JP2661268B2 - High thermal conductive composite - Google Patents

High thermal conductive composite

Info

Publication number
JP2661268B2
JP2661268B2 JP1155165A JP15516589A JP2661268B2 JP 2661268 B2 JP2661268 B2 JP 2661268B2 JP 1155165 A JP1155165 A JP 1155165A JP 15516589 A JP15516589 A JP 15516589A JP 2661268 B2 JP2661268 B2 JP 2661268B2
Authority
JP
Japan
Prior art keywords
thermal conductivity
composite
weight
resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1155165A
Other languages
Japanese (ja)
Other versions
JPH0320068A (en
Inventor
和彦 中野
進 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP1155165A priority Critical patent/JP2661268B2/en
Publication of JPH0320068A publication Critical patent/JPH0320068A/en
Application granted granted Critical
Publication of JP2661268B2 publication Critical patent/JP2661268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱伝導性に優れた基板材料および半導体用
封止材料に関するものである。
Description: TECHNICAL FIELD The present invention relates to a substrate material having excellent thermal conductivity and a sealing material for semiconductors.

〔従来の技術〕[Conventional technology]

エレクトロニクス素子の高集積化がますます進展する
中で、素子が発生する単位面積あたりの熱量が増加し、
基板の熱伝導性が十分でないために素子の発生する熱で
素子の温度が上昇し、素子の機能障害がしばしば生じる
ことから、放熱性の良い基板材料および封止材料の要求
が高まっている。
As the degree of integration of electronic elements increases, the amount of heat generated per unit area generated by the elements increases,
Since the heat generated by the element increases the temperature of the element due to insufficient thermal conductivity of the substrate and often causes a malfunction of the element, the demand for a substrate material and a sealing material having good heat dissipation properties is increasing.

従来、放熱特性を高めるために、ガラスエポキシなど
のようにガラス繊維を樹脂中に分散させた基板材料やシ
リカ、アルミナ粒子などを樹脂中に分散させた封止材料
などが使用されているが、その熱伝導率は1W/mK程度と
低いものであった。
Conventionally, in order to enhance the heat radiation characteristics, a substrate material in which glass fibers are dispersed in a resin, such as glass epoxy, and a sealing material in which silica, alumina particles, and the like are dispersed in the resin have been used. Its thermal conductivity was as low as about 1 W / mK.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の樹脂複合体では熱伝導率が小さく放熱性が悪い
ため、高集積化するエレクトロニクス素子の部分材料と
して使用する場合使用範囲がかなり限定されるので、熱
伝導性の優れた樹脂複合体の開発が大きな課題であっ
た。
Since conventional resin composites have low thermal conductivity and poor heat dissipation, the range of use when used as a partial material for highly integrated electronic devices is considerably limited. Was a big challenge.

〔課題を解決するための手段〕[Means for solving the problem]

この問題点を解決するために鋭意研究検計を重ねた結
果、無機充填材と樹脂との複合体において無機充填材の
微細構造がその熱伝導性に大きく影響することを見出し
た。つまり、従来の無機充填材と樹脂との複合体におい
ては、熱伝導性を高めるために添加した高い熱伝導率を
有する無機充填材の粒子間に、連続的に接触して連なる
構造がないので、低い熱伝導率を持った樹脂相が粒子間
に存在する場合には、その複合体の熱伝導率が樹脂によ
り支配されて、無機充填材添加による熱伝導性の大幅な
向上が得られなかった。
As a result of intensive research and analysis to solve this problem, it was found that the fine structure of the inorganic filler greatly affects the thermal conductivity of the composite of the inorganic filler and the resin. In other words, in the conventional composite of an inorganic filler and a resin, there is no structure in which the particles of the inorganic filler having a high thermal conductivity added to enhance the thermal conductivity are continuously contacted and connected. When a resin phase having a low thermal conductivity exists between particles, the thermal conductivity of the composite is controlled by the resin, and a significant improvement in thermal conductivity due to the addition of the inorganic filler cannot be obtained. Was.

そこで、添加する無機充填材の粒子間に樹脂を介在さ
せることなく、連続的な連なりを持たせることにより熱
伝導率を向上させることを見出し、本発明を完成させる
に至った。
Therefore, they have found that the thermal conductivity is improved by providing continuous connection without interposing a resin between the particles of the inorganic filler to be added, and the present invention has been completed.

