JPH07310018A - Insulating base - Google Patents

Insulating base

Info

Publication number
JPH07310018A
JPH07310018A JP10131294A JP10131294A JPH07310018A JP H07310018 A JPH07310018 A JP H07310018A JP 10131294 A JP10131294 A JP 10131294A JP 10131294 A JP10131294 A JP 10131294A JP H07310018 A JPH07310018 A JP H07310018A
Authority
JP
Japan
Prior art keywords
electrically insulating
inorganic
insulating substrate
composite structure
ceramic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10131294A
Other languages
Japanese (ja)
Other versions
JP3626512B2 (en
Inventor
Hiroshi Tanemoto
啓 種本
Shingo Katayama
真吾 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10131294A priority Critical patent/JP3626512B2/en
Publication of JPH07310018A publication Critical patent/JPH07310018A/en
Application granted granted Critical
Publication of JP3626512B2 publication Critical patent/JP3626512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the subject base composed of a composite structure prepared by dispersing ceramic particles in a matrix composed of an inorganic- organic composite material in which both the components are mutually chemically bonded, excellent in flexibility and heat dissipation and useful for a high- voltage semiconductor, an insulating spacer, etc. CONSTITUTION:This base is composed of a composite structure prepared by dispersing (B) ceramic particles in (A) an inorganic-organic composite material matrix in which both the components are mutually chemically bonded. In addition, the component (A) is preferably a substance prepared by substituting an inorganic polymer skeleton composed of Si-O-Si bond with a group of the formula, Si(R)n(O)4-n [R is an alkyl; (n) is 1 to 3] and the component (B) is particles composed of alumina, magnesia, beryllia, silicon carbide, boron nitride or aluminum nitride and having 0.05 to 20mum particle diameter. The volume percentage of the component (B) is 50 to 90% based on the composite structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は可撓性を有する電気絶縁
性基板に関する。詳しくは可撓性を有し、機械的な加工
が容易に行える配線用の電気絶縁性基板に関する。さら
には、たとえば半導体素子から発熱する熱を放熱フィン
等へ放散させる電気絶縁スペーサー等としても使用され
得る電気絶縁性基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flexible electrically insulating substrate. More specifically, it relates to an electrically insulating substrate for wiring that has flexibility and can be easily mechanically processed. Furthermore, the present invention relates to an electrically insulating substrate that can be used as an electrically insulating spacer or the like that dissipates heat generated from a semiconductor element to a radiation fin or the like.

【0002】[0002]

【従来の技術】従来から、各種電子機器に多用されてい
る配線用の電気絶縁性基板の主なものは、紙基材フェノ
ール樹脂基板、ガラス布基材エポキシ樹脂基板やガラス
布/紙複合基材エポキシ樹脂基板などである。これらの
基板は、安価である、加工し易い、寸法精度が良い等の
長所をもつことから幅広く使われている。しかしなが
ら、これらの基板は樹脂を含有するため、熱伝導性が低
い、耐熱性が低いなどの性質をもつことから、たとえば
高電圧半導体素子から発生する大量の熱を速やかに放散
させるための基板としては使用困難である。
2. Description of the Related Art Conventionally, electrical insulating substrates for wiring, which have been widely used in various electronic devices, are mainly paper-based phenol resin substrates, glass cloth-based epoxy resin substrates and glass cloth / paper composite substrates. The material is an epoxy resin substrate or the like. These substrates are widely used because they have advantages such as low cost, easy processing, and good dimensional accuracy. However, since these substrates contain a resin and have properties such as low thermal conductivity and low heat resistance, for example, as a substrate for promptly dissipating a large amount of heat generated from a high-voltage semiconductor element. Is difficult to use.

