providing the manufacturing method of the steel plate for line pipes which has.

【0007】[0007]

【課題を解決するための手段】本発明は、重量%でC:
0.04〜0.14%、 Si:0.6%以下、
Mn:0.6〜1.6%、 P:0.01
5%以下、S:0.001%以下、 Ti:
0.005〜0.03%、Al:0.06%以下、
Ca:0.001〜0.005%、N:0.
001〜0.005%、 O:0.003%以下を
含有し、かつ0.5≦〔Ca〕(1−124〔O〕)/
1.25〔S〕≦8.0を満足し、さらに必要に応じて
重量%でNi:0.1〜0.5%、 Mo:0.
1〜0.5%、Cr:0.1〜0.5%、 C
u:0.1〜0.5%、V:0.01〜0.1%の1種
以上を含有し、残部が鉄および不可避的不純物からなる
鋼片を、900〜1150℃に加熱し、1000℃以下
での累積圧下量が60%以上で、かつAr 3 −50℃〜
Ar3 での累積圧下量が20%以上となるように圧延を
終了した後、5〜40℃/秒の冷却速度で350〜60
0℃まで加速冷却し、その後放冷することを特徴とする
低温靱性の優れた耐サワー高強度鋼板の製造方法を要旨
とするものである。
The present invention provides C:% by weight.
0.04 to 0.14%, Si: 0.6% or less,
Mn: 0.6 to 1.6%, P: 0.01
5% or less, S: 0.001% or less, Ti:
0.005-0.03%, Al: 0.06% or less,
 Ca: 0.001 to 0.005%, N: 0.
001 to 0.005%, O: 0.003% or less
Contains and 0.5 ≦ [Ca] (1-124 [O]) /
Satisfies 1.25 [S] ≦ 8.0, and if necessary
% By weight Ni: 0.1 to 0.5%, Mo: 0.
1 to 0.5%, Cr: 0.1 to 0.5%, C
u: 0.1 to 0.5%, V: 0.01 to 0.1%, one type
Contains the above, the balance consisting of iron and unavoidable impurities
The steel slab is heated to 900 to 1150 ° C and 1000 ° C or less.
The cumulative rolling reduction at 60% or more and Ar 3-50 ℃ ~
Ar3Rolling to achieve a cumulative rolling reduction of 20% or more
After completion, 350-60 at a cooling rate of 5-40 ° C / sec
Characterized by accelerated cooling to 0 ° C and then cooling.
Summary of manufacturing method for sour-resistant high-strength steel sheet with excellent low temperature toughness
It is what

【0008】以下、本発明の技術的思想について説明す
る。本発明の思想は、Nbを添加しないことによる耐
サワー性の向上、加熱温度の低温化による加熱オース
テナイト粒の粗大化抑制、オーステナイト(γ)とフ
ェライト(α)が共存する二相域での圧延による加工フ
ェライトの形成とγ組織の微細化、圧延後の加速冷却
による耐サワー性の確保と変態強化、によって低温靱性
の優れた耐サワー高強度鋼板を製造することである。
The technical idea of the present invention will be described below. The idea of the present invention is to improve sour resistance by not adding Nb, suppress coarsening of heated austenite grains by lowering the heating temperature, and perform rolling in a two-phase region where austenite (γ) and ferrite (α) coexist. Is to produce processed ferrite and refine the γ structure, ensure sour resistance and accelerate transformation by accelerated cooling after rolling, and produce a sour-resistant high-strength steel sheet excellent in low-temperature toughness.

【0009】本発明者らの研究の結果、Nb添加鋼では
スラブ加熱時に溶け残った10μmを越す大きさのNb
炭窒化物が中心偏析部近傍に100μmを越す領域のク
ラスターを形成し、これらがHICの起点となって耐H
IC性を劣化させることが明らかになった。このような
粗大なNb炭窒化物をスラブ加熱時の限定された時間内
に完全に固溶させるためには、1200℃を超えるよう
な高温まで加熱しなければならないのが実状である。こ
のような加熱温度の高温化は加熱γ粒の著しい粗大化を
もたらすとともに、エネルギーコストの著しい増大をま
ねく。そこで本発明では、Nbを添加しないことでNb
炭窒化物の生成を防止して耐HIC性の向上を図る。
As a result of the research conducted by the present inventors, in the Nb-added steel, Nb having a size of more than 10 μm which remains unmelted during slab heating.
The carbonitrides form clusters in the region of more than 100 μm near the center segregation part, and these become the starting points of HIC and are resistant to H
It was revealed that the IC property was deteriorated. In order to completely form such a coarse Nb carbonitride in a solid solution within a limited time during heating of the slab, it is necessary to heat it to a high temperature exceeding 1200 ° C. Such an increase in the heating temperature brings about a significant coarsening of the heating γ grains, and also a significant increase in energy cost. Therefore, in the present invention, by not adding Nb, Nb
Preventing the formation of carbonitrides and improving the HIC resistance.