すなわち、本発明は樹脂と無機充填材を主成分とする
複合体において、無機充填材の粒子が連続的に接触して
連なる構造を有することにより、高熱伝導性を示すこと
を特徴とする複合体に関するものである。
That is, the present invention provides a composite comprising a resin and an inorganic filler as main components, and having a structure in which the particles of the inorganic filler are continuously contacted and connected, thereby exhibiting high thermal conductivity. It is about.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

無機充填材としてはアルミナ、窒化アルミニウム、炭
化ケイ素を用いることができる。
Alumina, aluminum nitride, and silicon carbide can be used as the inorganic filler.

まず無機充填材のみを成形して成形体を得る。成形方
法については通常の方法、たとえばプレス成形あるいは
鋳込み成形等が適用できる。
First, only the inorganic filler is molded to obtain a molded body. As the molding method, a usual method, for example, press molding or cast molding can be applied.

得られた成形体をロータリーポンプにより10-2mmHg以
下の高真空下で脱気しながら液状の樹脂組成物を含浸さ
せ、硬化温度まで加熱して数時間保持し硬化させること
により、無機充填粒子が連続的に接触して連なる構造を
持った複合体を得た。
The obtained molded body is impregnated with a liquid resin composition while being degassed under a high vacuum of 10 -2 mmHg or less by a rotary pump, heated to a curing temperature, and held for several hours to be cured, whereby the inorganic-filled particles are obtained. Were continuously in contact with each other to obtain a composite having a continuous structure.

たとえば、熱硬化性樹脂の汎用ビスフェノールAタイ
プエポキシ樹脂を用い、硬化剤として脂環式酸無水物を
使用した場合、硬化温度の範囲は100〜200℃で好ましく
は150〜160℃であり、保持時間は2〜10hrで好ましくは
5〜6Hrである。
For example, when a general-purpose bisphenol A type epoxy resin of a thermosetting resin is used and an alicyclic acid anhydride is used as a curing agent, the curing temperature range is 100 to 200 ° C., preferably 150 to 160 ° C. The time is 2 to 10 hours, preferably 5 to 6 hours.

本発明により得られた高熱伝導性の複合体は、エレク
トロニクス部材用の基板材料や封止材料として用いるこ
とができる。
The composite having high thermal conductivity obtained according to the present invention can be used as a substrate material for electronic components or a sealing material.

〔実施例〕〔Example〕

以下、本発明を実施例により説明するが、本発明はこ
れ等に限定されるものではない。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

なお、熱伝導率は次の装置および方法でおこなった。 The thermal conductivity was measured by the following apparatus and method.

(熱伝導率) レーザーフラッシュ法 装置:真空理工(株) TC−7000型 実施例1 充填材として平均粒径5μmのAl2O3を330重量部用
い、圧力1.5ton/cm2のプレス成形により成形体を得た。
該成形体を高真空下(10-2mmHg以下)で脱気しながらス
ミエポキシELA128(住友化学工業(株)製)54重量部、
硬化剤である脱環式酸無水物HN5500(日立化成工業
(株)製)47重量部、硬化促進剤であるスミキュアーD
(住友化学工業(株)製)0.54重量部からなる液体エポ
キシ組成物を含浸させ、150℃で5時間加熱硬化するこ
とによりアルミナ−エポキシ複合体を得た。該複合体か
ら直径10mm、厚さ2mmの測定用試料を作成し熱伝導率を
測定した。
(Thermal conductivity) Laser flash method Apparatus: Vacuum Riko Co., Ltd. TC-7000 type Example 1 Using 330 parts by weight of Al 2 O 3 having an average particle size of 5 μm as a filler, press-forming at a pressure of 1.5 ton / cm 2. A molded article was obtained.
54 parts by weight of Sumiepoxy ELA128 (manufactured by Sumitomo Chemical Co., Ltd.) while degassing the molded body under high vacuum (10 -2 mmHg or less),
47 parts by weight of a decyclic acid anhydride HN5500 (manufactured by Hitachi Chemical Co., Ltd.) as a curing agent, and Sumicure D as a curing accelerator
A liquid epoxy composition comprising 0.54 parts by weight (manufactured by Sumitomo Chemical Co., Ltd.) was impregnated and cured by heating at 150 ° C. for 5 hours to obtain an alumina-epoxy composite. From the composite, a measurement sample having a diameter of 10 mm and a thickness of 2 mm was prepared, and the thermal conductivity was measured.

