JPS6359159A - Method and device for adjusting position of solid-state scanning element - Google Patents

Method and device for adjusting position of solid-state scanning element

Info

Publication number
JPS6359159A
JPS6359159A JP61201406A JP20140686A JPS6359159A JP S6359159 A JPS6359159 A JP S6359159A JP 61201406 A JP61201406 A JP 61201406A JP 20140686 A JP20140686 A JP 20140686A JP S6359159 A JPS6359159 A JP S6359159A
Authority
JP
Japan
Prior art keywords
solid
scanning element
state scanning
state
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61201406A
Other languages
Japanese (ja)
Inventor
Hideyuki Honoki
秀行 朴木
Hiroyasu Sasaki
博康 佐々木
Masaki Sato
正樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61201406A priority Critical patent/JPS6359159A/en
Publication of JPS6359159A publication Critical patent/JPS6359159A/en
Pending legal-status Critical Current

Links

Landscapes

  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To attain highly accurate position adjustment in a very short time by using a solid-state scanning element to read an adjusting pattern, detecting out of focus immediately via a signal processing unit and a controller and moving the solid-state scanning element support provided with the Z axis moving function. CONSTITUTION:The adjusting pattern 1 is read by the solid-state scanning element 3, a signal processing unit 4 counts number Np of picture elements existing between central picture elements of plural picture elements being the read result of white lines 102 and 103 to obtain a deviation Z of the solid-state scanning element 3 from the focus. Then the controller 5 commands the moving quantity corresponding to the deviation Z to the Z axis moving device 6 supporting the solid-state scanning element 3. Through the operation above, the position adjustment in the Z axis of the solid-state scanning element 3 is finished in very short time. The accuracy of adjustment is given by the inter- center distance between the white lines 102 and 103 of the pattern 1 and in increasing the width W of the white lines 102, 103 further, it is possible to increase the distance A between the pattern 1 and the lens 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、固体電子走査式原稿読取り部を備えたファク
シミリ送信機あるいは複写機等の画像情報処理に適した
固定走査素子の位置調整方法及び位置調整装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention provides a method for adjusting the position of a fixed scanning element suitable for image information processing in a facsimile transmitter or a copying machine equipped with a solid-state electronic scanning document reading section, and This invention relates to a position adjustment device.

〔従来の技術〕[Conventional technology]