【0010】スラブ加熱温度の高温化は加熱γ粒の粗大
化をもたらし、低温靱性の劣化をまねく。本発明ではN
bを含有しないのでNbを固溶させるための高温加熱の
必要がない。従って本発明ではスラブ加熱温度の低温化
によって加熱γ粒の粗大化を抑制し、できるだけ細粒な
γ粒から圧延を開始することによって低温靱性の向上を
図る。
Increasing the slab heating temperature causes coarsening of the heated γ grains, leading to deterioration of low temperature toughness. In the present invention, N
Since it does not contain b, it is not necessary to heat it at a high temperature to form a solid solution with Nb. Therefore, in the present invention, the slab heating temperature is lowered to suppress the coarsening of the heated γ grains, and the low temperature toughness is improved by starting the rolling from the finest γ grains.

【0011】γ/α二相域での積極的な圧延は本発明の
特徴である。γ/α二相域での圧延において、板厚方向
表層部で変態した初析フェライトを加工硬化させるとと
もに、板厚方向内部のγの加工によって変形帯を導入し
て変態後のミクロ組織の微細化を図る。これは高強度と
低温靱性を両立させるための重要な技術である。圧延後
の加速冷却は中心偏析部における硬化組織の形成を抑制
して耐サワー性を確保するとともに、板厚方向内部のγ
をベイネチックフェライトへ変態させることによる変態
強化によって高強度化を達成する。
Active rolling in the γ / α two-phase region is a feature of the present invention. During rolling in the γ / α two-phase region, the pro-eutectoid ferrite transformed in the surface layer part in the plate thickness direction is work-hardened, and a deformation zone is introduced by γ processing inside the plate thickness direction to refine the microstructure after transformation. Try to change. This is an important technique for achieving both high strength and low temperature toughness. Accelerated cooling after rolling suppresses the formation of a hardened structure in the center segregation area to ensure sour resistance and also reduces the γ inside the plate thickness direction.
Higher strength is achieved by transformation strengthening by transforming to a bainitic ferrite.

【0012】以下、化学成分の限定理由について説明す
る。C量およびMn量はAPI規格X65以上の高強度
鋼では必然的に多くなるが、これらの元素はスラブに中
心偏析する度合いが強く、鋼板の板厚中心部に硬化組織
を形成して耐HIC性を著しく劣化させるため、C量の
上限を0.14%、Mn量の上限を1.6%とした。C
量およびMn量の下限は母材、溶接熱影響部(HAZ)
の強度と低温靱性を確保するためにそれぞれ0.04
%、0.6%とした。
The reasons for limiting the chemical components will be described below. The C content and Mn content inevitably increase in high strength steel of API standard X65 or more, but these elements have a strong degree of center segregation in the slab and form a hardened structure in the center of the plate thickness of the steel sheet to prevent HIC resistance. In order to remarkably deteriorate the properties, the upper limit of the amount of C was 0.14% and the upper limit of the amount of Mn was 1.6%. C
The lower limit of the amount and Mn amount is the base metal, welding heat affected zone (HAZ)
0.04 each to secure the strength and low temperature toughness of
% And 0.6%.

【0013】Pは中心偏析の度合いが強く耐HIC性を
著しく劣化させる元素である。したがって上限を0.0
15%とした。P量は少ないほど耐HIC性が向上す
る。Tiは微細なTiNを形成し、スラブ加熱時および
溶接時の加熱γ粒の粗大化を抑制し、母材靱性およびH
AZ靱性を改善する。Ti量の下限はその効果を発揮す
るため0.005%とし、上限はHAZ靱性や現地溶接
性を劣化させないために0.03%とした。
P is an element having a strong degree of center segregation and significantly deteriorating HIC resistance. Therefore, the upper limit is 0.0
It was set to 15%. The smaller the amount of P, the higher the HIC resistance. Ti forms fine TiN, suppresses the coarsening of the heating γ grains during slab heating and welding, and improves the base metal toughness and H
Improves AZ toughness. The lower limit of the Ti content is 0.005% in order to exert its effect, and the upper limit is 0.03% in order not to deteriorate the HAZ toughness and field weldability.

【0014】Siは多く添加すると現地溶接性、HAZ
靱性を劣化させるため、その上限を0.6%とした。鋼
の脱酸はAl,Tiのみでも十分であり、Siは必ずし
も添加する必要はない。本発明対象鋼においては不純物
であるSを0.001%以下とし、かつCaを添加し
て、0.5≦〔Ca〕(1−124〔O〕)/1.25
〔S〕≦8.0とする。SはMnS系介在物を形成し、
MnSは圧延で伸長してHICの発生起点となる。これ
を防止するには、介在物の絶対量を低減するとともに、
硫化物の形態を制御して圧延で延伸化し難いCaS(−
O)としなければならない。そこでS量を0.001%
以下とし、Caを0.001〜0.005%添加し、C
aによる硫化物の形態制御を十分に行うため、ESSP
=〔Ca〕(1−124〔O〕)/1.25〔S〕≧
0.5とした。しかしESSPが大きすぎると、Ca系
介在物が増加、HICの発生起点となるので、その上限
を8.0とした。
If a large amount of Si is added, local weldability and HAZ
In order to deteriorate the toughness, the upper limit was set to 0.6%. Only Al and Ti are sufficient for deoxidizing steel, and Si is not necessarily added. In the steel of the present invention, S which is an impurity is set to 0.001% or less, and Ca is added so that 0.5 ≦ [Ca] (1-124 [O]) / 1.25.
[S] ≦ 8.0. S forms MnS-based inclusions,
MnS is elongated by rolling and becomes a starting point of HIC. To prevent this, reduce the absolute amount of inclusions and
CaS (-
O). Therefore, the amount of S is 0.001%
The amount of Ca is 0.001 to 0.005% and C
In order to sufficiently control the morphology of sulfide by a, ESSP
= [Ca] (1-124 [O]) / 1.25 [S] ≧
It was set to 0.5. However, if the ESSP is too large, Ca-based inclusions increase and become the starting point of HIC generation, so the upper limit was made 8.0.

【0015】上記に関連してO量を0.003%以下に
限定した。これはHICの起点となる酸化物系介在物を
低減し、Ca量で硫化物の形態制御を行うためである。
Alは脱酸元素として鋼に含まれる元素であるが、脱酸
はTiあるいはSiでも可能であり、必ずしも添加する
必要はない。Al量が0.06%超になるとAl系非金
属介在物が増加して鋼の清浄度を害するので、その上限
を0.06%とした。
In relation to the above, the amount of O is limited to 0.003% or less. This is because oxide-based inclusions, which are the starting point of HIC, are reduced and the sulfide morphology is controlled by the amount of Ca.
Al is an element contained in steel as a deoxidizing element, but deoxidizing is also possible with Ti or Si, and it is not always necessary to add it. If the amount of Al exceeds 0.06%, Al-based nonmetallic inclusions increase and impair the cleanliness of steel, so the upper limit was made 0.06%.

【0016】NはTiNを形成しスラブ再加熱時や溶接
時のγ粒の粗大化抑制を通じて母材、HAZ靱性を向上
させる。このために必要な最小量は0.001%であ
る。しかし多過ぎるとスラブ表面疵や固溶NによるHA
Z靱性劣化の原因となるので、その上限は0.005%
以下に抑える必要がある。次に選択元素であるNi,M
o,Cr,Cu,Vを添加する理由について説明する。
基本となる成分にさらにこれらの元素を添加する主な目
的は、本発明対象鋼の優れた特徴を損なうことなく強
度、靱性などの特性の向上をはかるためである。従っ
て、その添加量は自ら制限されるべき性質のものであ
り、下限はこれらの実質的な効果が得られる最小量であ
る。
N forms TiN and improves the base metal and HAZ toughness by suppressing coarsening of γ grains during slab reheating and welding. The minimum amount required for this is 0.001%. However, if it is too much, HA will be caused by slab surface defects and solid solution N.
Since it causes deterioration of Z toughness, its upper limit is 0.005%.
It is necessary to keep below. Next, select elements Ni and M
The reason for adding o, Cr, Cu, V will be described.
The main purpose of adding these elements to the basic composition is to improve the properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount added is of a nature that should be limited by itself, and the lower limit is the minimum amount at which these substantial effects can be obtained.

【0017】Niは溶接性及びHAZ靱性に悪影響を及
ぼすことなく母材の強度、靱性を向上させるが、過剰な
添加は溶接性に好ましくないため上限を0.5%とし、
下限は0.1%とした。Moは母材の強度、靱性をとも
に向上させるが、過剰な添加は母材及びHAZの靱性、
溶接性の劣化を招くため、上限を0.5%とし、下限は
0.1%とした。
Ni improves the strength and toughness of the base metal without adversely affecting the weldability and HAZ toughness, but excessive addition is not preferable for weldability, so the upper limit is made 0.5%,
The lower limit was 0.1%. Mo improves both strength and toughness of the base metal, but excessive addition of Mo causes toughness of the base metal and HAZ.
Since the weldability is deteriorated, the upper limit is set to 0.5% and the lower limit is set to 0.1%.

【0018】CrはCCスラブにおいて中心偏析し難
く、かつ母材の強度を向上させるが、過剰な添加は母材
及びHAZの靱性、溶接性を劣化させるため、上限を
0.5%とし、下限は0.1%とした。CuはNiとほ
ぼ同様の効果を有するが、過剰な添加は熱間圧延時にC
u−クラックを発生し製造が困難となるため、上限を
0.5%とし、下限は0.1%とした。
Cr is less likely to segregate in the center in the CC slab and improves the strength of the base metal, but excessive addition deteriorates the toughness and weldability of the base metal and HAZ, so the upper limit is made 0.5% and the lower limit is made. Was 0.1%. Cu has almost the same effect as Ni, but excessive addition of C causes C during hot rolling.
Since u-cracks are generated and manufacturing becomes difficult, the upper limit was made 0.5% and the lower limit was made 0.1%.

【0019】Vはミクロ組織の微細化による靱性の向上
や、焼入れ性の増大、析出硬化による強度の向上を可能
とする。しかし、過剰な添加はHAZ靱性、溶接性の劣
化を招くため、上限を0.1%とし、下限は0.01%
とした。次に製造方法の限定理由について説明する。鋼
片の加熱温度は900〜1150℃としなければならな
い。これは加熱γ粒の粗大化を抑制するとともに圧延終
了温度をAr3 −50℃以上に確保するためである。加
熱温度が900℃未満では圧延終了温度をAr3 −50
℃以上に確保することは困難である。加熱温度が115
0℃を超えると加熱γ粒が著しく粗大化してしまい、そ
の後の圧延によってγ組織を微細化するのが困難とな
り、変態後のミクロ組織が粗大化して良好な低温靱性が
得られない。望ましい加熱温度は950〜1100℃で
あり、加熱γ粒を極力小さくすることが低温靱性の向上
に非常に有効である。
V makes it possible to improve the toughness by refining the microstructure, increase the hardenability, and improve the strength by precipitation hardening. However, excessive addition causes deterioration of HAZ toughness and weldability, so the upper limit is set to 0.1% and the lower limit is set to 0.01%.
And Next, the reasons for limiting the manufacturing method will be described. The heating temperature of the billet must be 900 to 1150 ° C. This is to suppress the coarsening of the heated γ grains and to secure the rolling end temperature at Ar 3 −50 ° C. or higher. If the heating temperature is less than 900 ° C., the rolling end temperature will be Ar 3 −50.
It is difficult to secure the temperature above ℃. The heating temperature is 115
If the temperature exceeds 0 ° C., the heated γ grains are significantly coarsened, and it becomes difficult to refine the γ structure by subsequent rolling, and the microstructure after transformation is coarsened, and good low temperature toughness cannot be obtained. A desirable heating temperature is 950 to 1100 ° C., and it is very effective to improve the low temperature toughness by minimizing the heating γ grains.

【0020】1000℃以下での圧延において累積圧下
量を60%以上とし、かつAr3 −50℃〜Ar3 での
累積圧下量を20%以上として圧延を終了しなければな
らない。1000℃以下での累積圧下量を60%以上と
するのはγ低温域での強圧下によって変態前のγ組織を
十分に微細化し、変態後のミクロ組織の微細化を図って
良好な低温靱性を得るためである。1000℃以下での
累積圧下量が60%未満であると変態前のγ組織が十分
に微細化せず、変態後のミクロ組織の微細化が不十分と
なって良好な低温靱性が得られない。Ar3 −50℃〜
Ar3 での累積圧下量を20%以上とするのは、第1に
板厚方向表層部で変態した初析フェライトの加工硬化に
よって高強度化を図るためであり、第2に板厚方向内部
のγを低温で加工して変形帯を多量に導入し、変態後の
ミクロ組織の極限まで微細化するためである。Ar3
50℃〜Ar3 での累積圧下量が20%未満であると板
厚方向表層部のフェライトの加工硬化量が小さいために
所定の強度を達成するのは困難であり、また、板厚方向
内部のγ中の変形帯密度が少ないために変態後のミクロ
組織が極限までの微細化しない。圧延終了温度がAr3
−50℃未満になるとフェライト変態が板厚中心部近傍
まで進行するため、未変態部である中心偏析部へCの濃
化が起こり、硬化組織が形成されて耐HIC性が劣化し
てしまう。
[0020] The cumulative reduction ratio in the rolling at 1000 ° C. or less to 60% or more, and must the cumulative reduction ratio at Ar 3 -50 ℃ ~Ar 3 finished rolling as 20% or more. The cumulative rolling reduction at 1000 ° C or lower is 60% or more because the γ structure before transformation is sufficiently refined by the strong reduction in the γ low temperature region, and the microstructure after transformation is made fine and the low temperature toughness is good. Is to get. If the cumulative reduction amount at 1000 ° C. or less is less than 60%, the γ structure before transformation is not sufficiently refined, and the microstructure after transformation is insufficiently refined and good low temperature toughness cannot be obtained. . Ar 3 -50 ° C ~
The reason why the cumulative rolling reduction with Ar 3 is 20% or more is to increase the strength by work hardening of the proeutectoid ferrite transformed in the surface layer portion in the sheet thickness direction, and secondly, inside the sheet in the sheet thickness direction. This is because γ of γ is processed at a low temperature to introduce a large amount of deformation zones to refine the microstructure after transformation to the limit. Ar 3
If the cumulative reduction amount at 50 ° C. to Ar 3 is less than 20%, it is difficult to achieve a predetermined strength because the work hardening amount of ferrite in the surface layer portion in the plate thickness direction is small, and the inside in the plate thickness direction is difficult to achieve. Since the deformation band density in γ is low, the microstructure after transformation does not become extremely fine. Rolling end temperature is Ar 3
When the temperature is lower than −50 ° C., the ferrite transformation progresses to the vicinity of the central portion of the plate thickness, so that C is concentrated in the central segregated portion which is an untransformed portion, a hardened structure is formed, and the HIC resistance deteriorates.

【0021】圧延後はAr3 −50℃以上の温度から5
〜40℃/秒の冷却速度で350〜600℃まで加速冷
却し、その後放冷しなければならない。加速冷却は中心
偏析部のミクロ組織を改善して耐HIC性を向上させる
とともに、変態強化による高強度化を可能にする。冷却
開始温度がAr3 −50℃未満であったり、冷却速度が
5℃/秒未満であったり、冷却停止温度が600℃を超
えたりすると、フェライト変態に伴って中心偏析部へC
が濃化され、硬化組織が形成されて耐HIC性が劣化す
るとともに、変態強化が不十分となって強度が不足す
る。一方、冷却速度が40℃/秒を超えたり、水冷停止
温度が350℃未満であったりすると、低温変態生成物
が大量に形成されて耐HIC性および低温靱性が劣化す
る。本発明における鋼板の製造方法の模式図を図1に示
す。
After rolling, the temperature should rise from Ar 3 -50 ° C. or higher to 5
It must be accelerated cooled to 350-600 ° C at a cooling rate of -40 ° C / sec and then allowed to cool. Accelerated cooling improves the microstructure of the center segregated portion to improve the HIC resistance, and at the same time, enables higher strength by transformation strengthening. When the cooling start temperature is less than Ar 3 −50 ° C., the cooling rate is less than 5 ° C./sec, or the cooling stop temperature exceeds 600 ° C., C is transferred to the central segregation portion along with the ferrite transformation.
Is thickened, a hardened structure is formed, HIC resistance is deteriorated, and transformation strengthening is insufficient, resulting in insufficient strength. On the other hand, if the cooling rate exceeds 40 ° C./sec or the water cooling stop temperature is lower than 350 ° C., a large amount of low-temperature transformation products are formed and HIC resistance and low-temperature toughness deteriorate. FIG. 1 shows a schematic diagram of a method for manufacturing a steel sheet according to the present invention.

【0022】なお、本発明による鋼板をAc1 以下の温
度に焼戻し処理することは何ら本発明対象鋼の特性を損
なうものではない。また、省エネルギーなどを目的とし
てCCスラブを加熱炉にホットチャージして圧延しても
よい。本発明による鋼板は耐サワーラインパイプのほ
か、耐サワー圧力容器用としても適用できる。
Note that tempering the steel sheet according to the present invention to a temperature of Ac 1 or lower does not impair the characteristics of the steel of the present invention. The CC slab may be hot-charged in a heating furnace and rolled for the purpose of energy saving. The steel sheet according to the present invention can be applied not only to sour resistant line pipes but also to sour resistant pressure vessels.

【0023】[0023]

【実施例】表1に鋼片の化学成分を示す。表2に鋼板の
製造条件、表3(表2のつづき)に機械的性質および耐
サワー性を示す。表1,表2,表3の鋼1〜8は本発明
鋼であり、鋼9〜25は比較鋼である。本発明鋼はAP
I5L−X65以上の高強度を有し、かつ優れた低温靱
性(BDWTT 85% Shear FATT≦−4
5℃)とNACE溶液環境での優れた耐HIC性、耐S
SC性を有する。一方、比較鋼は化学成分あるいは製造
条件が適当でないために強度、低温靱性、耐サワー性の
いずれかが劣っている。鋼9,10,11はそれぞれC
量、Mn量、P量が多すぎるために中心偏析が助長され
耐HIC性、耐SSC性が劣っている。鋼12はS量が
多すぎるためにESSPが0.5未満となり、硫化物系
介在物の形態制御が不十分となって耐HIC性、耐SS
C性が劣っている。鋼13はTi量が少なすぎるために
TiNによる加熱γ粒の粗大化抑制が不十分となってB
DWTT特性が劣っている。鋼14はCa量が少なすぎ
るために硫化物系介在物の形態制御が不十分となり、耐
HIC性、耐SSC性が劣っている。鋼15はCa量が
多すぎるために、Ca系介在物が増加して耐HIC性、
耐SSC性が劣っている。鋼16は加熱温度が900℃
未満であるためAr3 −50℃以上の圧延終了温度が確
保できず、中心偏析部に硬化組織を形成して耐HIC
性、耐SSC性が劣っている。鋼17は加熱温度が11
50℃を超えるため加熱γ粒が粗大化してしまいBDW
TT特性が劣っている。鋼18は1000℃以下の累積
圧下量が小さいため、変態後のミクロ組織が十分に微細
化されずBDWTT特性が劣っている。鋼19はAr3
未満での累積圧下量が小さいため、強度が不足してい
る。鋼20は圧延終了温度がAr3 −50℃未満である
ため、鋼21は水冷開始温度がAr3 −50℃未満であ
るため、中心偏析部に硬化組織を形成して耐HIC性、
耐SSC性が劣っている。鋼22は冷却速度が5℃/秒
未満であるため、中心偏析部の硬化組織の形成による耐
HIC性、耐SSC性の劣化と、変態強化が十分でない
ことによる強度の不足がおこっている。鋼23は冷却速
度が40℃/秒を超えるため、鋼24は水冷停止温度が
350℃未満であるため、硬い低温変態生成物が大量に
生成して耐HIC性、耐SSC性およびBDWTT特性
が劣っている。鋼25は水冷停止温度が600℃を超え
るため、中心偏析部に硬化組織が形成され耐HIC性、
耐SSC性が劣っている。
EXAMPLES Table 1 shows the chemical composition of the steel slab. Table 2 shows steel plate manufacturing conditions, and Table 3 (continued from Table 2) shows mechanical properties and sour resistance. Steels 1 to 8 in Tables 1, 2 and 3 are steels of the present invention, and steels 9 to 25 are comparative steels. The present invention steel is AP
I5L-X65 and higher strength and excellent low temperature toughness (BDWTT 85% Shear FATT ≦ -4
5 ℃) and excellent HIC resistance and S resistance in NACE environment
It has SC property. On the other hand, the comparative steels are inferior in strength, low temperature toughness, and sour resistance due to inappropriate chemical composition or manufacturing conditions. Steel 9, 10, 11 is C
Content, Mn content, and P content are too large, center segregation is promoted, and HIC resistance and SSC resistance are inferior. Steel 12 has an ESSP of less than 0.5 because the amount of S is too large, resulting in insufficient morphology control of sulfide inclusions and HIC resistance and SS resistance.
The C property is inferior. Steel 13 has an excessively small amount of Ti, so that the control of coarsening of the heated γ grains by TiN becomes insufficient and B
DWTT characteristics are inferior. Steel 14 has an inadequate morphological control of sulfide inclusions due to an excessively small amount of Ca, and is inferior in HIC resistance and SSC resistance. Steel 15 has an excessive amount of Ca, so that Ca-based inclusions increase and HIC resistance increases.
SSC resistance is inferior. Steel 16 has a heating temperature of 900 ° C
Since the rolling end temperature of Ar 3 −50 ° C. or higher cannot be ensured because the temperature is less than 50 ° C., a hardened structure is formed in the central segregation portion and HIC resistance is high.
And SSC resistance are inferior. Steel 17 has a heating temperature of 11
Since the temperature exceeds 50 ° C, the heated γ grains become coarse and BDW
The TT characteristics are inferior. Steel 18 has a small cumulative reduction amount of 1000 ° C. or less, so that the microstructure after transformation is not sufficiently refined and the BDWTT characteristic is inferior. Steel 19 is Ar 3
The strength is insufficient because the cumulative reduction amount below is small. Steel 20 has a rolling end temperature of less than Ar 3 −50 ° C., and Steel 21 has a water cooling start temperature of less than Ar 3 −50 ° C., so that a hardened structure is formed in the central segregation portion and HIC resistance,
SSC resistance is inferior. Since Steel 22 has a cooling rate of less than 5 ° C./sec, HIC resistance and SSC resistance are deteriorated due to the formation of a hardened structure in the central segregation portion, and the strength is insufficient due to insufficient transformation strengthening. Steel 23 has a cooling rate of more than 40 ° C./sec, and Steel 24 has a water cooling stop temperature of less than 350 ° C., so that a large amount of hard low-temperature transformation products are generated and HIC resistance, SSC resistance, and BDWTT characteristics are high. Inferior Steel 25 has a water cooling stop temperature of over 600 ° C., so a hardened structure is formed in the center segregated portion, and HIC resistance,
SSC resistance is inferior.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【発明の効果】本発明によって製造された耐サワー高強
度鋼板は、従来の鋼に比較して非常に優れた低温靱性を
有しており、寒冷でかつサワーな環境におけるパイプラ
インの安全性が格段に向上する。
EFFECTS OF THE INVENTION The sour-resistant high-strength steel sheet produced according to the present invention has extremely low temperature toughness as compared with the conventional steel, and the pipeline safety in cold and sour environment is improved. Greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による鋼板の製造方法の模式図である。FIG. 1 is a schematic view of a method for manufacturing a steel sheet according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC:0.04〜0.14%、
Si:0.6%以下、 Mn:0.6〜1.6%、 P:0.01
5%以下、 S:0.001%以下、 Ti:0.005
〜0.03%、 Al:0.06%以下、 Ca:0.00
1〜0.005%、 N:0.001〜0.005%、 O:0.003
%以下を含有し、かつ0.5≦〔Ca〕(1−124
〔O〕)/1.25〔S〕≦8.0を満足し、残部が鉄
および不可避的不純物からなる鋼片を、900〜115
0℃に加熱し、1000℃以下での累積圧下量が60%
以上で、かつAr3 −50℃〜Ar3 での累積圧下量が
20%以上となるように圧延を終了した後、5〜40℃
/秒の冷却速度で350〜600℃まで加速冷却し、そ
の後放冷することを特徴とする低温靱性の優れた耐サワ
ー高強度鋼板の製造方法。
1. C: 0.04 to 0.14% by weight,
Si: 0.6% or less, Mn: 0.6 to 1.6%, P: 0.01
5% or less, S: 0.001% or less, Ti: 0.005
~ 0.03%, Al: 0.06% or less, Ca: 0.00
1 to 0.005%, N: 0.001 to 0.005%, O: 0.003
% Or less, and 0.5 ≦ [Ca] (1-124
[O]) / 1.25 [S] ≦ 8.0, and the balance of the steel slab containing iron and unavoidable impurities is 900 to 115
When heated to 0 ℃, the cumulative reduction below 1000 ℃ is 60%
Or more, and after the cumulative reduction ratio at Ar 3 -50 ℃ ~Ar 3 has finished rolled such that at least 20%, 5 to 40 ° C.
A method for producing a sour-resistant high-strength steel sheet excellent in low-temperature toughness, which comprises accelerating cooling to 350 to 600 ° C. at a cooling rate of / sec and then cooling.
【請求項2】 重量%でNi:0.1〜0.5%、
Mo:0.1〜0.5%、 Cr:0.1〜0.5%、 Cu:0.1〜0.
5%、 V:0.01〜0.1%の1種以上を含有することを特
徴とする請求項1記載の低温靱性の優れた耐サワー高強
度鋼板の製造方法。
2. Ni: 0.1-0.5% by weight,
Mo: 0.1-0.5%, Cr: 0.1-0.5%, Cu: 0.1-0.
5%, V: 0.01-0.1% of 1 or more types are contained, The manufacturing method of the sour-proof high strength steel plate excellent in the low temperature toughness of Claim 1 characterized by the above-mentioned.
JP6107294A 1994-05-20 1994-05-20 Production of sour resistant high strength steel plate excellent in toughness at low temperature Withdrawn JPH07316651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6107294A JPH07316651A (en) 1994-05-20 1994-05-20 Production of sour resistant high strength steel plate excellent in toughness at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6107294A JPH07316651A (en) 1994-05-20 1994-05-20 Production of sour resistant high strength steel plate excellent in toughness at low temperature

Publications (1)

Publication Number Publication Date
JPH07316651A true JPH07316651A (en) 1995-12-05

Family

ID=14455462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6107294A Withdrawn JPH07316651A (en) 1994-05-20 1994-05-20 Production of sour resistant high strength steel plate excellent in toughness at low temperature

Country Status (1)

Country Link
JP (1) JPH07316651A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180424A (en) * 2009-02-03 2010-08-19 Sumitomo Metal Ind Ltd Steel material superior in toughness at heat-affected zone in high-heat-input weld, and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180424A (en) * 2009-02-03 2010-08-19 Sumitomo Metal Ind Ltd Steel material superior in toughness at heat-affected zone in high-heat-input weld, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP4502012B2 (en) Seamless steel pipe for line pipe and manufacturing method thereof
JPH07173536A (en) Production of steel sheet for high strength line pipe excellent in sour resistance
JP2006291349A (en) Line pipe steel sheet having high deformation performance and its manufacturing method
JPH0598350A (en) Production of line pipe material having high strength and low yield ratio for low temperature use
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
CN111542621B (en) High-strength high-toughness hot-rolled steel sheet and method for producing same
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JPH09111344A (en) Production of high strength and low yield ratio seamless steel pipe
JPH0931536A (en) Production of ultrahigh strength steel plate excellent in low temperature toughness
JP3009569B2 (en) Method for producing CO2 corrosion resistant sour resistant steel sheet with excellent low temperature toughness
JP3274013B2 (en) Method for producing sour resistant high strength steel sheet having excellent low temperature toughness
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JPH07292416A (en) Production of ultrahigh strength steel plate for line pipe
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
JP3218447B2 (en) Method of producing sour resistant thin high strength steel sheet with excellent low temperature toughness
JPH06136440A (en) Production of high strength steel sheet excellent in sour resistance
CN112912532B (en) High-strength steel material having excellent sulfide stress corrosion cracking resistance and method for producing same
JPH059575A (en) Production of high streangth steel plate excellent in corrosion resistance
JP3393314B2 (en) Manufacturing method of sour resistant high strength steel sheet with excellent low temperature toughness
JPH08311549A (en) Production of ultrahigh strength steel pipe
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method
JP3009568B2 (en) Manufacturing method of high strength steel sheet with excellent hydrogen induced cracking resistance and low temperature toughness
JPH07316651A (en) Production of sour resistant high strength steel plate excellent in toughness at low temperature
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
JPH05148539A (en) Production of steel for uoe steel pipe which is less embrittled by heating in (gamma+alpha) two-phase region

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010731