【0003】他方、高耐熱性の基板としては、従来から
熱伝導率の高いセラミックスを用いた基板が一部で使わ
れている。熱伝導率の高いセラミックスとしては、アル
ミナ、ベリリア、炭化珪素、窒化アルミニウム、窒化硼
素、マグネシアなどがある。これらのセラミック基板は
高い放熱性を有するということの他にも、機械的強度が
高い、化学的耐久性が高い、などの長所も併せ持ってい
る。しかしながら、これらセラミック基板は脆い(可撓
性を有せず、機械的な衝撃に弱い)、硬くて加工しにく
い等の本性的な欠点があった。
On the other hand, as a substrate having high heat resistance, a substrate made of ceramics having high thermal conductivity has been used in some cases. Ceramics having high thermal conductivity include alumina, beryllia, silicon carbide, aluminum nitride, boron nitride, magnesia, and the like. In addition to having high heat dissipation properties, these ceramic substrates also have advantages such as high mechanical strength and high chemical durability. However, these ceramic substrates have inherent drawbacks such as brittleness (no flexibility and weakness against mechanical shock), hard and difficult to process.

【0004】[0004]

【発明が解決しようとする課題】本発明は、可撓性を有
するが故に機械的な衝撃力に対する耐久性が高く、かつ
熱伝導性が良好な電気絶縁性基板を提供することを目的
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an electrically insulating substrate which is flexible and therefore has high durability against mechanical impact force and good thermal conductivity. .

【0005】[0005]

【課題を解決するための手段】本発明は無機質と有機質
が化学的に結合した無機・有機融合体中にセラミックス
の粒子が分散した複合構造体からなる電気絶縁性基板で
ある。さらに、該無機・有機融合体が、Si−O−Si
結合からなる無機ポリマーの骨格をSi(R) n (O
−)4-n (Rはアルキル基、n=1〜3)で置換したも
のであることを要旨とする。また、セラミックスの粒子
がアルミナ、マグネシア、ベリリア、炭化珪素、窒化硼
素、窒化アルミニウムの中から選ばれた1種ないし2種
以上の粒子である電気絶縁性基板である。さらに、セラ
ミックスの粒子径が0.05〜20μmである電気絶縁
性基板である。さらにまた、セラミックスの粒子が該複
合構造体の中に占める体積分率が50%以上、90%未
満である電気絶縁性基板を要旨とする。
SUMMARY OF THE INVENTION The present invention is of inorganic and organic nature.
Ceramics in an inorganic / organic fusion material that is chemically bonded
Is an electrically insulating substrate composed of a composite structure in which the particles of
is there. Furthermore, the inorganic / organic fusion product is Si-O-Si.
The skeleton of the inorganic polymer consisting of bonds is Si (R) n(O
−)4-n(R is an alkyl group, n = 1 to 3)
The point is that Also, ceramic particles
Is alumina, magnesia, beryllia, silicon carbide, boron nitride
One or two selected from elemental and aluminum nitride
It is an electrically insulating substrate which is the above particles. In addition,
Electrical insulation with a mix particle size of 0.05-20 μm
Substrate. Furthermore, the ceramic particles are
The volume fraction in the composite structure is 50% or more and 90% or less.
The main point is a fully electrically insulating substrate.

【0006】[0006]

【作用】以下、本発明について詳細に説明する。本発明
の電気絶縁性基板は、無機質と有機質が分子レベルで化
学結合したマトリックス中に所定のセラミックスが分散
した複合構造体からなる板状のものである。後述するよ
うに、本複合体は著しい可撓性(変形能、あるいはフレ
キシビリティ)を有することを特徴とする故に、使用す
る際には曲げたり、部分的に凹凸を機械的につけるなど
して使用することが可能である。また、セラミックス粒
子を含むので、ある程度の硬さを持つ。
The present invention will be described in detail below. The electrically insulating substrate of the present invention is a plate-shaped substrate composed of a composite structure in which a predetermined ceramic is dispersed in a matrix in which an inorganic substance and an organic substance are chemically bonded at the molecular level. As will be described later, since the present composite is characterized by being extremely flexible (deformability or flexibility), it can be bent or partially roughened mechanically when used. It is possible to use. Further, since it contains ceramic particles, it has a certain degree of hardness.