従来より固体電子走査式原稿読取り部に用いられる固体
走査素子、レンズ、ミラーなどの内、レンズの光軸(以
下Z軸と称する)方向に固体走査素子の位置をレンズの
合焦点に一致するように調整する方法として、原稿面に
該当する位置に調整用パターンを設置し、固体走査素子
で該パターンを読取ることによって得る出力ビデオ信号
を作業者がオシロスコープ等により観察し、被観察波形
が最適な形状となるように行なうのが一般的である。こ
れに対し、特開昭60−2913号は、固体走査素子に
より調整用パターンを読取り、得られるビデオ信号から
Z軸方向のずれを検出できるとしている。この従来技術
を第6図(α)〜(d)を用いて説明する。検出系は第
6図(、)に示すように投影部701゜投影レンズ70
2及び固体走査素子703から構成される。投影部70
1は光源704とこの光源704により照明される第6
図(b)に示されるような調整用パターンを有する投影
指標プレート705とから構成されている。指標プレー
ト7o5のパターンは互いに配置方向を逆とする楔パタ
ーン706 、707と2本の平行な直線パターン70
8 、709とから成り、かつ一方の直線パターン70
9には合焦位置を変えるためにガラス板710がはり合
わせである。観察光学系部が焦点ずれをしたときには第
6図(d)が示すように投影パターン708’ 、70
9’の幅がSR’ e S4′に変化するので、この変
化量から焦点ずれを検知することができる。この方法に
よれば、固体走査素子がレンズ中心と焦点との外分点に
存在する場合には、ずれを検知可能である。しかし、固
体走査素子がレンズ中心と焦点との内分点に存在する場
合には、合焦位置を変えるために設けたガラス板710
が全く役割を果さないため、実用的精度でずれを検出す
る目的を達するには問題がある。
Among the solid-state scanning elements, lenses, mirrors, etc. conventionally used in solid-state electronic scanning document reading sections, the position of the solid-state scanning element in the optical axis (hereinafter referred to as the Z-axis) direction of the lens is aligned with the focal point of the lens. In order to make adjustments, an operator places an adjustment pattern at the appropriate position on the document surface, reads the pattern with a solid-state scanning device, observes the output video signal using an oscilloscope, etc., and determines whether the observed waveform is optimal. It is common to do this so that the shape is the same. On the other hand, Japanese Patent Laid-Open No. 60-2913 states that it is possible to read the adjustment pattern using a solid-state scanning element and detect the deviation in the Z-axis direction from the obtained video signal. This conventional technique will be explained using FIGS. 6(α) to (d). The detection system includes a projection unit 701° and a projection lens 70 as shown in FIG.
2 and a solid-state scanning element 703. Projection section 70
1 is a light source 704 and a sixth light source illuminated by this light source 704.
The projection index plate 705 has an adjustment pattern as shown in FIG. 7(b). The pattern of the index plate 7o5 includes wedge patterns 706 and 707 whose arrangement directions are opposite to each other, and two parallel straight line patterns 70.
8, 709, and one straight line pattern 70
A glass plate 710 is attached to 9 to change the focusing position. When the observation optical system section is out of focus, projection patterns 708' and 70 are projected as shown in FIG. 6(d).
Since the width of 9' changes to SR' e S4', defocus can be detected from this amount of change. According to this method, when the solid-state scanning element is located at the outer dividing point between the lens center and the focal point, a shift can be detected. However, when the solid-state scanning element is located at the internal dividing point between the lens center and the focal point, the glass plate 710 provided to change the focusing position
Since this plays no role, it is problematic to achieve the goal of detecting deviations with practical accuracy.

次に固体走査素子のZ軸方向位置調整装置の例として特
開昭58−3371号を挙げて説明する。この装置は、
固体電子走査式原稿読取り部に用いられている固定走査
素子の位置調整を行なうものであって、前記原稿が装着
されるべき位置に設定された調整用パターンと前記固体
走査素子により得られた前記調整用パターンの受光を予
め記憶しである受光パターン情報と比較して前記固体走
査素子の位置ずれを検出する位置ずれ判定部と、上記位
置ずれ検出結果に基づいて前記位置ずれを許容値内にす
べく補正指令を発する補正部と、上記補正指令に従って
前記固体走査素子を移動させる駆動部から構成される。
Next, as an example of a Z-axis direction position adjustment device for a solid-state scanning element, Japanese Patent Application Laid-Open No. 58-3371 will be described. This device is
This system adjusts the position of a fixed scanning element used in a solid-state electronic scanning type document reading section, and includes an adjustment pattern set at a position where the document is to be mounted and a pattern obtained by the solid-state scanning device. a positional deviation determination section that detects a positional deviation of the solid-state scanning element by comparing the received light of the adjustment pattern with pre-stored light reception pattern information; The solid-state scanning device is composed of a correction section that issues a correction command to perform the correction, and a drive section that moves the solid-state scanning element according to the correction command.

この位置調整装置においては、先づ前記固体走査素子の
受光を予め記憶しである受光パターン情報と、全画素に
ついて比較を行なうため、位置ずれ判定部で少なからず
時間を要してしまう。さらに、位置がずれていることを
検出可能としているが、単にずれの方向に関する情報を
得ることのみが可能であり、ずれの量については具体的
に情報を得ることが不可能である。したがって所定の時
間を設定して位置調整を行なおうと考えた場合、完全に
時間内に位置調整を終えられる保証がないという問題が
生じる。
In this position adjustment device, since the light reception by the solid-state scanning element is first stored in advance and compared with light reception pattern information for all pixels, the position shift determination section takes a considerable amount of time. Furthermore, although it is possible to detect a position shift, it is only possible to obtain information regarding the direction of the shift, and it is impossible to specifically obtain information about the amount of shift. Therefore, when it is considered to perform position adjustment by setting a predetermined time, a problem arises in that there is no guarantee that the position adjustment can be completed completely within the time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、固体走査素子のZ軸方向のずれを検出
する際、固体走査素子の位置がレンズと焦点の外分点に
あるという前提条件を必要とするか、あるいは上記前提
条件は不要であるが、ずれの量が明らかにならないとい
う問題があった。
When detecting the displacement of the solid-state scanning element in the Z-axis direction, the above-mentioned conventional technology either requires the precondition that the position of the solid-state scanning element is at the outer dividing point of the lens and the focal point, or the above-mentioned precondition is not necessary. However, there was a problem that the amount of deviation was not clear.

本発明の目的は、固体電子走査式原稿読取り部に用いら
れる固体走査素子のZ軸方向の位置調整を容易に行なえ
る様に固体走査素子のZ軸方向のずれを方向と量の二つ
に関して得られる検出方法を得、その検出方法に基づい
た固体走査素子のZ軸方向位置調整装置を構成し、生産
現場における位置調整時間の短縮、作業者の負担軽減、
製品の品質安定に寄与することにある。
An object of the present invention is to correct the Z-axis deviation of a solid-state scanning element in terms of direction and amount so that the position of the solid-state scanning element used in a solid-state electronic scanning document reading section can be easily adjusted in the Z-axis direction. By obtaining the resulting detection method and configuring a Z-axis position adjustment device for a solid-state scanning element based on the detection method, the time for position adjustment at a production site can be shortened, the burden on workers can be reduced,
The purpose is to contribute to stable product quality.

〔問題点を解決するための手段〕 上記目的を達成するため、本発明は調整用パターンとし
て、黒色の素地にそれと明度差の大きい2本の白線を平
行に配し、その調整用パターンを固体走査素子で読取っ
て得られるビデオ信号のうち、一方の白線を読取ってい
る複数の画素の中央の画素ともう一方の白線を読取って
いる複数の画素の中央の画素との間に存在する画素数を
計数する信号処理装置、ならびに該画素数に基づきずれ
量を計算し、固体走査素子を支持しているZ軸方向移動
装置に移動命令を送る制御装置をもって、固体走査素子
のZ軸方向の位置調整装置を構成する。
[Means for Solving the Problems] In order to achieve the above object, the present invention arranges two white lines parallel to each other in brightness on a black substrate as an adjustment pattern, and uses the adjustment pattern as a solid. The number of pixels that exist between the center pixel of the plurality of pixels reading one white line and the center pixel of the plurality of pixels reading the other white line among the video signals obtained by reading with the scanning element. The position of the solid-state scanning element in the Z-axis direction is determined by a signal processing device that counts the number of pixels, and a control device that calculates the amount of deviation based on the number of pixels and sends a movement command to the Z-axis movement device that supports the solid-state scanning device. Configure the adjustment device.

〔作用〕[Effect]

本発明によれば、固体電子走査式原稿読取り部・に用い
られる固体走査素子を同じく用いられているレンズのZ
軸方向にその位置調整を行なう際、固体走査素子により
調整用パターンを読取り、信1号処理装置、制御装置を
経ることにより、焦点ずれを直ちに検出し、Z軸方向移
動機能を具備した固体走査素子支持装置を移動すること
により、極めて短時間に高精度な位置調整を完了するこ
とが可能である。
According to the present invention, the solid-state scanning element used in the solid-state electronic scanning original reading unit is
When adjusting the position in the axial direction, the adjustment pattern is read by the solid-state scanning element, and by passing through the signal processing device and the control device, the focus shift can be immediately detected. By moving the element support device, highly accurate position adjustment can be completed in an extremely short time.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。第1
図は本発明における固体走査素子の2軸方向の位置調整
装置の構成図である。調整用パターン1はレンズ2で縮
小されて、Z軸方向移動装、。
Embodiments of the present invention will be described below based on the drawings. 1st
The figure is a configuration diagram of a biaxial position adjustment device for a solid-state scanning element according to the present invention. The adjustment pattern 1 is reduced by a lens 2 and moved in the Z-axis direction.

−置6に支持された固体走査素子3上に結像される°。- imaged onto the solid-state scanning element 3 supported at the position 6;

第2図は調整用パターン1を示した。調整用パターン1
は黒色の素地101とそれと明度差の大きい2本の幅W
の白線102および103を平行に2L離して素地10
1上に配することにより構成される。
FIG. 2 shows the adjustment pattern 1. Adjustment pattern 1
is the black base 101 and the two widths W with a large difference in brightness.
The white lines 102 and 103 of the substrate 10 are separated by 2L in parallel.
1.

第3図は調整用パターン1、レンズ2、固体走査素子3
から成る光学系をY方向上方から見た図である。ここで
レンズ2の縮率をm1固体走査素子3の画素のピッチを
Pとし、調整用パターンlをレンズ2から距離Aだけ離
れた位置に設置する。
Figure 3 shows adjustment pattern 1, lens 2, and solid state scanning element 3.
FIG. 2 is a diagram of an optical system made up of the following, viewed from above in the Y direction. Here, the reduction ratio of the lens 2 is m1, the pixel pitch of the solid-state scanning element 3 is P, and the adjustment pattern l is placed at a distance A from the lens 2.

固体走査素子3がZ軸上でレンズ2の焦点にある・とき
、その出力ビデオ信号は第4図(α)の如くなる・。
When the solid-state scanning element 3 is at the focal point of the lens 2 on the Z axis, its output video signal is as shown in FIG. 4 (α).

ここで一方の白線102を読取っている複数の画素の中
央の画素番号を町、もう一方の白線103を読取りてい
る複数の画素の中央の画素番号をガとする。固体走査素
子3が焦点にある場合、η番目とが2番目の画素の間に
存在する画素の数#P(0)は#P(0) =ζ−町 となる。
Here, let the pixel number of the center of the plurality of pixels reading one white line 102 be Machi, and the pixel number of the center of the plurality of pixels reading the other white line 103 be G. When the solid-state scanning element 3 is at the focal point, the number #P(0) of pixels existing between the ηth pixel and the second pixel is #P(0) = ζ-machi.

−また、固体走査素子3を焦点から距離A −mAだけ
2軸方向に移動させた位置に設置し、調整用パターン1
を読取った場合、前述と同様に一方の白線102および
もう一方の白線103を読取っている複数の画素の中央
の画素番号をそれぞれ一!、−!とする。このとき町′
番目とn、7番目の画素の間に存在する画素の数Np 
(A −n+A )はNp (A−mA ) =: n
@’ −町′L =−・・・〔2〕 となる。以上述べた画素数Npと焦点からのずれZの間
に、直線的な比例関係が存在することは幾何学的に考え
れば、固体走査素子3が焦点からレンズ2に近づいた位
置また遠ざかる位置(一般には前ピン、後ピン)のいず
れにも適用可能である。
-Also, the solid-state scanning element 3 is installed at a position moved from the focal point by a distance A - mA in two axes directions, and the adjustment pattern 1
, the center pixel number of the plurality of pixels reading one white line 102 and the other white line 103 is 1!, as described above. ,-! shall be. At this time the town'
Number of pixels existing between the th and nth and 7th pixels Np
(A-n+A) is Np (A-mA) =: n
@'-Town'L =-... [2]. Geometrically speaking, the existence of a linear proportional relationship between the number of pixels Np and the deviation Z from the focal point described above means that the position where the solid-state scanning element 3 approaches or moves away from the lens 2 from the focal point ( In general, it is applicable to both front pin and rear pin).

従って、固体走査素子3の焦点からのずれZと前。Therefore, the deviation Z from the focus of the solid-state scanning element 3 and before.

述した画素の数Npとの関係は次式で与えられる。The relationship with the number of pixels Np described above is given by the following equation.

Z=妊CNp−民)    ・・・〔3〕すなわち、第
1図に示すように調整用パターンlを固体走査素子3で
読取り、そのうち第2図で示した白線102と白線10
3を読取っている複数画素の中央の画素間に存在する画
素の数NPを信号処理装置4で計数し、ずれZを求める
。然る後に制御装置5でずれZに対応した移動量を固体
走査素子3を支持しているZ軸方向移動装置6に指示す
る。・以上の操作から極めて短時間に固体走査素子3の
Z軸方向の位置調整が完了することがわかる。また調整
の精度は第2図で示した調整用パターン1における白線
102と白線303との中心間距離によって与えられ、
第3式の傾きより 一己      ・・・〔4〕 L となる。更に白線102ならびに白線103の幅Wを大
きくすれば、第3図における調整用パターン1とレンズ
2との距離Aを大きくすることが可能である。
Z=pregnancy CNp-people) ...[3] That is, as shown in FIG. 1, the adjustment pattern l is read by the solid-state scanning element 3, and among them, the white line 102 and the white line 10 shown in FIG.
The signal processing device 4 counts the number NP of pixels existing between the central pixels of the plurality of pixels that are reading 3, and calculates the shift Z. Thereafter, the control device 5 instructs the Z-axis direction moving device 6 supporting the solid-state scanning element 3 to move an amount corresponding to the deviation Z. - From the above operations, it can be seen that the position adjustment of the solid-state scanning element 3 in the Z-axis direction is completed in an extremely short time. Further, the accuracy of adjustment is given by the distance between the centers of the white line 102 and the white line 303 in the adjustment pattern 1 shown in FIG.
From the slope of the third equation, it becomes [4] L. Furthermore, by increasing the width W of the white line 102 and the white line 103, it is possible to increase the distance A between the adjustment pattern 1 and the lens 2 in FIG. 3.

第5図は本発明の他の実施例を示すもので、前述の第1
図の実施例が固体走査素子3の位置が移動可能なように
Z軸方向移動装置6に設置したが、本実施例はレンズ2
をZ軸方向移@装置6上に設置したものである。調整用
パターンlをレンズ2により縮小して、固体走査素子3
により読取る。
FIG. 5 shows another embodiment of the present invention.
In the embodiment shown in the figure, the solid-state scanning element 3 is installed in the Z-axis moving device 6 so that its position can be moved, but in this embodiment, the lens 2
is installed on the Z-axis direction moving device 6. The adjustment pattern l is reduced by the lens 2, and the solid-state scanning element 3
Read by.

固体走査素子3の出力ビデオ信号を信号処理装置4に送
り前述した方法によりZ軸方向ずれを検出し、該当する
ずれを補正すべく制御装置5からレンズ2を支持してい
るZ軸方向移動装置6に指令を送り、レンズ2の位置を
移動させる。以上のことから、自動焦点補正システムを
構成し、実施することが可能である。
A Z-axis movement device that sends the output video signal of the solid-state scanning element 3 to the signal processing device 4, detects the Z-axis deviation by the method described above, and supports the lens 2 from the control device 5 in order to correct the corresponding deviation. 6 to move the position of lens 2. From the above, it is possible to configure and implement an autofocus correction system.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明固体走査素子の位置調整用パ
ターンおよび位置調整方法は調整用パターンを読取り、
Z軸方向ずれを定量的に検出し、調整することが可能で
ある。したがって従来、試行錯誤に頼っていたため美大
な時間を要していた固体電子走査式原稿読取り部に用い
られている固体走査素子の位置調整は、極めて短時間に
完了することが可能となった。また、位置調整を行なう
人間の負担を軽減できたことにより、位置調整の精度の
向上、ひいては固体電子走査式原稿読取り部の品質向上
にも寄与するところが非常に大きい。
As explained above, the position adjustment pattern and position adjustment method of the solid-state scanning element of the present invention read the adjustment pattern,
It is possible to quantitatively detect and adjust the shift in the Z-axis direction. Therefore, the position adjustment of the solid-state scanning element used in the solid-state electronic scanning type document reading unit, which conventionally took an enormous amount of time due to trial and error, can now be completed in an extremely short time. . Furthermore, since the burden on the person performing the position adjustment can be reduced, it greatly contributes to improving the precision of the position adjustment and, ultimately, to improving the quality of the solid-state electronic scanning document reading section.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る位置調整方法の第1の実施例の構
成を示す説明図、第2図は本発明の調整用パターンを示
す説明図、第3図は本発明の第1の実施例における検出
の原理を説明するための構成図、第4図は本発明の第1
の実施例における出力電圧と画素番号との関係を示す図
、第5図は本発明の第2の実施例の構成を示す説明図、
第6図は従来技術の検出原理を説明するための説明図で
ある。 l・・・調整用パターン  2・・・レンズ3・・・固
体走査素子   4・・・信号処理装置5・・・制御装
置     6・・・Z軸方向移動装置101・・・素
地      102・・・白線103・・・白線 第 1 図 第 2 図 厄 3 図 第4図 +j1  県丞呂 第 5 図
FIG. 1 is an explanatory diagram showing the configuration of a first embodiment of the position adjustment method according to the present invention, FIG. 2 is an explanatory diagram showing the adjustment pattern of the present invention, and FIG. A configuration diagram for explaining the principle of detection in the example, FIG. 4 is the first embodiment of the present invention.
FIG. 5 is an explanatory diagram showing the configuration of the second embodiment of the present invention,
FIG. 6 is an explanatory diagram for explaining the detection principle of the prior art. l... Adjustment pattern 2... Lens 3... Solid state scanning element 4... Signal processing device 5... Control device 6... Z-axis direction moving device 101... Base material 102... White line 103... White line Figure 1 Figure 2 Figure 3 Figure 4 +j1 Kenjoro Figure 5

Claims (1)

【特許請求の範囲】 1、固体電子走査式原稿読取り部に用いられるレンズの
光軸に対して、その焦点方向に固体走査素子を電気的に
最高感度を示す様に位置調整を行なうために、原稿に該
当する位置に設置された、黒色の素地面上に素地と明度
差の大きい2本の平行な線が固定走査素子の副走査方向
と直角な方向で配された線パターンを配列した位置調整
用パターンを固体走査素子を用いて読取り、位置調整用
パターンの素地と明度差の大きい線パターンを読取って
いる複数の画素の中央の画素番号を2本の線パターン各
々について検出し、その間に存在する画素の数より、光
軸の焦点からの固体走査素子のずれの方向と量を検出す
ることを特徴とする固体走査素子の位置調整方法。 2、固体電子走査式原稿読取り部に用いられるレンズの
光軸に対して、その焦点方向に固体走査素子を電気的に
最高感度を示す様に位置調整を行なうために、原稿に該
当する位置に設置された、黒色の素地面上に素地と明度
差の大きい2本の平行な線が固定走査素子の副走査方向
と直角な方向で配された線パターンを配列した位置調整
用パターンを読取った固体走査素子の出力ビデオ信号よ
り光軸の焦点からの固体走査素子のずれの方向と量を検
出する信号処理装置と、レンズの光軸方向に固体走査素
子を移動させる固体走査素子移動装置と、前記信号処理
装置から固体走査素子の光軸方向のずれに関する情報を
受け取り前記移動装置に移動方向と量の指令を送る制御
装置とから構成されることを特徴とする固体走査素子の
位置調整装置。
[Claims] 1. In order to adjust the position of the solid-state scanning element electrically in the direction of its focal point with respect to the optical axis of the lens used in the solid-state electronic scanning original reading unit so as to show the highest sensitivity, A position where a line pattern is arranged in which two parallel lines with a large difference in brightness from the substrate are arranged in a direction perpendicular to the sub-scanning direction of the fixed scanning element on a black substrate, placed at a position corresponding to the document. The adjustment pattern is read using a solid-state scanning element, and the center pixel number of the plurality of pixels reading the line pattern with a large brightness difference from the base of the position adjustment pattern is detected for each of the two line patterns. A method for adjusting the position of a solid-state scanning element, comprising detecting the direction and amount of deviation of the solid-state scanning element from the focal point of an optical axis based on the number of pixels present. 2. In order to adjust the position of the solid-state scanning element electrically in the direction of its focal point with respect to the optical axis of the lens used in the solid-state electronic scanning type original reading unit, it is necessary to position the solid-state scanning element at the position corresponding to the original. A position adjustment pattern was read on the installed black base surface, in which two parallel lines with a large difference in brightness from the base were arranged in a direction perpendicular to the sub-scanning direction of the fixed scanning element. a signal processing device that detects the direction and amount of deviation of the solid-state scanning device from the focal point of the optical axis from an output video signal of the solid-state scanning device; a solid-state scanning device moving device that moves the solid-state scanning device in the optical axis direction of the lens; A position adjustment device for a solid-state scanning element, comprising a control device that receives information regarding the displacement of the solid-state scanning device in the optical axis direction from the signal processing device and sends commands for the direction and amount of movement to the moving device.
JP61201406A 1986-08-29 1986-08-29 Method and device for adjusting position of solid-state scanning element Pending JPS6359159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61201406A JPS6359159A (en) 1986-08-29 1986-08-29 Method and device for adjusting position of solid-state scanning element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201406A JPS6359159A (en) 1986-08-29 1986-08-29 Method and device for adjusting position of solid-state scanning element