熱伝導率は2.6W/mKであった。 Thermal conductivity was 2.6 W / mK.

実施例2 充填材として平均粒径5μmAl2O3を500重量部用い、
鋳込み成形により成形体を得た。該成形体を乾燥した
後、高真空下(10-2mmHg以下)で脱気しながらスミエポ
キシELA128(住友化学工業(株)製)54重量部、硬化剤
である脱環式酸無水物HN5500(日立化成工業(株)製)
47重量部、硬化促進剤であるスミキュアーD(住友化学
工業(株)製)0.54重量部からなる液体エポキシ組成物
を含浸させ、150℃で5時間加熱硬化することによりア
ルミナ−エポキシ複合体を得た。該複合体から直径10m
m、厚さ2mmの測定用試料を作成し実施例1と同様にして
熱伝導率を測定した。
Example 2 500 parts by weight of Al 2 O 3 having an average particle size of 5 μm was used as a filler.
A molded body was obtained by casting. After drying the molded article, 54 parts by weight of Sumiepoxy ELA128 (manufactured by Sumitomo Chemical Co., Ltd.) while degassing under high vacuum (10 -2 mmHg or less), a decyclic acid anhydride HN5500 (curing agent) ( Hitachi Chemical Co., Ltd.)
Alumina-epoxy composite is obtained by impregnating 47 parts by weight of a liquid epoxy composition consisting of 0.54 parts by weight of a curing accelerator Sumicure D (manufactured by Sumitomo Chemical Co., Ltd.) and heating and curing at 150 ° C. for 5 hours. Was. 10m in diameter from the complex
A measurement sample having a thickness of 2 mm and a thickness of 2 mm was prepared, and the thermal conductivity was measured in the same manner as in Example 1.

熱伝導率は4.5W/mKであった。 Thermal conductivity was 4.5 W / mK.

実施例3 充填材として平均粒径10μmのAlNを180重量部用い、
圧力1.5ton/cm2のプレス成形により成形体を得た。該成
形体を高真空下(10-2mmHg以下)で脱気しながらスミエ
ポキシELA128(住友化学工業(株)製)54重量部、硬化
剤である脱環式酸無水物HN5500(日立化成工業(株)
製)47重量部、硬化促進剤であるスミキュアーD(住友
化学工業(株)製)0.54重量部からなる液体エポキシ組
成物を含浸させ、150℃で5時間加熱硬化することによ
り窒化アルミ−エポキシ複合体を得た。該複合体から直
径10mm、厚さ2mmの測定用試料を作成し熱伝導率を測定
した。
Example 3 180 parts by weight of AlN having an average particle size of 10 μm was used as a filler.
A molded product was obtained by press molding at a pressure of 1.5 ton / cm 2 . While degassing the molded body under high vacuum (10 -2 mmHg or less), 54 parts by weight of Sumiepoxy ELA128 (manufactured by Sumitomo Chemical Co., Ltd.), a cyclic acid anhydride HN5500 (Hitachi Chemical Industry stock)
Aluminum nitride-epoxy composite by impregnating a liquid epoxy composition consisting of 47 parts by weight) and 0.54 part by weight of a curing accelerator Sumicure D (manufactured by Sumitomo Chemical Co., Ltd.) and heating and curing at 150 ° C. for 5 hours. I got a body. From the composite, a measurement sample having a diameter of 10 mm and a thickness of 2 mm was prepared, and the thermal conductivity was measured.

熱伝導率は4.3W/mKであった。 Thermal conductivity was 4.3 W / mK.

実施例4 充填材として平均粒径10μmのAlNを410重量部用い、
鋳込み成形により成形体を得た。該成形体を乾燥した
後、高真空下(10-2mmHg以下)で脱気しながらミスエポ
キシELA128(住友化学工業(株)製)54重量部、硬化剤
である脱環式酸無水物HN5500(日立化成工業(株)製)
47重量部、硬化促進剤であるスミキュアーD(住友化学
工業(株)製)0.54重量部からなる液体エポキシ組成物
を含浸させ、150℃で5時間加熱硬化することにより窒
化アルミ−エポキシ複合体を得た。該複合体から直径10
mm、厚さ2mmの測定用試料を作成し実施例1と同様にし
て熱伝導率を測定した。
Example 4 Using 410 parts by weight of AlN having an average particle size of 10 μm as a filler,
A molded body was obtained by casting. After drying the molded product, 54 parts by weight of Misepoxy ELA128 (manufactured by Sumitomo Chemical Co., Ltd.) was removed while degassing under high vacuum (10 -2 mmHg or less), and a decyclic acid anhydride HN5500 as a curing agent was used. (Manufactured by Hitachi Chemical Co., Ltd.)
An aluminum nitride-epoxy composite is obtained by impregnating 47 parts by weight of a liquid epoxy composition comprising 0.54 parts by weight of a curing accelerator Sumicure D (manufactured by Sumitomo Chemical Co., Ltd.) and heating and curing at 150 ° C. for 5 hours. Obtained. 10 diameters from the complex
A sample for measurement having a thickness of 2 mm and a thickness of 2 mm was prepared, and the thermal conductivity was measured in the same manner as in Example 1.

熱伝導率は12W/mKであった。 Thermal conductivity was 12 W / mK.

比較例1 スミエポキシELA128(住友化学工業(株)製)54重量
部、硬化剤である脱環式酸無水物HN5500(日立化成工業
(株)製)47重量部、硬化促進剤であるスミキュアーD
(住友化学工業(株)製)0.54重量部からなる液体エポ
キシ組成物と、充填材である平均粒径5μmのアルミナ
330重量部をロール混練機で約30分間混練した後、150℃
で5時間加熱硬化することによりアルミナ−エポキシ複
合体を得た。該複合体から直径10mm、厚さ2mmの測定用
試料を作成し実施例1と同様にして熱伝導率を測定し
た。
Comparative Example 1 Sumiepoxy ELA128 (manufactured by Sumitomo Chemical Co., Ltd.), 54 parts by weight, decyclic acid anhydride HN5500 (manufactured by Hitachi Chemical Co., Ltd.) as a curing agent, 47 parts by weight, Sumicure D, a curing accelerator
(Sumitomo Chemical Co., Ltd.) 0.54 parts by weight of a liquid epoxy composition and alumina as an filler having an average particle size of 5 μm
After kneading 330 parts by weight for about 30 minutes with a roll kneader, 150 ° C
For 5 hours to obtain an alumina-epoxy composite. A measurement sample having a diameter of 10 mm and a thickness of 2 mm was prepared from the composite, and the thermal conductivity was measured in the same manner as in Example 1.

熱伝導率は1.1W/mKであった。 Thermal conductivity was 1.1 W / mK.

比較例2 スミエポキシELA128(住友化学工業(株)製)54重量
部、硬化剤である脱環式酸無水物HN5500(日立化成工業
(株)製)47重量部、硬化促進剤であるスミキュアーD
(住友化学工業(株)製)0.54重量部からなる液体エポ
キシ組成物と、充填材である平均粒径10μmのAlNを180
重量部ロール混練機で約30分間混練した後、150℃で5
時間加熱硬化することにより窒化アルミナ−エポキシ複
合体を得た。
Comparative Example 2 54 parts by weight of Sumiepoxy ELA128 (manufactured by Sumitomo Chemical Co., Ltd.), 47 parts by weight of a decyclic acid anhydride HN5500 (manufactured by Hitachi Chemical Co., Ltd.) as a curing agent, and Sumicure D as a curing accelerator
(Sumitomo Chemical Co., Ltd.) 0.54 parts by weight of a liquid epoxy composition and 180 N of an average particle diameter of 10 μm as a filler
After kneading for about 30 minutes with a roll part kneader,
After heating and curing for a time, an alumina nitride-epoxy composite was obtained.

該複合体から直径10mm、厚さ2mmの測定用試料を作成
し実施例1と同様にして熱伝導率を測定した。
A measurement sample having a diameter of 10 mm and a thickness of 2 mm was prepared from the composite, and the thermal conductivity was measured in the same manner as in Example 1.

熱伝導率は1.4W/mKであった。 Thermal conductivity was 1.4 W / mK.

〔発明の効果〕〔The invention's effect〕

本発明によれば、無機充填材と樹脂との複合体におい
て、その熱伝導製が微細構造に大きく依存することか
ら、無機充填材の粒子が連続的に連なる構造を有するこ
とにより熱伝導性の向上が得られた。
According to the present invention, in the composite of the inorganic filler and the resin, since the thermal conductivity of the composite greatly depends on the fine structure, by having a structure in which the particles of the inorganic filler are continuously connected, the thermal conductivity An improvement was obtained.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】樹脂と無機充填材を主成分とする複合体に
おいて、無機充填材の粒子が連続的に接触して連なる構
造を有することにより、高熱伝導性を示すことを特徴と
する複合体。
1. A composite comprising a resin and an inorganic filler as main components, wherein the composite has a structure in which particles of the inorganic filler are continuously contacted and connected to each other to exhibit high thermal conductivity. .
【請求項2】樹脂よりも高い熱伝導率を示す無機充填材
としてアルミナ、窒化アルミニウム、炭化ケイ素を用い
ることを特徴とする特許請求の範囲第1項記載の複合
体。
2. The composite according to claim 1, wherein alumina, aluminum nitride, or silicon carbide is used as the inorganic filler having a higher thermal conductivity than the resin.
【請求項3】無機充填材のみをあらかじめ成形し、その
粒子間隙に樹脂を含浸させて硬化させることを特徴とす
る特許請求の範囲第1項記載の複合体。
3. The composite according to claim 1, wherein only the inorganic filler is preliminarily formed, and a resin is impregnated into the interstices of the resin and cured.
JP1155165A 1989-06-16 1989-06-16 High thermal conductive composite Expired - Fee Related JP2661268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1155165A JP2661268B2 (en) 1989-06-16 1989-06-16 High thermal conductive composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1155165A JP2661268B2 (en) 1989-06-16 1989-06-16 High thermal conductive composite

Publications (2)

Publication Number Publication Date
JPH0320068A JPH0320068A (en) 1991-01-29
JP2661268B2 true JP2661268B2 (en) 1997-10-08

Family

ID=15599933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1155165A Expired - Fee Related JP2661268B2 (en) 1989-06-16 1989-06-16 High thermal conductive composite

Country Status (1)

Country Link
JP (1) JP2661268B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660917A (en) * 1993-07-06 1997-08-26 Kabushiki Kaisha Toshiba Thermal conductivity sheet
JP2017135150A (en) * 2016-01-25 2017-08-03 日東シンコー株式会社 Heat dissipation member and semiconductor module

Also Published As

Publication number Publication date
JPH0320068A (en) 1991-01-29

Similar Documents

Publication Publication Date Title
CN109913185B (en) Multilayer structure heat-conducting composite material containing heat-conducting film and preparation method thereof
US5011872A (en) Thermally conductive ceramic/polymer composites
US5290624A (en) Heat-conductive adhesive films, laminates with heat-conductive adhesive layers and the use thereof
WO2017130755A1 (en) Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device
CN111534016B (en) Electronic packaging material with heat conduction and electromagnetic shielding performance and preparation method thereof
KR102540533B1 (en) light-weight polymer composition with excellent thermal conductivity and manufacturing method of the same and product using the same
KR100559366B1 (en) Thermally conductive materials with hybrid inorganic filler and fabrication method thereof
JPH1126661A (en) Radiation spacer
EP0322165B1 (en) Thermally conductive ceramic/polymer composites
CN109791918A (en) The radiator structure of circuit device
JP2661268B2 (en) High thermal conductive composite
KR102073532B1 (en) Heat dissipation circuit board
JPH06196884A (en) High-heat-conductivity composite
JPH06172618A (en) Epoxy resin composition and printed board
US4784893A (en) Heat conductive circuit board and method for manufacturing the same
JP3067337B2 (en) Manufacturing method of anisotropic heat conductive sheet
CN114644908B (en) Tough high-heat-conductivity film and preparation method thereof
JPH02110125A (en) Resin composition with high thermal conductivity
JPH03287668A (en) Highly thermally conductive resin composition
JP2002217508A (en) Metal base substrate and its manufacturing method
JPH0355203Y2 (en)
CN111675880A (en) Novel soft insulating heat conducting pad
JPH01282264A (en) Thermal conductive macromolecular molding compound
JP2789088B2 (en) Method for producing particulate inorganic composite
KR20240051341A (en) Heat dissipation composite film with excellent horizontal heat dissipation characteristics and manufacturing method thereof

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 11

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees