JPH07303432A - Fish culture method - Google Patents

Fish culture method

Info

Publication number
JPH07303432A
JPH07303432A JP6099419A JP9941994A JPH07303432A JP H07303432 A JPH07303432 A JP H07303432A JP 6099419 A JP6099419 A JP 6099419A JP 9941994 A JP9941994 A JP 9941994A JP H07303432 A JPH07303432 A JP H07303432A
Authority
JP
Japan
Prior art keywords
fish
carbon dioxide
water
concentration
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6099419A
Other languages
Japanese (ja)
Inventor
Shigeru Masuda
茂 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6099419A priority Critical patent/JPH07303432A/en
Publication of JPH07303432A publication Critical patent/JPH07303432A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

PURPOSE:To carry out fish culture by controlling the food consumption of culture fish by controlling the carbon dioxide gas concentration in the culture water, keep high water-quality, improve the insufficient feed intake of the fish and stably produce cultured fish. CONSTITUTION:The food consumption of culture fish is controlled by controlling the carbon dioxide gas concentration in the culture water to perform the culture of fish such as eel. The control of carbon dioxide gas is performed by increasing the carbon dioxide gas concentration with sodium bicarbonate, etc., or by controlling hydrogen ion concentration. Preferably, the carbon dioxide gas concentration and the hydrogen ion concentration in the culture water are used as indices for the control and maintenance of the feeding behavior of the fish and the activity of the coexisting organism in the culture water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、養魚水中の炭酸ガス濃
度と水素イオン濃度を調節、維持させることにより、養
魚に対して良好な水質を提供し、継続的に摂食させるこ
とができる養魚方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides fish culture with good water quality by adjusting and maintaining the carbon dioxide concentration and hydrogen ion concentration in the fish culture water, which enables continuous feeding. Regarding the method.

【0002】[0002]

【従来の技術】従来、養魚の水質改善手段として、魚類
に有害なもの、例えば、アンモニア、亜硝酸、アミン、
硫化物などを活性炭やイオン交換容量の高い素材(ゼオ
ライトやイオン交換樹脂など)を用いて物理化学的に吸
着や置換反応を行わせて処理したり、硝化細菌、硫黄細
菌、光合成微生物などの生化学的酸化により、無害なも
のに変換する技術が提供されている。
2. Description of the Related Art Conventionally, as means for improving water quality of fish farming, those harmful to fish such as ammonia, nitrite, amine,
Sulfides are treated by physicochemical adsorption and substitution reactions using activated carbon and materials with high ion exchange capacity (such as zeolite and ion exchange resins), and treatment of nitrifying bacteria, sulfur bacteria, photosynthetic microorganisms, etc. There is provided a technique for converting into harmless one by chemical oxidation.

【0003】[0003]

【発明が解決しようとする課題】しかし、時として病気
や寄生虫以外と考えられる原因不明の摂食不良や、ワム
シやアオコなどプランクトン類の大繁殖により極端な水
質変化(水変わり)に悩まされ、養魚に対し良好な水質
作り(水づくり)が必ずしもできていないのが現状であ
る。特に閉鎖水域的な養殖場では、初期の水づくりの際
や気候の変化の激しい時期に、しばしばこのような問題
に直面し、摂食不良や鼻あげなどをするものの、現場の
人間の勘や言い伝えなどにより、ホルマリン、過マンガ
ン酸カリ、あるいは肥料、農薬などを使用する程度で、
なんら適確かつ有効な解決手段がなく、学術的にも現場
レベルでは、未だ十分解明されていないのが現状であ
る。
[Problems to be Solved by the Invention] However, it is sometimes plagued by extreme water quality change (water change) due to poor feeding of unknown cause, which is considered to be other than diseases and parasites, and large breeding of plankton such as rotifer and water-bloom. At present, it is not always possible to create good water quality (water production) for fish farming. Especially in aquaculture farms that are closed water areas, when faced with such problems during initial water production and during times of severe climate change, people often eat poorly or raise their noses. According to tradition, formalin, potassium permanganate, fertilizer, pesticides, etc.
The current situation is that there is no suitable and effective solution, and it has not yet been fully elucidated academically at the field level.

【0004】本発明の目的は、養魚において上述の摂食
不良の因果関係を追及し、その解決手段を見いだすこと
によって、養魚方法、すなわち養魚の安定的生産方法を
提供することにある。
An object of the present invention is to provide a fish-cultivating method, that is, a stable method for producing fish by pursuing the above-mentioned causal relationship of poor feeding in fish-culturing and finding a solution to the problem.

【0005】[0005]

【課題を解決するための手段】本発明者は、前述のごと
く養魚における摂食不良の因果関係について、摂食状態
の良否の総合的水域環境と構造の違いについて鋭意研究
した結果、養魚水中の炭酸ガス濃度が養魚における摂食
量向上の重要因子として大きく作用することを見いだ
し、この養魚の摂食量を養魚水中の炭酸ガス濃度で調節
する養魚方法を発明したものである。
Means for Solving the Problems As described above, the present inventor has conducted diligent research on the causal relationship between poor feeding in fish farming and the difference in the overall aquatic environment and structure of the quality of feeding. It was found that the carbon dioxide concentration greatly acts as an important factor for improving the food intake in fish farming, and the inventors invented a fish farming method for controlling the food intake of this fish farm by the carbon dioxide gas concentration in the fish farm water.

【0006】また養魚水中の炭酸ガス濃度は、養魚水中
のpHと関係していることから、溶存炭酸ガス濃度とp
Hを一定範囲内に維持させることにより、養魚に対し良
好な水質を提供し、継続的に摂食させることができるこ
とを見いだし、本発明を完成するに至った。
Since the carbon dioxide concentration in fish culture water is related to the pH in fish culture water, the concentration of dissolved carbon dioxide gas and p
It has been found that by maintaining H within a certain range, it is possible to provide good quality of water to fish farms and feed them continuously, and completed the present invention.

【0007】一般に、炭酸ガスに関しては、農作物のハ
ウス栽培などで空気中の炭酸ガス濃度を上昇させて植物
の光合成活性を高めたり、水中の炭酸ガス濃度を増加さ
せ鑑賞用の水草やクロレラ・スピルリナ他、光合成微生
物の光合成活性を高めることで、生産性・品質の向上を
追及する技術や、光合成細菌(Rhodopseudomonas sp.)の
酵素活性を上昇させるという知見は知られているもの
の、炭酸物質を魚類の生産に有効利用する技術は知られ
ていなかった。さらに、養魚の水づくりのための水質基
準は、概ね、pH、溶存酸素、アンモニア、亜硝酸、硝
酸などであるが、炭酸物質を基準としたものはなく、む
しろ、魚類や動物にとって多量の炭酸ガスは、呼吸器系
統を阻害するなど有害であり、例えば、ウナギでは20
mg/リットル以上で有害レベルに達すると言われ、従
来から一方的に有害なものとして扱われていた。
Regarding carbon dioxide, generally, in greenhouse cultivation of agricultural products, the concentration of carbon dioxide in the air is increased to enhance the photosynthetic activity of plants, or the concentration of carbon dioxide in water is increased to increase the concentration of carbon dioxide in water for appreciation and chlorella spirulina. Although it is known that the photosynthetic activity of photosynthetic microorganisms is increased to improve productivity and quality, and that the enzyme activity of photosynthetic bacteria (Rhodopseudomonas sp.) Is increased, carbonic acid is added to fish. No technology was known to be effectively used for the production of Furthermore, the water quality standards for water production of fish farms are generally pH, dissolved oxygen, ammonia, nitrous acid, nitric acid, etc., but there is no standard for carbonic acid substances, but rather a large amount of carbonic acid for fish and animals. Gas is harmful because it interferes with the respiratory system. For example, in eels, 20
It is said that harmful levels are reached at mg / liter or higher, and it has been conventionally treated as unilaterally harmful.

【0008】しかし、長期にわたり継続的に摂食良好の
養魚水を調べたところ、同養魚水中の炭酸ガス濃度(炭
酸物質濃度)とpHは一定範囲内にあり、構造的にもハ
ウス養殖では、空気中に炭酸ガスが高濃度で蓄積しやす
い密封構造をしており、また残渣や糞などの有機物が効
率良く炭酸ガスに分解する通水性のある好気的構造であ
り、その上、光合成微生物による炭酸同化活性を減少さ
せるべく、照度を低く抑えている池が多い。さらに、摂
食良好の養魚池に使用されている原水のpHは低く、溶
存炭酸ガス濃度が高い傾向にあり、他方、溶存炭酸ガス
濃度が低い場合、放養密度を高めて、溶存炭酸ガス濃度
を高めると、水のできが早まり、摂食良好となる傾向が
認められた。また、養鰻でも、放養密度が高いほうが水
のできが良く、溶存炭酸ガス濃度が高い。
[0008] However, when the fish culture water which was fed well for a long period of time was examined, the carbon dioxide concentration (carbonate concentration) and pH in the fish culture water were within a certain range, and structurally, in house culture, It has a sealed structure that allows carbon dioxide to accumulate in the air at a high concentration, and has an aerobic structure with water permeability that allows organic substances such as residues and feces to be efficiently decomposed into carbon dioxide. Many ponds keep the illuminance low to reduce the carbon dioxide assimilation activity. Furthermore, the pH of the raw water used in a fish pond with good feeding tends to be low and the concentration of dissolved carbon dioxide tends to be high. On the other hand, when the concentration of dissolved carbon dioxide is low, the freezing density is increased to increase the concentration of dissolved carbon dioxide. When it was raised, water was formed more quickly, and it tended to be eaten better. Also, in eels, the higher the freeing density, the better the water production and the higher the dissolved carbon dioxide concentration.

【0009】一方、摂食不良の養魚水を調べると、溶存
炭酸ガス濃度とpHの一方もしくは両方が一定範囲外に
あり、多くは溶存炭酸ガス濃度がそれ以下であり、構造
的にも、前述の逆であった。しかし、有機物の好気的分
解性の炭酸ガス、或は炭酸物質、或は前述の構造的な炭
酸物質増加方法による炭酸ガスと酸・アルカリにより、
摂食良好の溶存炭酸ガス濃度とpHレベルに変化・維持
させると、摂食状態がきわめて良くなり、閉鎖水域又は
開放水域に拘らず、現場のプロの勘に頼ることなく、容
易に“水づくり”ができることを見いだし本養魚方法を
完成した。
On the other hand, when investigating poorly fed fish-cultured water, one or both of the dissolved carbon dioxide concentration and the pH are outside a certain range, and most of them have a dissolved carbon dioxide concentration below that. It was the opposite of. However, due to aerobic decomposable carbon dioxide of organic matter, or carbonic acid, or carbon dioxide and acid / alkali by the aforementioned structural carbonic acid increasing method,
By changing and maintaining the dissolved carbon dioxide concentration and pH level that are good for feeding, the feeding condition will be extremely good, and regardless of whether the water is closed or open, it is easy to “make water” without relying on the professional intuition of the site. We found that we could do this and completed this method of fish raising.

【0010】本発明は、養魚の摂食量を養魚水中の炭酸
ガス濃度で調節することを特徴とする養魚方法である。
また養魚の摂食量を増大するために、養魚水中の炭酸ガ
ス濃度を上昇させる養魚方法である。
The present invention is a fish-cultivating method characterized in that the amount of fish-eating consumed is controlled by the concentration of carbon dioxide in the fish-culturing water.
In addition, it is a fish-cultivating method of increasing the carbon dioxide concentration in the fish-culture water in order to increase the amount of fish-eating.

【0011】養魚水中の炭酸ガス濃度を上昇させるため
には、種々の炭酸ガス源を使用できるが、養魚水中の水
素イオン濃度により調節、維持することが重要である。
Various carbon dioxide gas sources can be used to increase the carbon dioxide concentration in the fish culture water, but it is important to control and maintain the carbon dioxide gas source depending on the hydrogen ion concentration in the fish culture water.

【0012】養魚水中の炭酸ガス濃度を炭酸物質により
調節、維持する場合、同炭酸ガス源は、特別なものに限
定されない。重炭酸ナトリウム、炭酸ナトリウム、重炭
酸カリウム、重炭酸カルシウム、重炭酸アンモニウムな
ど、炭酸物質溶解液のpHを低下させることで発生する
炭酸ガスや、高濃度の炭酸ガスを含む気体・液体および
炭酸ガスそのものを用いても良い。また、有機物の化学
的酸化(燃焼)によって発生する炭酸ガスでも良く、養
魚にとって有害なものでなければ差支えなく、また有害
でないレベルならば良い。ここで言う“有機物”とは、
特別なものに限定されず、食品や飼料、およびその廃棄
物、糞尿、植物体やその残渣、さらに、アルコール、ホ
ルマリン、有機酸、炭化水素など各種有機物質単体も含
み、広い意味での有機化合物のことを指す。
When the carbon dioxide concentration in fish culture water is controlled and maintained by the carbonic acid substance, the carbon dioxide gas source is not limited to a special one. Carbon dioxide, such as sodium bicarbonate, sodium carbonate, potassium bicarbonate, calcium bicarbonate, ammonium bicarbonate, which is generated by lowering the pH of the carbonate solution, or a gas or liquid containing high-concentration carbon dioxide and carbon dioxide. You may use itself. Further, carbon dioxide gas generated by chemical oxidation (combustion) of an organic substance may be used, as long as it is not harmful to fish farming, and may be at a level not harmful. “Organic matter” here means
Organic compounds in a broad sense, including not only special ones but also foods and feeds, wastes thereof, manure, plants and residues thereof, and simple substances of various organic substances such as alcohol, formalin, organic acids and hydrocarbons. Refers to.

【0013】またここで言う“pH低下”源(酸性物
質)とは、塩酸、硫酸、硝酸、燐酸、燐酸化合物、各種
有機酸、炭酸など、特別なものに限定されず、広い意味
での“酸”を指す。
The "pH lowering" source (acidic substance) referred to herein is not limited to a special one such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, phosphoric acid compound, various organic acids, carbonic acid, etc. Refers to "acid".

【0014】ここで言う炭酸物質とは、炭酸ガス(CO
2 )、炭酸(H2 CO3 )、重炭酸イオン(HC
3 - )、炭酸イオン(CO3 2-)の総称のことを指
す。重炭酸ナトリウムによる溶存炭酸ガス濃度の上昇方
法、及びpHによる各種炭酸物質の挙動についてその理
由を以下に説明する。
The term "carbonic acid substance" as used herein means carbon dioxide gas (CO
2 ), carbonic acid (H 2 CO 3 ), bicarbonate ion (HC
O 3 ) and a carbonate ion (CO 3 2− ) are collectively referred to. The reason for increasing the dissolved carbon dioxide concentration by sodium bicarbonate and the behavior of various carbonates depending on pH will be described below.

【0015】重炭酸ナトリウムNaHCO3 の水溶液
は、以下に示すように加水分解して弱アルカリ性を示
し、0.1モル/リットルでpH8.4を示す。重炭酸
ナトリウムは、
An aqueous solution of sodium bicarbonate NaHCO 3 is hydrolyzed as shown below to show weak alkalinity, and has a pH of 8.4 at 0.1 mol / liter. Sodium bicarbonate is

【化1】 のように解離し、また解離した重炭酸イオン(HCO3
- )はさらに電離して、僅かのH+ と炭酸イオン(CO
3 2-)を生じるが、大部分は水と反応して、
[Chemical 1] And dissociate bicarbonate ions (HCO 3
- ) Is further ionized, and a small amount of H + and carbonate ion (CO
3 2- ) but mostly reacts with water,

【化2】 となり、OH- を出すので、弱アルカリ性を示す。従っ
て、アルカリ側では、溶存炭酸ガスはほとんど存在しな
い。炭酸物質は炭酸ガス(CO2 )、炭酸(H2
3 )、重炭酸イオン(HCO3 - )、炭酸イオン(C
3 2-)の4状態になって存在するが、その割合はpH
により決定され、4者の関係が変化すればpHが変化
し、またpHが変化すれば4者の関係も変化する。その
存在割合とpHの関係を純水25℃の場合について説明
すると、以下のようになる。
[Chemical 2] Since it produces OH , it exhibits weak alkalinity. Therefore, there is almost no dissolved carbon dioxide gas on the alkaline side. Carbonate is carbon dioxide (CO 2 ), carbonic acid (H 2 C
O 3), bicarbonate ions (HCO 3 -), carbonate ions (C
O 3 2- ) exists in 4 states, but the ratio is pH
When the relationship between the four parties changes, the pH changes, and when the pH changes, the relationship between the four parties also changes. The relationship between the existence ratio and pH in the case of pure water at 25 ° C. will be described below.

【0016】水に溶解したCO2 は、pH7以下では、
2 CO3 に水和する反応と、HCO3 - (重炭酸イオ
ン)を生成する反応とが考えられる。
CO 2 dissolved in water has a pH value of 7 or less.
A reaction of hydrating to H 2 CO 3 and a reaction of producing HCO 3 (bicarbonate ion) are considered.

【0017】[0017]

【化3】 [Chemical 3]

【化4】 [Chemical 4]

【0018】さらにpH7以上ではOH- との反応が生
じ始め、アルカリ性になるほどその割合が大きくなる。
Further, when the pH is 7 or more, a reaction with OH begins to occur, and the ratio becomes larger as it becomes more alkaline.

【0019】[0019]

【化5】 [Chemical 5]

【0020】H2 CO3 は解離してHCO3 - 、CO3
2-を形成する。
[0020] H 2 CO 3 dissociates HCO 3 -, CO 3
2- to form.

【0021】[0021]

【化6】 [Chemical 6]

【化7】 [Chemical 7]

【0022】(a)の平行は左に傾いていて、解離定数
H はH2 COの濃度を1として
The parallel of (a) is inclined to the left, and the dissociation constant K H is H 2 CO concentration of 1

【数1】 KH =[H2 CO3 ]/[CO2 ][H2 O]=2.58×10-3……(f) であり、pHが低いとき水に溶けた炭酸ガスは大部分C
2 のまま存在し、H2CO3 はCO2 の0.4%以下
である。
## EQU1 ## K H = [H 2 CO 3 ] / [CO 2 ] [H 2 O] = 2.58 × 10 -3 (f), and the carbon dioxide gas dissolved in water when the pH is low is Mostly C
O 2 remains as it is, and H 2 CO 3 is 0.4% or less of CO 2 .

【0023】次にH2 CO3 が解離する(b)の解離定
数KA
Next, the dissociation constant K A of (b) in which H 2 CO 3 dissociates is

【数2】 KA =[H+ ][HCO3 - ]/[H2 CO3 ]=2.5×10-4……(g) と与えられているが、H2 CO3 の濃度は実際低いため
に次のみかけの第一解離定数Ka1が用いられる。
[Number 2] K A = [H +] [ HCO 3 -] / [H 2 CO 3] = 2.5 × 10 -4 ...... given as (g), but the concentration of H 2 CO 3 is The first apparent dissociation constant K a1 is used because it is actually low.

【0024】[0024]

【数3】Ka1=[H+ ][HCO3 - ]/[CO2 +H
2 CO3 ]=4.3×10-7
Equation 3] K a1 = [H +] [ HCO 3 -] / [CO 2 + H
2 CO 3 ] = 4.3 × 10 −7

【0025】KA はKa1とKH から求められた値であ
り、Ka1にはKA も含まれる。
K A is a value obtained from K a1 and K H , and K a1 also includes K A.

【0026】HCO3 - がさらに解離する(e)の第二
解離定数Ka2
The second dissociation constant K a2 of (e) in which HCO 3 is further dissociated is

【数4】Ka2=[H+ ][CO3 2-]/[HCO3 -
=5.6×10-11 である(以上、いずれも25℃での純水に対する値)。
Equation 4] K a2 = [H +] [ CO 3 2-] / [HCO 3 -]
= 5.6 × 10 −11 (above, all values for pure water at 25 ° C.).

【0027】以上から、pKa1=6.35、Ka2=1
0.32となり、pHの変化により、CO2 +H2 O→
2 CO3 、HCO3 - 、CO3 2-がどのような割合で
存在するかはHenderson Hasselbach数を利用して求める
ことができる。
From the above, pK a1 = 6.35 and K a2 = 1
It becomes 0.32, and due to the change in pH, CO 2 + H 2 O →
The proportions of H 2 CO 3 , HCO 3 , and CO 3 2− can be determined by using the Henderson Hasselbach number.

【0028】[0028]

【数5】pH=pKa1+log{[ HCO3 - ] /[CO2
+H2 CO3 ]}
Equation 5] pH = pK a1 + log {[ HCO 3 -] / [CO 2
+ H 2 CO 3 ]}

【数6】 pH=pKa2+log{[ CO3 2-] /[H2 CO3 ]}## EQU6 ## pH = pK a2 + log {[CO 3 2- ] / [H 2 CO 3 ]}

【0029】計算結果を図示すると図3の様になり、p
H5以下では大部分がCO2 の形で、pH8付近では大
部分がHCO3 - の形で存在し、CO3 2-はpH9にな
って始めて5%前後存在するようになる。
The calculation result is shown in FIG.
Below H5, most of it is in the form of CO 2 , and around pH 8 is mostly in the form of HCO 3 , and CO 3 2− is present at around pH 5 only at around 5%.

【0030】以上の理由から、pHを酸性側に低下させ
ることで、溶存炭酸ガスを増加させることができ、炭酸
物質と酸の割合を制御することにより、各種養魚に最適
なpHと溶存炭酸ガス濃度を同時に制御できる。要する
に、養魚水中の炭酸ガス濃度と水素イオン濃度を共に調
節し、維持して摂食量の増大を図ることができる。
For the above reasons, it is possible to increase the dissolved carbon dioxide gas by lowering the pH to the acidic side, and by controlling the ratio of the carbonic acid substance and the acid, the optimum pH and dissolved carbon dioxide gas for various fish farms can be obtained. Concentration can be controlled simultaneously. In short, both the carbon dioxide concentration and the hydrogen ion concentration in the fish culture water can be adjusted and maintained to increase the food intake.

【0031】炭酸ガスそのものによって炭酸ガス濃度を
制御する場合は、炭酸ガスの曝気や養魚ハウス内の炭酸
ガス濃度をあげるなどの溶解方法がある。炭酸ガスを水
に溶解させると、
When the carbon dioxide concentration is controlled by the carbon dioxide itself, there are dissolution methods such as aeration of the carbon dioxide and increasing the carbon dioxide concentration in the fish farm. When carbon dioxide is dissolved in water,

【化8】 のように解離し、炭酸ガス濃度が上昇するにしたがいp
Hが低下するので、必要に応じてアルカリを添加したり
注水すると、pHと溶存炭酸ガス濃度を同時に制御でき
る。有機物による場合は、養魚水中に積極的に有機物を
添加し、微生物による呼吸や発酵を行わせると、溶存炭
酸ガス濃度が上昇するが、有機物の量、酸やアルカリの
添加量、注水量の調節により、pHと溶存炭酸ガス濃度
を同時に制御できる。いったん制御すると、水にかなり
の緩衝能がつくので、水質の変動も少なくなる。これら
の制御には、pHと炭酸物質の測定が必要であるが、p
Hの測定は、指示薬やpH電極で良く、炭酸物質の測定
は炭酸物質測定用電極やJIS(K0101)の方法あ
るいは滴定法などが利用でき、現場で行うには簡易的な
ものが良い。
[Chemical 8] As the carbon dioxide concentration rises, p
Since H is lowered, pH and dissolved carbon dioxide concentration can be controlled at the same time by adding an alkali or injecting water as needed. In the case of organic substances, if the organic substances are positively added to the fish culture water and the microorganisms respire or ferment the dissolved carbon dioxide concentration will rise, but the amount of organic substances, the amount of acid or alkali added, and the amount of water injection can be adjusted. Thus, the pH and the dissolved carbon dioxide gas concentration can be controlled at the same time. Once controlled, the water has a considerable buffering capacity, which reduces fluctuations in water quality. These controls require the measurement of pH and carbonates, but p
The H can be measured with an indicator or a pH electrode, and the carbonate substance can be measured by using a carbonate substance measuring electrode, the JIS (K0101) method, or a titration method.

【0032】また炭酸ガス濃度は、上述の様な、pH調
節、炭酸物質などの添加等だけではなく、養殖ハウス内
を閉鎖水域にしたり、照度調節、生理活性物質等による
光合成生物の光合成活性制御によってコントロールする
こともできる。
The carbon dioxide concentration is not limited to the above-mentioned pH adjustment, addition of carbonic acid substances, etc., but the closed inside of the aquaculture house is controlled, the illuminance is adjusted, and the photosynthetic activity of photosynthetic organisms is controlled by physiologically active substances. It can also be controlled by.

【0033】養魚水中の炭酸ガス濃度と水素イオン濃度
の適値は、対象となる魚の種類や稚魚から成魚等の成長
過程、さらには閉鎖又は開放等の水域環境の条件設定に
よって自ずから相違し、一律に各濃度の好ましい範囲を
確定できるものではないが、一般的にいえば、ドジョウ
や鰻、成魚等の比較的低層水域で生息する魚に対しては
溶存炭酸ガス濃度レベルを高めに設定し、それに応じて
pHを5〜7程度にして酸性側に下げることが好ましい
が、アユ、いわな等の清流水域で生息する魚に対して
は、ドジョウや鰻、成魚等の魚と比較すれば、溶存炭酸
ガス濃度レベルをあまり高く設定することは好ましくな
い。
The appropriate values of the carbon dioxide concentration and the hydrogen ion concentration in the fish culture water naturally vary depending on the type of the target fish, the growth process of the juvenile to the adult fish, and the condition setting of the aquatic environment such as closing or opening, and are uniform. Although it is not possible to determine the preferred range of each concentration, generally speaking, for dissolved fish such as loach, eel, and adult fish, which have a relatively low water level, the dissolved carbon dioxide concentration level is set to a high level. According to it, it is preferable to adjust the pH to about 5 to 7 to lower it to the acidic side, but for fish that live in clear stream waters such as sweetfish, Iwana, when compared to fish such as loach, eel and adult fish, it is dissolved It is not preferable to set the carbon dioxide concentration level too high.

【0034】一方、養魚水の総合的な水域環境からすれ
ば、本発明による摂食量の増大は、排泄するアンモニア
量の増加につながることから、アンモニア中毒、亜硝酸
中毒に至る場合があるが、養魚水中の炭酸ガス濃度アッ
プは、養魚水中の硝化菌、脱窒菌などの微生物の硝化活
性を促し、アンモニア→亜硝酸→硝酸などの硝化速度の
促進につながっていることが認められる。従って、養魚
水中の炭酸ガス濃度と水素イオン濃度を指標とし、制御
することにより、養魚の摂食行動と養魚水中の共存生物
の活性を調節、維持することができる。
On the other hand, from the viewpoint of the total aquatic environment of fish-cultured water, an increase in food intake according to the present invention leads to an increase in the amount of excreted ammonia, which may lead to ammonia poisoning and nitrite poisoning. It is recognized that increasing the concentration of carbon dioxide in the fish culture water promotes the nitrification activity of microorganisms such as nitrifying bacteria and denitrifying bacteria in the fish culture water, leading to the promotion of the nitrification rate of ammonia → nitrite → nitric acid. Therefore, by controlling the carbon dioxide concentration and hydrogen ion concentration in the fish culture water as indexes, the feeding behavior of the fish culture and the activity of the coexisting organisms in the fish culture water can be regulated and maintained.

【0035】[0035]

【作用】本発明は、養魚水中の炭酸ガス濃度が養魚にお
ける摂食量向上の重要因子として大きく作用する知見に
基づき、養魚の摂食量を養魚水中の炭酸ガス濃度で調節
する養魚方法としたので、養魚水中の炭酸ガス濃度を上
昇に応じて養魚における摂食不良を改善することがで
き、養魚の摂食量の増大を図ることができる。 また養
魚水中の炭酸ガス濃度と水素イオン濃度を調節すること
により、水質の安定化、摂食の安定化につながり、養魚
の摂食行動と養魚水中の共存生物の活性を調節、維持す
ることもできる。
The present invention is based on the finding that the concentration of carbon dioxide in fish culture water largely acts as an important factor for improving the intake of fish in fish culture, and a fish culture method for adjusting the intake of fish culture with the concentration of carbon dioxide in fish culture water is provided. As the concentration of carbon dioxide gas in the fish culture water increases, poor feeding of fish can be improved, and the amount of fish consumed can be increased. In addition, by adjusting the carbon dioxide concentration and hydrogen ion concentration in the fish culture water, it leads to the stabilization of water quality and the stabilization of feeding, and it is also possible to control and maintain the feeding behavior of fish and the activity of coexisting organisms in the fish culture. it can.

【0036】[0036]

【実施例】【Example】

(実施例1)養鰻ハウス内で、面積約330m2 、水深
約1m、総水量約300tの閉鎖水域の池を用意し、そ
の中に約170g/匹の鰻5t入れ、28℃で養殖し
た。光合成微生物による水質の変動、溶存炭酸ガス濃度
の低下を防ぐために遮光率を高くし、日中でも照度を1
000ルクス以下にした。溶存炭酸ガス濃度を上げるた
めに、養鰻ハウス内の大気中の炭酸ガス濃度を8000
ppmにし、養魚水中の炭酸ガス濃度を常に70−90
mg/リットルになる様に、滴定法により測定し、注水
による調節を行った。pHは指示薬により測定し、常に
6.0−6.5を保ち、これより低い場合にはアルカリ
(CaO)を添加し、高い場合には酸(燐酸二水素カル
シウム)を添加して調節を行った。なお餌は、フィッシ
ュミール75%、スターチ23%を主成分とする通常の
飼料である(以下の実施例において同じ)。
(Example 1) A pond in a closed water area with an area of about 330 m 2 , a water depth of about 1 m, and a total water volume of about 300 t was prepared in an eel culture house, and about 170 g / animal of 5 t eel was placed in the pond and cultured at 28 ° C. To prevent fluctuations in water quality due to photosynthetic microorganisms and a decrease in dissolved carbon dioxide concentration, the light-shielding rate was increased and the illuminance was set to 1 during the day.
It was less than 000 lux. In order to increase the dissolved carbon dioxide concentration, the carbon dioxide concentration in the air inside the eel house was set at 8000.
Carbon dioxide concentration in fish culture water is always 70-90 ppm
It was measured by a titration method so as to be mg / liter and adjusted by water injection. The pH was measured with an indicator and kept at 6.0-6.5 at all times. When it was lower than this, alkali (CaO) was added, and when it was higher, acid (calcium dihydrogen phosphate) was added to adjust the pH. It was The feed is a normal feed containing 75% fish meal and 23% starch as main components (the same applies in the following examples).

【0037】その結果、摂食量(給餌量)は、養殖家が
順調であるといわれている鰻の投入量の1%にあたる5
0Kg/日を維持した。
As a result, the amount of food intake (feeding amount) was 1% of the amount of eel input, which is said to be good for the farmer.
0 kg / day was maintained.

【0038】(実施例2)同様に養鰻ハウス内で、面積
約330m2 、水深約1m、総水量約300tの閉鎖水
域の池を用意し、その中に約170g/匹の鰻5t入
れ、平均水温27℃で養殖した。濾過槽を使用し、換水
せずに汚泥を好気的に分解させ、溶存炭酸ガス濃度を7
0mg/リットル、pHを6.4前後に維持し続けたと
ころ、摂食状態が安定し、摂食量(給餌量)は、養殖家
が順調であるといわれている鰻の投入量の1%にあたる
平均50kg/日くらいとなった。
(Example 2) Similarly, in an eel feeding house, a pond in a closed water area with an area of about 330 m 2 , a water depth of about 1 m, and a total water volume of about 300 t was prepared, and about 170 g / animal of 5 t was put in the pond. It was cultivated at a water temperature of 27 ° C. Use a filter tank to aerobically decompose sludge without replacing water to reduce the dissolved carbon dioxide concentration to 7
When keeping 0 mg / liter and pH around 6.4, the feeding condition became stable, and the feeding amount (feeding amount) was 1% of the eel input which is said to be good for the farmer. The average was about 50 kg / day.

【0039】(実施例3)6.6リットルの水の入った
濾過槽付水槽でドジョウを100g飼育し、中へ重炭酸
ナトリウムとリン酸二水素カルシウムの混合物1g添加
し、pHを約6.8、溶存炭酸ガス濃度を70〜90m
g/リットルにしたところ、ドジョウの摂食が非常に良
好になり、ドジョウにとって最高の水つくりが容易に完
成した。
(Example 3) 100 g of loach was bred in a water tank with a filtration tank containing 6.6 liters of water, and 1 g of a mixture of sodium bicarbonate and calcium dihydrogen phosphate was added thereto to adjust the pH to about 6. 8, dissolved carbon dioxide concentration of 70-90m
At g / l, loach became very well fed and the best water preparation for loach was easily completed.

【0040】表1に水質の変化と摂食量の関係を示す。
表1から、重炭酸ナトリウムとリン酸二水素カルシウム
の混合物の添加前後で、溶存炭酸ガス濃度の増加ととも
に、摂食量が増大していることが認められる。
Table 1 shows the relationship between changes in water quality and food intake.
It can be seen from Table 1 that before and after the addition of the mixture of sodium bicarbonate and calcium dihydrogen phosphate, the amount of food intake increased as the dissolved carbon dioxide concentration increased.

【0041】[0041]

【表1】 [Table 1]

【0042】(実施例4)養鰻ハウス内で、面積約33
0m2 、水深約90cm、総水量約300tの閉鎖水域
の池を用意し、その中に約170g/匹の鰻5tを入
れ、27℃で養殖した。給餌量は平均40kg/日くら
い与えていたが、気候の変化などによりpHが7.0前
後に上昇、溶存炭酸ガス濃度が40mg/リットル以下
になった時、摂食不良になった。そこで重炭酸ナトリウ
ムとリン酸二水素カルシウムの混合物を20kg添加
し、pHを6.8前後に下げ、溶存炭酸ガス濃度を60
mg/リットルに上昇させたところ、摂食状態が回復し
た。
(Embodiment 4) An area of about 33 in an eel house.
A pond with a closed water area of 0 m 2 , a depth of about 90 cm, and a total water amount of about 300 t was prepared, and about 170 g / animal of 5 t was placed in the pond and cultured at 27 ° C. The feeding amount was about 40 kg / day on average, but when the pH increased to around 7.0 due to changes in climate and the dissolved carbon dioxide concentration fell to 40 mg / liter or less, eating became poor. Therefore, 20 kg of a mixture of sodium bicarbonate and calcium dihydrogen phosphate was added, the pH was lowered to around 6.8, and the dissolved carbon dioxide concentration was 60%.
When the concentration was increased to mg / liter, the fed state recovered.

【0043】(実施例5)34.5リットルの水の入っ
た濾過槽付水槽で345g(平均体重1.2g)のドジ
ョウを養鰻用配合試料2.0%/体重/日の給餌量、平
均水温27.0℃で飼育させた。4日間の馴養後、重炭
酸ナトリウムとリン酸二水素カルシウミの混合物の添加
により、pH6.8±0.2、溶存炭酸ガス濃度を30
mg/リットルまで上昇させた後、摂食量と水質の変
化、ドジョウの挙動を観察した。なお試験期間中の水交
換は全く行わなかった。
(Example 5) In a water tank with a filtration tank containing 34.5 liters of water, 345 g (average body weight 1.2 g) of loach was added to an eel feeding compound sample of 2.0% / body weight / day, and the average feeding amount was 20%. The animals were raised at a water temperature of 27.0 ° C. After acclimation for 4 days, pH 6.8 ± 0.2 and dissolved carbon dioxide concentration were adjusted to 30 by adding a mixture of sodium bicarbonate and calcium hydrogen diphosphate.
After increasing to mg / liter, changes in food intake and water quality, and behavior of loach were observed. No water exchange was performed during the test period.

【0044】表2はその結果を示している。表2中、E
Cは電気伝導度(μs)、DOは溶存酸素(ppm)で
ある。
Table 2 shows the results. E in Table 2
C is electric conductivity (μs), and DO is dissolved oxygen (ppm).

【0045】表2より、2日目から硝化活性が高まり、
養魚水中の炭酸ガス濃度アップは、摂食状態が良くなる
ほか、養魚水中の硝化菌の活性を促し、アンモニア→亜
硝酸→硝酸などの硝化速度の促進につながることが認め
られた。
From Table 2, the nitrification activity increased from the second day,
It was found that increasing the concentration of carbon dioxide in fish culture water not only improves feeding conditions but also promotes the activity of nitrifying bacteria in fish culture water, leading to the promotion of nitrification rates such as ammonia → nitrite → nitric acid.

【0046】[0046]

【表2】 [Table 2]

【0047】(実施例6)養鰻ハウス内で、面積約50
0m2 、水深約70cm、総水量約350tの閉鎖水域
の池(試験区)を用意し、その中に約170g/匹の鰻
5t入れ、平均水温27℃で養殖した。またこの試験区
の池には、養鰻開始初日(1日目)に重炭酸ナトリウム
とリン酸二水素カルシウムの混合物を添加した。
(Example 6) An area of about 50 in an eel house.
A pond (test zone) with a closed water area of 0 m 2 , a water depth of about 70 cm, and a total water volume of about 350 t was prepared, and about 170 g / mouse of eel 5 t was placed in the pond and cultured at an average water temperature of 27 ° C. A mixture of sodium bicarbonate and calcium dihydrogen phosphate was added to the pond of this test area on the first day (1st day) of the start of eel cultivation.

【0048】図1は同試験区の池における養魚の摂食
量、溶存炭酸ガス濃度(mg/リットル)、アンモニア
態窒素濃度(mg/リットル)、亜硝酸態窒素濃度(m
g/リットル)、硝酸態窒素濃度(mg/リットル)、
水素イオン濃度pHそれぞれの経日変化を示すグラフで
ある。
FIG. 1 shows the intake of fish, the concentration of dissolved carbon dioxide (mg / liter), the concentration of ammonia nitrogen (mg / liter), and the concentration of nitrite nitrogen (m) in the pond of the test section.
g / liter), nitrate nitrogen concentration (mg / liter),
It is a graph which shows each day change of hydrogen ion concentration pH.

【0049】比較のため、重炭酸ナトリウムとリン酸二
水素カルシウムの混合物を添加しないブランクの対照区
の池を用意し、同様に経日変化を観察した。その結果を
図2に示す。
For comparison, a blank control pond to which a mixture of sodium bicarbonate and calcium dihydrogen phosphate was not added was prepared, and the change with time was similarly observed. The result is shown in FIG.

【0050】図1及び図2より、試験区及び対照区のい
ずれもが、溶存炭酸ガス濃度及びpHと、摂食量(給餌
量)とが概ね良好な相関関係を示していることが認めら
れ、溶存炭酸ガス濃度を調節することにより摂食量(給
餌量)が増大することが確認できた。
From FIG. 1 and FIG. 2, it is recognized that the dissolved carbon dioxide concentration and pH and the food intake (feeding amount) show a generally good correlation in both the test group and the control group, It was confirmed that the food intake (feeding amount) was increased by adjusting the dissolved carbon dioxide concentration.

【0051】特に、重炭酸ナトリウムとリン酸二水素カ
ルシウムの混合物を添加した本発明の試験区の池では、
溶存炭酸ガス濃度が22mg/リットル、pHが6.5
前後になったあたりから、対照区に比して著しく摂食量
(給餌量)が増大しており、摂食状態が良好になった。
Particularly, in the pond of the test section of the present invention to which a mixture of sodium bicarbonate and calcium dihydrogen phosphate was added,
Dissolved carbon dioxide concentration is 22 mg / liter, pH is 6.5
From around the time, the amount of food intake (feeding amount) was significantly increased compared to the control group, and the eating condition was improved.

【0052】試験区では,溶存炭酸ガス濃度が、養鰻開
始日から16日目あたりから低下しはじめたことに伴
い、養鰻開始日から22日目にして摂食量(給餌量)が
大幅にダウンした。そこで摂食量の増大を図るため、再
度、重炭酸ナトリウムとリン酸二水素カルシウムの混合
物を添加したところ、溶存炭酸ガス濃度の増大と共に摂
食量(給餌量)も増加し、養殖家が順調であるいわれて
いる鰻の投入量の1%にあたる平均50kg/日くらい
となった。これに対して、対照区では摂食量(給餌量)
は平均35kg/日程度であった。
In the test area, the dissolved carbon dioxide concentration began to decrease around the 16th day from the start of eel feeding, and the food consumption (feeding amount) drastically decreased on the 22nd day from the start of eel feeding. . Therefore, when a mixture of sodium bicarbonate and calcium dihydrogen phosphate was added again in order to increase the amount of food intake, the amount of food intake (feeding amount) increased as the concentration of dissolved carbon dioxide increased, and the farmer is doing well. The average amount of eel, which is said to be 1%, was about 50 kg / day. On the other hand, in the control area, food consumption (feeding amount)
Was about 35 kg / day on average.

【0053】因みに、対照区における摂食量(給餌量)
の回復を確認するために、25日目に重炭酸ナトリウム
とリン酸二水素カルシウムの混合物を添加したところ、
図2に示す通り、摂食量(給餌量)の回復が認められ
た。
Incidentally, the food intake (feeding amount) in the control area
The addition of a mixture of sodium bicarbonate and calcium dihydrogen phosphate on day 25 to confirm the recovery of
As shown in FIG. 2, recovery of food intake (feeding amount) was observed.

【0054】なお、本発明は上記の実施例に限定される
ものではない。
The present invention is not limited to the above embodiment.

【0055】[0055]

【発明の効果】以上の通り、この発明は、養魚水中の炭
酸ガス濃度が養魚における摂食量向上の重要因子として
大きく作用する知見に基づき、養魚の摂食量を養魚水中
の炭酸ガス濃度で調節する養魚方法としたので、養魚水
中の炭酸ガス濃度を調節することによって養魚における
摂食不良を改善することができ、養魚の摂食量の増大を
図ることができる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, based on the finding that the carbon dioxide concentration in fish culture water greatly acts as an important factor for improving the food intake in fish culture, the food intake of fish culture is adjusted by the carbon dioxide concentration in the fish culture water. Since the fish culture method is used, poor feeding of the fish can be ameliorated by adjusting the carbon dioxide concentration in the fish culture water, and the consumption of the fish can be increased.

【0056】また養魚水中の炭酸ガス濃度と水素イオン
濃度を調節することにより、水質の安定化、摂食の安定
化につながり、養魚の摂食行動と養魚水中の共存生物の
活性を調節、維持することもでき、観賞魚を含む水産業
界にとってきわめて有益な技術である。
Further, by controlling the carbon dioxide concentration and hydrogen ion concentration in the fish culture water, it leads to stabilization of water quality and stabilization of feeding, and regulates and maintains the feeding behavior of fish culture and the activity of coexisting organisms in the fish culture water. It is also a very useful technology for the fisheries industry including ornamental fish.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る試験区における摂食量
(給餌量)及び水質の経日変化を示すグラフである。
FIG. 1 is a graph showing daily changes in food intake (feeding amount) and water quality in a test plot according to an example of the present invention.

【図2】比較例に係る対照区における摂食量(給餌量)
及び水質の経日変化を示すグラフである。
FIG. 2 Food consumption (feeding amount) in a control section according to a comparative example
3 is a graph showing changes in water quality over time.

【図3】二酸化炭素の水中での存在割合とpHとの関係
を示す図である。
FIG. 3 is a diagram showing the relationship between the ratio of carbon dioxide in water and pH.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】養魚の摂食量を養魚水中の炭酸ガス濃度で
調節することを特徴とする養魚方法。
1. A method for raising fish, comprising controlling the amount of fish fed by the concentration of carbon dioxide in the fish culture water.
【請求項2】養魚水中の炭酸ガス濃度を上昇させる請求
項1記載の養魚方法。
2. The fish-cultivating method according to claim 1, wherein the carbon dioxide concentration in the fish-cultivating water is increased.
【請求項3】養魚水中の炭酸ガス濃度を水素イオン濃度
により調節、維持する請求項1又は2記載の養魚方法。
3. The fish-cultivating method according to claim 1, wherein the carbon dioxide concentration in the fish-cultivating water is adjusted and maintained by the hydrogen ion concentration.
【請求項4】養魚水中の炭酸ガス濃度を炭酸物質により
調節、維持する請求項1、2又は3記載の養魚方法。
4. The fish-cultivating method according to claim 1, 2 or 3, wherein the carbon dioxide concentration in the fish-cultivating water is controlled and maintained by a carbonic acid substance.
【請求項5】養魚水中の炭酸ガス濃度と水素イオン濃度
を共に調節する請求項1、2、3又は4記載の養魚方
法。
5. The fish-cultivating method according to claim 1, 2, 3 or 4, wherein both the carbon dioxide concentration and the hydrogen ion concentration in the fish-cultivating water are adjusted.
【請求項6】養魚水中の炭酸ガス濃度と水素イオン濃度
を指標とし、制御することにより、養魚の摂食行動と養
魚水中の共存生物の活性を調節、維持することを特徴と
する養魚方法。
6. A fish-culturing method characterized by controlling and maintaining the feeding behavior of fish and the activity of coexisting organisms in fish-water by controlling the concentration of carbon dioxide and hydrogen ion in the fish-culture water as indicators.
JP6099419A 1994-05-13 1994-05-13 Fish culture method Pending JPH07303432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6099419A JPH07303432A (en) 1994-05-13 1994-05-13 Fish culture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6099419A JPH07303432A (en) 1994-05-13 1994-05-13 Fish culture method

Publications (1)

Publication Number Publication Date
JPH07303432A true JPH07303432A (en) 1995-11-21

Family

ID=14246957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6099419A Pending JPH07303432A (en) 1994-05-13 1994-05-13 Fish culture method

Country Status (1)

Country Link
JP (1) JPH07303432A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105010181A (en) * 2015-07-03 2015-11-04 融安县渔业技术推广站 Enclosed fish transportation method
CN115777602A (en) * 2022-11-11 2023-03-14 四川大学 Ecological pond and domestication method for domesticating loaches with Holly horses

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105010181A (en) * 2015-07-03 2015-11-04 融安县渔业技术推广站 Enclosed fish transportation method
CN115777602A (en) * 2022-11-11 2023-03-14 四川大学 Ecological pond and domestication method for domesticating loaches with Holly horses
CN115777602B (en) * 2022-11-11 2024-04-23 四川大学 Ecological pool for domesticating loaches and domestication method

Similar Documents

Publication Publication Date Title
CN101376877B (en) Compound microecological preparation for purifying cultivation water, preparation formulation thereof and preparation processes of the preparation
Datta Management of water quality in intensive aquaculture
CN108913632A (en) A kind of compound microorganism ferments liquid used for aquiculture and its preparation method and application
Sallenave Understanding water quality parameters to better manage your pond
CN103030249B (en) Method for efficiently reducing ammonia nitrogen and nitrites in aquatic water body
US6979411B1 (en) Water treatment agent for extending water exchange intervals in tank systems
Mustapha et al. Importance of pH Control in Aquaculture
JPH07303432A (en) Fish culture method
KR100799660B1 (en) Method for composting of livestock excretions
CA2382949C (en) Process for the improvement of the water quality of maintenance waters
CN111285542B (en) Treatment process of industrial seedling raising tail water of stichopus japonicus for cultivating unicellular algae
Rasyidah et al. Physico-Chemical Dynamics of Vanname Shrimp (Litopenaeus vannamei) Cultivation Pond Water Quality with A Recirculation System
Pruder Aquaculture and controlled eutrophication: Photoautotrophic/heterotrophic interaction and water quality
JP2008303122A (en) Soil, plant growth conditioning material
Voicea et al. The quality of the aquatic environment in fish ponds
JPH0755116B2 (en) Circulation filtration aquaculture system
CN1559936A (en) Ecology process of controlling nitrite in fish and shrimp pond
KR100278153B1 (en) Alkaline growth promoting and fermentation agent aqueous composition based on potassium and preparation method thereof
SU1199223A1 (en) Method of fertilizing fish=cultural ponds
CN115072883B (en) Biological floc particles and activation method and application thereof
CN107581121A (en) A kind of prawn culturing method using ozone combination microbial technique
CN117003347A (en) Method for adjusting algae environment in freshwater fish culture water body
Anjaini et al. WATER QUALITY MANAGEMENT STRATEGIES TO INCREASE THE PRODUCTIVITY OF WHITE SHRIMP (Litopenaeus vannamei) CULTURE
SU1741688A1 (en) Fish raising method
Sulochanan Water quality criteria in aquaculture