JPH0730212A - Conductor/insulating resin composit body, single layer circuit board formed of the composit body and multilayer interconnecting board using the single layer circuit board - Google Patents

Conductor/insulating resin composit body, single layer circuit board formed of the composit body and multilayer interconnecting board using the single layer circuit board

Info

Publication number
JPH0730212A
JPH0730212A JP16934293A JP16934293A JPH0730212A JP H0730212 A JPH0730212 A JP H0730212A JP 16934293 A JP16934293 A JP 16934293A JP 16934293 A JP16934293 A JP 16934293A JP H0730212 A JPH0730212 A JP H0730212A
Authority
JP
Japan
Prior art keywords
layer
insulating resin
conductor
resin layer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16934293A
Other languages
Japanese (ja)
Inventor
Kazumi Azuma
一美 東
Masako Maeda
雅子 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP16934293A priority Critical patent/JPH0730212A/en
Publication of JPH0730212A publication Critical patent/JPH0730212A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination

Abstract

PURPOSE:To allow reliable electrical connection to a conducting path and bump-shaped conductive protruding part by forming a plurality of penetrating conductive paths and the bump- shaped conductive protruding parts on the insulating resin layer on a base material whereupon a conductive layer is formed on one side. CONSTITUTION:A conductive layer 1 is formed on one side of a low linear expansion insulating resin layer 2, and a thermoplastic insulating resin layer 3 is formed on the other side so as to form a three-layer base material. The insulating resin layers 10 of the base material is provided with a plurality of through holes with a diameter of 10mum or more at intervals of 30mum or more, and the holes are filled with metal materials so as to form conductive paths 7. The 400 to 110,000 conductive paths 7 are formed per 1cm<2> and bump-shaped conductive protruding parts 5 extending from the conductive paths 7 are formed on the top surface of the insulating resin layers 10 (2 and 3). Therefore, the circuit of a single layer circuit board is electrically connected reliably through the bump-shaped conductive protruding parts only by bonding the insulating resin layer side of the single layer circuit board to the conductive circuit side of other single layer circuit board by thermocompression.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主に多層配線基板に用
いる導体−絶縁性樹脂複合体およびそれを積層してなる
多層配線基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductor-insulating resin composite mainly used for a multilayer wiring board and a multilayer wiring board formed by laminating the same.

【0002】[0002]

【従来の技術】近年、電子機器が軽量化や薄型化、小型
化するのに伴い、配線基板も高性能化し金属に絶縁性樹
脂を直接積層したいわゆる2層フレキシブル配線基板が
多く上市されるようになっている。また、市場ではさら
に高密度化や高性能化のために多層配線基板の開発が要
望されており、各種の多層配線基板構造やその製造方法
が提案されている。一般に多層配線基板は、例えば次に
示す方法によって作製されている。まず、回路パターン
を形成した単層回路基板を複数枚作製し、該回路基板の
所望箇所にドリル等で貫通孔を形成する。ついで、上記
貫通孔に金属物質を適当な方法によって充填し、導通路
およびバンプ状導電性突出物を形成する。その後、絶縁
性樹脂(接着剤)を用いて熱圧着することにより、上記
バンプ状導電性突出物を介して各回路基板間を導通した
多層配線基板が作製されている。
2. Description of the Related Art In recent years, as electronic devices have become lighter, thinner, and smaller, so-called two-layer flexible wiring boards, in which wiring boards have higher performance and metal is directly laminated with an insulating resin, have been put on the market. It has become. Further, in the market, there is a demand for the development of multilayer wiring boards for higher density and higher performance, and various multilayer wiring board structures and manufacturing methods thereof have been proposed. Generally, a multilayer wiring board is manufactured by, for example, the following method. First, a plurality of single-layer circuit boards on which a circuit pattern is formed are prepared, and through holes are formed in desired portions of the circuit boards with a drill or the like. Then, the through hole is filled with a metal material by an appropriate method to form a conductive path and a bump-shaped conductive protrusion. Then, by thermocompression bonding using an insulating resin (adhesive), a multilayer wiring board in which the circuit boards are electrically connected via the bump-shaped conductive protrusions is manufactured.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記多層配線
基板の作製においては、積層する単層回路基板に形成す
る導通路に精密さが要求され、また、その積層時には位
置合わせなどの煩雑な工程を必要とするので、効率的に
多層配線基板を製造できないという問題がある。本発明
の目的は、上記問題を解決し、簡単に単層回路基板が作
製できる導体−絶縁性樹脂複合体を提供することであ
る。また、本発明の他の目的は、簡単に多層配線基板を
作製できる多数の導通路を有する単層回路基板を提供す
ることである。また、本発明のその他の目的は、上記単
層回路基板を複数枚積層してなり、単層回路基板の回路
導体間の導通信頼性に優れる多層配線基板を提供するこ
とである。
However, in the production of the above-mentioned multilayer wiring board, precision is required for the conductive paths formed in the single-layer circuit boards to be laminated, and complicated steps such as alignment during the lamination are required. Therefore, there is a problem that a multilayer wiring board cannot be efficiently manufactured. An object of the present invention is to solve the above-mentioned problems and to provide a conductor-insulating resin composite which can easily produce a single-layer circuit board. Another object of the present invention is to provide a single-layer circuit board having a large number of conductive paths, which can easily produce a multilayer wiring board. Another object of the present invention is to provide a multi-layer wiring board which is formed by stacking a plurality of the single-layer circuit boards described above and is excellent in reliability of conduction between circuit conductors of the single-layer circuit board.

【0004】[0004]

【課題を解決するための手段】本発明者等は、上記目的
を達成するために鋭意検討した結果、導体−絶縁性樹脂
複合体の絶縁性樹脂層に、特定の間隔を開けて上記絶縁
性樹脂層を厚み方向に貫通する複数の貫通孔を形成し、
該貫通孔に導電性物質を充填して導通路およびおよび上
記絶縁性樹脂層表面にその導通路から延びるバンプ状導
電性突出物を形成するとともに、その導体層に回路加工
を施して単層回路基板を作製し、この複数の単層回路基
板を熱圧着によって積層すると簡単に多層配線基板が作
製できることを見出し、本発明を完成するに至った。即
ち、本発明の導体−絶縁性樹脂複合体は、片面に導体層
が形成された基材の絶縁性樹脂層に、30μm以上の間
隔で上記絶縁性樹脂層を厚み方向に貫通する孔径10μ
m以上の複数の導通路およびその導通路から延びるバン
プ状導電性突出物が形成されていることを特徴とする。
Means for Solving the Problems As a result of intensive studies for achieving the above-mentioned object, the inventors of the present invention have found that the insulating resin layer of a conductor-insulating resin composite has the above-mentioned insulating property with a specific gap. Form a plurality of through holes that penetrate the resin layer in the thickness direction,
A conductive layer is filled in the through hole to form a conductive path and a bump-shaped conductive protrusion extending from the conductive path on the surface of the insulating resin layer, and the conductive layer is subjected to circuit processing to form a single-layer circuit. The inventors have found that a multilayer wiring board can be easily manufactured by manufacturing a board and laminating a plurality of single-layer circuit boards by thermocompression bonding, and have completed the present invention. That is, the conductor-insulating resin composite of the present invention has a hole diameter of 10 μ that penetrates the insulating resin layer in the thickness direction at intervals of 30 μm or more in the insulating resin layer of the base material having the conductor layer formed on one surface.
A plurality of conductive paths of m or more and bump-like conductive protrusions extending from the conductive paths are formed.

【0005】また、本発明の単層回路基板は、上記導体
−絶縁性樹脂複合体の導体層に回路加工を施してなるも
のである。また、本発明の多層配線基板は、上記単層回
路基板の少なくとも2枚が、直接または絶縁性合成樹脂
を介して積層されてなり、上記各単層基板の回路間を導
通路およびバンプ状導電性突出物を介して導通してなる
ものである。
Further, the single-layer circuit board of the present invention is one in which the conductor layer of the conductor-insulating resin composite is subjected to circuit processing. Further, the multilayer wiring board of the present invention is formed by laminating at least two of the single-layer circuit boards directly or with an insulating synthetic resin interposed between the circuits of each of the single-layer boards to provide a conductive path and a bump-like conductive structure. It is electrically connected through the prominent protrusion.

【0006】[0006]

【作用】本発明の導体−絶縁性樹脂複合体の構成によれ
ば、上記絶縁性樹脂層を厚さ方向に貫通し導体層に通じ
る導通路が、複合体の絶縁性樹脂層に30μm以上の間
隔で多数形成されているので、導体層にいかなる回路パ
ターンが形成されて単層回路基板が作製されても、その
導体回路は上記導通路およびバンプ状導電性突出物と確
実に導通される。また、上記回路パターンが形成された
単層回路基板の上面には、30μm以上の間隔で多数の
バンプ状導電性突出物が形成されているので、単層回路
基板の絶縁性樹脂層側と他の単層回路基板の導体回路パ
ターン側とを相対させ熱圧着させるだけで、上記バンプ
状導電性突出物を介して基板間の回路を確実に導通でき
るようになる。また、絶縁性樹脂層の形成に低線膨張性
樹脂を用い、この低線膨張性樹脂層の片面に導体層が形
成されているので、絶縁性樹脂と導体層の線膨張係数と
の差が小さくなり、熱収縮などによる回路パターンのズ
レや導体層をエッチングした後のカールなどを抑制でき
るようになる。また、絶縁性樹脂層は、低線膨張性樹脂
と熱可塑性樹脂とで形成され、その接着界面においてそ
れぞれの絶縁性樹脂が混在するので、絶縁性樹脂層は接
着性に優れるようになる。
According to the structure of the conductor-insulating resin composite of the present invention, a conductive path penetrating the insulating resin layer in the thickness direction and communicating with the conductor layer is 30 μm or more in the insulating resin layer of the composite. Since a large number are formed at intervals, no matter what circuit pattern is formed on the conductor layer to manufacture the single-layer circuit board, the conductor circuit is surely electrically connected to the conductive path and the bump-shaped conductive protrusion. In addition, since a large number of bump-like conductive protrusions are formed at intervals of 30 μm or more on the upper surface of the single-layer circuit board on which the circuit pattern is formed, it is possible to reduce the number of bump-like conductive protrusions to the insulating resin layer side The circuit between the boards can be surely conducted through the bump-shaped conductive protrusions only by facing the single-layer circuit board with the conductor circuit pattern side and thermocompression bonding. In addition, since a low linear expansion resin is used for forming the insulating resin layer and the conductor layer is formed on one surface of the low linear expansion resin layer, the difference between the linear expansion coefficient of the insulating resin and the linear expansion coefficient of the conductive layer is small. As a result, the size of the circuit pattern can be reduced, and the circuit pattern can be prevented from being displaced due to thermal contraction or curling after the conductor layer is etched. Further, the insulating resin layer is formed of the low linear expansion resin and the thermoplastic resin, and the respective insulating resins are mixed at the bonding interface, so that the insulating resin layer has excellent adhesiveness.

【0007】また、本発明の多層配線基板の構成によれ
ば、表面に導通路から延びる多数のバンプ状導電性突出
物が形成されているので、少なくとも2枚の単層回路基
板を精密な位置合わせを必要とせず、単層回路基板の絶
縁性樹脂層側と回路パターン側とを相対させて単に熱圧
着するだけで、導通路およびバンプ状導電性突出物を介
して該基板回路間の導通が確実になされるようになる。
Further, according to the structure of the multilayer wiring board of the present invention, since a large number of bump-like conductive protrusions extending from the conductive path are formed on the surface, at least two single-layer circuit boards are precisely positioned. There is no need for alignment, the insulating resin layer side of the single-layer circuit board and the circuit pattern side are made to face each other and simply thermocompression bonded, and the conduction between the board circuits is performed through the conductive path and the bump-shaped conductive protrusions. Will be ensured.

【0008】[0008]

【実施例】以下、実施例を示す図面に基づき本発明をよ
り具体的に説明する。なお、本発明はこれらの実施例に
よって何ら限定されるものではない。図1は、本発明の
導体−絶縁性樹脂複合体の一例を示す断面図である。同
図において、2は低線膨張性絶縁性樹脂層で、片面には
導体層1が他面には熱可塑性絶縁性樹脂層3が形成され
た三層状基材を形成している。上記三層状基材の絶縁性
樹脂層10には、間隔が30μm以上、好ましくは40
〜500μmで厚み方向に貫通する複数の孔径が10μ
m以上、好ましくは15〜250μmの貫通孔が形成さ
れ、該貫通孔内には金属物質が充填されて導通路7が形
成されている。この間隔が30μm以下であれば、隣接
するバンプ状導電性突出物がショートする危険が大きく
なり、一方、孔径が10μm以下であれば、導電性金属
の充填が困難となって好ましくない。したがって、本発
明では、上記導通路7は、複合体1cm2 当たりに400
〜11万箇所、好ましくは1600〜6万箇所に形成さ
れる。なお、上記絶縁性樹脂層10(2,3)の上面に
は上記導通路7から延びるバンプ状導電性突出物5がそ
れぞれ形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described more specifically below with reference to the drawings showing the embodiments. The present invention is not limited to these examples. FIG. 1 is a sectional view showing an example of a conductor-insulating resin composite of the present invention. In the figure, reference numeral 2 denotes a low linear expansion insulating resin layer, which forms a three-layer base material having a conductor layer 1 on one surface and a thermoplastic insulating resin layer 3 on the other surface. The insulating resin layer 10 of the three-layer substrate has a gap of 30 μm or more, preferably 40 μm or more.
The diameter of a plurality of holes penetrating in the thickness direction is 10 μm to 500 μm
A through hole of m or more, preferably 15 to 250 μm is formed, and a metal substance is filled in the through hole to form the conduction path 7. If the distance is 30 μm or less, the risk of short-circuiting between the adjacent bump-like conductive protrusions increases, while if the hole diameter is 10 μm or less, it is difficult to fill the conductive metal. Therefore, in the present invention, the conductive paths 7, 400 per complex 1 cm 2
˜110,000, preferably 1,600 to 60,000. Bump-shaped conductive protrusions 5 extending from the conductive paths 7 are formed on the upper surfaces of the insulating resin layers 10 (2, 3).

【0009】本発明の導体−絶縁性樹脂複合体に用いる
絶縁性樹脂としては、電気絶縁性に優れる各種合成樹脂
が使用できるが、本発明ではポリイミド樹脂の使用が好
ましく、特に導体層(銅層)の線膨張係数との差が小さ
く、熱収縮などによる回路パターンのズレや導体層をエ
ッチングした後のカールを抑制することができる線膨張
係数が2.0×10-5cm/cm/℃以下の値を有する低線
膨張性ポリイミド樹脂が好ましい。また、本発明では、
上記ポリイミド樹脂は、塗工作業性や各樹脂層間の接着
性を向上させるために、ポリイミド前駆体溶液として塗
布工程に供したのち、加熱、脱水閉環してイミド化する
ことが好ましい。
As the insulating resin used in the conductor-insulating resin composite of the present invention, various synthetic resins having excellent electrical insulation properties can be used. In the present invention, the use of a polyimide resin is preferable, and a conductor layer (copper layer) is particularly preferable. The linear expansion coefficient is 2.0 × 10 −5 cm / cm / ° C., which is small in difference from the linear expansion coefficient of (4) and can suppress the deviation of the circuit pattern due to thermal contraction and the curl after etching the conductor layer. A low linear expansion polyimide resin having the following values is preferable. Further, in the present invention,
In order to improve the coating workability and the adhesiveness between the resin layers, it is preferable that the polyimide resin is subjected to a coating step as a polyimide precursor solution, and then heated and dehydrated for ring closure to imidize.

【0010】この構成によれば、絶縁性樹脂層に導体層
に通じる多数の導通路が形成されているので、導体層に
いかなる回路パターンが形成されても、その導体回路パ
ターンと導通路とが確実に導通されるようになる。ま
た、複合体は低線膨張性絶縁性樹脂を用いているので、
導体層の線膨張係数との差が小さく、熱収縮などによる
回路パターンのズレや導体層をエッチングした後のカー
ルを抑制できるようになる。また、絶縁性樹脂層が、低
線膨張性絶縁性樹脂層と熱可塑性絶縁性樹脂層とで形成
される複合体は、その接着界面においてそれぞれの樹脂
が混在するようになるので、絶縁性樹脂層間の接着性に
優れるようになる。
According to this structure, since a large number of conductive paths communicating with the conductor layer are formed in the insulating resin layer, no matter what circuit pattern is formed in the conductor layer, the conductive circuit pattern and the conductive path are not separated from each other. It will be surely conducted. Also, since the composite uses a low linear expansion insulating resin,
The difference from the linear expansion coefficient of the conductor layer is small, and it becomes possible to suppress the deviation of the circuit pattern due to thermal contraction or the like and the curl after the conductor layer is etched. In addition, in the composite in which the insulating resin layer is formed of the low linear expansion insulating resin layer and the thermoplastic insulating resin layer, the respective resins are mixed at the bonding interface, so that the insulating resin layer The adhesion between layers will be excellent.

【0011】上記熱可塑性ポリイミド樹脂は、ガラス転
移温度が180℃以上で、しかも390℃における溶融
粘度が109 ポイズ以下の性質を有するものが好適に使
用できる。このポリイミド樹脂も、前記低線膨張性ポリ
イミド樹脂と同様に、塗工作業性や各樹脂層間の接着性
を向上させるためにポリイミド樹脂前駆体溶液として塗
布工程に供したのち、加熱、脱水閉環してイミド化する
ことが好ましい。
As the above-mentioned thermoplastic polyimide resin, one having a glass transition temperature of 180 ° C. or higher and a melt viscosity at 390 ° C. of 10 9 poise or less can be preferably used. Similar to the low linear expansion polyimide resin, this polyimide resin is also subjected to a coating step as a polyimide resin precursor solution in order to improve the coating workability and the adhesiveness between the resin layers, followed by heating and dehydration ring closure. And imidization is preferable.

【0012】上記低線膨張性ポリイミド樹脂および熱可
塑性ポリイミド樹脂は、上記定義に合致するものであれ
ば特に制限されないが、低線膨張性ポリイミド樹脂とし
てはテトラカルボン酸成分として3,3’,4,4’−
ビフェニルテトラカルボン酸二無水物、ピロメリット酸
二無水物、2,2’,3,3’−ビフェニルテトラカル
ボン酸二無水物の少なくとも一種を用い、ジアミン成分
としてはp−フェニレンジアミン、4,4’−ジアミノ
ジフェニルエーテル、m−フェニレンジアミン、3,
4’−ジアミノジフェニルエーテル、4,4’−ジアミ
ノビフェニルの少なくとも一種を用いて重合反応させた
ものを用いることが好ましい。
The low linear expansion polyimide resin and the thermoplastic polyimide resin are not particularly limited as long as they meet the above definition, but the low linear expansion polyimide resin is 3,3 ', 4 as a tetracarboxylic acid component. , 4'-
At least one of biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, and 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride is used, and p-phenylenediamine, 4,4 is used as a diamine component. '-Diaminodiphenyl ether, m-phenylenediamine, 3,
It is preferable to use a polymerized product of at least one of 4'-diaminodiphenyl ether and 4,4'-diaminobiphenyl.

【0013】一方、熱可塑性ポリイミド樹脂としてはテ
トラカルボン酸成分としてビス(3,4−ジカルボキシ
フェニル)エーテル二無水物、ビス(3,4−ジカルボ
キシフェニル)スルホン二無水物、ビス(3,4−ジカ
ルボキシフェニル)ヘキサフルオロプロパン二無水物、
3,3’,4,4’−ベンゾフェノンテトラカルボン酸
二無水物、2,2−ビス(3,4−ジカルボキシフェニ
ル)プロパン二無水物、ビス(3,4−ジカルボキシフ
ェニル)ジフルオロメタン二無水物の少なくとも一種を
用い、ジアミン成分としてはビス〔4−(3−アミノフ
ェノキシ)フェニル〕スルホン、ビス〔4−(4−アミ
ノフェノキシ)フェニル〕スルホン、ビス〔4−(4−
アミノフェノキシ)フェニル〕ヘキサフルオロプロパ
ン、3,3’−ジアミノジフェニルスルホン、3,4’
−ジアミノジフェニルスルホン、4,4’−ジアミノジ
フェニルスルホン、ビス〔4−(3−アミノフェノキ
シ)フェニル〕エーテル、ビス〔4−(4−アミノフェ
ノキシ)フェニル〕エーテル、ビス〔4−(3−アミノ
フェノキシ)フェニル〕プロパン、ビス〔4−(4−ア
ミノフェノキシ)フェニル〕プロパン、3,3’−ジア
ミノジフェニルプロパン、3,3’−ジアミノベンゾフ
ェノンの少なくとも一種を用いて重合反応させたものを
用いることが好ましい。重合には有機溶媒としてN−メ
チル−2−ピロリドンや、N,N−ジメチルアセトアミ
ド、N,N−ジメチルホルムアミドなどを用いて上記各
成分を略等モル配合して行う。
On the other hand, as the thermoplastic polyimide resin, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride and bis (3,3) are used as tetracarboxylic acid components. 4-dicarboxyphenyl) hexafluoropropane dianhydride,
3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) difluoromethane dianhydride At least one of the anhydrides is used, and bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (4-
Aminophenoxy) phenyl] hexafluoropropane, 3,3′-diaminodiphenyl sulfone, 3,4 ′
-Diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (3-amino Phenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] propane, 3,3′-diaminodiphenylpropane, 3,3′-diaminobenzophenone used for polymerization reaction Is preferred. Polymerization is carried out by using N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide or the like as an organic solvent and mixing the above components in approximately equimolar amounts.

【0014】本発明の導体−絶縁性樹脂複合体は、例え
ば図2の模式断面図に示す工程にしたがって加工して製
造される。なお、この例では、絶縁性樹脂としてポリイ
ミドを、導体として銅箔をそれぞれ用いて説明してい
る。まず、低線膨張性ポリイミド前駆体を銅箔等の導体
上にロールコーターやコンマコーター、ナイフコータ
ー、ドクターブレードなどの手段によって塗布、乾燥し
て、図2(a)に示すように、銅箔1/低線膨張性ポリ
イミド前駆体層2’の構造体を形成する。ついで、低線
膨張性ポリイミド前駆体層2’上に、さらに熱可塑性ポ
リイミド前駆体溶液を塗布乾燥して、図2(b)に示す
ように、銅箔1/低線膨張性ポリイミド前駆体層2’/
熱可塑性ポリイミド前駆体層3’の構造体とする。な
お、このときの乾燥工程は60〜180℃程度の温度下
で行い、溶剤除去のみを行うようにしてポリイミド前駆
体の脱水閉環、イミド化が進行しないようにすることが
好ましい。また、このように熱可塑性ポリイミド前駆体
溶液を重ね塗りすることによって、先に塗布乾燥した低
線膨張性ポリイミド前駆体層の表層部が溶解して各ポリ
イミド前駆体成分が混合されることになり、後の工程で
加熱イミド化した場合に十分な界面接着力が得られるよ
うになる。
The conductor-insulating resin composite of the present invention is manufactured by processing, for example, according to the steps shown in the schematic sectional view of FIG. In this example, the insulating resin is polyimide and the conductor is copper foil. First, a low linear expansion polyimide precursor is applied onto a conductor such as a copper foil by means of a roll coater, a comma coater, a knife coater, a doctor blade, etc. and dried, and as shown in FIG. 1 / The structure of the low linear expansion polyimide precursor layer 2'is formed. Then, a thermoplastic polyimide precursor solution is further applied and dried on the low linear expansion polyimide precursor layer 2 ', and as shown in FIG. 2 (b), copper foil 1 / low linear expansion polyimide precursor layer 2 '/
The thermoplastic polyimide precursor layer 3 ′ has a structure. In addition, it is preferable that the drying step at this time is performed at a temperature of about 60 to 180 ° C. and only the solvent is removed so that dehydration ring closure and imidization of the polyimide precursor do not proceed. Further, by repeatedly applying the thermoplastic polyimide precursor solution in this manner, the surface layer portion of the low linear expansion polyimide precursor layer which has been previously coated and dried is dissolved to mix the respective polyimide precursor components. A sufficient interfacial adhesive force can be obtained when the film is heated and imidized in the subsequent step.

【0015】つぎに、上記銅箔1/低線膨張性ポリイミ
ド前駆体層2’/熱可塑性ポリイミド前駆体層3’の構
造体を、不活性ガス雰囲気下で300℃以上の温度に加
熱して、上記ポリイミド前駆体層2’,3’を脱水、閉
環させてイミド化する。上記加熱には熱風循環式加熱
炉、遠赤外線加熱炉などの装置が用いられる。この加熱
温度が300℃以下であると、充分にイミド化が進行せ
ずにポリイミド特有の特性が充分に発揮できない。ま
た、イミド化時に酸素が存在すると導体表面が酸化され
るだけでなく、熱可塑性ポリイミド樹脂が熱分解を起こ
す恐れがあり好ましくない。通常、上記加熱時の酸素濃
度は4%以下、好ましくは2%以下とする。なお、この
工程によって、低線膨張性ポリイミド前駆体層2’/熱
可塑性ポリイミド前駆体層3’が同時にイミド化され、
図2(c)に示すように、銅箔1/低線膨張性ポリイミ
ド樹脂層2/熱可塑性ポリイミド樹脂層3の構造体が得
られるとともに、その際に両ポリイミド層の接着界面に
おいては、両ポリイミド樹脂が混在する混合層6が形成
される。
Next, the structure of the copper foil 1 / low linear expansion polyimide precursor layer 2 '/ thermoplastic polyimide precursor layer 3'is heated to a temperature of 300 ° C. or higher in an inert gas atmosphere. The polyimide precursor layers 2'and 3'are dehydrated and ring-closed to imidize. Devices such as a hot air circulation type heating furnace and a far infrared heating furnace are used for the above heating. When the heating temperature is 300 ° C. or lower, imidization does not proceed sufficiently and the characteristics peculiar to polyimide cannot be sufficiently exhibited. Further, if oxygen is present during imidization, not only the surface of the conductor is oxidized but also the thermoplastic polyimide resin may be thermally decomposed, which is not preferable. Usually, the oxygen concentration during heating is 4% or less, preferably 2% or less. By this step, the low linear expansion polyimide precursor layer 2 '/ thermoplastic polyimide precursor layer 3'is simultaneously imidized,
As shown in FIG. 2 (c), a structure of copper foil 1 / low linear expansion polyimide resin layer 2 / thermoplastic polyimide resin layer 3 is obtained, and at that time, at the bonding interface of both polyimide layers, The mixed layer 6 in which the polyimide resin is mixed is formed.

【0016】次に、絶縁層であるポリイミド層2,3を
厚み方向に貫通して、図2(d)に示すように、貫通孔
4を形成する。この貫通孔の孔径xは、基板を適用する
用途によって随時設定できるが、通常10〜200μm
程度の大きさが好ましい。また、本発明では、上記貫通
孔をポリイミド層10に、一定間隔を開けてポリイミド
層全面に複数個形成する。この間隔yは、30μm以
上、好ましくは40〜200μm程度が適当である。し
たがって、例えば縦10cm、横10cmの基板では、25
万〜625万個の貫通孔が形成されるようになる。上記
貫通孔の形成方法としては、アルカリ溶液によるウエッ
トエッチング法、レーザーやプラズマなどを照射するド
ライエッチング法、ドリル等で機械的にあける方法が挙
げられるが、加工精度や加工速度などからの点からは4
00nm以下の波長の紫外レーザー光を用いたアブレー
ション加工、特にエキシマレーザーの照射方法が好まし
い。このとき、予め貫通孔の底部の導体層部分をエッチ
ングして貫通孔に通じるバンプ状溝部を形成しておくこ
とが好ましい。
Next, the polyimide layers 2 and 3 which are insulating layers are penetrated in the thickness direction to form a through hole 4 as shown in FIG. 2 (d). The hole diameter x of this through hole can be set at any time depending on the application to which the substrate is applied, but is usually 10 to 200 μm
A size of the order is preferable. In addition, in the present invention, a plurality of the through holes are formed in the polyimide layer 10 over the entire surface of the polyimide layer at regular intervals. The interval y is 30 μm or more, preferably about 40 to 200 μm. Therefore, for example, for a 10 cm long and 10 cm wide substrate, 25
10,000 to 6.25 million through holes are formed. Examples of the method of forming the through hole include a wet etching method using an alkaline solution, a dry etching method of irradiating a laser or plasma, and a method of mechanically drilling with a drill or the like, but from the viewpoint of processing accuracy and processing speed. Is 4
An ablation process using an ultraviolet laser beam having a wavelength of 00 nm or less, particularly an excimer laser irradiation method is preferable. At this time, it is preferable to previously etch the conductor layer portion at the bottom of the through hole to form a bump-shaped groove communicating with the through hole.

【0017】次いで、該貫通孔4に電解メッキ等の方法
で金属物質を充填して、同2(e)に示すように、導通
路7を形成するとともに、その導通路7からポリイミド
層表面に延びるバンプ状導電性突出物5を形成する。充
填する金属としては導通が取れれば特に問題はなく、
金、銀、銅、ニッケル、クロム、錫、半田、タングステ
ン、ロジウム、インジウムなどの金属、またはこれらの
合金を1種あるいは2種以上積層して用いることができ
る。
Next, the through hole 4 is filled with a metal substance by a method such as electrolytic plating to form a conductive path 7 as shown in FIG. 2 (e), and from the conductive path 7 to the surface of the polyimide layer. A bump-shaped conductive protrusion 5 extending is formed. As for the metal to be filled, there is no particular problem if conduction can be obtained,
Metals such as gold, silver, copper, nickel, chromium, tin, solder, tungsten, rhodium and indium, or alloys thereof can be used alone or in combination of two or more.

【0018】本発明の単層回路基板は、上記構成の銅箔
/低線膨張性ポリイミド樹脂層/熱可塑性ポリイミド樹
脂層からなる導体−絶縁性樹脂複合体の導体層に回路加
工を施し、所望の回路パターンを形成してなるものであ
る。この単層回路基板は、図3の模式断面図に示すよう
に、ポリイミド樹脂層10には導体1の回路パターンP
1に導通する2本の導通路7a,7bが、回路パターン
P2に導通する2本の導通路7c,7dが形成され、ポ
リイミド層2の表面には、該導通路7a,7bから延び
るバンプ状導電性突出物5a,5b、また、導通路7
c,7dから延びるバンプ状導電性突出物5c,5dが
形成されている。この回路パターンの形成には、公知の
方法、例えばフォトレジストを銅箔上に塗工して回路パ
ターンの露光、現像、ウエットエッチングするという方
法などが採用される。
The single-layer circuit board of the present invention is obtained by applying circuit processing to the conductor layer of the conductor-insulating resin composite composed of the copper foil / low linear expansion polyimide resin layer / thermoplastic polyimide resin layer having the above-mentioned constitution, The circuit pattern is formed. As shown in the schematic sectional view of FIG. 3, this single-layer circuit board has a circuit pattern P of the conductor 1 on the polyimide resin layer 10.
The two conductive paths 7a and 7b that are electrically connected to 1 are provided with the two conductive paths 7c and 7d that are electrically connected to the circuit pattern P2, and the surface of the polyimide layer 2 has a bump shape extending from the conductive paths 7a and 7b. The conductive protrusions 5a and 5b, and the conductive path 7
Bump-shaped conductive protrusions 5c and 5d extending from c and 7d are formed. A known method, for example, a method of coating a photoresist on a copper foil and exposing, developing, and wet etching the circuit pattern is adopted for forming the circuit pattern.

【0019】本発明の多層配線基板は、図4の模式断面
図に示すように、単層回路基板20と30とを、絶縁性
合成樹脂層8を介して積層されてなり、回路パターンP
1と回路パターンP3とを、単層回路基板30の導通路
7aとバンプ状金属突起物5a、さらに導通路7bとバ
ンプ状金属突起物5bを介して、また、回路パターンP
2と回路パターンP4とを、単層回路基板30の導通路
7cとバンプ状金属突起物5c、さらに導通路7dとバ
ンプ状金属突起物5dを介して、それぞれ導通してい
る。この多層配線基板は、単層回路基板20の回路パタ
ーン側と単層回路基板30のバンプ状金属突起物側とを
絶縁性樹脂層8を介して加熱圧着されて製造される。上
記加熱圧着方法としては、ラミネートロールや熱圧プレ
スなどを用い、熱可塑性ポリイミド樹脂のガラス転移温
度より30〜150℃程度高い温度にて1〜500kg
/cm2 の圧力を加えて加熱圧着して得られる。
As shown in the schematic cross-sectional view of FIG. 4, the multilayer wiring board of the present invention is formed by laminating single-layer circuit boards 20 and 30 with an insulating synthetic resin layer 8 in between, and a circuit pattern P
1 and the circuit pattern P3 via the conductive path 7a and the bump-shaped metal projection 5a of the single-layer circuit board 30, the conductive path 7b and the bump-shaped metal projection 5b, and the circuit pattern P.
2 and the circuit pattern P4 are electrically connected to each other through the conduction path 7c of the single-layer circuit board 30 and the bump-shaped metal projection 5c, and the conduction path 7d and the bump-shaped metal projection 5d. This multilayer wiring board is manufactured by thermocompression bonding the circuit pattern side of the single-layer circuit board 20 and the bump-shaped metal protrusion side of the single-layer circuit board 30 via the insulating resin layer 8. As the thermocompression bonding method, a laminating roll or a hot press is used, and 1 to 500 kg at a temperature about 30 to 150 ° C. higher than the glass transition temperature of the thermoplastic polyimide resin.
It is obtained by applying a pressure of / cm 2 and thermocompression bonding.

【0020】上記構成によれば、単層回路基板の絶縁樹
脂層には、30μm以上の間隔で10μm以上の複数の
導通路が形成されるとともに、その表面には該導通路か
ら延びるバンプ状導電性突出物が形成されているので、
積層する単層回路基板の位置合わせを必要とせず、単層
回路基板の絶縁性樹脂層側と他の単層回路基板の導体回
路パターン側とを相対させ熱圧着させるだけで、上記導
通路およびバンプ状導電性突出物を介して各基板の回路
間を確実に導通することができるようになる。なお、上
記加熱圧着の際には熱可塑性ポリイミド樹脂層が、積層
される他の単層回路基板の低線膨張性ポリイミド樹脂層
と隣接するように積層されるが、先の工程で導体をエッ
チング処理して回路を形成する際に低線膨張性ポリイミ
ド樹脂層の表面も荒れた状態となるので、熱可塑性樹脂
との接着強度が向上する。
According to the above structure, the insulating resin layer of the single-layer circuit board is formed with a plurality of conductive paths of 10 μm or more at intervals of 30 μm or more, and the bump-shaped conductive paths extending from the conductive paths are formed on the surface thereof. Since a sex protrusion is formed,
It is not necessary to align the single-layer circuit boards to be laminated, and the insulating resin layer side of the single-layer circuit board and the conductor circuit pattern side of the other single-layer circuit board are simply opposed to each other and thermocompression-bonded to each other, and The circuit of each substrate can be surely conducted through the bump-shaped conductive protrusions. In the thermocompression bonding, the thermoplastic polyimide resin layer is laminated so as to be adjacent to the low linear expansion polyimide resin layer of the other single-layer circuit board to be laminated, but the conductor is etched in the previous step. Since the surface of the low linear expansion polyimide resin layer also becomes rough when processed to form a circuit, the adhesive strength with the thermoplastic resin is improved.

【0021】以下、実験例を示し本発明をより具体的に
説明する。 実験例1 3,3’,4,4’−ビフェニルテトラカルボン酸二無
水物と、p−フェニレンジアミンのほぼ等モルを、N−
メチル−2−ピロリドン中で重合して低線膨張性ポリイ
ミド前駆体溶液を調製し、これを圧延銅箔(厚み9μ
m)上にコンマコーターを用いて均一に流延塗布し、1
00℃で乾燥して低線膨張性ポリイミド前駆体層を形成
した。次に、上記低線膨張性ポリイミド前駆体層の上
に、ビス(3,4−ジカルボキシフェニル)エーテル二
無水物とビス〔4−(4−アミノフェノキシ)フェニ
ル〕スルホンのほぼ等モルを、N−メチル−2−ピロリ
ドン中で重合して熱可塑性ポリイミド前駆体溶液を調製
し、これを上記と同様の方法にて流延塗布し、100℃
で乾燥して熱可塑性ポリイミド前駆体層を形成した。得
られた低線膨張性ポリイミド樹脂層の厚みは30μm、
熱可塑性ポリイミド樹脂層の厚みは10μmであった。
このようにして得られた三層状基体を、窒素ガス置換に
よって酸素濃度を1.5%以下にした連続加熱炉にて4
50℃に加熱して、脱水閉環を行いイミド化処理を行っ
た。上記三層状基体の断面を走査型電子顕微鏡にて観察
したところ、低線膨張性ポリイミド樹脂層と熱可塑性ポ
リイミド樹脂層との界面は明確に存在せず、各樹脂成分
が混合していることが確認できた。
Hereinafter, the present invention will be described more specifically by showing experimental examples. Experimental Example 1 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine were used in N-
Polymerization in methyl-2-pyrrolidone to prepare a low linear expansion polyimide precursor solution, which was rolled copper foil (thickness 9μ
m) is casted uniformly using a comma coater, and 1
It was dried at 00 ° C. to form a low linear expansion polyimide precursor layer. Next, on the above-mentioned low linear expansion polyimide precursor layer, approximately equimolar amounts of bis (3,4-dicarboxyphenyl) ether dianhydride and bis [4- (4-aminophenoxy) phenyl] sulfone are added. Polymerization in N-methyl-2-pyrrolidone to prepare a thermoplastic polyimide precursor solution, which is cast and coated by the same method as above, 100 ° C.
And dried to form a thermoplastic polyimide precursor layer. The thickness of the obtained low linear expansion polyimide resin layer is 30 μm,
The thickness of the thermoplastic polyimide resin layer was 10 μm.
The thus-obtained three-layer substrate was placed in a continuous heating furnace in which the oxygen concentration was reduced to 1.5% or less by nitrogen gas substitution.
By heating to 50 ° C., dehydration ring closure and imidization treatment were carried out. When observing the cross section of the three-layer substrate with a scanning electron microscope, the interface between the low linear expansion polyimide resin layer and the thermoplastic polyimide resin layer does not exist clearly, and each resin component may be mixed. It could be confirmed.

【0022】次に、上記三層状基体のポリイミド樹脂層
面に、発振波長248nmのKr−Fエキシマレーザー光を
マスクを通して照射してドライエッチングを施し、上記
ポリイミド樹脂層を厚み方向に貫通する直径50μm、
ピッチ100μmの貫通孔を上記熱可塑性ポリイミド樹
脂層全面に形成した。ついで、銅箔表面にレジストを塗
工し硬化させて絶縁し、化学研磨液中に50℃で2分間
浸漬した後、水洗した。これを60℃のシアン化金メッ
キ浴中に浸漬し、銅箔を陰極とし、対極との間に電解メ
ッキを施して貫通孔に金メッキを成長させ、該金メッキ
が熱可塑性ポリイミド樹脂層表面にバンプ状に析出した
ところでメッキ処理を終了した。上記ポリイミド樹脂層
表面には、表面から5μm突出した金メッキが形成され
ていた。最後に、銅箔表面に施したレジスト層を剥離し
て銅箔−ポリイミド樹脂複合体を得た。
Then, the surface of the polyimide resin layer of the three-layer substrate is irradiated with Kr-F excimer laser light having an oscillation wavelength of 248 nm through a mask to perform dry etching, and the polyimide resin layer has a diameter of 50 μm penetrating in the thickness direction.
Through holes having a pitch of 100 μm were formed on the entire surface of the thermoplastic polyimide resin layer. Then, a resist was applied to the surface of the copper foil, cured to insulate it, immersed in a chemical polishing liquid at 50 ° C. for 2 minutes, and then washed with water. This is immersed in a gold cyanide plating bath at 60 ° C., a copper foil is used as a cathode, electrolytic plating is performed between the counter electrode and the counter electrode to grow gold plating in the through holes, and the gold plating is bump-shaped on the surface of the thermoplastic polyimide resin layer. The plating process was terminated when the metal was deposited on the surface. Gold plating was formed on the surface of the polyimide resin layer so as to protrude from the surface by 5 μm. Finally, the resist layer applied to the copper foil surface was peeled off to obtain a copper foil-polyimide resin composite.

【0023】ついで、上記銅箔−ポリイミド樹脂複合体
の銅箔をエッチングして、銅層回路パターンを形成し
た。この回路パターンを形成した3枚の銅箔−ポリイミ
ド樹脂複合体を、熱可塑性ポリイミド樹脂層側と他の複
合体の銅層回路側とを相対させて、真空熱圧プレスに
て、温度350℃、圧力100kg/cm2 の条件で加熱圧
着して3層構造の多層配線基板を得た。
Next, the copper foil of the copper foil-polyimide resin composite was etched to form a copper layer circuit pattern. The three copper foil-polyimide resin composites on which this circuit pattern was formed were made to face each other with the thermoplastic polyimide resin layer side and the copper layer circuit side of the other composite, and the temperature was set to 350 ° C. by a vacuum hot press. Then, they were thermocompression bonded under a pressure of 100 kg / cm 2 to obtain a multilayer wiring board having a three-layer structure.

【0024】この多層配線基板を、90°ピール法によ
ってその引き剥がし強度を測定したところ1.5kg/cm
であり、剥離はポリイミド樹脂層と銅箔との界面で起こ
り、ポリイミド樹脂層間では生じなかった。また、40
0℃、30秒の半田ディップ試験を行ったが、ボイドの
発生はなく耐熱性においても全く問題はなかった。
When the peeling strength of this multilayer wiring board was measured by the 90 ° peel method, it was 1.5 kg / cm.
The peeling occurred at the interface between the polyimide resin layer and the copper foil, and did not occur between the polyimide resin layers. Also, 40
A solder dip test was performed at 0 ° C. for 30 seconds, but no void was generated and there was no problem in heat resistance.

【0025】実験例2 3,3’,4,4’−ビフェニルテトラカルボン酸二無
水物と、p−フェニレンジアミン/4,4’−ジアミノ
ジフェニルエーテル(60:40モル比)のほぼ等モル
を、N−メチル−2−ピロリドン中で重合して低線膨張
性ポリイミド前駆体溶液を調製し、これを圧延銅箔(厚
み35μm)上にコンマコーターを用いて均一に流延塗
布し、100℃で乾燥して低線膨張性ポリイミド前駆体
層を形成した。次に、上記低線膨張性ポリイミド前駆体
層の上に、ビス(3,4−ジカルボキシフェニル)ヘキ
サフルオロプロパン二無水物とビス〔4−(3−アミノ
フェノキシ)フェニル〕スルホンのほぼ等モルを、N−
メチル−2−ピロリドン中で重合して熱可塑性ポリイミ
ド前駆体溶液を調製し、これを上記と同様の方法にて流
延塗布し、100℃で乾燥して熱可塑性ポリイミド前駆
体層を形成した。得られた低線膨張性ポリイミド樹脂層
の厚みは30μm、熱可塑性ポリイミド樹脂層の厚みは
10μmであった。このようにして得られた三層状基体
を、窒素ガス置換によって酸素濃度を1.0%にした連
続加熱炉にて420℃に加熱して、脱水閉環を行いイミ
ド化処理を行った。上記三層状基体の断面を走査型電子
顕微鏡にて観察したところ、低線膨張性ポリイミド樹脂
層と熱可塑性ポリイミド樹脂層との界面は明確に存在せ
ず、各樹脂成分が混在していることが確認できた。
Experimental Example 2 Almost equimolar amounts of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and p-phenylenediamine / 4,4'-diaminodiphenyl ether (60:40 molar ratio) were used. Polymerization in N-methyl-2-pyrrolidone to prepare a low linear expansion polyimide precursor solution, which was uniformly cast-coated on a rolled copper foil (thickness 35 μm) using a comma coater, and at 100 ° C. It was dried to form a low linear expansion polyimide precursor layer. Then, on the above-mentioned low linear expansion polyimide precursor layer, almost equimolar amounts of bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride and bis [4- (3-aminophenoxy) phenyl] sulfone. , N-
Polymerization was carried out in methyl-2-pyrrolidone to prepare a thermoplastic polyimide precursor solution, which was cast and coated by the same method as above and dried at 100 ° C. to form a thermoplastic polyimide precursor layer. The thickness of the obtained low linear expansion polyimide resin layer was 30 μm, and the thickness of the thermoplastic polyimide resin layer was 10 μm. The thus-obtained three-layer substrate was heated to 420 ° C. in a continuous heating furnace having an oxygen concentration of 1.0% by nitrogen gas substitution, dehydration ring-closing and imidization treatment were performed. When observing the cross section of the three-layer substrate with a scanning electron microscope, the interface between the low linear expansion polyimide resin layer and the thermoplastic polyimide resin layer does not exist clearly, and each resin component may be mixed. It could be confirmed.

【0026】次に、上記三層状基体のポリイミド樹脂層
面に、発振波長248nmのKr−Fエキシマレーザー光を
マスクを通して照射してドライエッチングを施し、上記
ポリイミド樹脂層を厚み方向に貫通する直径40μm、
ピッチ50μmの貫通孔を上記熱可塑性ポリイミド樹脂
層全面に形成した。ついで、銅箔表面にレジストを塗工
し硬化させて絶縁し、化学研磨液中に50℃で2分間浸
漬した後、水洗した。これを60℃のシアン化金メッキ
浴中に浸漬し、銅箔を陰極とし、対極との間に電解メッ
キを施して貫通孔に金メッキを成長させ、該金メッキが
熱可塑性ポリイミド樹脂層表面に析出したところでメッ
キ処理を終了した。上記ポリイミド樹脂層表面には、表
面から7μm突出した金メッキが形成されていた。最後
に、銅箔表面に施したレジスト層を剥離して銅箔−ポリ
イミド樹脂複合体を得た。
Next, the surface of the polyimide resin layer of the three-layer substrate is irradiated with Kr-F excimer laser light having an oscillation wavelength of 248 nm through a mask for dry etching, and the polyimide resin layer has a diameter of 40 μm which penetrates in the thickness direction.
Through holes having a pitch of 50 μm were formed on the entire surface of the thermoplastic polyimide resin layer. Then, a resist was applied to the surface of the copper foil, cured to insulate it, immersed in a chemical polishing liquid at 50 ° C. for 2 minutes, and then washed with water. This was immersed in a gold cyanide plating bath at 60 ° C., a copper foil was used as a cathode, electrolytic plating was performed between the counter electrode and the counter electrode to grow gold plating in the through holes, and the gold plating was deposited on the surface of the thermoplastic polyimide resin layer. By the way, the plating process was completed. Gold plating was formed on the surface of the polyimide resin layer so as to protrude by 7 μm from the surface. Finally, the resist layer applied to the copper foil surface was peeled off to obtain a copper foil-polyimide resin composite.

【0027】ついで、上記銅箔−ポリイミド樹脂複合体
の銅箔を、実施例1と同様にエッチングして、銅層回路
パターンを形成した。この回路パターンを形成した5枚
の銅箔−ポリイミド樹脂複合体を、熱可塑性ポリイミド
樹脂層側と他の複合体の銅層回路側とを相対させて、予
め別に作製した熱可塑性ポリイミド樹脂フィルム(15
μm)を挟み、窒素ガス置換して酸素濃度を1.5%以
下にしたラミネーターにて、温度370℃、圧力50kg
/cm2 の条件で加熱圧着して5層構造の多層配線基板を
得た。この多層配線基板を、実施例1と同様にして測定
した引き剥がし強度は、2.4kg/cmであり、剥離は銅
箔との界面で起こり、ポリイミド樹脂層間では生じなか
った。また、400℃、30秒の半田ディップ試験を行
ったが、ボイドの発生はなく耐熱性においても全く問題
はなかった。
Then, the copper foil of the copper foil-polyimide resin composite was etched in the same manner as in Example 1 to form a copper layer circuit pattern. A thermoplastic polyimide resin film prepared separately in advance by making the thermoplastic polyimide resin layer side and the copper layer circuit side of another composite face the five copper foil-polyimide resin composites on which this circuit pattern is formed ( 15
(μm) sandwiched between them and replaced with nitrogen gas to a laminator with an oxygen concentration of 1.5% or less, temperature 370 ° C., pressure 50 kg.
It was heated and pressed under the condition of / cm 2 to obtain a multilayer wiring board having a five-layer structure. The peel strength of this multilayer wiring board measured in the same manner as in Example 1 was 2.4 kg / cm, and peeling occurred at the interface with the copper foil and not between the polyimide resin layers. Further, a solder dip test was conducted at 400 ° C. for 30 seconds, but no void was generated and there was no problem in heat resistance.

【0028】実験例3 ピロメリット酸二無水物と、p−フェニレンジアミン/
4,4’−ジアミノジフェニルエーテル(50:50モ
ル比)のほぼ等モルを、N−N−ジメチルホルムアミド
中で重合して低線膨張性ポリイミド前駆体溶液を調製
し、これを電解銅箔(厚み12μm)上にロールコータ
ーを用いて均一に流延塗布し、120℃で乾燥して低線
膨張性ポリイミド前駆体層を形成した。次に、上記低線
膨張性ポリイミド前駆体層の上に、ビス(3,4−ジカ
ルボキシフェニル)スルホン二無水物と、ビス〔4−
(4−アミノフェノキシ)フェニル〕スルホンのほぼ等
モルを、N−メチル−2−ピロリドン中で重合して熱可
塑性ポリイミド前駆体溶液を調製し、これを上記と同様
の方法にて流延塗布し、120℃で乾燥して熱可塑性ポ
リイミド前駆体層を形成した。得られた低線膨張性ポリ
イミド樹脂層の厚みは15μm、熱可塑性ポリイミド樹
脂層の厚みは6μmであった。このようにして得られた
三層状基体を、窒素ガス置換によって酸素濃度を1.0
%にした連続加熱炉にて500℃に加熱して、脱水閉環
を行いイミド化処理を行った。上記三層状基体の断面を
走査型電子顕微鏡にて観察したところ、低線膨張性ポリ
イミド樹脂層と熱可塑性ポリイミド樹脂層との界面は明
確に存在せず、各樹脂成分が混合していることが確認で
きた。
Experimental Example 3 Pyromellitic dianhydride and p-phenylenediamine /
Almost an equimolar amount of 4,4′-diaminodiphenyl ether (50:50 molar ratio) was polymerized in N—N-dimethylformamide to prepare a low linear expansion polyimide precursor solution, which was used as an electrolytic copper foil (thickness: 12 μm) was evenly cast-coated with a roll coater and dried at 120 ° C. to form a low linear expansion polyimide precursor layer. Then, bis (3,4-dicarboxyphenyl) sulfone dianhydride and bis [4-
Almost equimolar amount of (4-aminophenoxy) phenyl] sulfone is polymerized in N-methyl-2-pyrrolidone to prepare a thermoplastic polyimide precursor solution, which is cast and coated by the same method as above. And dried at 120 ° C. to form a thermoplastic polyimide precursor layer. The obtained low linear expansion polyimide resin layer had a thickness of 15 μm, and the thermoplastic polyimide resin layer had a thickness of 6 μm. The three-layer substrate thus obtained was replaced with nitrogen gas so that the oxygen concentration was 1.0
In a continuous heating furnace adjusted to 100%, the mixture was heated to 500 ° C. to perform dehydration ring closure and imidization treatment. When observing the cross section of the three-layer substrate with a scanning electron microscope, the interface between the low linear expansion polyimide resin layer and the thermoplastic polyimide resin layer does not exist clearly, and each resin component may be mixed. It could be confirmed.

【0029】次に、上記三層状基体のポリイミド樹脂層
面に、発振波長248nmのKr−Fエキシマレーザー光を
マスクを通して照射してドライエッチングを施し、上記
ポリイミド樹脂層を厚み方向に貫通する直径50μm、
ピッチ100μmの貫通孔を上記熱可塑性ポリイミド樹
脂層全面に形成した。ついで、銅箔表面にレジストを塗
工し硬化させて絶縁し、化学研磨液中に50℃で2分間
浸漬した後、水洗した。これを60℃のシアン化金メッ
キ浴中に浸漬し、銅箔を陰極とし、対極との間に電解メ
ッキを施して貫通孔に金メッキを成長させ、該金メッキ
が熱可塑性ポリイミド樹脂層表面に析出したところでメ
ッキ処理を終了した。上記ポリイミド樹脂層表面には、
表面から3μm突出した金メッキが形成されていた。最
後に、銅箔表面に施したレジスト層を剥離して銅箔−ポ
リイミド樹脂複合体を得た。ついで、上記銅箔−ポリイ
ミド樹脂複合体の銅箔を、実施例1と同様にエッチング
して、銅層回路パターンを形成した。この回路パターン
を形成した2枚の銅箔−ポリイミド樹脂複合体を、実施
例1と同様にして真空熱圧プレスにて、温度320℃、
圧力250kg/cm2 の条件で加熱圧着して、図4に示す
2層構造の多層配線基板を得た。この多層配線基板を、
実施例1と同様にして測定した引き剥がし強度は、1.
5kg/cmであり、剥離は銅箔との界面で起こり、ポリイ
ミド樹脂層間では生じなかった。また、400℃、30
秒の半田ディップ試験を行ったが、ボイドの発生はなく
耐熱性においても全く問題はなかった。
Next, the surface of the polyimide resin layer of the three-layer substrate is irradiated with Kr-F excimer laser light having an oscillation wavelength of 248 nm through a mask for dry etching, and the polyimide resin layer has a diameter of 50 μm which penetrates in the thickness direction.
Through holes having a pitch of 100 μm were formed on the entire surface of the thermoplastic polyimide resin layer. Then, a resist was applied to the surface of the copper foil, cured to insulate it, immersed in a chemical polishing liquid at 50 ° C. for 2 minutes, and then washed with water. This was immersed in a gold cyanide plating bath at 60 ° C., a copper foil was used as a cathode, electrolytic plating was performed between the counter electrode and the counter electrode to grow gold plating in the through holes, and the gold plating was deposited on the surface of the thermoplastic polyimide resin layer. By the way, the plating process was completed. On the surface of the polyimide resin layer,
Gold plating was formed protruding 3 μm from the surface. Finally, the resist layer applied to the copper foil surface was peeled off to obtain a copper foil-polyimide resin composite. Then, the copper foil of the copper foil-polyimide resin composite was etched in the same manner as in Example 1 to form a copper layer circuit pattern. The two copper foil-polyimide resin composites on which this circuit pattern was formed were subjected to a vacuum hot press in the same manner as in Example 1 at a temperature of 320 ° C.
By thermocompression bonding under the condition of a pressure of 250 kg / cm 2 , a multilayer wiring board having a two-layer structure shown in FIG. 4 was obtained. This multilayer wiring board
The peel strength measured in the same manner as in Example 1 was 1.
The peeling occurred at the interface with the copper foil and did not occur between the polyimide resin layers. Also, 400 ° C, 30
A second solder dip test was conducted, but no void was generated and there was no problem in heat resistance.

【0030】比較例1 3,3’,4,4’−ビフェニルテトラカルボン酸二無
水物と、p−フェニレンジアミンのほぼ等モルを、N−
N−ジメチルホルムアミド中で重合して低線膨張性ポリ
イミド前駆体溶液を調製し、これを圧延銅箔(厚み9μ
m)上にコンマコーターを用いて均一に流延塗布し、1
00℃で乾燥して低線膨張性ポリイミド前駆体層を形成
した後、窒素ガス雰囲気下で450℃に加熱して脱水閉
環を行いイミド化処理を行った。次に、上記低線膨張性
ポリイミド層の上に、ビス(3,4−ジカルボキシフェ
ニル)エーテル二無水物とビス〔4−(4−アミノフェ
ノキシ)フェニル〕スルホンのほぼ等モルを、N−メチ
ル−2−ピロリドン中で重合して熱可塑性ポリイミド前
駆体溶液を調製し、これを上記と同様の方法にて流延塗
布し、100℃で乾燥して熱可塑性ポリイミド前駆体層
を形成した。ついでこれを、窒素ガス置換によって酸素
濃度を2.0%にした連続加熱炉にて450℃に加熱し
て、脱水閉環を行いイミド化処理を行った。得られた低
線膨張性ポリイミド樹脂層の厚みは20μm、熱可塑性
ポリイミド樹脂層の厚みは5μmであった。このように
して得られた三層基体の断面を走査型電子顕微鏡にて観
察したところ、低線膨張性ポリイミド樹脂層と熱可塑性
ポリイミド樹脂層との界面は明確に存在し、各樹脂成分
が混合されていないことが確認できた。ついで、上記銅
箔−ポリイミド樹脂複合体の銅箔を、実施例1と同様に
して銅層回路パターンを形成した。この回路パターンを
形成した3枚の銅箔−ポリイミド樹脂複合体を、熱可塑
性ポリイミド樹脂層側と他の複合体の銅層回路側とを相
対させて、実施例1と同様にして真空熱圧プレスにて、
温度350℃、圧力100kg/cm2 の条件で加熱圧着し
て3層構造の多層配線基板を得た。この多層配線基板
を、実施例1と同様にして測定した引き剥がし強度は、
0.1kg/cmであり、ポリイミド樹脂層間で容易に剥離
し、接着強度がほとんどないものであった。
Comparative Example 1 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and p-phenylenediamine were used in an approximately equimolar amount with N-.
Polymerization in N-dimethylformamide was performed to prepare a low linear expansion polyimide precursor solution, which was rolled copper foil (thickness 9 μm
m) is casted uniformly using a comma coater, and 1
After drying at 00 ° C. to form a low linear expansion polyimide precursor layer, it was heated at 450 ° C. in a nitrogen gas atmosphere for dehydration ring closure and imidization treatment. Next, on the above low linear expansion polyimide layer, approximately equimolar amounts of bis (3,4-dicarboxyphenyl) ether dianhydride and bis [4- (4-aminophenoxy) phenyl] sulfone were mixed with N- Polymerization was carried out in methyl-2-pyrrolidone to prepare a thermoplastic polyimide precursor solution, which was cast and coated by the same method as above and dried at 100 ° C. to form a thermoplastic polyimide precursor layer. Then, this was heated to 450 ° C. in a continuous heating furnace having an oxygen concentration of 2.0% by nitrogen gas substitution, to perform dehydration ring closure and imidization treatment. The thickness of the obtained low linear expansion polyimide resin layer was 20 μm, and the thickness of the thermoplastic polyimide resin layer was 5 μm. When the cross section of the thus obtained three-layer substrate was observed with a scanning electron microscope, the interface between the low linear expansion polyimide resin layer and the thermoplastic polyimide resin layer was clearly present, and each resin component was mixed. It was confirmed that it was not done. Then, a copper layer circuit pattern was formed on the copper foil-polyimide resin composite copper foil in the same manner as in Example 1. The three copper foil-polyimide resin composites having this circuit pattern formed thereon were placed under vacuum thermal compression in the same manner as in Example 1 with the thermoplastic polyimide resin layer side facing the copper layer circuit side of the other composite. At the press
A multilayer wiring board having a three-layer structure was obtained by thermocompression bonding under the conditions of a temperature of 350 ° C. and a pressure of 100 kg / cm 2 . The peel strength of this multilayer wiring board measured in the same manner as in Example 1 is
It was 0.1 kg / cm, easily peeled between the polyimide resin layers, and had almost no adhesive strength.

【0031】比較例2 3,3’,4,4’−ビフェニルテトラカルボン酸二無
水物と、p−フェニレンジアミンのほぼ等モルを、N−
メチル−2−ピロリドン中で重合して低線膨張性ポリイ
ミド前駆体溶液を調製し、これを圧延銅箔(厚み35μ
m)上にコンマコーターを用いて均一に流延塗布し、1
00℃で乾燥して低線膨張性ポリイミド前駆体層を形成
した後、窒素ガス雰囲気下で450℃に加熱して脱水閉
環を行いイミド化処理を行って、銅箔−ポリイミド樹脂
複合体を得た。得られた低線膨張性ポリイミド樹脂層の
厚みは20μmであった。ついで、上記銅箔−ポリイミ
ド樹脂複合体の銅箔を、実施例1と同様にして銅層回路
パターンを形成した。一方、ビス(3,4−ジカルボキ
シフェニル)スルホン二無水物と、ビス〔4−(4−ア
ミノフェノキシ)フェニル〕スルホンのほぼ等モルを、
N−メチル−2−ピロリドン中で重合して熱可塑性ポリ
イミド前駆体溶液を調製し、これをガラス板上に流延塗
布し、100℃で乾燥して熱可塑性ポリイミド前駆体層
を形成した後、さらにこれを窒素ガス置換した加熱炉に
て450℃に加熱して脱水閉環を行いイミド化処理を行
った。得られた熱可塑性ポリイミド樹脂層の厚みは15
μmであった。ついで前記回路パターンを形成した銅箔
−ポリイミド樹脂複合体2枚を、熱可塑性ポリイミド樹
脂層側と他の複合体の銅層回路側とを相対させ、その間
に上記熱可塑性ポリイミド樹脂層を挟着させて、実施例
1と同様にして真空熱圧プレスにて、温度350℃、圧
力100kg/cm2 の条件で加熱圧着して2層構造の多層
配線基板を得た。この多層配線基板を、実施例1と同様
にして測定した引き剥がし強度は、0.4kg/cmであ
り、ポリイミド樹脂層間で容易に剥離し、接着強度がほ
とんどないものであった。また、実施例1と同様に40
0℃の半田ディップを行ったところ、全面に発泡を生じ
た。
Comparative Example 2 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine were used in an approximately equimolar amount with N-.
Polymerization in methyl-2-pyrrolidone to prepare a low linear expansion polyimide precursor solution, which was rolled copper foil (thickness 35 μm
m) is casted uniformly using a comma coater, and 1
After drying at 00 ° C. to form a low linear expansion polyimide precursor layer, it is heated at 450 ° C. in a nitrogen gas atmosphere for dehydration ring closure and imidization treatment to obtain a copper foil-polyimide resin composite. It was The thickness of the obtained low linear expansion polyimide resin layer was 20 μm. Then, a copper layer circuit pattern was formed on the copper foil-polyimide resin composite copper foil in the same manner as in Example 1. On the other hand, bis (3,4-dicarboxyphenyl) sulfone dianhydride and bis [4- (4-aminophenoxy) phenyl] sulfone are almost equimolar,
After polymerizing in N-methyl-2-pyrrolidone to prepare a thermoplastic polyimide precursor solution, this is cast coated on a glass plate and dried at 100 ° C. to form a thermoplastic polyimide precursor layer, Further, this was heated to 450 ° C. in a heating furnace in which nitrogen gas was replaced to perform dehydration ring closure and imidization treatment. The thickness of the obtained thermoplastic polyimide resin layer is 15
was μm. Then, the two copper foil-polyimide resin composites having the circuit pattern are made to face the thermoplastic polyimide resin layer side and the copper layer circuit side of the other composite, and the thermoplastic polyimide resin layer is sandwiched therebetween. Then, in the same manner as in Example 1, it was thermocompression bonded under the conditions of a temperature of 350 ° C. and a pressure of 100 kg / cm 2 by a vacuum hot press to obtain a multilayer wiring board having a two-layer structure. The peel strength of this multilayer wiring board measured in the same manner as in Example 1 was 0.4 kg / cm, and it was easily peeled between the polyimide resin layers and had almost no adhesive strength. In addition, as in Example 1, 40
When solder dipping was performed at 0 ° C., foaming occurred on the entire surface.

【0032】比較例3 3,3’,4,4’−ビフェニルテトラカルボン酸二無
水物と、p−フェニレンジアミンのほぼ等モルを、N−
メチル−2−ピロリドン中で重合して低線膨張性ポリイ
ミド前駆体溶液を調製し、これを電解銅箔(厚み12μ
m)上にコンマコーターを用いて均一に流延塗布し、1
00℃で乾燥して低線膨張性ポリイミド前駆体層を形成
した。次に、上記前駆体層の上に、ビス(3,4−ジカ
ルボキシフェニル)エーテル二無水物とビス〔4−(4
−アミノフェノキシ)フェニル〕スルホンのほぼ等モル
を、N−メチル−2−ピロリドン中で重合して熱可塑性
ポリイミド前駆体溶液を調製し、これを上記と同様の方
法にて流延塗布し、100℃で乾燥して熱可塑性ポリイ
ミド前駆体層を形成した。得られた低線膨張性ポリイミ
ド樹脂層の厚みは13μm、熱可塑性ポリイミド樹脂層
の厚みは8μmであった。このようにして得られた三層
基体を、窒素ガス置換していない(酸素濃度が18%)
連続加熱炉にて450℃に加熱して、脱水閉環を行いイ
ミド化処理を行ったところ、銅層表面が酸化して黒化
し、しかも熱可塑性ポリイミド樹脂層も熱分解によって
黒色化し劣化した。得られた銅箔−ポリイミド樹脂複合
体は、上記実施例のような引き剥がし強度試験や耐熱性
試験が実施できなかった。
Comparative Example 3 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and p-phenylenediamine were used in an approximately equimolar ratio to N-
Polymerization in methyl-2-pyrrolidone to prepare a low linear expansion polyimide precursor solution, and this was prepared using electrolytic copper foil (thickness 12 μm
m) is casted uniformly using a comma coater, and 1
It was dried at 00 ° C. to form a low linear expansion polyimide precursor layer. Next, bis [3,4-dicarboxyphenyl) ether dianhydride and bis [4- (4
-Aminophenoxy) phenyl] sulphone is polymerized in N-methyl-2-pyrrolidone to prepare a thermoplastic polyimide precursor solution, which is cast and coated in the same manner as above. Drying was carried out at 0 ° C. to form a thermoplastic polyimide precursor layer. The thickness of the obtained low linear expansion polyimide resin layer was 13 μm, and the thickness of the thermoplastic polyimide resin layer was 8 μm. The three-layer substrate thus obtained is not replaced with nitrogen gas (oxygen concentration is 18%)
When heated at 450 ° C. in a continuous heating furnace to perform dehydration ring closure and imidization treatment, the surface of the copper layer was oxidized and blackened, and the thermoplastic polyimide resin layer was blackened and deteriorated by thermal decomposition. The obtained copper foil-polyimide resin composite could not be subjected to the peeling strength test and the heat resistance test as in the above Examples.

【0033】[0033]

【発明の効果】本発明の導体−絶縁性樹脂複合体によれ
ば、複合体の絶縁性樹脂層全面に30μm以上の間隔で
上記絶縁性樹脂層を厚さ方向に貫通する孔径10μm以
上の複数の貫通孔が形成され、該貫通孔には金属物質が
充填されて多数の導通路が形成されているので、導体層
にいかなる回路パターンが形成されて単層回路基板が作
製されても、その導体回路パターンは、上記導通路で確
実に導通できる。また、単層回路基板には30μm以上
の間隔で多数の導通路が形成され、その表面には該導通
路から延びるバンプ状導電性突出物が形成されているの
で、この単層回路基板の絶縁性樹脂層側と他の単層回路
基板の導体回路側とを相対させて熱圧着するだけで、単
層回路基板間における導体回路と導通路(バンプ状導電
性突出物)との精密な位置合わせすることなく、バンプ
状導電性突出物を介して単層回路基板間の回路を確実に
導通できるようになり、単層回路基板間の回路導通信頼
性を向上できる。また、絶縁性樹脂に低線膨張性絶縁性
樹脂を用い、この低線膨張性絶縁性樹脂層の片面に導体
層が形成されているので、導体層の線膨張係数との差が
小さく、熱収縮などによる回路パターンのズレや導体層
をエッチングした後のカールを抑制することができる。
また、上記低線膨張性絶縁性樹脂層と熱可塑性絶縁性樹
脂層が形成されているので、各絶縁性樹脂層の接着性に
優れ、耐熱性や耐薬品性、耐カール性に優れるようにな
る。したがって、上記複合体から得られる単層回路基板
を2枚以上積層させてなる多層配線基板は、簡単に、か
つ、確実に回路間の導通がなされて導通信頼性が向上
し、また、多層配線基板自体の耐熱性や耐薬品性、耐カ
ール性に優れるものとなる。
According to the conductor-insulating resin composite of the present invention, a plurality of holes having a diameter of 10 μm or more penetrating the insulating resin layer in the thickness direction are formed on the entire surface of the insulating resin layer of the composite at intervals of 30 μm or more. Through holes are formed, and the through holes are filled with a metal substance to form a large number of conducting paths. Therefore, even if any circuit pattern is formed on the conductor layer to produce a single-layer circuit board, The conductor circuit pattern can be surely conducted through the conduction path. In addition, a large number of conductive paths are formed on the single-layer circuit board at intervals of 30 μm or more, and bump-shaped conductive protrusions extending from the conductive paths are formed on the surface of the single-layer circuit board. Position of the conductive circuit and the conductive path (bump-shaped conductive protrusion) between the single-layer circuit boards only by facing the thermosetting resin layer side and the conductor circuit side of the other single-layer circuit board and thermocompression bonding. The circuit between the single-layer circuit boards can be surely conducted through the bump-shaped conductive protrusions without matching, and the circuit conduction reliability between the single-layer circuit boards can be improved. Further, since the low linear expansion insulating resin is used as the insulating resin and the conductor layer is formed on one surface of the low linear expansion insulating resin layer, the difference between the linear expansion coefficient of the conductive layer is small, It is possible to suppress deviation of the circuit pattern due to contraction or the like and curl after etching the conductor layer.
Further, since the low linear expansion insulating resin layer and the thermoplastic insulating resin layer are formed, the adhesiveness of each insulating resin layer is excellent, and the heat resistance, chemical resistance, and curl resistance are excellent. Become. Therefore, a multilayer wiring board formed by stacking two or more single-layer circuit boards obtained from the above composite easily and reliably conducts the circuits to improve the conduction reliability, and the multilayer wiring board. The substrate itself has excellent heat resistance, chemical resistance, and curl resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の導体−絶縁性樹脂複合体の一例を示す
断面図である。
FIG. 1 is a cross-sectional view showing an example of a conductor-insulating resin composite of the present invention.

【図2】本発明の導体−絶縁性樹脂複合体の製造法を例
示する断面図である。
FIG. 2 is a cross-sectional view illustrating the method for producing a conductor-insulating resin composite body of the present invention.

【図3】本発明の単層回路基板の一例を示す断面図であ
る。
FIG. 3 is a cross-sectional view showing an example of a single-layer circuit board of the present invention.

【図4】本発明の多層配線基板の一例を示す断面図であ
る。
FIG. 4 is a cross-sectional view showing an example of a multilayer wiring board of the present invention.

【符号の説明】[Explanation of symbols]

1 導体 2 低線膨張性絶縁性樹脂層 3 熱可塑性絶縁性樹脂層 5,5a,5b,5c,5d バンプ状導電性突出物 6 混合層 7,7a,7b,7c,7d 導通路 8 絶縁性合成樹脂層 20,30 単層回路基板 P1,P2,P3,P4 導体回路パターン 1 conductor 2 low linear expansion insulating resin layer 3 thermoplastic insulating resin layer 5,5a, 5b, 5c, 5d bump-like conductive protrusion 6 mixed layer 7, 7a, 7b, 7c, 7d conductive path 8 insulating Synthetic resin layer 20,30 Single layer circuit board P1, P2, P3, P4 Conductor circuit pattern

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 片面に導体層が形成された基材の絶縁性
樹脂層に、30μm以上の間隔で上記絶縁性樹脂層を厚
み方向に貫通する孔径10μm以上の複数の導通路およ
びその導通路から延びるバンプ状導電性突出物が形成さ
れていることを特徴とする導体−絶縁性樹脂複合体。
1. A plurality of conductive paths having a hole diameter of 10 μm or more penetrating the insulating resin layer in the thickness direction at intervals of 30 μm or more in an insulating resin layer of a base material having a conductor layer formed on one surface, and the conductive paths. A conductor-insulating resin composite, characterized in that bump-shaped conductive protrusions extending from the conductor are formed.
【請求項2】 基材が低線膨張性絶縁性樹脂層の片面に
導体層および他面に熱可塑性絶縁性樹脂層が形成された
三層状基材である請求項1記載の導体−絶縁性樹脂複合
体。
2. The conductor-insulating material according to claim 1, wherein the base material is a three-layered base material in which a conductor layer is formed on one surface of a low linear expansion insulating resin layer and a thermoplastic insulating resin layer is formed on the other surface. Resin composite.
【請求項3】 低線膨張性絶縁性樹脂層と熱可塑性絶縁
性樹脂層との接着界面は、それぞれの絶縁性樹脂成分が
混在している請求項2記載の導体−電気絶縁性樹脂複合
体。
3. The conductor-electrically insulating resin composite according to claim 2, wherein the insulating interface between the low linear expansion insulating resin layer and the thermoplastic insulating resin layer is mixed with respective insulating resin components. .
【請求項4】 低線膨張性絶縁性樹脂層が、ポリイミド
樹脂前駆体をイミド化して形成されたものである請求項
2または3記載の導体−電気絶縁性樹脂複合体。
4. The conductor-electrically insulating resin composite according to claim 2 or 3, wherein the low linear expansion insulating resin layer is formed by imidizing a polyimide resin precursor.
【請求項5】 熱可塑性絶縁性樹脂層が、ポリイミド樹
脂前駆体をイミド化して形成されたものである請求項2
または3記載の導体−電気絶縁性樹脂複合体。
5. The thermoplastic insulating resin layer is formed by imidizing a polyimide resin precursor.
Alternatively, the conductor-electrically insulating resin composite according to item 3.
【請求項6】 請求項1記載の導体−電気絶縁性樹脂複
合体の導体層に、回路加工が施されてなる単層回路基
板。
6. A single-layer circuit board obtained by subjecting the conductor layer of the conductor-electrically insulating resin composite according to claim 1 to circuit processing.
【請求項7】 請求項6記載の単層回路基板の少なくと
も2枚が、直接または絶縁性合成樹脂を介して積層され
てなり、上記各単層基板の回路間を導通路およびバンプ
状導電性突出物を介して導通してなる多層配線基板。
7. A single-layer circuit board according to claim 6, wherein at least two of the single-layer circuit boards are laminated directly or via an insulating synthetic resin, and a conductive path and bump-like conductivity are provided between the circuits of each of the single-layer boards. A multilayer wiring board that is electrically connected through a protrusion.
JP16934293A 1993-07-08 1993-07-08 Conductor/insulating resin composit body, single layer circuit board formed of the composit body and multilayer interconnecting board using the single layer circuit board Pending JPH0730212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16934293A JPH0730212A (en) 1993-07-08 1993-07-08 Conductor/insulating resin composit body, single layer circuit board formed of the composit body and multilayer interconnecting board using the single layer circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16934293A JPH0730212A (en) 1993-07-08 1993-07-08 Conductor/insulating resin composit body, single layer circuit board formed of the composit body and multilayer interconnecting board using the single layer circuit board

Publications (1)

Publication Number Publication Date
JPH0730212A true JPH0730212A (en) 1995-01-31

Family

ID=15884787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16934293A Pending JPH0730212A (en) 1993-07-08 1993-07-08 Conductor/insulating resin composit body, single layer circuit board formed of the composit body and multilayer interconnecting board using the single layer circuit board

Country Status (1)

Country Link
JP (1) JPH0730212A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216522A (en) * 1999-01-20 2000-08-04 Sony Chem Corp Flexible board and manufacture thereof
JP3708133B2 (en) * 1997-01-29 2005-10-19 大日本印刷株式会社 Multilayer wiring board manufacturing method, multilayer wiring board manufacturing apparatus, and multilayer wiring board
CN1301045C (en) * 2001-07-10 2007-02-14 株式会社藤仓 Multilayer terminal plate assembly, multilayer terminal plate assembly unit and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3708133B2 (en) * 1997-01-29 2005-10-19 大日本印刷株式会社 Multilayer wiring board manufacturing method, multilayer wiring board manufacturing apparatus, and multilayer wiring board
JP2000216522A (en) * 1999-01-20 2000-08-04 Sony Chem Corp Flexible board and manufacture thereof
CN1301045C (en) * 2001-07-10 2007-02-14 株式会社藤仓 Multilayer terminal plate assembly, multilayer terminal plate assembly unit and its manufacturing method

Similar Documents

Publication Publication Date Title
US6591491B2 (en) Method for producing multilayer circuit board
JP3961092B2 (en) Composite wiring board, flexible substrate, semiconductor device, and method of manufacturing composite wiring board
US6662442B1 (en) Process for manufacturing printed wiring board using metal plating techniques
JP5290455B2 (en) Manufacturing method of laminate
US5374469A (en) Flexible printed substrate
JP2001044589A (en) Circuit board
JP2002280684A (en) Copper clad flexible circuit board and its manufacturing method
JP3059556B2 (en) Multilayer substrate and method of manufacturing the same
JP2783389B2 (en) Method of manufacturing flexible metal foil laminate
JP3565069B2 (en) Method for manufacturing double-sided flexible printed circuit board
JP4448610B2 (en) Circuit board manufacturing method
JPH06283866A (en) Multilayer circuit board and manufacture thereof
JP3339422B2 (en) Wiring board and manufacturing method thereof
JPH0730212A (en) Conductor/insulating resin composit body, single layer circuit board formed of the composit body and multilayer interconnecting board using the single layer circuit board
JPH0955568A (en) Thin film wiring sheet, multilayer wiring board and their production
JP3356298B2 (en) Printed wiring board and method of manufacturing the same
JP3142951B2 (en) Manufacturing method of double-sided board
JPH05267810A (en) Double-sided board and manufacture of the same
JP2005116660A (en) Conductive paste filled substrate and its manufacturing method
JP2905331B2 (en) Double-sided board
JPH05152699A (en) Double-sided substrate and manufacture thereof
JP2919672B2 (en) Double-sided circuit board and method of manufacturing the same
JPH06283865A (en) Multilayer circuit board
JP2002134925A (en) Multilayer circuit board and its manufacturing method
JPH09181452A (en) Multilayer printed wiring board manufacturing method