【0007】本発明の電気絶縁性基板は、上述のような
複合構造体からできているが、この基板が著しい可撓性
を有する所以は、該複合構造体が無機質の中に有機質を
化学結合でハイブリッドさせているマトリックスを含ん
でいるためであり、基本的にはこの有機質が本来持って
いる可撓性によっている。また、該複合構造体は該マト
リックスとともに、このマトリックス中に分散・結合し
ているセラミックス粒子からも成り立っており、このセ
ラミックス粒子が本発明の電気絶縁性基板にある程度の
硬さを与えるとともに、良好な熱伝導特性も与えてい
る。
The electrically insulating substrate of the present invention is made of the composite structure as described above. The reason why the substrate has remarkable flexibility is that the composite structure chemically bonds an organic substance to an inorganic substance. This is because it contains a matrix that is hybridized with, and is basically due to the inherent flexibility of this organic substance. Further, the composite structure is made up of ceramic particles dispersed / bonded in the matrix together with the matrix, and the ceramic particles give the electrically insulating substrate of the present invention a certain degree of hardness, It also provides excellent heat transfer characteristics.

【0008】また、本発明中にある無機・有機融合体は
Si−O−Si結合からなる無機ポリマーの骨格をSi
(R)n (O−)4-n で置換している。Si−O−Si
結合が無機成分を表しており、アルキル基(R)が有機
成分を表している。Rとは、例えば、−CH3 、−C2
5 、−C3 7 、−C4 9 等である。次に、本発明
中にあるセラミックスの粒子は、アルミナ、マグネシ
ア、ベリリア、炭化珪素、窒化硼素、窒化アルミニウム
の中から選ばれた1種ないし2種以上の粒子である。こ
れらのセラミックスは電気的な絶縁性が高く、かつ多く
のセラミックスのうちで高い熱伝導率を有することか
ら、本発明の主旨である電気絶縁性基板を構成する前記
複合構造体の構成成分としてふさわしいものである。
The inorganic / organic fusion material in the present invention has a skeleton of an inorganic polymer composed of Si--O--Si bonds.
(R) n (O-) 4-n . Si-O-Si
The bond represents an inorganic component, and the alkyl group (R) represents an organic component. The R, for example, -CH 3, -C 2
H 5, -C 3 H 7, a -C 4 H 9 and the like. Next, the ceramic particles in the present invention are one or more particles selected from alumina, magnesia, beryllia, silicon carbide, boron nitride, and aluminum nitride. Since these ceramics have high electrical insulation and have high thermal conductivity among many ceramics, they are suitable as constituent components of the composite structure constituting the electrically insulating substrate which is the gist of the present invention. It is a thing.

【0009】セラミックスの粒子径は0.05〜20μ
mの範囲が好ましい。0.05μm未満の粒子では、非
常に微細であるために凝集しやすく、均一に分散するこ
とが困難である。20μmを越える粒子では溶液中での
沈降が速いため、この場合にも均一に分散することが困
難である。本発明中にある複合構造体を構成する成分の
うち、セラミックス粒子の体積分率は50%以上、90
%未満である。50%未満の場合は本発明の電気絶縁性
基板の熱伝導率が充分に高くならず、また硬度も低下す
るので放熱板として実用上好ましくない。また、90%
以上の場合は可撓性が低下し、機械的な加工性も低下す
る。
The particle size of ceramics is 0.05 to 20 μm.
A range of m is preferred. If the particle size is less than 0.05 μm, the particles are very fine and easily aggregate, and it is difficult to uniformly disperse the particles. Particles having a particle size of more than 20 μm rapidly settle in the solution, and it is difficult to disperse them uniformly in this case as well. Of the components constituting the composite structure in the present invention, the volume fraction of ceramic particles is 50% or more, 90% or more.
It is less than%. If it is less than 50%, the thermal conductivity of the electrically insulating substrate of the present invention will not be sufficiently high and the hardness will decrease, which is not preferable in practice as a heat dissipation plate. Also, 90%
In the above cases, flexibility is lowered and mechanical workability is also lowered.