Publications (1)

Publication Number Publication Date
JPS6359159A true JPS6359159A (en) 1988-03-15

Family

ID=16440560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201406A Pending JPS6359159A (en) 1986-08-29 1986-08-29 Method and device for adjusting position of solid-state scanning element

Country Status (1)

Country Link
JP (1) JPS6359159A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290780A (en) * 1988-09-27 1990-03-30 Pfu Ltd Automatic adjustor for optical reading unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313572A (en) * 1986-07-04 1988-01-20 Canon Inc Optical type adjusting system for image reader

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313572A (en) * 1986-07-04 1988-01-20 Canon Inc Optical type adjusting system for image reader

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290780A (en) * 1988-09-27 1990-03-30 Pfu Ltd Automatic adjustor for optical reading unit

Similar Documents

Publication Publication Date Title
JP2518866B2 (en) Raster input scanning device calibration apparatus and method
US5777722A (en) Scanning exposure apparatus and method
KR20040111029A (en) Method of specifying image position, method of correcting image deviation, and apparatus for forming image
US5737063A (en) Projection exposure apparatus
US20060018560A1 (en) Exposure device and exposure method
US4641257A (en) Measurement method and apparatus for alignment
JP2000338432A (en) Laser exposure device and its method
JP2000194082A (en) Skew correction in printing lenticular material
US5283698A (en) Image reading apparatus
JPH10239036A (en) Three-dimensional measuring optical device
JPS6359159A (en) Method and device for adjusting position of solid-state scanning element
US5973814A (en) Optical document scanning method and apparatus with adjustable scanning magnification
JP3200020B2 (en) Laser writing system with orthogonality correction function in main scanning direction and sub scanning direction
JP2000083144A (en) Method for detecting degree of deviation in optical member
JP2001313241A (en) Aligner and aligning method
JPS6372115A (en) Alignment device
JP3101582B2 (en) Position detecting apparatus and method using oblique optical axis optical system
JP2503408B2 (en) Transparent original image reading device
US6735005B2 (en) Cartesian scanning system
JP2005043576A (en) Pattern drawing device
CN101609511B (en) Imaging device and detection method for exposure image
JPH06224101A (en) Bifocal lens and alignment device
JPH01274283A (en) Pattern reader
JP2671784B2 (en) Projection exposure equipment
JPS60244153A (en) Optical reader