JPH0731106A - Focal point adjusting method of position detecting light receiving function in cut position detecting method for undercut machine positioning method - Google Patents

Focal point adjusting method of position detecting light receiving function in cut position detecting method for undercut machine positioning method

Info

Publication number
JPH0731106A
JPH0731106A JP5188694A JP18869493A JPH0731106A JP H0731106 A JPH0731106 A JP H0731106A JP 5188694 A JP5188694 A JP 5188694A JP 18869493 A JP18869493 A JP 18869493A JP H0731106 A JPH0731106 A JP H0731106A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
light receiving
function
commutator
conversion function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5188694A
Other languages
Japanese (ja)
Other versions
JP3063468B2 (en
Inventor
Hiroshi Ogawa
博史 小川
Norihiko Tanaka
範彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP5188694A priority Critical patent/JP3063468B2/en
Publication of JPH0731106A publication Critical patent/JPH0731106A/en
Application granted granted Critical
Publication of JP3063468B2 publication Critical patent/JP3063468B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Motor Or Generator Current Collectors (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

PURPOSE:To provide a focal point adjusting method of light receiving function in cut part position detecting method for an undercut machine, and a cutting part positioning method, in which the mica of a commutator can be cut highly accurately through a simple structure. CONSTITUTION:Predetermined number of photoelectric conversion functional elements 1 are arranged perpendicularly to a commutator 1 thus forming a light receiving function 6 for detecting the mica 1b of the commutator 1. The focal point is determined based on the variation in the quantity of light received by each photoelectric conversion functional element during focal point adjusting operation. The opposite parts of the mica 1b are determined based on the light receiving state of each functional element and the central part of the mica 1b is determined based on the position of an intermediate functional element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は,直流モ−タの整流子
のマイカ部を切削するアンダカットマシンによる切削す
べきマイカ部または,このマイカ部の中央部を光照射機
能と受光機能によって検出するアンダカットマシンの切
削部位置検知方法に係り,特に,自動的に精度良く切削
すべきマイカ部またはマイカ部の中央部を検知して,精
度の良い整流子のマイカ部の切削加工を可能にするアン
ダカットマシンの切削部位置検知方法における位置検知
用受光機能の焦点調節方法と切削部の位置決め方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects the mica part to be cut by an undercut machine for cutting the mica part of a commutator of a DC motor or the central part of this mica part by means of a light irradiation function and a light receiving function. The method of detecting the position of the cutting part of the undercut machine, in particular, enables the cutting of the mica part of the commutator with high accuracy by automatically detecting the mica part or the central part of the mica part that should be cut accurately. The present invention relates to a focus adjustment method for a position detecting light receiving function and a positioning method for a cutting part in a cutting part position detecting method for an undercut machine.

【0002】[0002]

【従来の技術】アンダカットマシンにおける切削位置を
検知するための整流子のマイカ部検知方法は,例えば,
図12,図13に示すような手段が実施されている。図
12は電気的に整流子1の導体部1aと切削すべきマイ
カ部1bとを判定する手段を模型的に記したものであっ
て,図12(A)は整流子1を表面から見た図,図12
(B)は図12(A)を側面から見た図に2本の探触子
21,22を追記した図である。探触子21と探触子2
2との間隔およびそれぞれの位置を整流子1の外形寸法
および導体部1aとマイカ部1bそれぞれの寸法巾に対
応して所定条件に設定し移動させる。探触子21と探触
子22のそれぞれを整流子1の表面に接触し,整流子1
の表面と探触子21および探触子22のそれぞれとの間
の導通状態を判定回路23で判定する。上記判定によっ
て,アンダカットマシンによって切削する整流子1のマ
イカ部1bの位置を検知し,切削中心であるマイカ部1
bの中央部を判定する。上記実施例は探触子2個の場合
について説明したが,探触子3個を用いて相互の導通状
態を判定してマイカ部1bの中央部を検知する方法も実
行される。
2. Description of the Related Art A method for detecting a mica part of a commutator for detecting a cutting position in an undercut machine is, for example, as follows.
Means as shown in FIGS. 12 and 13 are implemented. FIG. 12 schematically shows a means for electrically determining the conductor portion 1a of the commutator 1 and the mica portion 1b to be cut, and FIG. 12A shows the commutator 1 viewed from the surface. Figure, Figure 12
FIG. 12B is a diagram in which two probes 21 and 22 are added to the diagram of FIG. 12A viewed from the side. Probe 21 and probe 2
The distance from each of the two and the respective positions are set to predetermined conditions and moved according to the outer dimensions of the commutator 1 and the widths of the conductor portion 1a and the mica portion 1b. Each of the probe 21 and the probe 22 is brought into contact with the surface of the commutator 1, and the commutator 1
The determination circuit 23 determines the conduction state between the surface of the probe and each of the probe 21 and the probe 22. By the above determination, the position of the mica part 1b of the commutator 1 to be cut by the undercut machine is detected, and the mica part 1 which is the cutting center is detected.
Determine the center of b. Although the above embodiment has described the case of using two probes, a method of determining the mutual conduction state using three probes and detecting the central part of the mica part 1b is also executed.

【0003】図13は光学的に整流子1の導体部1aと
マイカ部1bとを判定する手段を模型的に記したもので
あって,前述した図12(B)に対応させ,探触子2
1,探触子22に換えて光学的検知機構を記した図であ
る。図13において,31は光源であって,光源31か
ら照射される光線は機構部32によって振動するスリッ
ト付き板33によって断続される。光源31から照射さ
れ断続する光線は整流子1表面で反射し,反射光34は
光電変換機能素子35に受光される。光電変換機能素子
35で受光される断続した光は電気信号に変換されて検
知回路36に入力する。検知回路36においては,機構
部32から出力されるスリット付き板33の駆動信号と
同期して,光電変換機能素子35の受光信号から整流子
1による反射信号を分離し検出する。整流子1による反
射信号は導体部1aの反射光は強く,マイカ部1bの反
射光は弱い。従って,検知回路36においては,アンダ
カットマシンによって切削する整流子1のマイカ部1b
の位置を検知し,切削中心であるマイカ部1bの中央部
を判定する。
FIG. 13 schematically shows a means for optically determining the conductor portion 1a and the mica portion 1b of the commutator 1, and corresponds to FIG. 12 (B) described above. Two
FIG. 1 is a view showing an optical detection mechanism in place of the probe 22. In FIG. 13, reference numeral 31 denotes a light source, and a light beam emitted from the light source 31 is interrupted by a slitted plate 33 vibrated by the mechanism portion 32. The light beam emitted from the light source 31 and intermittently is reflected on the surface of the commutator 1, and the reflected light 34 is received by the photoelectric conversion functional element 35. The intermittent light received by the photoelectric conversion function element 35 is converted into an electric signal and input to the detection circuit 36. In the detection circuit 36, the reflection signal from the commutator 1 is separated and detected from the light reception signal of the photoelectric conversion functional element 35 in synchronization with the drive signal of the slit plate 33 output from the mechanism unit 32. Regarding the reflected signal from the commutator 1, the reflected light from the conductor portion 1a is strong and the reflected light from the mica portion 1b is weak. Therefore, in the detection circuit 36, the mica part 1b of the commutator 1 to be cut by the undercut machine
Is detected and the central portion of the mica portion 1b, which is the cutting center, is determined.