【0010】以下に本発明の電気絶縁性基板を好適に製
造し得る方法の一例について述べる。平均粒径0.3μ
mのアルミナ粒子を用意する。次いで、テトラエトキシ
シランを加水分解してできたSi(OH)4 とポリジメ
チルシロキサンを前記のアルミナ粒子の存在下にて脱水
および縮合反応させ、無機質と有機質とが分子レベルで
融合した粘稠なゾルをつくる。このゾルの粘度を調整
後、ドクターブレード法により厚み約1mmの板状に成
形する。この板をさらに脱水・縮合・乾燥させ、ゲル状
の板とする。この板をさらに300℃で熱処理して、目
的とする電気絶縁性基板を得ることができる。以下に実
施例を用いて本発明を説明するが、本発明はかかる実施
例のみに限定されるものではない。
An example of a method for suitably manufacturing the electrically insulating substrate of the present invention will be described below. Average particle size 0.3μ
m alumina particles are prepared. Then, Si (OH) 4 produced by hydrolyzing tetraethoxysilane and polydimethylsiloxane are dehydrated and condensed in the presence of the above-mentioned alumina particles to give a viscous mixture of inorganic and organic substances at the molecular level. Make a sol. After adjusting the viscosity of this sol, it is formed into a plate having a thickness of about 1 mm by the doctor blade method. This plate is further dehydrated, condensed, and dried to form a gel plate. This plate can be further heat-treated at 300 ° C. to obtain the desired electrically insulating substrate. The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0011】[0011]

【実施例】表1に示した各種セラミックス粉を調整・用
意した。次いで、テトラエトキシシランを加水分解して
できたSi(OH)4 とポリジメチルシロキサンを、溶
液中によく分散させたセラミックス粒子の存在下にて脱
水および縮合反応させ、無機質と有機質とが分子レベル
で融合した粘稠なゾルをつくった。このゾルの粘度を調
整後、ドクターブレード法により厚み約1mmの板状に
成形した。この板をさらに脱水・縮合・乾燥させ、ゲル
状の板とした。この板をさらに300℃で熱処理して、
目的とする電気絶縁性基板を得た。これらの基板の可撓
性の評価を次のようにして行った。すなわち、厚み1m
mで20mmφの板状に加工した試料を、直径200m
mの鋼製ロール表面に密着するように押しつけて、破
損、クラック等の有無を調べる方法である。この試験を
行った結果、これらの基板はどれも破損せず、またクラ
ックも認められなかった。次に、これらの基板の熱伝導
率をレーザーフラッシュ法にて測定した。この結果を表
1に示す。セラミックス単体の熱伝導率(例えば、アル
ミナで約25W/mK、窒化アルミニウムで約150W
/mKなど)と比較すると小さいが、汎用基板であるガ
ラス−エポキシ樹脂基板の熱伝導率(約0.2W/m
K)と比較すると大きい。また、これらの基板の体積抵
抗率を直流2端子法で測定したところ、表1に示したよ
うに、すべての基板が1013Ω・cm以上の体積抵抗率
を有しており、電気絶縁性基板として充分な絶縁性を示
した。
[Example] Various ceramic powders shown in Table 1 were prepared and prepared. Then, Si (OH) 4 formed by hydrolyzing tetraethoxysilane and polydimethylsiloxane are dehydrated and condensed in the presence of ceramic particles well dispersed in a solution, so that the inorganic and organic substances are at a molecular level. Made a viscous sol that was fused with. After adjusting the viscosity of this sol, it was formed into a plate shape having a thickness of about 1 mm by the doctor blade method. This plate was further dehydrated, condensed and dried to give a gel plate. This plate is further heat treated at 300 ° C,
A desired electrically insulating substrate was obtained. The flexibility of these substrates was evaluated as follows. That is, thickness 1m
The sample processed into a plate shape of 20 mmφ with a diameter of 200 m
It is a method of pressing the steel roll surface of m so that it is in close contact with the surface of the steel roll, and checking for damage, cracks, or the like. As a result of performing this test, none of these substrates was broken or cracked. Next, the thermal conductivity of these substrates was measured by the laser flash method. The results are shown in Table 1. Thermal conductivity of ceramics alone (eg, about 25W / mK for alumina, about 150W for aluminum nitride)
/ MK, etc.) is small, but the thermal conductivity of a glass-epoxy resin substrate, which is a general-purpose substrate (about 0.2 W / m
It is large compared to K). Moreover, when the volume resistivity of these substrates was measured by the direct current two-terminal method, as shown in Table 1, all the substrates had a volume resistivity of 10 13 Ω · cm or more, and the electrical insulation property was high. It showed sufficient insulation as a substrate.

【0012】[0012]

【表1】 [Table 1]

【0013】比較例 本発明中にある複合構造体を構成する成分のうち、セラ
ミックス粒子の体積分率が50%未満の基板と、90%
以上の基板をそれぞれ、実施例と同様な方法で作製し
た。体積分率が50%未満の基板の熱伝導率は表1に示
したように、体積分率が50%以上の基板と比較して小
さい。また、体積分率が90%以上の基板は、上記の実
施例中に述べた鋼製ロールへの密着による可撓性試験を
行ったところ、破損した。
Comparative Example Among the components constituting the composite structure of the present invention, a substrate having a ceramic particle volume fraction of less than 50% and 90%
Each of the above substrates was manufactured in the same manner as in the example. As shown in Table 1, the thermal conductivity of the substrate having a volume fraction of less than 50% is smaller than that of the substrate having a volume fraction of 50% or more. Further, the substrate having a volume fraction of 90% or more was broken when subjected to the flexibility test by the close contact with the steel roll described in the above examples.

【0014】[0014]

【発明の効果】以上述べたように、本発明の電気絶縁性
基板は可撓性が高く、かつ熱伝導率が高いので、高電圧
半導体素子用の電気絶縁性基板をはじめとして、熱放散
性が要求される配線用の基板や、電気絶縁スペーサー等
としても幅広く利用することができ、その工業的な効果
が大きい。
As described above, since the electrically insulating substrate of the present invention is highly flexible and has high thermal conductivity, it can be used as a heat-dissipating substrate including an electrically insulating substrate for high voltage semiconductor devices. It can be widely used as a substrate for wiring, which is required, and an electrically insulating spacer, and its industrial effect is great.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/373 H05K 1/03 C 7011−4E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 23/373 H05K 1/03 C 7011-4E

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 無機質と有機質が化学的に結合した無機
・有機融合体のマトリックス中にセラミックスの粒子が
分散した複合構造体からなる、電気絶縁性基板。
1. An electrically insulating substrate comprising a composite structure in which ceramic particles are dispersed in a matrix of an inorganic / organic fusion material in which an inorganic material and an organic material are chemically bonded.
【請求項2】 無機・有機融合体が、Si−O−Si結
合からなる無機ポリマーの骨格をSi(R)n (O−)
4-n 基(Rはアルキル基、n=1〜3)で置換したもの
であることを特徴とする請求項1記載の電気絶縁性基
板。
2. The inorganic-organic fusion product has a skeleton of an inorganic polymer composed of Si—O—Si bonds as Si (R) n (O—).
The electrically insulating substrate according to claim 1, which is substituted with a 4-n group (R is an alkyl group, n = 1 to 3).
【請求項3】 セラミックスの粒子が、アルミナ、マグ
ネシア、ベリリア、炭化珪素、窒化硼素、窒化アルミニ
ウムの中から選ばれた1種ないし2種以上の粒子である
ことを特徴とする請求項1記載の電気絶縁性基板。
3. The ceramic particles are one or more kinds of particles selected from alumina, magnesia, beryllia, silicon carbide, boron nitride and aluminum nitride. Electrically insulating substrate.
【請求項4】 セラミックスの粒子径が0.05〜20
μmであることを特徴とする請求項1記載の電気絶縁性
基板。
4. The particle size of ceramics is 0.05 to 20.
The electrically insulating substrate according to claim 1, wherein the electrically insulating substrate has a thickness of μm.
【請求項5】 セラミックスの粒子が複合構造体の中に
占める体積分率が50%以上、90%未満であることを
特徴とする請求項1記載の電気絶縁性基板。
5. The electrically insulating substrate according to claim 1, wherein the volume fraction of the ceramic particles in the composite structure is 50% or more and less than 90%.
JP10131294A 1994-05-16 1994-05-16 Electrical insulating substrate Expired - Fee Related JP3626512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10131294A JP3626512B2 (en) 1994-05-16 1994-05-16 Electrical insulating substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10131294A JP3626512B2 (en) 1994-05-16 1994-05-16 Electrical insulating substrate

Publications (2)

Publication Number Publication Date
JPH07310018A true JPH07310018A (en) 1995-11-28
JP3626512B2 JP3626512B2 (en) 2005-03-09

Family

ID=14297301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10131294A Expired - Fee Related JP3626512B2 (en) 1994-05-16 1994-05-16 Electrical insulating substrate

Country Status (1)

Country Link
JP (1) JP3626512B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143978A (en) * 2004-11-25 2006-06-08 Ge Toshiba Silicones Co Ltd Heat conductive silicone composition
KR100592741B1 (en) * 1997-09-01 2006-10-24 도카이 카본 가부시키가이샤 Silicon carbide fabrication

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100592741B1 (en) * 1997-09-01 2006-10-24 도카이 카본 가부시키가이샤 Silicon carbide fabrication
JP2006143978A (en) * 2004-11-25 2006-06-08 Ge Toshiba Silicones Co Ltd Heat conductive silicone composition

Also Published As

Publication number Publication date
JP3626512B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
JP2756075B2 (en) Metal base substrate and electronic device using the same
JP5038007B2 (en) Composition, metal-based circuit board using the composition
WO2009092064A2 (en) Electrically conductive adhesive
JP5103364B2 (en) Manufacturing method of heat conductive sheet
US20090133912A1 (en) Resin composition and hybrid integrated circuit board making use of the same
JP6314915B2 (en) Heat dissipation putty sheet
JP7389014B2 (en) insulation heat dissipation sheet
JP6054456B2 (en) Inorganic filler, resin composition containing the same, and heat dissipation substrate using the same
WO2016047988A1 (en) Surface modified boron nitride, composition having same dispersed therein, and wire coated with the composition
Chiang et al. A study of encapsulation resin containing hexagonal boron nitride (hBN) as inorganic filler
JPH07310018A (en) Insulating base
JP5798155B2 (en) Insulating resin composition for printed circuit board having low coefficient of thermal expansion and dielectric loss, prepreg and printed circuit board using the same
JPH06172618A (en) Epoxy resin composition and printed board
JP6473597B2 (en) Method for producing high thermal conductivity organic / inorganic composite material
JP2002217508A (en) Metal base substrate and its manufacturing method
CN113789058A (en) Low-stress heat-conducting silica gel, preparation method thereof and electronic instrument
JP7023035B2 (en) A method for producing an insulating film having an insulating film having the shape of the bottom surface on the bottom surface of a container as an insulating film composed of a collection of the flat powders in which the flat surfaces of the insulating flat powder are overlapped with each other.
WO2023188491A1 (en) Thermally conductive silicone composition, thermally conductive silicone sheet, and method for manufacturing said sheet
JP2019204687A5 (en)
KR102651416B1 (en) Composition for thermally conductive pad for equipment of semi-conductor procedure
JPS60215569A (en) Manufacture of glass-ceramic composite substrate
JPH08204301A (en) Metallic base circuit board and module using it
JPS623065A (en) Manufacture of magnesia ceramic
JP4663169B2 (en) Metal-based circuit board
JP2661268B2 (en) High thermal conductive composite

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041203

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20071210

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20081210

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20081210

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091210

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101210

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101210

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20121210

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees