JPH07310137A - Aluminum alloy sheet for warm forming and its production - Google Patents

Aluminum alloy sheet for warm forming and its production

Info

Publication number
JPH07310137A
JPH07310137A JP12301394A JP12301394A JPH07310137A JP H07310137 A JPH07310137 A JP H07310137A JP 12301394 A JP12301394 A JP 12301394A JP 12301394 A JP12301394 A JP 12301394A JP H07310137 A JPH07310137 A JP H07310137A
Authority
JP
Japan
Prior art keywords
less
warm
warm forming
aluminum alloy
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12301394A
Other languages
Japanese (ja)
Inventor
Masakatsu Yoshida
正勝 吉田
Yuji Abe
佑二 阿部
Sotaro Sekida
宗太郎 関田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP12301394A priority Critical patent/JPH07310137A/en
Publication of JPH07310137A publication Critical patent/JPH07310137A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce an aluminum alloy sheet excellent in warm formability as an aluminum alloy sheet for use in which warm forming is executed in a high temp. range, simultaneously excellent in stress corrosion cracking resistance after the warm forming and moreover having high strength. CONSTITUTION:An aluminum alloy sheet for warm forming having a compsn. contg. 2.0 to 3.5% Mg, >1.0 to 1.8% Mn, <=0.2% Fe, <=0.30% Cu, and the balance substantial Al, and in which the number of Al-Mn intermetallic compounds having 1 to 5mum grain size is regulated to >=1000 pieces per 0.1mm<2> and the average grain size is regulated to <=50mum is obtd. Next, the rolling finishing temp. in hot rolling, after homogenizing treatment of 500 to 600 deg.CX4 to 80hr, is regulated to <=280 deg.C, the rolling ratio at <=280 deg.C is regulated to >=30%, and after that, softening treatment is executed at 300 to 500 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は温間成形用アルミニウ
ム合金圧延板、すなわち150〜350℃の範囲内の温
度で成形加工を施して使用されるアルミニウム合金板に
関し、特に温間成形性と温間成形後の耐応力腐食割れ性
(以下“耐SCC性”と記す)に優れたアルミニウム合
金板およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy rolled sheet for warm forming, that is, an aluminum alloy sheet used by forming at a temperature in the range of 150 to 350 ° C. The present invention relates to an aluminum alloy sheet excellent in stress corrosion cracking resistance after hot forming (hereinafter referred to as "SCC resistance") and a method for producing the same.

【0002】[0002]

【従来の技術】近年、高温において適切な歪速度で引張
りを与えた場合に局部的変形(ネック)の発生を招くこ
となく300%程度以上の大きな伸びを示す超塑性材料
が種々開発されるようになっており、アルミニウム合金
についても超塑性材料が開発されるようになった。従来
このようなアルミニウム基超塑性材料としては、Al−
78%Zn合金、Al−33%Cu合金、Al−6%C
u−0.4%Zr合金(“SUPURAL”)、Al−
Zn−Mg−Cu系合金(AA規格の7475合金、7
075合金等)、Al−2.5〜6.0%Mg−0.0
5〜0.6%Zr合金等が知られている。これらの材料
はいずれも400℃以上の高温で大きな変形を得ること
ができるため、複雑な形状の成形を容易に行なうことが
できる利点を有する。
2. Description of the Related Art In recent years, various superplastic materials have been developed which show a large elongation of about 300% or more without causing local deformation (neck) when tensile is applied at an appropriate strain rate at high temperature. As a result, superplastic materials have been developed for aluminum alloys. Conventionally, as such an aluminum-based superplastic material, Al-
78% Zn alloy, Al-33% Cu alloy, Al-6% C
u-0.4% Zr alloy ("SUPURAL"), Al-
Zn-Mg-Cu alloy (AA standard 7475 alloy, 7
075 alloy, etc.), Al-2.5 to 6.0% Mg-0.0
5 to 0.6% Zr alloy and the like are known. Since all of these materials can obtain a large deformation at a high temperature of 400 ° C. or higher, they have an advantage that a complicated shape can be easily molded.

【0003】これらのアルミウニム基超塑性材料は、3
00%以上もの大きな伸びを生じさせるためには、40
0℃以上の高温で適切な歪速度を与える必要があり、一
般に最も大きな伸びを示す歪速度(最適歪速度)は10
-3/秒から10-4/秒のオーダーとされている。しかし
ながらこのような歪速度は、一般的な成形加工の場合と
比較して格段に遅く、このような歪速度を適用した場
合、1成形工程に数分から数十分を要し、工場規模での
量産の場合生産性を著しく阻害する問題がある。そのた
め前述のようなアルミニウム基超塑性材料を用いて超塑
性加工を行なうことについては、量産規模での実用化が
ためらわれていたのが実情である。
These aluminum-based superplastic materials have three
In order to generate a large elongation of more than 00%, 40
It is necessary to give an appropriate strain rate at a high temperature of 0 ° C. or higher, and generally the strain rate showing the largest elongation (optimal strain rate) is 10
It is in the order of -3 / sec to 10 -4 / sec. However, such a strain rate is remarkably slow as compared with the case of a general molding process, and when such a strain rate is applied, one molding step requires several minutes to several tens of minutes, which is not suitable for a factory scale. In mass production, there is a problem that productivity is significantly hindered. Therefore, it has been hesitant to put the above-mentioned aluminum-based superplastic material into practical use on a mass production scale.

【0004】ところで、超塑性加工温度域よりは低温で
はあるが、150〜350℃の温度域でのいわゆる温間
成形の場合、Al−Mg系合金は通常の成形速度で比較
的大きな伸びが得られ、またその場合の変形後の板厚分
布も均一であることが知られており、したがってAl−
Mg系合金を用いて温間成形を行なえば、生産性を阻害
することなく複雑な形状の成形も比較的容易となると考
えられる。
By the way, in the case of so-called warm forming in a temperature range of 150 to 350 ° C., which is lower than the superplastic working temperature range, the Al--Mg alloy has a relatively large elongation at a normal forming rate. It is known that the plate thickness distribution after deformation in that case is also uniform, and therefore Al-
If warm forming is performed using a Mg-based alloy, it is considered that forming a complicated shape becomes relatively easy without impeding productivity.

【0005】従来このような温間成形向けのAl−Mg
系合金としては、高強度でかつ温間成形性の比較的良好
なJIS 5182合金(4.5%Mg−0.3%M
n)、5454合金(2.7%Mg−0.7%Mn)、
5083合金(4.5%Mn−0.7%Mg)などの
2.5〜4.5%のMgを含有するAl−Mg系合金が
考えられている。
Conventionally, Al-Mg for such warm forming
As a system alloy, JIS 5182 alloy (4.5% Mg-0.3% M) having high strength and relatively good warm formability is used.
n), 5454 alloy (2.7% Mg-0.7% Mn),
Al-Mg based alloys containing 2.5-4.5% Mg, such as the 5083 alloy (4.5% Mn-0.7% Mg), have been considered.

【0006】[0006]

【発明が解決しようとする課題】温間成形部品の用途と
しては、自動車のオイルパンなどの自動車部品が考えら
れるが、自動車部品は苛酷な腐食環境に曝されることが
多く、そのため耐SCC性に優れていることが要求され
る。また自動車部品では、車体軽量化による燃費向上や
材料コストの低減などを目的として、薄肉化を図ること
が要求されており、その場合薄肉でも充分な耐力を有す
るように自動車の部品材料の高強度化が望まれる。
The application of the warm-formed parts is considered to be automobile parts such as oil pans of automobiles, but the automobile parts are often exposed to a severe corrosive environment, and therefore SCC resistance is high. Is required to be excellent. In addition, automobile parts are required to be thinned for the purpose of improving fuel efficiency by reducing the weight of the vehicle body and reducing material costs.In that case, high strength of automobile parts materials is required so as to have sufficient proof strength even when thin. Is desired.

【0007】ところで前述のような温間成形向けに考え
られている従来材のうち、5454合金は、耐SCC性
は良好である反面、強度が不足し、一方5182合金や
5083合金は、高強度を有するものの、耐SCC性に
劣る問題があった。
Among the conventional materials considered for warm forming as described above, 5454 alloy has good SCC resistance, but lacks strength, while 5182 alloy and 5083 alloy have high strength. However, there was a problem of poor SCC resistance.

【0008】Al−Mg系合金において高強度化を図る
方法としては、Mg含有量を増量させることが考えられ
るが、Mgは耐SCC性に悪影響を及ぼす元素であり、
そのためMg量を増量すれば、高強度化は図れても耐S
CC性が低下してしまい、したがってMgの増量によっ
て高強度化を図ることは、実際上好ましいことではな
い。
As a method for increasing the strength of the Al-Mg alloy, increasing the Mg content can be considered, but Mg is an element that adversely affects the SCC resistance,
Therefore, if the amount of Mg is increased, the S
Since the CC property is lowered, it is not practically preferable to increase the strength by increasing the amount of Mg.

【0009】また従来のAl−Mg系合金でもある程度
の温間成形性は得られていたが、量産規模での温間成形
の適用を考慮すれば、より一層温間成形性の優れた材料
の開発が強く望まれている。
Further, although the conventional Al--Mg type alloy has been obtained with a certain degree of warm formability, in consideration of the application of the warm formability on a mass production scale, a material having a more excellent warm formability is obtained. Development is strongly desired.

【0010】この発明は以上の事情を背景としてなされ
たもので、温間成形性に優れるとともに、温間成形後の
耐SCC性に優れ、しかも高強度を有する温間成形用ア
ルミニウム合金板を提供することを目的とするものであ
る。
The present invention has been made in view of the above circumstances, and provides an aluminum alloy plate for warm forming which has excellent warm formability, excellent SCC resistance after warm forming, and high strength. The purpose is to do.

【0011】[0011]

【課題を解決するための手段】本発明者等は前述の課題
を解決するべく鋭意実験・検討を重ねた結果、Al−M
g系合金をベースとし、耐SCC性に悪影響を与えるM
nは特に増量させない代りに、Mn量をJIS 545
4合金等より若干増量させ、しかも再結晶粒生成の核と
なるAl−Mn系金属間化合物の析出物粒子を微細化
し、かつ最終的な結晶粒(再結晶粒)を微細化すること
によって、優れた温間成形性を得ると同時に、耐SCC
性を損なうことなく高強度が得られることを見出し、こ
の発明をなすに至った。またここで、Al−Mg系合金
において不純物として含有される各種の元素の含有量を
特定の微量以下に規制することによって、前述のように
Al−Mn系金属間化合物の析出物粒子を確実に微細化
して、優れた温間成形性を確保することが可能となった
のである。
Means for Solving the Problems The inventors of the present invention have made earnest experiments and studies to solve the above problems, and as a result, Al-M
Based on g-based alloy, M that adversely affects SCC resistance
n is not particularly increased, but the Mn amount is set to JIS 545
No. 4 alloy and the like, and by making the precipitate particles of the Al—Mn-based intermetallic compound that becomes the nucleus of recrystallized grain formation finer and the final crystal grains (recrystallized grains) finer, SCC resistance at the same time as obtaining excellent warm formability
The inventors have found that high strength can be obtained without impairing the properties and have completed the present invention. Further, here, by restricting the content of various elements contained as impurities in the Al-Mg-based alloy to a specific trace amount or less, as described above, the precipitate particles of the Al-Mn-based intermetallic compound are surely formed. It became possible to miniaturize and ensure excellent warm formability.

【0012】具体的には、請求項1の発明の温間成形用
アルミニウム合金圧延板は、Mg2.0〜3.5%、M
n1.0%を越え1.8%以下、Fe0.20%以下、
Cu0.30%以下を含有し、残部がAlおよび不可避
的不純物よりなり、かつ合金板中に分散している粒径1
〜5μmのAl−Mn系金属間化合物粒子の数が0.1
mm2 当り1000個以上で、さらに平均結晶粒径が5
0μm以下であることを特徴とするものである。
Specifically, the rolled aluminum alloy sheet for warm forming according to the invention of claim 1 has Mg 2.0 to 3.5%, M
n of more than 1.0% and 1.8% or less, Fe of 0.20% or less,
A grain size of 1 containing Cu 0.30% or less, the balance being Al and unavoidable impurities and being dispersed in the alloy plate 1
The number of Al-Mn-based intermetallic compound particles having a particle size of ~ 5 μm is 0.1.
More than 1000 pieces per mm 2 and an average crystal grain size of 5
It is characterized by being 0 μm or less.

【0013】また請求項2の発明の温間成形用アルミニ
ウム合金圧延板は、請求項1に記載の温間成形用アルミ
ニウム合金板において、不純物として、Crが0.05
%以下、Zrが0.05%以下、Siが0.2%以下、
Znが0.05%以下、Vが0.05%以下にそれぞれ
規制され、かつその他の不純物の合計量が0.1%以下
に規制されていることを特徴とするものである。
The rolled aluminum alloy plate for warm forming according to the invention of claim 2 is the aluminum alloy plate for warm forming according to claim 1, wherein Cr is 0.05 as an impurity.
% Or less, Zr is 0.05% or less, Si is 0.2% or less,
Zn is regulated to 0.05% or less, V is regulated to 0.05% or less, and the total amount of other impurities is regulated to 0.1% or less.

【0014】一方請求項3の発明の温間成形用アルミニ
ウム合金板の製造方法は、Mg2.0〜3.5%、Mn
1.0%を越え1.8%以下、Fe0.20%以下、C
u0.30%以下を含有し、残部がAlおよび不可避的
不純物よりなる合金の鋳塊を鋳造し、得られた鋳塊に5
00〜600℃の範囲内の温度で5〜48時間の均質化
処理を施して、粒径1〜5μmのAl−Mn系金属間化
合物粒子を0.1mm2 当り1000個以上析出させ、
その後圧延を施して所要の最終板厚とするにあたり、熱
間圧延での圧延終了温度を280℃以下として、再結晶
温度より低温の温度域での圧延率を30%以上とし、さ
らに最終板厚の圧延板に対して300〜500℃にて軟
質化処理を施して、平均結晶粒径を50μm以下とする
ことを特徴とするものである。
On the other hand, the manufacturing method of the aluminum alloy sheet for warm forming according to the third aspect of the present invention is Mg 2.0 to 3.5%, Mn
More than 1.0% and 1.8% or less, Fe 0.20% or less, C
A cast ingot of an alloy containing u of 0.30% or less and the balance of Al and unavoidable impurities was cast, and
A homogenization treatment is performed at a temperature in the range of 00 to 600 ° C. for 5 to 48 hours to deposit 1000 or more Al-Mn-based intermetallic compound particles having a particle size of 1 to 5 μm per 0.1 mm 2 .
Then, when rolling is performed to obtain the required final plate thickness, the rolling end temperature in hot rolling is set to 280 ° C. or less, the rolling ratio in the temperature range lower than the recrystallization temperature is set to 30% or more, and the final plate thickness is further set. It is characterized in that the rolled steel sheet is subjected to a softening treatment at 300 to 500 ° C. so that the average crystal grain size becomes 50 μm or less.

【0015】[0015]

【作用】まずこの発明の温間成形用アルミニウム合金の
成分限定理由を説明する。
First, the reasons for limiting the components of the aluminum alloy for warm forming of the present invention will be explained.

【0016】Mg:Mgは温間成形加工時に加工軟化も
しくは動的再結晶を促進させることによって温間成形性
を向上させる元素であり、またその一方では過剰に含有
されれば耐SCC性に悪影響を与える元素でもある。M
gが2.0%未満では温間成形性が不充分となるととも
に、各種成形部品としての強度も不足する。一方Mgが
3.5%を越えても温間成形での伸びがそれ程増加せ
ず、また耐SCC性も悪くなり、さらには素材のコスト
上昇を招く。したがってMgの含有量は2.0〜3.5
%の範囲内とした。なおMg量は望ましくは2.5〜
3.2%の範囲内とするのが良い。
Mg: Mg is an element that improves warm formability by promoting work softening or dynamic recrystallization during warm forming, and on the other hand, if contained in excess, it adversely affects SCC resistance. It is also an element that gives. M
If g is less than 2.0%, the warm formability will be insufficient and the strength as various molded parts will be insufficient. On the other hand, even if Mg exceeds 3.5%, the elongation in warm forming does not increase so much, the SCC resistance also deteriorates, and further the cost of the material increases. Therefore, the content of Mg is 2.0 to 3.5.
Within the range of%. The amount of Mg is preferably 2.5-
It is better to set it within the range of 3.2%.

【0017】Mn:Mnは鋳造時に強制固溶されて、固
溶強化により強度向上に有効となるばかりでなく、鋳塊
に対する高温の均熱処理(均質化処理)によって析出す
るAl6 Mn等のAl−Mn系金属間化合物粒子が再結
晶粒生成の核となり、最終板の再結晶粒を微細化して、
強度を向上させるとともに良好な温間成形性を得るに有
効に作用する。但し、Mnが1.0%以下ではMnの固
溶量が不充分で、高温の均熱処理により析出するAl−
Mn系金属間化合物粒子の数、大きさが充分ではなく、
そのため最終板の再結晶粒を微細化する効果が充分に得
られず、強度向上および温間成形性向上が充分に図れな
くなる。一方Mn量が1.8%を越えれば、Al−Fe
−Mn系の晶出物が粗大となって温間成形性を阻害する
おそれがある。従ってMn量は1.0%を越え1.8%
の範囲内とした。
Mn: Mn is forcibly solid-solved during casting and is effective not only for improving strength by solid solution strengthening, but also for Al such as Al 6 Mn precipitated by high temperature soaking treatment (homogenization treatment) on the ingot. -Mn-based intermetallic compound particles serve as nuclei for recrystallized grain formation, and the recrystallized grains of the final plate are refined,
It effectively acts to improve strength and obtain good warm formability. However, when Mn is 1.0% or less, the solid solution amount of Mn is insufficient, and Al- which is precipitated by high temperature soaking treatment
The number and size of Mn-based intermetallic compound particles are not sufficient,
Therefore, the effect of refining the recrystallized grains of the final plate cannot be sufficiently obtained, and the strength and the warm formability cannot be sufficiently improved. On the other hand, if the Mn content exceeds 1.8%, Al-Fe
There is a possibility that the —Mn-based crystallized substance becomes coarse and the warm formability is impaired. Therefore, the amount of Mn exceeds 1.0% and 1.8%
Within the range of.

【0018】Fe:Feは成形加工性を付与する元素で
あるが、含有量が増加するにつれて粗大なAl−Fe−
Mn系金属間化合物が生じ、成形加工時のすべり変形を
阻害し、伸びを低下させる。特にFeが0.2%を越え
て含有されれば温間成形性が悪くなる。したがってFe
量は0.2%以下に抑える必要がある。なおFeは、飽
くまで不純物として0.2%以下(0%を含む)に規制
しても、その添加効果を期待して0.2%以下の範囲で
積極添加しても良い。
Fe: Fe is an element that imparts moldability, but as the content increases, coarse Al-Fe-
A Mn-based intermetallic compound is generated, which hinders the slip deformation during molding and reduces the elongation. In particular, if Fe is contained in excess of 0.2%, the warm formability becomes poor. Therefore Fe
The amount should be kept below 0.2%. It should be noted that Fe may be regulated to 0.2% or less (including 0%) as an impurity until it gets tired, or may be positively added in the range of 0.2% or less in expectation of the effect of addition.

【0019】Cu:Cuは耐SCC性と強度を付与する
元素であり、含有量が増加するにしたがって加工硬化性
は増加するが、逆に温間での伸びを低下させる。特にC
uが0.3%を越えて含有されれば、温間成形性が悪く
なる。したがってCu量は0.3%以下に抑える必要が
ある。なおCuは飽くまで不純物として0.3%以下
(0%を含む)に規制しても、またその添加効果を期待
して0.3%以下の範囲で積極添加しても良い。
Cu: Cu is an element that imparts SCC resistance and strength. As the content increases, the work hardenability increases, but on the contrary, the elongation during warming decreases. Especially C
If u is contained in excess of 0.3%, the warm formability becomes poor. Therefore, the Cu content needs to be suppressed to 0.3% or less. Cu may be regulated to 0.3% or less (including 0%) as an impurity until it gets tired, or may be positively added in the range of 0.3% or less in anticipation of its addition effect.

【0020】Cr,Zr,Si,Zn,Vおよびその他
の不純物:Cr,Zr,Si,Zn,Vはいずれも鋳造
時に粗大な金属間化合物を生成させやすく、一旦形成さ
れたこれらの金属間化合物は、その後の加工、熱処理で
除去することはできない。これらの金属間化合物は、そ
の粒径が3μmを越えれば温間成形時の破断の起点とな
って、温間成形性を著しく劣化させる。粒径が3μmを
越える金属間化合物を生成させないためには、不純物と
してのCrを0.05%以下、Zrを0.05%以下、
Siを0.2%以下、Znを0.05%以下、Vを0.
05%以下にそれぞれ規制するとともに、その他の不純
物(但しFe,Cuを除く)の合計量を0.1%以下に
規制することが好ましい。
Cr, Zr, Si, Zn, V and other impurities: Cr, Zr, Si, Zn, and V all tend to form coarse intermetallic compounds during casting, and once formed, these intermetallic compounds are formed. Cannot be removed by subsequent processing or heat treatment. If the particle size of these intermetallic compounds exceeds 3 μm, they serve as the starting point of fracture during warm forming, and significantly deteriorate the warm formability. In order to prevent the formation of intermetallic compounds having a particle size exceeding 3 μm, Cr as an impurity is 0.05% or less, Zr is 0.05% or less,
Si is 0.2% or less, Zn is 0.05% or less, and V is 0.
It is preferable that the content of each of the other impurities (excluding Fe and Cu) is regulated to not more than 0.1% while controlling the content of each to be not more than 05%.

【0021】以上の各成分の残部は実質的にAlとすれ
ばよい。但し、通常のアルミニウム合金においては鋳塊
結晶粒微細化のためにTi、あるいはTiおよびBを微
量添加することがあり、この発明の場合も微量のTi、
あるいはTiおよびBをを含有しても良い。ここで、T
i含有量が0.15%を越えれば初晶TiAl2 粒子が
晶出して成形性を害し、またB含有量が0.05%を越
えればTiBの粗大粒子が生じて成形性を害するから、
Tiは0.15%以下、Bは0.05%以下とすること
が好ましい。
The balance of the above components may be substantially Al. However, in ordinary aluminum alloys, a minute amount of Ti or Ti and B may be added for refining the ingot crystal grains. In the case of the present invention, a small amount of Ti,
Alternatively, Ti and B may be contained. Where T
If the i content exceeds 0.15%, primary TiAl 2 particles crystallize and impair the formability, and if the B content exceeds 0.05%, coarse particles of TiB occur and impair the formability.
Ti is preferably 0.15% or less and B is preferably 0.05% or less.

【0022】なおMgを多量に含有する場合は溶湯が酸
化しやすく、そこで溶湯酸化防止のためにBeの添加を
行なうことも一般に行なわれているが、この発明の温間
成形用アルミニウム合金の場合も、溶湯の酸化防止のた
めにBeを添加しても良い。但しBe添加量が1ppm
未満ではその効果が得られず、一方100ppmを越え
てもその効果は飽和するから、Beを添加する場合の添
加量は1〜100ppmの範囲内とすることが好まし
い。
When a large amount of Mg is contained, the molten metal is likely to be oxidized, and Be is generally added to prevent the molten metal from oxidizing. However, in the case of the aluminum alloy for warm forming of the present invention, Alternatively, Be may be added to prevent the oxidation of the molten metal. However, the amount of Be added is 1 ppm
If it is less than 100 ppm, the effect cannot be obtained, and if it exceeds 100 ppm, the effect is saturated. Therefore, when Be is added, the addition amount is preferably in the range of 1 to 100 ppm.

【0023】さらにこの発明の温間成形用アルミニウム
合金板においては、その成分組成を上述のように規定す
るのみならず、最終板におけるAl−Mn系金属間化合
物の析出状態および最終板の結晶粒径(再結晶粒径)が
重要である。すなわちこの発明では、優れた温間成形性
を得ると同時に、耐SCC性を損なうことなく強度向上
を図ることを目的としているが、そのためには、最終板
の状態で、合金板中に分散している粒径が1μm以上5
μm以下の範囲内のAl−Mn系金属間化合物の粒子の
数を0.1mm2 当り1000個以上とし、さらに平均
結晶粒径を50μm以下とする必要がある。
Further, in the aluminum alloy sheet for warm forming of the present invention, not only the component composition thereof is specified as described above, but also the precipitation state of the Al-Mn based intermetallic compound in the final sheet and the crystal grain of the final sheet. The diameter (recrystallized grain size) is important. That is, the present invention aims to obtain excellent warm formability and at the same time improve strength without impairing SCC resistance. For that purpose, in the state of the final plate, it is dispersed in the alloy plate. Particle size of 1 μm or more 5
It is necessary that the number of particles of the Al-Mn-based intermetallic compound within the range of less than or equal to μm is 1000 or more per 0.1 mm 2 , and the average crystal grain size is less than or equal to 50 μm.

【0024】上述のように合金板中に分散するAl−M
n系金属間化合物粒子の大きさおよび分散状態を限定し
た理由について次に説明する。Al−Mn系金属間化合
物粒子は軟質化処理の際の再結晶粒生成の核となり、最
終板の再結晶粒を微細化して、強度を向上させるととも
に優れた温間成形性を得るに有効に作用する働きがある
が、その粒径が5μmを越えて大きければ、温間成形時
にAl−Mn系金属間化合物粒子そのものが破断の起点
となって温間成形性を著しく劣化させる。したがって最
終板におけるAl−Mn系金属間化合物粒子の径はでき
るだけ5μm以下とすることが好ましい。一方1μm未
満の微細な径のAl−Mn系金属間化合物粒子は、再結
晶粒生成の核とならない。温間成形性を損なうことなく
再結晶粒生成の核として有効に機能するのは粒径が1〜
5μmの範囲内のAl−Mn系金属間化合物粒子であ
る。そして粒径1〜5μmの範囲内のAl−Mn系金属
間化合物粒の数が0.1mm2 当り1000個以上であ
れば、粒径が5μmを越えるAl−Mn系金属間化合物
はほとんど存在しなくなるため、温間成形性の劣化はほ
とんど生じず、また最終軟質化処理時に微細に再結晶し
て、平均結晶粒径50μm以下の微細組織が得られる。
またこのように最終板(最終軟質化処理後の板)の平均
結晶粒径を50μm以下とすることによって優れた温間
成形性と高強度が得られる。最終板の平均結晶粒径が5
0μmを越える場合、良好な温間成形性が得られず、ま
た強度も充分に向上しない。
Al-M dispersed in the alloy plate as described above
The reason for limiting the size and dispersion state of the n-based intermetallic compound particles will be described below. The Al-Mn-based intermetallic compound particles serve as nuclei for the formation of recrystallized grains during the softening treatment, and refine the recrystallized grains of the final plate to improve the strength and effectively obtain excellent warm formability. Although it has a function of acting, if the particle size is larger than 5 μm, the Al—Mn-based intermetallic compound particles themselves become the starting point of fracture during warm forming, and the warm formability is significantly deteriorated. Therefore, the diameter of the Al-Mn-based intermetallic compound particles in the final plate is preferably 5 μm or less as much as possible. On the other hand, Al-Mn-based intermetallic compound particles having a fine diameter of less than 1 μm do not serve as nuclei for recrystallized grain formation. The grain size of 1 to 1 effectively functions as the nucleus of recrystallized grain formation without impairing the warm formability.
It is an Al-Mn-based intermetallic compound particle within a range of 5 μm. If the number of Al-Mn-based intermetallic compound particles within the particle size range of 1 to 5 μm is 1000 or more per 0.1 mm 2, most Al-Mn-based intermetallic compound particles having a particle size exceeding 5 μm exist. Since it does not exist, the warm formability is hardly deteriorated, and fine recrystallization is performed during the final softening treatment to obtain a fine structure having an average crystal grain size of 50 μm or less.
Further, by setting the average crystal grain size of the final plate (the plate after the final softening treatment) to 50 μm or less, excellent warm formability and high strength can be obtained. The average grain size of the final plate is 5
When it exceeds 0 μm, good warm moldability cannot be obtained, and the strength is not sufficiently improved.

【0025】なおここで、最終軟質化処理時において再
結晶組織を微細化するためには、その最終軟質化処理直
前の状態で前述のように1μm以上5μm以下のAl−
Mn系金属間化合物粒子が0.1mm2 当り1000個
以上存在することが必要であるが、最終軟質化処理後の
状態でAl−Mn系金属間化合物粒子が上記の条件を満
たしていれば、必然的に最終軟質化処理直前でもその条
件を満たすところから、請求項1、請求項2の発明では
最終軟質化処理後の板として、上記条件を規定した。
Here, in order to make the recrystallized structure finer during the final softening treatment, as described above, in the state immediately before the final softening treatment, Al-having a grain size of 1 μm or more and 5 μm or less is used.
It is necessary that 1000 or more Mn-based intermetallic compound particles are present per 0.1 mm 2, but if the Al-Mn-based intermetallic compound particles satisfy the above conditions after the final softening treatment, Since the conditions are inevitably satisfied immediately before the final softening treatment, the above conditions are defined as the plate after the final softening treatment in the inventions of claims 1 and 2.

【0026】以上のようなこの発明の成分組成条件、金
属組織条件(結晶粒径条件、Al−Mn系金属間化合物
条件)を満たすアルミニウム合金板は、150〜350
℃の範囲内の温度での温間成形加工を行なうにあたって
の成形性(温間成形性)と温間成形後の耐SCC性が従
来のAl−Mg系合金よりも格段に優れ、しかも従来の
高強度Al−Mg系合金なみの高強度を有している。
The aluminum alloy plate satisfying the above-described component composition conditions and metallographic structure conditions (crystal grain size condition, Al--Mn type intermetallic compound condition) of the present invention is 150 to 350.
Formability (warm formability) in performing warm forming at a temperature in the range of ° C and SCC resistance after warm forming are significantly superior to those of conventional Al-Mg alloys. It has the high strength of high strength Al-Mg alloy.

【0027】次に以上のような温間成形用アルミニウム
合金板の製造方法、すなわち請求項3の発明について説
明する。
Next, a method of manufacturing the aluminum alloy sheet for warm forming as described above, that is, the invention of claim 3 will be described.

【0028】先ず前述のような成分組成の合金を鋳造す
る。鋳造方法は特に限定されるものではないが、Mnの
固溶量を高めてAl−Mn系金属間化合物の晶出物を微
細化するためには、DC鋳造法(半連続鋳造法)などに
よって0.5℃/sec以上の冷却速度で鋳造すること
が好ましい。
First, an alloy having the above composition is cast. The casting method is not particularly limited, but in order to increase the solid solution amount of Mn and refine the crystallized substances of the Al-Mn intermetallic compound, a DC casting method (semi-continuous casting method) or the like is used. It is preferable to cast at a cooling rate of 0.5 ° C./sec or more.

【0029】得られた鋳塊に対しては、均質化処理(均
熱処理)を施す。この均熱処理は、単に鋳塊組織を均一
化するのみならず、Al−Mn系金属間化合物粒子を析
出させるために重要な工程である。すなわちこの発明で
は高温長時間の均熱処理を施すことによって、再結晶の
核となる粒径1μm以上5μm以下の微細なAl−Mn
系金属間化合物粒子を0.1mm2 当り1000個以上
析出させ、これによって後の軟質化処理時における再結
晶粒を微細化させ、温間成形時の伸び向上と温間成形後
の耐SCC性の向上、強度向上を図ることができるので
ある。ここで均質化処理温度が500℃未満または均質
化処理時間が5時間未満ではAl−Mn系金属間化合物
粒子の析出が不充分となり、一方均熱処理温度が600
℃を越えれば局部融解を生じてしまい、また均熱処理時
間が48時間を越えれば、Al−Mn系金属間化合物析
出の効果が飽和して経済性の点で問題が生じ、しかも表
面の酸化が進行して表面品質が悪くなる。したがって均
熱処理時間は、500〜600℃×5〜48時間の範囲
内とする必要がある。
The obtained ingot is subjected to a homogenizing treatment (soaking treatment). This soaking treatment is an important step for not only homogenizing the ingot structure but also precipitating Al-Mn-based intermetallic compound particles. That is, in the present invention, by performing soaking treatment at high temperature for a long time, a fine Al—Mn having a grain size of 1 μm or more and 5 μm or less, which becomes a nucleus of recrystallization, is obtained.
Precipitated 1000 or more particles of intermetallic compound per 0.1 mm 2 to make recrystallized grains finer during the subsequent softening treatment, improve elongation during warm forming and SCC resistance after warm forming. And the strength can be improved. If the homogenization treatment temperature is less than 500 ° C. or the homogenization treatment time is less than 5 hours, the precipitation of Al—Mn-based intermetallic compound particles becomes insufficient, while the soaking temperature is 600.
If the temperature exceeds ℃, local melting will occur, and if the soaking time exceeds 48 hours, the effect of precipitation of Al-Mn intermetallic compound will be saturated and problems will occur in terms of economic efficiency, and surface oxidation will occur. It progresses and the surface quality deteriorates. Therefore, the soaking time needs to be within the range of 500 to 600 ° C. × 5 to 48 hours.

【0030】なおこのような均熱処理によって析出した
Al−Mn系金属間化合物粒子は、その後のプロセスで
マトリックスに固溶してしまうことはなく、またそもそ
も微細であるため加工によって破砕されてそれ以上小径
となってしまうこともほとんどなく、したがって均熱処
理段階で粒径1μm以上5μm以下のAl−Mn系金属
間化合物粒子を0.1mm2 当り1000個以上析出さ
せておけば、最終板の再結晶処理時においてもAl−M
n系金属間化合物粒子は同じ条件を満たすことができ、
そのため既に述べたように再結晶組織を平均結晶粒径が
50μm以下の微細組織とすることにより、温間成形時
の伸びの向上を図ることができるのである。
The Al-Mn-based intermetallic compound particles deposited by such soaking do not dissolve into the matrix in the subsequent process, and since they are fine in the first place, they are crushed by processing and further The diameter is almost never small. Therefore, if at least 1000 Al-Mn-based intermetallic compound particles having a particle size of 1 μm or more and 5 μm or less are precipitated per 0.1 mm 2 in the soaking process, the recrystallization of the final plate is performed. Al-M even during processing
n-based intermetallic compound particles can satisfy the same conditions,
Therefore, as already described, by making the recrystallization structure a fine structure having an average crystal grain size of 50 μm or less, it is possible to improve the elongation during warm forming.

【0031】均熱処理後には熱間圧延を行なう。この熱
間圧延開始温度は、従来のAl−Mn−Mg系合金と同
様であれば良く、通常は400〜550℃とする。なお
この熱間圧延を行なうにあたっては、均熱処理後、一旦
冷却してから400〜550℃に再加熱しても良く、あ
るいは均熱処理後再加熱することなく、400〜550
℃の状態から熱間圧延を施しても良い。この熱間圧延に
おいては、熱間圧延終了温度が重要である。すなわち、
熱間圧延終了温度を、この発明で対象とする合金の再結
晶温度より低い280℃以下の比較的低温とすることに
よって、Al−Mg系合金の再結晶温度より低温での圧
延率を30%以上とし、これによって冷間圧延を施さな
くても冷間圧延を行なったと同じ効果を与えることがで
き、最終板の軟質化処理時における再結晶粒を微細化す
る効果が得られる。熱間圧延終了温度が280℃を越え
る高温の場合には、再結晶粒が微細化されず、したがっ
て温間成形時の伸びの向上の効果も得られなくなる。
After soaking, hot rolling is performed. The hot rolling start temperature may be the same as that of a conventional Al-Mn-Mg-based alloy, and is usually 400 to 550 ° C. In carrying out this hot rolling, after soaking, it may be once cooled and then reheated to 400 to 550 ° C., or 400 to 550 without soaking after reheating.
You may perform hot rolling from the state of ℃. In this hot rolling, the hot rolling finish temperature is important. That is,
By setting the hot rolling end temperature to a relatively low temperature of 280 ° C. or lower, which is lower than the recrystallization temperature of the alloy targeted by the present invention, the rolling rate at a temperature lower than the recrystallization temperature of the Al—Mg-based alloy is 30%. As described above, the same effect as cold rolling can be provided without cold rolling, and the effect of refining recrystallized grains during the softening treatment of the final plate can be obtained. When the hot rolling finish temperature is higher than 280 ° C., the recrystallized grains are not refined, and therefore the effect of improving elongation during warm forming cannot be obtained.

【0032】さらに上述のような熱間圧延終了温度条件
について詳細に説明すると、この発明で対象とする合金
の再結晶温度は280℃〜300℃程度であるが、この
ような再結晶温度以上の温度で圧延すれば、圧延中に2
次再結晶粒を生じてしまうため、圧延加工組織とはなら
ず、加工硬化も殆ど生じない。これに対し、再結晶温度
より低い280℃以下の温度域で圧延を行なうことによ
り、圧延加工組織が生成されるとともに、加工硬化が生
じ、冷間圧延を施さなくても冷間圧延を付与した場合と
同じ効果が得られる。そして、その後の最終工程の軟質
化処理において、前者の場合は新たに生成する再結晶粒
が微細とならないのに対し、後者の場合は圧延加工組織
のため容易に微細な再結晶粒が生成される。この軟質化
処理で生成される再結晶粒は再結晶温度以下での圧延率
が大きいほど、微細な再結晶粒が得られ易くなる。再結
晶温度以下での圧延率が30%未満では、再結晶粒の大
きさが50μmを越えてしまい、微細な再結晶組織が得
られずに温間での伸びが不充分となる。したがって温間
成形性を向上させるに充分な伸びを得るために、熱間圧
延での再結晶温度(280℃〜300℃程度)以下での
圧延率を30%以上とするのである。なおこのような方
法を適用することによって、冷間圧延工程を省略するこ
とができるため、生産コストの低減ができる利点が生じ
る。
The hot rolling finish temperature condition as described above will be explained in detail. The recrystallization temperature of the alloy of the present invention is about 280 ° C. to 300 ° C. If rolling at temperature, 2 during rolling
Since secondary recrystallized grains are generated, the rolling work structure does not occur and work hardening hardly occurs. On the other hand, by performing rolling in a temperature range of 280 ° C. or lower, which is lower than the recrystallization temperature, a rolling work structure is generated, work hardening occurs, and cold rolling is applied without cold rolling. The same effect can be obtained. Then, in the subsequent softening treatment in the final step, in the former case, newly generated recrystallized grains are not fine, whereas in the latter case, fine recrystallized grains are easily generated due to the rolling structure. It With respect to the recrystallized grains generated by this softening treatment, the larger the rolling ratio at the recrystallization temperature or lower, the easier it becomes to obtain fine recrystallized grains. If the rolling rate at the recrystallization temperature or lower is less than 30%, the size of the recrystallized grains exceeds 50 μm, a fine recrystallized structure cannot be obtained, and the warm elongation becomes insufficient. Therefore, in order to obtain sufficient elongation to improve the warm formability, the rolling rate at the recrystallization temperature (280 ° C to 300 ° C) or less in hot rolling is set to 30% or more. By applying such a method, it is possible to omit the cold rolling step, which brings about an advantage that the production cost can be reduced.

【0033】前述のようにして圧延終了温度を制御した
熱間圧延によって最終板厚となった圧延板(最終圧延
板)に対しては、軟質化処理を施す。この軟質化処理
は、バッチ焼鈍、連続焼鈍のいずれの方法でもよい。こ
の軟質化処理は最終圧延板の組織を再結晶させ、所要の
軟質材を得るために必要な工程であり、その温度が30
0℃未満では再結晶が充分に進行せず、500℃を越え
れば再結晶粒の粗大化が生じやすい。したがって軟質化
処理は300〜500℃の範囲内の温度で行なう必要が
ある。なお軟質化処理の時間は特に限定しないが、通常
は0.5〜5時間の範囲内とすることが好ましい。この
ような軟質化処理においては、既に述べたように粒径1
μm以上5μm以下のAl−Mn系金属間化合物粒子が
0.1mm2当り1000個以上分散しているため、平
均結晶粒径が50μm以下となる微細な再結晶組織が得
られる。そしてこのような微細な再結晶組織となるた
め、温間成形時の伸びの向上を図ることができるのであ
る。
As described above, the softening treatment is applied to the rolled plate (final rolled plate) having the final plate thickness by the hot rolling in which the rolling end temperature is controlled. This softening treatment may be performed by either batch annealing or continuous annealing. This softening treatment is a step necessary to recrystallize the structure of the final rolled plate and obtain a required soft material, and the temperature is 30
If the temperature is lower than 0 ° C., recrystallization does not proceed sufficiently, and if the temperature exceeds 500 ° C., coarsening of recrystallized grains tends to occur. Therefore, the softening treatment needs to be performed at a temperature within the range of 300 to 500 ° C. The time for the softening treatment is not particularly limited, but it is usually preferably within the range of 0.5 to 5 hours. In such a softening treatment, as described above, the grain size is 1
Since 1000 or more Al-Mn-based intermetallic compound particles having a size of from 5 μm to 5 μm are dispersed per 0.1 mm 2 , a fine recrystallized structure having an average crystal grain size of 50 μm or less can be obtained. Since such a fine recrystallized structure is obtained, it is possible to improve the elongation during warm forming.

【0034】なお製品の圧延板に対する温間成形は15
0〜350℃で行なわれるが、その場合圧延板は加熱さ
れた金型内にセットされて材料温度が所定の温度となる
まで保持されてから成形が施されるか、または別の予熱
炉で加熱され、その後金型にセットされて成形が施され
る。この場合、保持もしくは予熱の温度、時間が再結晶
が生じるような条件であれば、最終焼鈍により再結晶組
織を得ておく必要はなく、したがってその場合は最終焼
鈍を省くことができる。
The warm forming of the rolled plate of the product is 15
It is carried out at 0 to 350 ° C., in which case the rolled plate is set in a heated mold and held until the material temperature reaches a predetermined temperature before being formed, or in another preheating furnace. It is heated, then set in a mold and molded. In this case, it is not necessary to obtain the recrystallized structure by the final annealing under the conditions such that the recrystallization temperature or time for holding or preheating occurs, and in that case, the final annealing can be omitted.

【0035】またDC鋳造に代えて薄板連続鋳造法を適
用する場合は、前述の各工程のうち、熱間圧延までを省
略することができる。但し、この場合は圧延性を向上さ
せるため、鋳造コイルに対して均質化処理を施してから
目的の板厚まで冷間圧延を行なうことが好ましい。この
場合の均質化処理は、前述のDC鋳造を適用した場合の
熱間圧延前の鋳塊加熱条件と同様であればよい。
When the thin plate continuous casting method is applied instead of DC casting, up to hot rolling can be omitted from the above-mentioned steps. However, in this case, in order to improve the rolling property, it is preferable that the cast coil is subjected to a homogenizing treatment and then cold-rolled to a desired plate thickness. The homogenization treatment in this case may be the same as the ingot heating conditions before hot rolling when the above DC casting is applied.

【0036】[0036]

【実施例】表1の製造条件No.1〜10に示す成分組
成のアルミニウム合金、すなわち本発明成分範囲内の合
金(No.1〜5)および本発明成分範囲を外れた比較
例の合金(No.6〜10)について、常法にしたがっ
てDC鋳造し、得られた鋳塊に表2の製造条件No.1
〜10に示す様な種々の条件で均熱処理(均質化処
理)、熱間圧延前予備加熱、熱間圧延を施して、厚さ
1.6mmの圧延板とした後、350℃×2時間の軟質
化処理を施し、製品板とした。
[Example] Manufacturing condition No. 1 in Table 1 The aluminum alloys having the component compositions shown in 1 to 10, that is, the alloys within the component range of the present invention (Nos. 1 to 5) and the alloys of Comparative Examples outside the component range of the present invention (Nos. 6 to 10) were subjected to conventional methods Therefore, DC casting was performed, and the obtained ingot was manufactured under the manufacturing condition No. 2 shown in Table 2. 1
After soaking (homogenization treatment), preheating before hot rolling, and hot rolling under various conditions as shown in 10 to make a rolled plate having a thickness of 1.6 mm, 350 ° C. × 2 hours A softening treatment was performed to obtain a product plate.

【0037】上述のプロセス中の均熱処理直後、および
軟質化処理直後において、それぞれ1μm以上5μm以
下のAl−Mn系金属間化合物粒子の0.1mm2 当り
の数を画像解析装置を用いて調べるとともに、軟質化処
理直後の平均結晶粒径を調べたので、その結果を表2中
に併せて示した。
Immediately after the soaking treatment and the softening treatment in the above-mentioned process, the number of Al-Mn-based intermetallic compound particles having a size of 1 μm or more and 5 μm or less per 0.1 mm 2 was examined by using an image analyzer. The average crystal grain size immediately after the softening treatment was examined, and the results are also shown in Table 2.

【0038】表3には、軟質化処理後の製造条件No.
1〜10の各板の室温での機械的特性と、150℃及び
350℃における温間引張り試験における伸びを示し
た。なおこの温間引張り試験の条件としては、図1に示
す様な試験片を用い、各材料の試験片を加熱炉中で加熱
し、試験片の温度が150℃、350℃に到達後、5分
保持してから引張りを開始し、また引張り速度は10m
m/分とし、標点間距離は10mmとした。
Table 3 shows the manufacturing condition No. after the softening treatment.
The mechanical properties of each of the plates 1 to 10 at room temperature and the elongation in the warm tensile test at 150 ° C and 350 ° C are shown. As the conditions for this warm tensile test, test pieces as shown in FIG. 1 were used, and the test pieces of each material were heated in a heating furnace, and after the temperature of the test pieces reached 150 ° C. and 350 ° C., 5 Hold for minutes, then start pulling, and pulling speed is 10m
The distance between the reference points was 10 mm.

【0039】さらに表3は、製造条件No.1〜10に
よる各板のダブルシンク温間成形絞り型による破断する
までの成形限界深さを調べた結果を示す。このダブルシ
ンク温間成形絞り型による成形条件は次の通りである。
Further, Table 3 shows the manufacturing condition No. The result of having investigated the forming limit depth until it fracture | ruptures by the double sink warm forming drawing die of each board by 1-10 is shown. The molding conditions for this double-sink warm molding drawing die are as follows.

【0040】 ポンチ:60mm×60mm×2本のダブルシンク ポンチ間距離:60mm ブランクホルダー力:300kg 成形高さ限界:60mm(金型の絞り可能な最大高さ) 成形速度:100mm/min 加熱温度:1)供試材を金型内で150℃に1分保持 2)供試材を金型内で350℃に1分保持 の2条件で評価した。 潤滑剤:板両面に二硫化モリブデン潤滑剤塗布Punch: 60 mm × 60 mm × 2 double sinks Distance between punches: 60 mm Blank holder force: 300 kg Molding height limit: 60 mm (maximum height of mold that can be drawn) Molding speed: 100 mm / min Heating temperature: The test material was evaluated under two conditions: 1) holding the sample in the mold at 150 ° C for 1 minute, and 2) holding the sample in the mold at 350 ° C for 1 minute. Lubricant: Molybdenum disulfide lubricant applied to both sides of the plate

【0041】また軟質化処理後の各板についてSCC試
験による破断寿命を調べたので、その結果も表3中に示
す。
The break life of each plate after the softening treatment was examined by the SCC test. The results are also shown in Table 3.

【0042】なお耐SCC性に関しては、軟質材のまま
ではSCC感受性は低く、成形加工後の経時変化によっ
てMg2 Al3 が粒界に析出し、SCC感受性が高くな
ることが一般に知られている。そこでこの実施例では、
軟質化処理後の板(軟質材)に対して図1及び表3と同
条件の350℃の温間引張りにより50%の引張り加工
(伸び)を与えた後、この試験片に対して、さらに約1
0年間のMg2 Al3析出の変化に相当する120℃×
7日間の熱処理を施すことによって、SCC感受性を高
めた状態とし、その状態でSCC試験を実施した。
Regarding the SCC resistance, it is generally known that the SCC susceptibility is low in the soft material as it is, and Mg 2 Al 3 is precipitated at the grain boundaries due to the change with time after the forming process, and the SCC susceptibility is increased. . So in this example,
After subjecting the plate (soft material) after the softening treatment to 50% tensile processing (elongation) by warm drawing at 350 ° C. under the same conditions as in FIG. 1 and Table 3, further, to this test piece, About 1
120 ℃, which is equivalent to the change in Mg 2 Al 3 precipitation for 0 years
A SCC test was carried out in a state in which the SCC sensitivity was increased by applying a heat treatment for 7 days.

【0043】またこのSCC試験は、NaCl水溶液中
での単軸引張りによる応力付加を行なうと共に、耐SC
C性を比較的短時間で評価するために試験片に直流5m
A/cm2 の電流を流すことで粒界腐食を促進させる方
法、すなわち電流負荷単軸引張り方式で行なった。なお
ここで、付加応力は100N/mm2 と150N/mm
2 の2水準として調べた。
In this SCC test, stress is applied by uniaxial tension in an aqueous NaCl solution and the SC resistance is increased.
5m DC on the test piece to evaluate C property in a relatively short time
A method of accelerating intergranular corrosion by passing a current of A / cm 2 , that is, a current load uniaxial tension method was used. The applied stress is 100 N / mm 2 and 150 N / mm.
It was investigated as 2 levels of 2.

【0044】さらに応力腐食割れは粒界腐食と応力との
相互作用による脆性破壊であることが知られている。前
述のSCC試験では、破断寿命のみによって耐SCC性
を評価しているが、破断寿命だけではなく、破面の破壊
様式からも耐SCC性を評価することが必要であると考
えられ、そこで前述のSCC試験において付加応力15
0N/mm2 で破断した試験片の破面について、走査電
子顕微鏡にて破面の破壊様式を観察した。その結果も表
3に示した。
Furthermore, stress corrosion cracking is known to be brittle fracture due to the interaction between intergranular corrosion and stress. In the above-mentioned SCC test, the SCC resistance is evaluated only by the fracture life, but it is considered that it is necessary to evaluate the SCC resistance not only from the fracture life but also from the fracture mode of the fracture surface. Additional stress 15 in SCC test
Regarding the fracture surface of the test piece fractured at 0 N / mm 2 , the fracture mode of the fracture surface was observed with a scanning electron microscope. The results are also shown in Table 3.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【表3】 [Table 3]

【0048】表2に示すように、この発明の成分組成範
囲内のNo.1〜No.5のアルミニウム合金板は、い
ずれも1μm以上5μm以下のAl−Mn系金属間化合
物粒子の数が0.1mm2 当り1000個以上となって
おり、また平均結晶粒径はいずれも50μm以下となっ
ている。そして表3から、この発明の実施例によるアル
ミニウム合金板No.1〜No.5はいずれも150℃
における温間引張り試験の伸びが70%以上であり、ま
た350℃における温間引張り試験の伸びが250%以
上あり、比較例のNo.6〜No.10の合金板に比
べ、本発明例の合金板No.1〜No.5は温間引張り
伸びが著しく大きいことが判る。さらにダブルシンク温
間成形絞り型による成形限界も本発明の合金板No.1
〜No.5では150℃で30mm以上、また350m
mでは60mm以上と比較例に比べ著しく優れている。
したがってこれらの結果から、この発明によるアルミニ
ウム合金板の温間成形性が優れていることが明らかであ
る。
As shown in Table 2, No. 1 within the component composition range of the present invention. 1-No. In each of the aluminum alloy plates of No. 5, the number of Al-Mn-based intermetallic compound particles having a size of 1 μm or more and 5 μm or less is 1000 or more per 0.1 mm 2 , and the average crystal grain size is 50 μm or less in all cases. ing. And from Table 3, the aluminum alloy plate No. according to the embodiment of the present invention. 1-No. All 5 are 150 ℃
The elongation in the warm tensile test at 70 ° C. is 70% or more, and the elongation in the warm tensile test at 350 ° C. is 250% or more. 6-No. Compared with the alloy plate No. 10, the alloy plate No. 1-No. It can be seen that No. 5 has a remarkably large warm tensile elongation. Further, the forming limit of the double sink warm forming drawing die is the same as that of the alloy sheet No. 1 of the present invention. 1
~ No. No. 5 at 150 ℃ 30mm or more, also 350m
m is 60 mm or more, which is remarkably superior to the comparative example.
Therefore, it is clear from these results that the aluminum alloy sheet according to the present invention has excellent warm formability.

【0049】また表3に示すように本発明例のアルミニ
ウム合金板は、いずれもSCC試験の破断寿命が付加応
力150N/mm2 の条件において4000min以上
であり、さらに試験片の断面の破壊様式も、延性破壊を
示すディンプル破面となっており、これらの結果からこ
の発明によるアルミニウム合金板が耐SCC性にも優れ
ていることが明らかである。
Further, as shown in Table 3, each of the aluminum alloy sheets of the present invention had a breaking life in the SCC test of 4000 min or more under the condition of an additional stress of 150 N / mm 2 , and also the fracture mode of the cross section of the test piece. The dimple fracture surface exhibits ductile fracture, and it is clear from these results that the aluminum alloy sheet according to the present invention has excellent SCC resistance.

【0050】一方比較例のうち、合金板No.6,N
o.7の材料は、いずれも化学成分はこの発明の組成範
囲内であるが、比較例の合金板No.6の場合、熱間圧
延の終了温度が再結晶温度以上のため、平均結晶粒径が
70μmと大きくなってしまい、そのため温間引張りの
伸びが少なく、また限界絞り高さが不充分となった。ま
た比較例の合金板No.7では、均熱処理温度がこの発
明の範囲から外れるため、Al−Mn系金属間化合物粒
子の数が少なく、そのため再結晶粒径が混粒となり、温
間引張りにおいて充分な伸びが得られず、また限界絞り
高さも不充分であった。
On the other hand, among the comparative examples, alloy plate No. 6, N
o. Although the chemical compositions of all the materials of No. 7 are within the composition range of the present invention, the alloy plate No. In the case of No. 6, since the end temperature of hot rolling was higher than the recrystallization temperature, the average crystal grain size became as large as 70 μm, so the warm tensile elongation was small and the limiting drawing height was insufficient. . In addition, the alloy plate No. In No. 7, since the soaking temperature is out of the range of the present invention, the number of Al-Mn-based intermetallic compound particles is small, and therefore the recrystallized particle size becomes a mixed particle, and sufficient elongation cannot be obtained in warm drawing. Moreover, the limit drawing height was also insufficient.

【0051】さらにNo.8の比較例の合金板は、Mn
量がこの発明で規定する範囲より少なく、そのため均熱
処理工程において生成される再結晶の核となるべきAl
−Mn系金属間化合物粒子が少なかった。そのため軟質
化処理後の平均結晶粒径がこの発明で規定する範囲より
大きくなり、温間引張りによる伸びが少なくなり、限界
絞り高さも不充分となった。
Further, No. The alloy plate of Comparative Example No. 8 has Mn
The amount of Al is less than the range specified in the present invention, and therefore Al to form nuclei for recrystallization generated in the soaking process.
There were few particles of -Mn-based intermetallic compound. Therefore, the average crystal grain size after the softening treatment became larger than the range specified in the present invention, the elongation due to warm drawing decreased, and the limiting drawing height became insufficient.

【0052】またNo.9,No.10の比較例の各合
金板は、熱間圧延の終了温度が再結晶温度以上のため、
平均結晶粒径が大きく、温間引張りによる伸びも少なか
った。またこれらのNo.9,No.10の比較例の合
金板は、Mg量がこの発明で規定する範囲から外れるた
め、SCC試験による破断寿命も短く、試験片断面の破
壊様式も脆性破壊を示す粒界破面を呈しており、耐SC
C性に劣っていることが明らかである。
No. 9, No. In each of the alloy sheets of Comparative Example 10 of the comparative example, since the end temperature of hot rolling is the recrystallization temperature or higher,
The average grain size was large, and the elongation due to warm drawing was small. In addition, these No. 9, No. The alloy plate of Comparative Example 10 of Comparative Example 10 had a Mg content outside the range specified in the present invention, and thus had a short fracture life in the SCC test, and the fracture mode of the cross section of the test piece exhibited a grain boundary fracture surface showing brittle fracture. SC resistant
It is clear that the C property is inferior.

【0053】以上のようにこの発明の実施例による合金
板(No.1〜No.5)は、温間引張り伸びに優れ、
またダブルシンク温間成形型による限界絞り高さも高
く、温間成形性に優れると同時に、耐SCC性に優れ、
しかも高強度を有することが明らかである。
As described above, the alloy sheets (No. 1 to No. 5) according to the examples of the present invention are excellent in warm tensile elongation,
In addition, the double sink warm forming die has a high limit drawing height, which is excellent in warm formability as well as SCC resistance.
Moreover, it is clear that it has high strength.

【0054】[0054]

【発明の効果】この発明による温間成形用アルミニウム
合金板は、温間成形性に優れると同時に温間成形後の耐
SCC性に優れており、そのため150〜350℃の温
度域での温間成形によって複雑な形状の成形品を容易に
得ることができるとともに、苛酷な腐食環境下に曝され
ても、応力腐食割れが生じるおそれが少なく、しかも強
度も従来のAl−Mg系合金と比較して遜色なく、した
がって自動車部品や航空機部品、その他各種の成形加工
部品に最適である。
EFFECTS OF THE INVENTION The aluminum alloy sheet for warm forming according to the present invention is excellent in warm formability and SCC resistance after warm forming. Therefore, the warm forming in the temperature range of 150 to 350 ° C. A molded product with a complicated shape can be easily obtained by molding, stress corrosion cracking is less likely to occur even when exposed to a harsh corrosive environment, and strength is also compared to conventional Al-Mg alloys. Therefore, it is most suitable for automobile parts, aircraft parts, and various molded parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例において行なった温間引張り
試験における試験片の形状、寸法を示す平面図である。
FIG. 1 is a plan view showing the shape and dimensions of a test piece in a warm tensile test conducted in an example of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Mg2.0〜3.5%(重量%、以下同
じ)、Mn1.0%を越え1.8%以下、Fe0.20
%以下、Cu0.30%以下を含有し、残部がAlおよ
び不可避的不純物よりなり、かつ合金板中に分散してい
る粒径1〜5μmのAl−Mn系金属間化合物粒子の数
が0.1mm2 当り1000個以上で、さらに平均結晶
粒径が50μm以下であることを特徴とする、150〜
350℃の範囲内での温間成形における温間成形性と温
間成形後の耐応力腐食割れ性に優れた温間成形用アルミ
ニウム合金板。
1. Mg 2.0 to 3.5% (weight%, the same hereinafter), Mn more than 1.0% and 1.8% or less, Fe 0.20
% Or less and Cu 0.30% or less, the balance of Al and unavoidable impurities, and the number of Al—Mn-based intermetallic compound particles having a particle size of 1 to 5 μm dispersed in the alloy plate is 0. The number of grains per 1 mm 2 is 1000 or more, and the average crystal grain size is 50 μm or less.
An aluminum alloy plate for warm forming, which is excellent in warm formability during warm forming within a range of 350 ° C and stress corrosion cracking resistance after warm forming.
【請求項2】 請求項1に記載の温間成形用アルミニウ
ム合金板において、不純物として、Crが0.05%以
下、Zrが0.05%以下、Siが0.2%以下、Zn
が0.05%以下、Vが0.05%以下にそれぞれ規制
され、かつその他の不純物の合計量が0.1%以下に規
制されていることを特徴とする、150〜350℃の範
囲内での温間成形における温間成形性と温間成形後の耐
応力腐食割れ性に優れた温間成形用アルミニウム合金
板。
2. The aluminum alloy plate for warm forming according to claim 1, wherein Cr is 0.05% or less, Zr is 0.05% or less, Si is 0.2% or less, and Zn is Zn.
Is regulated to 0.05% or less, V is regulated to 0.05% or less, and the total amount of other impurities is regulated to 0.1% or less. Aluminum alloy sheet for warm forming, which is excellent in warm formability during warm forming and stress corrosion cracking resistance after warm forming.
【請求項3】 Mg2.0〜3.5%、Mn1.0%を
越え1.8%以下、Fe0.20%以下、Cu0.30
%以下を含有し、残部がAlおよび不可避的不純物より
なる合金の鋳塊を鋳造し、得られた鋳塊に500〜60
0℃の範囲内の温度で5〜48時間の均質化処理を施し
て、粒径1〜5μmのAl−Mn系金属間化合物粒子を
0.1mm2 当り1000個以上析出させ、その後圧延
を施して所要の最終板厚とするにあたり、熱間圧延での
圧延終了温度を280℃以下として、再結晶温度より低
温の温度域での圧延率を30%以上とし、さらに最終板
厚の圧延板に対して300〜500℃にて軟質化処理を
施して、平均結晶粒径を50μm以下とすることを特徴
とする、150〜350℃の範囲内での温間成形におけ
る温間成形性と温間成形後の耐応力腐食割れ性に優れた
温間成形用アルミニウム合金板の製造方法。
3. Mg 2.0 to 3.5%, Mn more than 1.0% and 1.8% or less, Fe 0.20% or less, Cu 0.30.
% Or less, with the balance being Al and inevitable impurities, an ingot of the alloy is cast, and the obtained ingot is 500 to 60
A homogenization treatment is performed at a temperature in the range of 0 ° C. for 5 to 48 hours to deposit 1000 or more Al—Mn-based intermetallic compound particles having a particle diameter of 1 to 5 μm per 0.1 mm 2 , and then perform rolling. In order to obtain the required final plate thickness, the rolling end temperature in hot rolling is set to 280 ° C or less, and the rolling ratio in the temperature range lower than the recrystallization temperature is set to 30% or more. On the other hand, the softening treatment is performed at 300 to 500 ° C., and the average crystal grain size is set to 50 μm or less. Warm formability and warm forming in warm forming in the range of 150 to 350 ° C. A method for producing an aluminum alloy sheet for warm forming, which is excellent in stress corrosion cracking resistance after forming.
JP12301394A 1994-05-12 1994-05-12 Aluminum alloy sheet for warm forming and its production Withdrawn JPH07310137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12301394A JPH07310137A (en) 1994-05-12 1994-05-12 Aluminum alloy sheet for warm forming and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12301394A JPH07310137A (en) 1994-05-12 1994-05-12 Aluminum alloy sheet for warm forming and its production

Publications (1)

Publication Number Publication Date
JPH07310137A true JPH07310137A (en) 1995-11-28

Family

ID=14850087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12301394A Withdrawn JPH07310137A (en) 1994-05-12 1994-05-12 Aluminum alloy sheet for warm forming and its production

Country Status (1)

Country Link
JP (1) JPH07310137A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012041A (en) * 2007-07-05 2009-01-22 Sumitomo Light Metal Ind Ltd Warm-forming method and warm-formed article manufactured by the method
JP2010000516A (en) * 2008-06-19 2010-01-07 Kagoshima Prefecture Precision forging method of magnesium alloy
JP2012241225A (en) * 2011-05-18 2012-12-10 Nippon Steel Corp Aluminum alloy sheet for warm forming

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012041A (en) * 2007-07-05 2009-01-22 Sumitomo Light Metal Ind Ltd Warm-forming method and warm-formed article manufactured by the method
JP2010000516A (en) * 2008-06-19 2010-01-07 Kagoshima Prefecture Precision forging method of magnesium alloy
JP2012241225A (en) * 2011-05-18 2012-12-10 Nippon Steel Corp Aluminum alloy sheet for warm forming

Similar Documents

Publication Publication Date Title
KR20060135849A (en) Al-mg alloy sheet with excellent formability at high temperatures and high speeds and method of production of same
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
US5540791A (en) Preformable aluminum-alloy rolled sheet adapted for superplastic forming and method for producing the same
JP2000212673A (en) Aluminum alloy sheet for aircraft stringer excellent in stress corrosion cracking resistance and its production
WO2022229800A1 (en) Aluminum casting alloy for near net shaped casting of structural or non-structural components
JPH10259464A (en) Production of aluminum alloy sheet for forming
JPH07310137A (en) Aluminum alloy sheet for warm forming and its production
JPH0447019B2 (en)
JPH05125505A (en) Manufacture of baking hardenability aluminum alloy plate for forming
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
CN113474479A (en) Method for producing a plate or strip from an aluminium alloy and plate, strip or shaped part produced thereby
JPH05306440A (en) Manufacture of aluminum alloy sheet for forming excellent baking hardenability
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
JP3201783B2 (en) Method of manufacturing aluminum alloy hard plate excellent in strength and formability
JP3248263B2 (en) Al-Mn alloy for cryogenic forming
JP2003247040A (en) Aluminum alloy sheet having excellent flat hem workability and production method thereof
JPH05125504A (en) Manufacture of baking hardenability aluminum alloy plate for forming
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JPH05230605A (en) Manufacture of aluminum alloy for baking and hardening formation
JP2891620B2 (en) High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same
JPH0565586A (en) Aluminum alloy rooled sheet for forming and its production
JPH0565587A (en) Aluminum alloy rolled sheet for forming and its production
KR960007633B1 (en) Al-mg alloy &amp; the preparation
JPH0681066A (en) Al-mg-si alloy material for forming at ultralow temperature
JP2000001730A (en) Aluminum alloy sheet for can body, and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010731