【0004】[0004]

【発明が解決しようとする課題】ところで,上述したよ
うな整流子のマイカ部検知手段によると,次のような問
題点がある。まず,図12に示した探触子による手段で
は,次の理由により,図示しない探触子の調節用駆動機
構,退避機構等が複雑になるという問題があった。 アンダカットマシンによって切削すべき直流モ−タが
それぞれ異なった寸法のモ−タであると,切削加工すべ
き直流モ−タの整流子の寸法構成に対応して探触子の位
置を変更し,調節し直す必要がある。そのために調節時
間が必要であり,調節精度によって加工誤差が生じる恐
れがある。 複数の探触子で検知するために回路が複雑になり,切
削部の曲がりには対応できない。 各探触子は常に整流子表面に接触させる必要があり,
探触子の移動時等に接触が切れると検知作業が有効に実
行できない。 探触子による検知手段によると,アンダカットマシン
による切削作業のために,アンダカットマシンのカッタ
位置に対して探触子の位置をずらすか,探触子を検知完
了後退避させる必要がある。 また,図13に示した光学的手段では,次のような問題
点があった。 スリットの振動を機械的に行うために構造が複雑にな
る。 スリットの振動振幅がなんらかの理由で変動し,マイ
カの巾よりも狭くなるような場合があると,導体とマイ
カとの区別検知ができなくなる恐れがある。 スリットの振動による共振振動等が起こらないよう
に,振動機構の剛性を高める必要がある。 マイカの厚み,巾,整流子の直径等,整流子の構造寸
法によってスリットの振動振幅を調節する必要がある。 マイカの厚み,巾,整流子の直径等,整流子の構造寸
法によって所望される検知のために使用する判定用電気
回路の定数類を調節する必要がある。 この発明は上記従来の課題(問題点)を解決するように
したアンダカットマシンの切削部位置検知方法における
位置検知用受光機能の焦点調節方法と切削部の位置決め
方法を提供することを目的とする。
By the way, the above-described commutator mica part detecting means has the following problems. First, in the means using the probe shown in FIG. 12, there is a problem that an adjusting drive mechanism, a retracting mechanism, etc. of the probe, which are not shown, are complicated due to the following reasons. If the DC motors to be cut by the undercut machine are motors of different dimensions, the position of the probe should be changed according to the size configuration of the commutator of the DC motor to be cut. , Need to readjust. Therefore, adjustment time is required, and machining error may occur depending on the adjustment accuracy. The circuit is complicated because it is detected by multiple probes, and bending of the cutting part cannot be handled. Each probe must always be in contact with the commutator surface,
If the contact is cut when the probe moves, the detection work cannot be executed effectively. According to the detection means by the probe, it is necessary to shift the position of the probe with respect to the cutter position of the undercut machine or to retract the probe after the detection is completed for cutting work by the undercut machine. Moreover, the optical means shown in FIG. 13 has the following problems. Since the vibration of the slit is mechanically performed, the structure becomes complicated. If the vibration amplitude of the slit fluctuates for some reason and becomes narrower than the width of the mica, it may not be possible to detect the conductor and mica separately. It is necessary to increase the rigidity of the vibrating mechanism so that resonance vibration due to the vibration of the slit does not occur. It is necessary to adjust the vibration amplitude of the slit according to the commutator structural dimensions such as the thickness and width of the mica and the diameter of the commutator. It is necessary to adjust the constants of the judgment electric circuit used for detection desired depending on the commutator structural dimensions, such as the thickness and width of the mica and the diameter of the commutator. SUMMARY OF THE INVENTION It is an object of the present invention to provide a focus adjusting method for a position detecting light receiving function and a cutting portion positioning method in a cutting portion position detecting method for an undercut machine, which solves the above-mentioned conventional problems (problems). .

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に,本発明に基づくアンダカットマシンの切削部位置検
知方法における位置検知用受光機能の焦点調節方法にお
いては,少なくとも一列に所定数の光電変換機能素子を
整流子に直交するように整列して形成した焦点調節機能
を備えた受光機能によって整流子のマイカ部を検知する
ようにし,焦点調節動作中に,光電変換機能素子のうち
受光量が小さな光電変換機能素子とこの光電変換機能素
子に隣接し,この光電変換機能素子よりも大きな受光量
を入力する光電変換機能素子との間の受光量差が最大に
なる位置を受光機能の焦点位置であると判定するように
した。また,受光機能を形成する全ての光電変換機能素
子の受光量の平均値よりも所定値以上小なる受光量を検
知する光電変換機能素子数が最大になる位置を焦点位置
であると判定するようにした。また,アンダカットマシ
ンの切削部位置検知方法における切削部の位置決め方法
においては,上述した受光機能を形成する複数の光電変
換機能素子のうち,全光電変換機能素子の受光量の平均
値よりも所定値以上小さな受光量を受光する光電変換機
能素子が所定数以上連続する両側端をマイカ部の両端部
であると判定するようにし,その中間の光電変換機能素
子位置をマイカ部の中央部であると判定するようにし
た。また,上述した受光機能を形成する複数の光電変換
機能素子のうち,全光電変換機能素子の受光量の平均値
よりも小さな受光量を受光する光電変換機能素子が所定
数以上連続する両側端の光電変換機能素子に近接する最
大受光量を示す光電変換機能素子位置をマイカ部の両端
部であると判定するようにし,その中間の光電変換機能
素子位置をマイカ部の中央部であると判定するようにし
た。
In order to solve the above-mentioned problems, in a focus adjusting method of a position detecting light receiving function in a cutting portion position detecting method of an undercut machine according to the present invention, a predetermined number of photoelectric cells are provided in at least one row. The mica part of the commutator is detected by the light receiving function with the focus adjustment function, which is formed by aligning the conversion function elements so as to be orthogonal to the commutator. The focal point of the light receiving function is the position where the difference in the amount of received light between the photoelectric conversion function element with a small value and the photoelectric conversion function element that is adjacent to this photoelectric conversion function element and that receives a greater amount of received light than this photoelectric conversion function element is maximum. It was decided to be the position. In addition, the position where the number of photoelectric conversion functional elements that detects the amount of received light smaller than the average value of the amount of received light of all the photoelectric conversion functional elements forming the light receiving function is detected is determined to be the focus position. I chose Further, in the cutting part positioning method in the cutting part position detection method of the undercut machine, among the plurality of photoelectric conversion function elements forming the above-described light receiving function, a predetermined value is more than the average value of the light reception amount of all photoelectric conversion function elements. The photoelectric conversion function element that receives a smaller amount of light than the value is judged to be both ends of the mica part where both sides are continuous for a predetermined number or more, and the intermediate photoelectric conversion function element position is the center part of the mica part. I decided to judge. In addition, among the plurality of photoelectric conversion function elements that form the above-described light receiving function, photoelectric conversion function elements that receive a smaller amount of received light than the average value of the amount of received light of all photoelectric conversion function elements are located on both side ends where a predetermined number or more are continuous. The position of the photoelectric conversion function element that shows the maximum amount of received light close to the photoelectric conversion function element is determined to be both ends of the mica part, and the intermediate photoelectric conversion function element position is determined to be the center part of the mica part. I did it.

【0006】[0006]

【作用】この発明は,上述のような方法にしたので,受
光機能の焦点位置を自動的に確実に判定できて,焦点調
節が容易確実に実行できる。また,切削部であるマイカ
部とその中央部が容易・確実に判定できる。
Since the present invention employs the method described above, the focus position of the light receiving function can be automatically and surely determined, and the focus adjustment can be easily and surely executed. In addition, the mica part, which is the cutting part, and the central part can be easily and surely determined.

【0007】[0007]

【実施例】本発明に基づくアンダカットマシンの切削部
位置決め方法を適用した位置決め装置の実施例の詳細を
図1ないし図10を参照して詳細に説明する。図1には
アンダカットマシンの切削部位置決め方法を適用した位
置決め装置の概要構成例を示している。図1において,
1はマイカ部の表面を切削すべき,モ−タの電機子に形
成した整流子であって,整流子1がアンダカットマシン
2のベッド2aに保持され,機構部2bに装着された状
況を示している。また,3は例えばハロゲンランプを用
いた光源であって,光源3から放射される光は光ファイ
バ−4等の導光機能によってレンズ類によって構成され
る投光部5に導かれる。上述した光源3,光ファイバ−
4,投光部5等によって光照射機能が構成されている。
投光部5によって照射された光線5aは整流子1の表面
に形成される導体部1aまたはマイカ部1bによって反
射され,反射光5bは受光機能6に入射し,入射した光
量変化に対応して変化する電気信号に変換される。受光
機能6は,所定数の光電変換機能素子が少なくとも1
列,計測すべき整流子1に対して直向方向に整列した光
センサであって,例えば,図2に示す6Aのように,0
から127まで,128個の光電変換機能素子を整列し
た機能を備えたCCDカメラ等(以下受光機能をCCD
センサと記す)である。なお,6Aは光電変換機能素子
を1列整列した受光機能を示している。CCDセンサ6
の受光信号出力は画像処理装置7に伝送される。画像処
理装置7による処理結果はこの画像処理装置7に対して
操作信号を伝送してくる上位制御装置である,例えば,
シ−ケンサ(以下シ−ケンサと記す)8に伝送される。
シ−ケンサ8はまた,アンダカットマシン2の制御装置
9に制御信号を伝送している。また,10はこのアンダ
カットマシン2のカッタを示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of an embodiment of a positioning device to which a method for positioning a cutting portion of an undercut machine according to the present invention is applied will be described in detail with reference to FIGS. FIG. 1 shows a schematic configuration example of a positioning device to which a cutting portion positioning method of an undercut machine is applied. In Figure 1,
Reference numeral 1 is a commutator formed on the armature of the motor for cutting the surface of the mica part. The commutator 1 is held on the bed 2a of the undercut machine 2 and mounted on the mechanism part 2b. Shows. Further, 3 is a light source using, for example, a halogen lamp, and the light emitted from the light source 3 is guided to a light projecting section 5 composed of lenses by a light guiding function of an optical fiber-4 or the like. Light source 3 described above, optical fiber
4, the light projecting unit 5 and the like constitute a light irradiation function.
The light beam 5a emitted by the light projecting portion 5 is reflected by the conductor portion 1a or the mica portion 1b formed on the surface of the commutator 1, and the reflected light 5b is incident on the light receiving function 6 and corresponds to the change in the amount of incident light. It is converted into a changing electrical signal. The light receiving function 6 has at least one photoelectric conversion function element.
A row, an optical sensor aligned in a direct direction with respect to the commutator 1 to be measured, such as 6A shown in FIG.
CCD camera with the function of arranging 128 photoelectric conversion functional elements from 1 to 127.
It is described as a sensor). 6A indicates a light receiving function in which photoelectric conversion functional elements are arranged in one row. CCD sensor 6
The received light signal output of is transmitted to the image processing device 7. The processing result by the image processing device 7 is a higher-level control device that transmits an operation signal to the image processing device 7, for example,
It is transmitted to a sequencer (hereinafter referred to as a sequencer) 8.
The sequencer 8 also transmits control signals to the control device 9 of the undercut machine 2. Further, 10 indicates a cutter of this undercut machine 2.

【0008】(実施例1)次に,上述のように構成した
CCDセンサの焦点調節の方法例である実施例1を図
3,図4を参照して説明する。なお,図3,図4におい
て各符号は図1に示したものと同一である。図3はCC
Dセンサ6が測定対象である整流子1表面からの反射光
5bの受光量を示した図であって,横軸にはCCDセン
サを構成する0から127番目まで計128個の各光電
変換機能素子を示し,縦軸には,各光電変換素子が受光
する受光量を示している。図3において,曲線aはCC
Dセンサ6の焦点位置が測定対象である整流子1の表面
に一致していない場合,曲線bはCCDセンサ6の焦点
位置が測定対象である整流子表面に一致した場合をそれ
ぞれ示している。次に,図4に示すフロ−によって,C
CDセンサ6の焦点位置を自動的に一致させる作業を説
明する。アンダカットマシン2に切削対象である整流子
1を装着し,シ−ケンサ8を起動させると,シ−ケンサ
8に予め設定されたシ−ケンスプログラムによってCC
Dセンサ6の自動焦点調節を開始する。即ち,CCDセ
ンサ6を整流子1の表面から所定距離離れた位置におい
て,図3に示した曲線aのようにCCDセンサ6に受光
するようにした後,測定を開始する。画像処理装置7に
CCDセンサ6を構成する各光電変換機能素子の受光信
号を取り込み(ステップ−2),各信号レベル値を記録
する(ステップ−1)。上述の動作の後,ステップ1で
焦点調節を開始する。即ち,例えば,CCDセンサ6の
焦点位置よりも整流子1の表面が離れた位置でCCDセ
ンサ6を設定した場合は,CCDセンサ6の焦点位置を
整流子1の表面に接近するように所定の焦点調節機能を
働かす。または,CCDセンサ6を整流子1の表面に接
近させる。各光電変換機能素子の受光信号を引き続き取
込む(ステップ2)。取込んだ各光電変換機能素子の隣
接素子同士の受光レベルを比較し(ステップ3),比較
した各隣接光電変換機能素子同士の受光レベル差がステ
ップ−1で記録した時のレベル差よりも大きくなるとそ
の偏差値を記録して(ステップ4)焦点調節動作を同一
方向に継続する(ステップ5)。上述の作業を継続して
各光電変換機能素子の隣接光電変換機能素子同士の受光
レベルを比較した(ステップ3)結果,隣接素子同士の
受光レベル差が前回チェックし記録したレベル差よりも
大きくならず,小さくなると,その偏差値を記録して
(ステップ4′)従来とは逆方向に焦点調節動作をする
(ステップ5′)。上述の作業を継続して各光電変換機
能素子の隣接素子同士の受光レベルを比較した(ステッ
プ3)結果,隣接光電変換機能素子同士の受光レベル差
が前回チェックし記録したレベル差よりも大きくなら
ず,予め設定した範囲内で変化がないと,焦点調節が完
了したと判定する。即ち,この段階では,各光電変換機
能素子には図3の曲線bのような受光レベルで受光され
る。
(Embodiment 1) Next, an embodiment 1 which is an example of a method for adjusting the focus of the CCD sensor constructed as described above will be described with reference to FIGS. 3 and 4, the reference numerals are the same as those shown in FIG. Figure 3 is CC
FIG. 6 is a diagram showing the amount of reflected light 5b received from the surface of the commutator 1 which is the D sensor 6 to be measured, and the horizontal axis shows 128 photoelectric conversion functions from 0 to 127 which constitute the CCD sensor. The elements are shown, and the vertical axis shows the amount of light received by each photoelectric conversion element. In FIG. 3, the curve a is CC
When the focus position of the D sensor 6 does not match the surface of the commutator 1 that is the measurement target, the curve b shows the case where the focus position of the CCD sensor 6 matches the surface of the commutator that is the measurement target. Next, by the flow shown in FIG.
An operation for automatically matching the focal position of the CD sensor 6 will be described. When the commutator 1 to be cut is mounted on the undercut machine 2 and the sequencer 8 is started, CC is executed by the sequence program preset in the sequencer 8.
The automatic focus adjustment of the D sensor 6 is started. That is, the CCD sensor 6 is made to receive light as shown by the curve a shown in FIG. 3 at a position separated from the surface of the commutator 1 by a predetermined distance, and then the measurement is started. The light receiving signal of each photoelectric conversion function element which constitutes the CCD sensor 6 is taken into the image processing device 7 (step-2), and each signal level value is recorded (step-1). After the above-mentioned operation, focus adjustment is started in step 1. That is, for example, when the CCD sensor 6 is set at a position where the surface of the commutator 1 is farther from the focal position of the CCD sensor 6, a predetermined position is set so that the focal position of the CCD sensor 6 approaches the surface of the commutator 1. Activate the focus adjustment function. Alternatively, the CCD sensor 6 is brought close to the surface of the commutator 1. The light reception signal of each photoelectric conversion functional element is continuously taken in (step 2). The received light levels of the adjacent elements of the photoelectric conversion function elements that have been captured are compared (step 3), and the compared light reception level difference between the adjacent photoelectric conversion function elements is greater than the level difference when recorded in step -1. Then, the deviation value is recorded (step 4) and the focus adjusting operation is continued in the same direction (step 5). As a result of continuing the above work and comparing the light reception levels of the adjacent photoelectric conversion function elements of each photoelectric conversion function element (step 3), if the light reception level difference between the adjacent elements is larger than the level difference previously checked and recorded. If it becomes smaller, the deviation value is recorded (step 4 ') and the focus adjustment operation is performed in the opposite direction to the conventional one (step 5'). As a result of continuing the above work and comparing the light receiving levels of the adjacent elements of each photoelectric conversion function element (step 3), if the light receiving level difference between the adjacent photoelectric conversion function elements is larger than the level difference previously checked and recorded. If there is no change within the preset range, it is determined that the focus adjustment is completed. That is, at this stage, each photoelectric conversion function element receives light at the light receiving level as shown by the curve b in FIG.

【0009】(実施例2)次に,実施例2のCCDセン
サ6の焦点調節方法例を図3,図5を参照して説明す
る。なお,説明に使用する各符号は図1に示したものと
同一である。図5において,実施例1と同様に,整流子
1をアンダカットマシン2に装着して自動焦点調節を開
始する。画像処理装置7に各光電変換機能素子の受光信
号を取込み(ステップ−4),各受光レベル値を記録す
る(ステップ−3)。焦点調節動作を初めて(ステップ
−2),次に入力した光電変換機能素子の受光レベル値
と記録した各受信信号レベル値とを比較してその偏差値
を記録する(ステップ−1)。その後焦点調節動作を進
め(ステップ1),各光電変換機能素子の受光レベルを
取込んで記録し(ステップ2),前回記録した受光レベ
ルと比較して(ステップ3)算出した偏差値を記録して
(ステップ4),前回偏差値と比較する(ステップ
5)。偏差値が大きくなる方向に変化しているとその偏
差値を記録(ステップ6)し,焦点調節を同一方向に継
続する(ステップ7)。上述の作業を継続して変化値が
大きくならず,小さくなると,その偏差値を記録して
(ステップ6′)従来とは逆方向に焦点調節動作をする
(ステップ7′)。上述の作業を継続してステップ3に
おいて受光レベルの変化値が大きくならず,予め設定し
た範囲内で変化がないと,焦点調節が完了したと判定す
る。
(Embodiment 2) Next, an example of the focus adjustment method of the CCD sensor 6 of Embodiment 2 will be described with reference to FIGS. The reference numerals used in the description are the same as those shown in FIG. In FIG. 5, as in the first embodiment, the commutator 1 is mounted on the undercut machine 2 to start automatic focus adjustment. The light reception signal of each photoelectric conversion function element is taken into the image processing device 7 (step-4), and each light reception level value is recorded (step-3). The focus adjustment operation is performed for the first time (step-2), and then the received light receiving level value of the photoelectric conversion functional element is compared with each received signal level value recorded and the deviation value is recorded (step-1). After that, the focus adjustment operation is advanced (step 1), the received light level of each photoelectric conversion function element is taken and recorded (step 2), and the calculated deviation value is compared with the previously received light reception level (step 3). (Step 4) and compares with the previous deviation value (step 5). If the deviation value is changing in the increasing direction, the deviation value is recorded (step 6), and the focus adjustment is continued in the same direction (step 7). If the change value does not increase and decreases as the above work is continued, the deviation value is recorded (step 6 ') and the focus adjustment operation is performed in the opposite direction to the conventional one (step 7'). When the above operation is continued and the change value of the light receiving level does not increase in step 3 and there is no change within the preset range, it is determined that the focus adjustment is completed.

【0010】(実施例3)次に,実施例3のCCDセン
サ6の焦点調節方法例を図3,図6を参照して説明す
る。なお,説明に使用する各符号は図1に示したものと
同一である。図6において,実施例1同様整流子1をア
ンダカットマシン2に装着して自動焦点調節を開始す
る。画像処理装置7に各光電変換機能素子の受光信号を
取り込み(ステップ−2),各受光レベル値と隣接する
各光電変換機能素子の受光レベル値との偏差値を記録す
る(ステップ−1)。上述の操作の後,焦点調節動作を
開始し(ステップ1),各光電変換機能素子の受光レベ
ルを取込み記録する(ステップ2)。各光電変換機能素
子の受光レベルをそれぞれ隣接する光電変換機能素子の
受光レベルとを比較し(ステップ3)算出偏差値を記録
し(ステップ4),算出偏差値と記録した前回算出偏差
値とを比較する(ステップ5)。上述の比較結果の偏差
値が大きくなると偏差値を記録して(ステップ6)焦点
調節を同一方向に継続する(ステップ7)。上述の作業
を継続して偏差値が大きくならず,小さくなると偏差値
を記録して(ステップ6′)従来とは逆方向に焦点調節
動作をする(ステップ7′)。上述の作業を継続してス
テップ5の各隣接する光電変換機能素子同士の受光レベ
ル偏差値が大きくならず,予め設定した範囲内で変化が
ないと,焦点調節が完了したと判定する。
(Third Embodiment) Next, an example of a focus adjusting method for the CCD sensor 6 of the third embodiment will be described with reference to FIGS. The reference numerals used in the description are the same as those shown in FIG. In FIG. 6, the commutator 1 is mounted on the undercut machine 2 as in the first embodiment, and automatic focus adjustment is started. The light reception signal of each photoelectric conversion function element is taken into the image processing device 7 (step-2), and the deviation value between each light reception level value and the light reception level value of each adjacent photoelectric conversion function element is recorded (step-1). After the above operation, the focus adjustment operation is started (step 1), and the light receiving level of each photoelectric conversion functional element is captured and recorded (step 2). The light receiving level of each photoelectric conversion function element is compared with the light receiving level of the adjacent photoelectric conversion function element (step 3), the calculated deviation value is recorded (step 4), and the calculated deviation value and the previously calculated deviation value recorded are compared. Compare (step 5). When the deviation value of the comparison result becomes large, the deviation value is recorded (step 6) and the focus adjustment is continued in the same direction (step 7). When the deviation value does not increase and decreases when the above work is continued, the deviation value is recorded (step 6 ') and the focus adjustment operation is performed in the opposite direction to the conventional one (step 7'). When the above operation is continued and the received light level deviation value between adjacent photoelectric conversion functional elements in step 5 does not increase and there is no change within a preset range, it is determined that the focus adjustment is completed.

【0011】(実施例4)次に上述の実施例のようにC
CDセンサ6の焦点調節を完了した後,実施できる整流
子1の表面に切削加工を施す対象であるマイカ部の検知
動作の実施例である実施例4を図7を参照して説明す
る。なお,説明に使用する各符号は図1に示したものと
同一である。図7はCCDセンサ6が測定対象である整
流子1表面からの反射光5bの受光量を示した図であっ
て,横軸にはCCDセンサ6を構成する0から127番
目まで計128個の各光電変換機能素子を示し,縦軸に
は,各光電変換素子が受光する受光量を示している。上
述したようにアンダカットマシン2に切削対象である整
流子1を装着し,CCDセンサ6の焦点調節をした後,
シ−ケンサ8の動作をすすめると,本実施例に基づく測
定を開始する。前の実施例同様,画像処理装置7に各光
電変換機能素子の受光信号を取込み各信号レベル値を記
録する。各光電変換素子の受光レベルをチェックし,全
部の平均値を算出し,この平均値よりも予め設定した比
率値より低い値をスレシホ−ルドレベルとし,スレシホ
−ルドレベル以下の受光レベルで予め設定した以上の個
数で形成する光電変換素子列(スレシホ−ルドレベルの
設定条件によっては,列の中で独立して存在するスレシ
ホ−ルドレベル以上の受光レベルの光電変換素子は無視
して列に含める)の両端の各光電変換機能素子番号c,
dをマイカ部1bの両端であるとして記録する。また,
このcとdとの中間,または,中間部2個のうちの予め
設定した一方の光電変換素子eを切削加工すべきマイカ
部1bの中央部であるとして記録する。
(Embodiment 4) Next, as in the above-mentioned embodiment, C
A fourth embodiment, which is an embodiment of the detection operation of the mica portion that is a target for cutting the surface of the commutator 1 that can be performed after the focus adjustment of the CD sensor 6 is completed, will be described with reference to FIG. 7. The reference numerals used in the description are the same as those shown in FIG. FIG. 7 is a diagram showing the amount of reflected light 5b reflected from the surface of the commutator 1 which is the object of measurement by the CCD sensor 6, and the horizontal axis shows a total of 128 from 0th to 127th constituting the CCD sensor 6. Each photoelectric conversion function element is shown, and the vertical axis shows the amount of light received by each photoelectric conversion element. As described above, after mounting the commutator 1 to be cut on the undercut machine 2 and adjusting the focus of the CCD sensor 6,
When the operation of the sequencer 8 is advanced, the measurement based on this embodiment is started. As in the previous embodiment, the light receiving signals of the photoelectric conversion functional elements are taken into the image processing device 7 and the respective signal level values are recorded. The light receiving level of each photoelectric conversion element is checked, the average value of all is calculated, and a value lower than the preset ratio value than this average value is set as the threshold level, and the light receiving level below the threshold level Of the photoelectric conversion element array formed by the number of lines (depending on the setting conditions of the threshold level, the photoelectric conversion elements of the light receiving level higher than the threshold level independently existing in the array are ignored and included in the row). Each photoelectric conversion function element number c,
Record d as both ends of the mica part 1b. Also,
One of the two photoelectric conversion elements e, which is preset between the intermediate portions c and d or the intermediate portion, is recorded as the central portion of the mica portion 1b to be cut.

【0012】(実施例5)次に,実施例5のマイカ部1
bの検知動作を前述した図7と図8に示すフロ−とを参
照して説明する。なお,説明に使用する各符号は図1に
示したものと同一である。先ず,画像処理装置7に各光
電変換機能素子の受光信号を取込み(ステップ−2),
図7に示す0番の光電変換機能素子から所定数個の光電
変換機能素子までの受光レベル値の平均値を算出して記
録する(ステップ−1)。平均値処理をする光電変換機
能素子を1個分シフトする。即ち,1番の光電変換機能
素子から諸定数個の光電変換機能素子までの受光レベル
値の平均値を出して記録し(ステップ1)前に記録した
平均値と比較する(ステップ2)。平均値が大きくなる
方向に変化していれば,ステップ1に戻って上述の動作
を繰り返す。平均値が所定量以上小さくなる方向に変化
すれば,同じくステップ1に戻って上述の動作を繰り返
す。平均値の変化量が所定量以下の量に小さく変化する
か,変化しなくなれば,その平均値処理をした最も上
位,即ち新しく平均値処理に加えた光電変換機能素子の
番号を図7に示したcとして記録する(ステップ3)。
さらに上述と同様の平均値処理(ステップ4)と比較動
作を続行する(ステップ5)。平均値が所定量以上大き
くなる方向に変化すれば,その平均値処理をした最も上
位,即ち新しく平均値処理に加えた光電変換機能素子か
ら所定数前の番号を図7に示したdとし,前述したcと
このdとの中間,または,中間部2個のうちの予め設定
した一方の番号をeとして記録する(ステップ6)。
(Example 5) Next, the mica part 1 of Example 5
The detection operation of b will be described with reference to the flow charts shown in FIGS. 7 and 8 described above. The reference numerals used in the description are the same as those shown in FIG. First, the light reception signal of each photoelectric conversion functional element is taken into the image processing device 7 (step-2),
The average value of the light receiving level values from the photoelectric conversion function element No. 0 to a predetermined number of photoelectric conversion function elements shown in FIG. 7 is calculated and recorded (step -1). One photoelectric conversion functional element that performs average value processing is shifted. That is, the average value of the light-receiving level values from the photoelectric conversion function element No. 1 to various photoelectric conversion function elements is calculated and recorded (step 1) and compared with the previously recorded average value (step 2). If the average value has changed in the increasing direction, the process returns to step 1 and the above-described operation is repeated. If the average value changes in the direction of decreasing by a predetermined amount or more, the process similarly returns to step 1 and the above operation is repeated. If the amount of change in the average value slightly changes to a value less than or equal to a predetermined amount, or if it does not change, the number of the photoelectric conversion function element that is the highest order of the average value processing, that is, the photoelectric conversion function element newly added to the average value processing is shown in FIG. It is recorded as c (step 3).
Further, the same average value processing (step 4) and the comparison operation as described above are continued (step 5). If the average value changes in the direction of increasing by a predetermined amount or more, the highest number after the average value processing, that is, a number a predetermined number before the photoelectric conversion function element newly added to the average value processing is set as d shown in FIG. An intermediate value between the above-mentioned c and this d or a preset one of the two intermediate parts is recorded as e (step 6).

【0013】(実施例6)次に,実施例6のマイカ部1
bの検知動作を図9を参照して説明する。なお,説明に
使用する各符号は図1に示したものと同一である。図9
はCCDセンサ6が測定対象である整流子1の表面から
反射する反射光5bの受光量を示した図であって,横軸
にはCCDセンサ6を構成する0から127番目までの
計128個の各光電変換機能素子を示し,縦軸には各光
電変換機能素子が受光する受光量を示している。上述し
たようにアンダカットマシン2に切削対象である整流子
1を装着し,CCDセンサ6の焦点調節をした後,シ−
ケンサ8の動作をすすめると,本実施例に基づく測定を
開始する。前の実施例と同様に画像処理装置7に各光電
変換機能素子の受光信号を取込み各信号レベル値を記録
する。各光電変換機能素子の受光レベルをチェックし,
予め設定された所定数の光電変換機能素子を中間にして
離れている受光レベルが最大の光電変換機能素子の位置
f,およびgをマイカ部1bの両端位置を示す光電変換
機能素子であると判定し,fおよびgの中間,即ち,実
施例4で判定したeと同様の判定手段によって得られる
光電変換機能素子位置hをマイカ部1bの中央部である
と判定する。
(Sixth Embodiment) Next, the mica part 1 of the sixth embodiment
The detection operation of b will be described with reference to FIG. The reference numerals used in the description are the same as those shown in FIG. Figure 9
Is a diagram showing the amount of reflected light 5b reflected from the surface of the commutator 1 which is the measurement target of the CCD sensor 6, and the horizontal axis shows a total of 128 from 0th to 127th constituting the CCD sensor 6. Of each photoelectric conversion function element, and the vertical axis indicates the amount of light received by each photoelectric conversion function element. As described above, the commutator 1 to be cut is attached to the undercut machine 2, and the focus of the CCD sensor 6 is adjusted.
When the operation of the lens 8 is advanced, the measurement based on this embodiment is started. Similar to the previous embodiment, the light receiving signals of the photoelectric conversion functional elements are taken into the image processing device 7 and the respective signal level values are recorded. Check the light receiving level of each photoelectric conversion function element,
It is determined that the positions f and g of the photoelectric conversion function element having the maximum light receiving level, which is separated from the predetermined number of photoelectric conversion function elements in the middle, are photoelectric conversion function elements indicating both end positions of the mica part 1b. Then, it is determined that the photoelectric conversion functional element position h intermediate between f and g, that is, the photoelectric conversion functional element position h obtained by the same determination means as that of e determined in the fourth embodiment is the central portion of the mica portion 1b.

【0014】(実施例7)次に,上述の実施例のように
CCDセンサの観測範囲内に対象マイカ部が存在しない
場合におけるマイカ部の検知動作の実施例を前述した図
9に含め図10に示すフロ−をも参照して説明する。な
お,説明に使用する各符号は図1に示したものと同一で
ある。前の実施例同様画像処理装置7に各光電変換機能
素子の受光信号を取込み(ステップ−2),各受光レベ
ル値を記録する(ステップ−1)。CCDセンサ6をア
ンダカットマシン2のセンタ−方向(光電変換機能素子
列の列方向)に移動させる。または,アンダカットマシ
ン2に装着した整流子1を回転させる(ステップ1)。
各光電変換素子の受光信号を取り込み記録して(ステッ
プ2)前回記録レベル値と比較する(ステップ3)。比
較結果,前回記録レベル値に対して,整流子表面の平面
度等のばらつきによる反射特性の影響を除去するように
予め設定されている条件に従い,例えば平均値処理を行
い,または特定条件外の受光デ−タは無視して,ほぼ全
ての記録レベル値が増大すると,ステップ1に示した動
作を継続する(ステップ4)。比較結果,受光レベルに
最大値が得られた後,減衰する受光レベル傾向が得られ
ても,上述の動作を継続する(ステップ4)。比較結
果,予め設定した所定個数の光電変換機能素子を隔てて
2個の最大値が得られると,最初の最大値をf,後から
現れた最大値をg,2個の光電変換機能素子fとgの中
央部の位置をhであると判定する(ステップ5)。必要
に応じて,h点を記録する光電変換機能素子の番号が,
CCDセンサ6を構成する光電変換機能素子の中央部に
くるように,f点,g点,h点それぞれに対応する光電
変換機能素子の番号をシフトさせながらCCDセンサ6
を移動させる。
(Embodiment 7) Next, an embodiment of the detection operation of the mica part when the target mica part does not exist within the observation range of the CCD sensor as in the above-mentioned embodiment is included in FIG. It will be described with reference to the flow shown in FIG. The reference numerals used in the description are the same as those shown in FIG. Similar to the previous embodiment, the light receiving signal of each photoelectric conversion function element is taken into the image processing device 7 (step-2), and each light receiving level value is recorded (step-1). The CCD sensor 6 is moved in the center direction of the undercut machine 2 (the direction of the photoelectric conversion function element array). Alternatively, the commutator 1 mounted on the undercut machine 2 is rotated (step 1).
The received light signal of each photoelectric conversion element is fetched and recorded (step 2) and compared with the previous recording level value (step 3). As a result of comparison, for example, an average value process is performed on the previous recording level value according to a preset condition so as to eliminate the influence of the reflection characteristic due to the variation of the flatness of the commutator surface, or the value outside the specific condition is satisfied. The light receiving data is ignored, and when almost all the recording level values increase, the operation shown in step 1 is continued (step 4). As a result of the comparison, the above operation is continued even if the attenuation level of the received light level is obtained after the maximum value of the received light level is obtained (step 4). As a result of the comparison, when two maximum values are obtained by separating a predetermined number of photoelectric conversion function elements, the first maximum value is f, the maximum value that appears later is g, and two photoelectric conversion function elements f are used. And the central position of g is determined to be h (step 5). If necessary, the number of the photoelectric conversion functional element that records the h point is
The CCD sensor 6 is moved while shifting the numbers of the photoelectric conversion function elements corresponding to the points f, g, and h so that they are located at the center of the photoelectric conversion function elements that make up the CCD sensor 6.
To move.

【0015】(実施例8)次に,CCDセンサ6の観測
範囲内に対象マイカ部が存在しない場合におけるマイカ
部の検知動作の実施例8を前述した図7と図11に示す
フロ−を参照して説明する。CCDセンサ6と整流子1
との位置関係はアンダカットマシンの条件に対応して予
め設定できるので,本実施例はマイカ部がCCDセンサ
6を構成する光電変換機能素子の0番方向にある場合に
ついて説明する。先ず,画像処理装置7に各光電変換機
能素子の受光信号を取込み(ステップ−2),図7に示
す0番の光電変換機能素子から所定数個の光電変換機能
素子までの受光レベル値の平均値を算出して記録する
(ステップ−1)。CCDセンサ6を平均値処理をする
0番の光電変換機能素子の方向にCCDセンサ6を光電
変換機能素子1個分シフトする。即ち,再び,0番の光
電変換機能素子から所定数個の光電変換機能素子までの
受光レベル値の平均値を出して記録し(ステップ1)前
に記録した平均値と比較する(ステップ2)。平均値が
大きくなる方向に変化していれば,ステップ1に戻って
上述の動作を繰り返す。平均値が所定量以上小さくなる
方向に変化すれば,同じくステップ1に戻って上述の動
作を繰り返す。平均値の変化量が所定量以下の量に小さ
く変化するか,変化しなくなれば,その平均値処理をし
たCCDセンサの移動方向側端部の光電変換機能素子の
番号を図7に示したcとして記録する(ステップ3)。
さらに,上述と同様CCDセンサ6を移動しながら平均
値処理(ステップ4)と比較を続行する(ステップ
5)。その場合,CCDセンサ6の移動に対応して上述
したc点を記録する光電変換機能素子の番号を1ステッ
プづつシフトする。平均値が所定量以上大きくなる方向
に変化すれば,その平均値処理をした,CCDセンサの
移動方向側端部の光電変換機能素子の番号を図7に示し
たdとして記録し,前述したcとこのdとの中間,また
は,中間部2個のうちの予め設定した一方の番号をeと
して記録する(ステップ6)。必要に応じて,e点を記
録する光電変換機能素子の番号が,CCDセンサ6を構
成する光電変換機能素子の中央部にくるように,c点,
d点,e点それぞれに対応する光電変換機能素子の番号
をシフトさせながらCCDセンサ6を移動させる。
(Embodiment 8) Next, refer to the flow charts shown in FIGS. 7 and 11 for Embodiment 8 of the detection operation of the mica part when the target mica part does not exist within the observation range of the CCD sensor 6. And explain. CCD sensor 6 and commutator 1
Since the positional relationship with and can be set in advance in accordance with the conditions of the undercut machine, this embodiment describes a case where the mica part is in the 0th direction of the photoelectric conversion function element forming the CCD sensor 6. First, the received light signal of each photoelectric conversion function element is taken into the image processing device 7 (step-2), and the average of the received light level values from the photoelectric conversion function element No. 0 to a predetermined number of photoelectric conversion function elements shown in FIG. 7 are averaged. Calculate and record the value (step-1). The CCD sensor 6 is shifted by one photoelectric conversion function element in the direction of the 0th photoelectric conversion function element that performs average value processing. That is, again, the average value of the received light level values from the photoelectric conversion function element No. 0 to a predetermined number of photoelectric conversion function elements is output and recorded (step 1) and compared with the previously recorded average value (step 2). . If the average value has changed in the increasing direction, the process returns to step 1 and the above-described operation is repeated. If the average value changes in the direction of decreasing by a predetermined amount or more, the process similarly returns to step 1 and the above operation is repeated. If the change amount of the average value is changed to a predetermined amount or less, or does not change, the number of the photoelectric conversion function element at the moving direction side end of the CCD sensor subjected to the average value is shown in FIG. Is recorded (step 3).
Further, the average value processing (step 4) and the comparison are continued while moving the CCD sensor 6 as described above (step 5). In that case, the number of the photoelectric conversion function element for recording the above-mentioned point c is shifted by one step corresponding to the movement of the CCD sensor 6. If the average value changes in the direction of increasing by a predetermined amount or more, the number of the photoelectric conversion functional element at the end portion in the moving direction of the CCD sensor, which has been subjected to the average value processing, is recorded as d shown in FIG. Then, the number which is set in the middle between this and d, or one of the two set intermediate parts which is set in advance is recorded as e (step 6). If necessary, the number of the photoelectric conversion function element for recording the point e is set so that the number of the photoelectric conversion function element is at the center of the photoelectric conversion function element constituting the CCD sensor 6,
The CCD sensor 6 is moved while shifting the numbers of the photoelectric conversion functional elements corresponding to the points d and e respectively.

【0016】上述した実施例のようなフロ−に従って所
望される計測を実現できるように構成することによって
アンダカットマシンの切削部位置決め装置を実現でき
る。上述の説明は本発明の技術思想を実現するための基
本構成を示したものであって,種々応用改変することが
できる。即ち,例えば,図7に示したc点とd点,また
は図9に示したf点とg点を判定できるように,この図
形を参照して上述した実施例以外の方法を適用すること
ができる。また,上述した各実施例に示す方法が実現で
きれば,図1に示した以外の構成をとることが可能であ
る。例えば,光電変換機能はCCDセンサ以外の任意の
受光機能を用いても良く,比較や判定に使用する各機能
要素はハ−ドウエアによって構成してもコンピュ−タの
ソフトウエアによって構成しても良い。
The cutting part positioning device of the undercut machine can be realized by configuring so as to realize a desired measurement according to the flow as in the above-described embodiment. The above description shows the basic configuration for realizing the technical idea of the present invention, and can be variously applied and modified. That is, for example, in order to determine the points c and d shown in FIG. 7 or the points f and g shown in FIG. it can. Further, if the method shown in each of the above-described embodiments can be realized, a configuration other than that shown in FIG. 1 can be adopted. For example, the photoelectric conversion function may use any light receiving function other than the CCD sensor, and each functional element used for comparison and determination may be configured by hardware or software of a computer. .

【0017】[0017]

【発明の効果】本発明は上述したような方法にしたの
で,次のような優れた効果を有する。 CCDセンサのような光学センサの焦点調節を自動的
に実施できる。 さらに,切削部であるマイカ部の中央ラインを確実に
検知できる。 従って,精度の良いアンダカットマシンによる切削作
業を効率良く実行することができる。
EFFECTS OF THE INVENTION Since the present invention has the above-mentioned method, it has the following excellent effects. Focusing of optical sensors such as CCD sensors can be performed automatically. Furthermore, the central line of the mica part, which is the cutting part, can be detected reliably. Therefore, it is possible to efficiently perform the cutting work by the accurate undercut machine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づくアンダカットマシンによる切削
部位置決め方法を適用した位置決め装置の概要構成例を
示す概要ブロック図である。
FIG. 1 is a schematic block diagram showing a schematic configuration example of a positioning device to which a cutting portion positioning method using an undercut machine according to the present invention is applied.

【図2】図1に示す位置決め装置に適用する光センサの
一例であるCCDセンサにおいてCCDセンサを構成す
る光電変換素子の構成を示す説明図である。
FIG. 2 is an explanatory diagram showing a configuration of a photoelectric conversion element that constitutes a CCD sensor in a CCD sensor that is an example of an optical sensor applied to the positioning device shown in FIG.

【図3】図1に示す位置決め装置において光センサにC
CDセンサを用いた場合の受光レベルが焦点調節によっ
て変化する状況を説明する概要特性図である。
FIG. 3 is a schematic view showing a C in an optical sensor in the positioning device shown in FIG.
FIG. 6 is a schematic characteristic diagram illustrating a situation in which a light receiving level when a CD sensor is used changes due to focus adjustment.

【図4】図1に示す位置決め装置において光センサにC
CDセンサを用いた場合の自動焦点調節方法である実施
例1を説明する概要フロ−図である。
FIG. 4 is a schematic diagram showing a photo sensor in the positioning device shown in FIG.
It is a schematic flow chart explaining Example 1 which is an automatic focusing method when a CD sensor is used.

【図5】光センサにCCDセンサを用いた場合の実施例
2の自動焦点調節方法例を説明する概要フロ−図であ
る。
FIG. 5 is a schematic flowchart illustrating an example of an automatic focusing method according to a second embodiment when a CCD sensor is used as an optical sensor.

【図6】光センサにCCDセンサを用いた場合の実施例
3の自動焦点調節方法例を説明する概要フロ−図であ
る。
FIG. 6 is a schematic flowchart illustrating an example of an automatic focus adjustment method according to a third embodiment when a CCD sensor is used as an optical sensor.

【図7】図1に示す位置決め装置において光センサにC
CDセンサを用いた場合のアンダカットマシンによって
切削すべきマイカ部(切削部)を検知する方法である実
施例4を説明するCCDセンサによる概要受光特性図で
ある。
FIG. 7 is a schematic diagram showing an example of the positioning device shown in FIG.
It is a schematic light-receiving characteristic figure by a CCD sensor explaining Example 4 which is a method of detecting a mica part (cutting part) to be cut by an undercut machine when a CD sensor is used.

【図8】図1に示す位置決め装置において光センサにC
CDセンサを用いた場合のアンダカットマシンによって
切削すべきマイカ部(切削部)を検知する実施例5の自
動検知方法例を説明する概要フロ−図である。
FIG. 8 is a schematic view showing a photo sensor having C in the positioning device shown in FIG.
It is a schematic flow chart explaining an example of an automatic detection method of Example 5 which detects a mica part (cutting part) to be cut by an undercut machine when a CD sensor is used.

【図9】図1に示す位置決め装置において光センサにC
CDセンサを用いた場合のアンダカットマシンによって
切削すべきマイカ部(切削部)を検知する実施例6の方
法例を説明するCCDセンサによる概要受光特性図であ
る。
FIG. 9 is a schematic diagram showing an example of the positioning device shown in FIG.
It is a general | schematic light receiving characteristic figure by a CCD sensor explaining the example of the method of Example 6 which detects the mica part (cutting part) which should be cut by an undercut machine when a CD sensor is used.

【図10】図1に示す位置決め装置において光センサに
CCDセンサを用いた場合のアンダカットマシンによっ
て切削すべきマイカ部(切削部)を検知する実施例7の
自動検知方法例を説明する概要フロ−図である。
10 is a schematic flow chart for explaining an example of an automatic detection method of the seventh embodiment for detecting a mica part (cutting part) to be cut by an undercut machine when a CCD sensor is used as an optical sensor in the positioning apparatus shown in FIG. -Figure.

【図11】図1に示す位置決め装置において光センサに
CCDセンサを用いた場合のアンダカットマシンによっ
て切削すべきマイカ部(切削部)を検知する実施例8の
自動検知方法例を説明する概要フロ−図である。
11 is a schematic flow chart for explaining an example of an automatic detection method of an eighth embodiment for detecting a mica portion (cutting portion) to be cut by an undercut machine when a CCD sensor is used as an optical sensor in the positioning device shown in FIG. -Figure.

【図12】従来のアンダカットマシンにおける切削部を
検知する電気的方法の1例を示す説明図で,同図(A)
は整流子の要部平面図,同図(B)は整流子と探触子と
の関係を示す側面図である。
FIG. 12 is an explanatory view showing an example of an electrical method for detecting a cutting portion in a conventional undercut machine, and FIG.
Is a plan view of the main part of the commutator, and FIG. 6B is a side view showing the relationship between the commutator and the probe.

【図13】従来のアンダカットマシンにおける切削部を
検知する光学的方法の1例を示す説明図である。
FIG. 13 is an explanatory diagram showing an example of an optical method for detecting a cutting portion in a conventional undercut machine.

【符号の説明】[Explanation of symbols]

1:整流子 1a:整流子の導体部 1b:整流子のマイカ部 2:アンダカットマシン 3:光源(ハロゲンランプ) 4:導光機能(光ファイバ−) 5:投光部 6:光センサ(CCDセンサ)(CCDカメラ) 7:画像処理装置 8:制御装置(シ−ケンサ) 9:アンダカットマシンの制御装置 10:アンダカットマシンのカッタ 1: Commutator 1a: Conductor part of commutator 1b: Mica part of commutator 2: Undercut machine 3: Light source (halogen lamp) 4: Light guiding function (optical fiber) 5: Light emitting part 6: Optical sensor ( CCD sensor) (CCD camera) 7: Image processing device 8: Control device (sequencer) 9: Control device of undercut machine 10: Cutter of undercut machine

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 直流モ−タの整流子のマイカ部を切削す
るアンダカットマシンの切削部位置検知方法において,
当該アンダカットマシンに移動自在に構成した光照射機
能と,少なくとも一列に所定数の光電変換機能素子を整
流子に直交するように整列して形成した焦点調節機能を
備えた受光機能とによって整流子のマイカ部を検知する
ようにし,該受光機能の焦点調節動作中に,受光機能を
形成する光電変換機能素子のうち受光量が小なる光電変
換機能素子と該光電変換機能素子に隣接し,この光電変
換機能素子よりも大なる受光量を入力する光電変換機能
素子との間の受光量差が最大になる位置を該受光機能の
焦点位置であると判定するようにしたことを特徴とする
アンダカットマシンの切削部位置検知方法における位置
検知用受光機能の焦点調節方法。
1. A method for detecting a cutting portion position of an undercut machine for cutting a mica portion of a commutator of a DC motor, comprising:
A commutator having a light irradiation function configured to be movable in the undercut machine and a light receiving function having a focus adjusting function formed by arranging a predetermined number of photoelectric conversion function elements in at least one row so as to be orthogonal to the commutator. Of the photoelectric conversion function element that forms the light receiving function during the focus adjustment operation of the light receiving function and is adjacent to the photoelectric conversion function element that receives a smaller amount of light. An under-position characterized in that the position where the difference in the amount of received light with the photoelectric conversion function element that receives a larger amount of received light than the photoelectric conversion function element is maximized is determined to be the focus position of the light reception function. A focus adjustment method of a light receiving function for position detection in a cutting part position detection method of a cutting machine.
【請求項2】 直流モ−タの整流子のマイカ部を切削す
るアンダカットマシンの切削部位置検知方法において,
移動自在に構成した光照射機能と,少なくとも一列に所
定数の光電変換機能素子を整流子に直交するように整列
して形成した焦点調節機能を備えた受光機能とによって
整流子のマイカ部を検知するようにし,該受光機能の焦
点調節動作中に,受光機能を形成する全ての光電変換機
能素子の受光量の平均値よりも所定値以上小なる受光量
を検知する光電変換機能素子数が最大になる位置を焦点
位置であると判定するようにしたことを特徴とするアン
ダカットマシンの切削部位置検知方法における位置検知
用受光機能の焦点調節方法。
2. A method of detecting a cutting portion position of an undercut machine for cutting a mica portion of a commutator of a DC motor, comprising:
Detects the mica part of the commutator by the movable light irradiation function and the light receiving function with the focus adjustment function which is formed by arranging a certain number of photoelectric conversion function elements in at least one row so as to be orthogonal to the commutator. During the focus adjustment operation of the light receiving function, the maximum number of photoelectric conversion function elements that detect a light receiving quantity that is smaller than the average value of the light receiving quantity of all photoelectric conversion function elements forming the light receiving function by a predetermined value or more. The focus adjustment method of the position detecting light receiving function in the cutting part position detection method of the undercut machine, wherein the position of is determined to be the focus position.
【請求項3】 直流モ−タの整流子のマイカ部を切削す
るアンダカットマシンの切削部位置検知方法において,
移動自在に構成した光照射機能と,少なくとも一列に所
定数の光電変換機能素子を整流子に直交するように整列
して形成した焦点調節機能を備えた受光機能とによって
整流子のマイカ部を検知するようにし,該受光機能を形
成する複数の光電変換機能素子のうち,受光機能を形成
する全ての光電変換機能素子の受光量の平均値よりも所
定値以上小なる受光量を受光する光電変換機能素子が所
定数以上相連続する両側端の光電変換機能素子位置をマ
イカ部の両端部であると判定するようにしたことを特徴
とするアンダカットマシンの切削部位置検知方法におけ
る切削部の位置決め方法。
3. A method of detecting a cutting portion position of an undercut machine for cutting a mica portion of a commutator of a DC motor,
Detects the mica part of the commutator by the movable light irradiation function and the light receiving function with the focus adjustment function which is formed by arranging a certain number of photoelectric conversion function elements in at least one row so as to be orthogonal to the commutator. Of the plurality of photoelectric conversion functional elements forming the light receiving function, the photoelectric conversion receiving a light receiving amount smaller than the average value of the light receiving amounts of all the photoelectric conversion functional elements forming the light receiving function by a predetermined value or more. Positioning of the cutting part in the cutting part position detection method of the undercut machine, characterized in that the photoelectric conversion function element positions at both ends where the functional elements are continuous for a predetermined number or more are determined to be both ends of the mica part Method.
【請求項4】 直流モ−タの整流子のマイカ部を切削す
るアンダカットマシンの切削部位置検知方法において,
移動自在に構成した光照射機能と,少なくとも一列に所
定数の光電変換機能素子を整流子に直交するように整列
して形成した焦点調節機能を備えた受光機能とによって
整流子のマイカ部を検知するようにし,該受光機能を形
成する複数の光電変換機能素子のうち,受光機能を形成
する全ての光電変換機能素子の受光量の平均値よりも小
なる受光量を受光する光電変換機能素子が所定数以上相
連続する両側端の光電変換機能素子に近接する最大受光
量を示す光電変換機能素子位置をマイカ部の両端部であ
ると判定するようにしたことを特徴とするアンダカット
マシンの切削部位置検知方法における切削部の位置決め
方法。
4. A method of detecting a cutting portion position of an undercut machine for cutting a mica portion of a commutator of a DC motor, comprising:
Detects the mica part of the commutator by the movable light irradiation function and the light receiving function with the focus adjustment function which is formed by arranging a certain number of photoelectric conversion function elements in at least one row so as to be orthogonal to the commutator. Therefore, among the plurality of photoelectric conversion function elements forming the light receiving function, the photoelectric conversion function element receiving a light receiving amount smaller than the average value of the light receiving amount of all the photoelectric conversion function elements forming the light receiving function is Cutting of an undercut machine characterized by determining that the photoelectric conversion function element position showing the maximum light receiving amount close to the photoelectric conversion function elements on both ends continuous for a predetermined number or more is determined to be both ends of the mica part Positioning method of cutting part in part position detection method.
【請求項5】 請求項3または請求項4において,マイ
カ部の両端部を示した光電変換機能素子を両端とする光
電変換機能素子列の中央部の光電変換機能素子位置を切
削部の中央部であると判定するようにしたアンダカット
マシンの切削部位置検知方法における切削部の位置決め
方法。
5. The photoelectric conversion function element position in the central portion of a photoelectric conversion function element row having both ends of the mica portion, the photoelectric conversion function element position being the central portion of the cutting portion according to claim 3 or 4. A method for positioning a cutting portion in a method for detecting the position of a cutting portion of an undercut machine, which is determined as follows.
JP5188694A 1993-07-02 1993-07-02 Positioning method of the cutting part of the undercut machine Expired - Lifetime JP3063468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5188694A JP3063468B2 (en) 1993-07-02 1993-07-02 Positioning method of the cutting part of the undercut machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5188694A JP3063468B2 (en) 1993-07-02 1993-07-02 Positioning method of the cutting part of the undercut machine

Publications (2)

Publication Number Publication Date
JPH0731106A true JPH0731106A (en) 1995-01-31
JP3063468B2 JP3063468B2 (en) 2000-07-12

Family

ID=16228193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5188694A Expired - Lifetime JP3063468B2 (en) 1993-07-02 1993-07-02 Positioning method of the cutting part of the undercut machine

Country Status (1)

Country Link
JP (1) JP3063468B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543586A (en) * 2005-06-20 2008-12-04 レーザー セイフ ピーティーワイ リミテッド Imaging and safety systems and methods for industrial machines
US8692877B2 (en) 2005-06-20 2014-04-08 Lazer Safe Pty Ltd Imaging and safety system and method for an industrial machine
US10161839B2 (en) 2015-11-05 2018-12-25 Yamamoto Scientific Tool Laboratory Co., Ltd. Apparatus for measuring coefficient of restitution and hardness tester

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3963192B1 (en) * 2006-03-10 2007-08-22 ダイキン工業株式会社 Air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543586A (en) * 2005-06-20 2008-12-04 レーザー セイフ ピーティーワイ リミテッド Imaging and safety systems and methods for industrial machines
US8692877B2 (en) 2005-06-20 2014-04-08 Lazer Safe Pty Ltd Imaging and safety system and method for an industrial machine
US9557007B2 (en) 2005-06-20 2017-01-31 Lazer Safe Pty Ltd Imaging and safety system and method for an industrial machine
US10161839B2 (en) 2015-11-05 2018-12-25 Yamamoto Scientific Tool Laboratory Co., Ltd. Apparatus for measuring coefficient of restitution and hardness tester

Also Published As

Publication number Publication date
JP3063468B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
US5844591A (en) Multibeam laser recording apparatus
US4732485A (en) Optical surface profile measuring device
EP0428408B1 (en) Automatic calibration of document reading apparatus
US6111649A (en) Thickness measuring apparatus using light from slit
JP2833908B2 (en) Positioning device in exposure equipment
JPS61116611A (en) Distance measurement
US6330020B1 (en) Multiple light beam scanning optical system
US4751383A (en) Method and apparatus for detection of position with correction of errors caused by errors in scale pitch
EP0390192A1 (en) Spectrophotometer
JPH0731106A (en) Focal point adjusting method of position detecting light receiving function in cut position detecting method for undercut machine positioning method
US5825468A (en) Exposure system for lithography apparatus
JP2001318302A (en) Focus detecting device and autofocusing microscope
JP3255299B2 (en) Position detection method and apparatus, and exposure method and apparatus
JP3022060B2 (en) Cutting part positioning method of undercut machine and cutting part positioning device using the cutting part positioning method
EP0451865B1 (en) Automatic focusing apparatus with optimal focusing position calculation method
JP4148638B2 (en) Optical scanning device
JP3368941B2 (en) Auto focus mechanism
JPH02157614A (en) Distance measuring instrument
JPH07303257A (en) Method and device for adjusting optical path length of color separation prism
KR100327038B1 (en) Wafer alignment apparatus
JPH033176B2 (en)
JPS6359159A (en) Method and device for adjusting position of solid-state scanning element
JPH0743458B2 (en) Automatic focus control device
JPH06235845A (en) Core position measuring device for optical connecter
JP2602087B2 (en) Difference hole positioning control method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040611