JPH07299426A - Fine cleaning method and cleaning device - Google Patents
Fine cleaning method and cleaning deviceInfo
- Publication number
- JPH07299426A JPH07299426A JP11959094A JP11959094A JPH07299426A JP H07299426 A JPH07299426 A JP H07299426A JP 11959094 A JP11959094 A JP 11959094A JP 11959094 A JP11959094 A JP 11959094A JP H07299426 A JPH07299426 A JP H07299426A
- Authority
- JP
- Japan
- Prior art keywords
- cleaning
- cleaned
- liquid
- precision
- cleaning liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Detergent Compositions (AREA)
- Cleaning By Liquid Or Steam (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、精密洗浄技術分野に係
り、特にカメラ、顕微鏡、レーザー等に使用される光学
レンズや、ウエハなどの半導体部品等の精密洗浄方法お
よび洗浄装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of precision cleaning technology, and more particularly to a precision cleaning method and a cleaning device for optical lenses used in cameras, microscopes, lasers and the like, and semiconductor parts such as wafers.
【0002】[0002]
【従来の技術】精密分野において、精密洗浄工程は必要
不可欠な工程であり、加工工程と並んで最も重要な位置
をしめている。従来、精密分野での洗浄工程には、人体
への安全性が高く、しかも純度の再生が容易であり、作
業性もよいフロンやトリクロロエタン等のハロゲン系溶
剤を使用していた。ところが、近年、そのハロゲン系溶
剤もオゾン層破壊の危険性から世界的に使用を禁じられ
たり、削減されたりしている。2. Description of the Related Art In the precision field, a precision cleaning process is an indispensable process, and is in the most important position along with the processing process. Conventionally, in the cleaning process in the precision field, a halogen-based solvent such as CFC or trichloroethane, which has high safety for human body, is easy to reproduce the purity, and has good workability, has been used. However, in recent years, the halogen-based solvent has been prohibited or reduced in use worldwide due to the danger of ozone layer depletion.
【0003】そのため、最近では、ハロゲン系溶剤代替
の洗浄方法が開発されつつあるが、産業の急激な超精密
化に沿った洗浄方法の開発は、その洗浄度や作業性のコ
スト等の要求が厳しく、困難を極めるものである。その
中で、純水を用いたシステムが開発されており、特開平
1−210092号公報には、被洗浄物に対する前段の
精密洗浄に次いで純水による仕上げ洗浄を行い、その
後、乾燥ガスにより被洗浄物の洗浄面の水分を除去する
洗浄方法において、上記純水の洗浄水に浸漬した被洗浄
物を超低速で水面から上記ガス中に引き上げるようにし
た精密洗浄の乾燥方法が記載されている。For this reason, recently, a cleaning method substituting for a halogen-based solvent is being developed. However, the development of a cleaning method in line with the rapid superprecision of the industry requires the cleaning degree and the cost of workability. It is tough and extremely difficult. Among them, a system using pure water has been developed, and in Japanese Patent Laid-Open No. 1-210092, a precision cleaning in the preceding stage is performed on an object to be cleaned, followed by a final cleaning with pure water, and then a dry gas is used. In a cleaning method for removing water from the surface to be cleaned of a cleaning object, there is described a drying method of precision cleaning in which an object to be cleaned immersed in cleaning water of pure water is pulled up from the water surface into the gas at an extremely low speed. .
【0004】[0004]
【発明が解決しようとする課題】上記公報記載の従来の
方法では、洗浄液として最も一般的である水を純水とい
うかたちで使用することにより、精密洗浄を可能にして
いる。しかし、水は、物理的、化学的な点で他の物質と
比べてみると非常に特異な性質を有しているため、精密
洗浄分野においてはその作業効率が非常に悪い。実際
に、上記方法では、水の比熱が高いため、洗浄時の加
熱、冷却時に多大の熱量を必要とした。さらに、水は蒸
発潜熱が高いため、蒸発の際の結露による汚染物質の再
付着が生じ、品質不良の原因となりやすかった。また、
水の表面張力は非常に大きいため、被洗浄物の細かい隙
間やねじ部等の非貫通穴への出入りができず、実際に凹
凸の激しい複雑形状の部材に対しては液切りもできず、
さらに汚れ分の持ち出しや吸着により品質不良が絶え
ず、全く効果を発揮できなかった。さらに、水は純水で
あっても金属材料に対するアタック性があり、鏡面に磨
いたアルミニウムやマグネシウム合金などの洗浄ができ
ない等、被洗浄物の材質が限られていた。In the conventional method described in the above publication, precision cleaning is possible by using water, which is the most common cleaning liquid, in the form of pure water. However, water has very unique properties in terms of physical and chemical properties as compared with other substances, and therefore its working efficiency is very poor in the precision cleaning field. In fact, in the above method, since the specific heat of water is high, a large amount of heat was required during heating and cooling during cleaning. Furthermore, since water has a high latent heat of vaporization, decontamination during evaporation causes reattachment of pollutants, which is likely to cause quality defects. Also,
Since the surface tension of water is very large, it is not possible to get in and out of the non-through holes such as small gaps and screw parts of the object to be cleaned, and it is impossible to drain liquid even for members with complicated shapes with severe unevenness,
In addition, the quality of the dirt was constantly brought out by picking up and adsorbing the dirt, and the effect could not be exhibited at all. Further, even if pure water is pure water, it has an attacking property against metal materials, and it is impossible to clean mirror-polished aluminum or magnesium alloy.
【0005】請求項1〜4に係る発明は、かかる従来の
問題点に鑑みてなされたもので、被洗浄物の形状や材質
にとらわれずに洗浄でき、いかなる部分でも歩留まりよ
く洗浄でき、さらに熱効率を向上させて熱消費量を低減
し、また精密洗浄の品質が確保できる作業効率のよい精
密洗浄方法および洗浄装置を提供することを目的とす
る。特に、請求項2および3に係る発明は、上記目的に
加え、さらに洗浄能力を向上させた精密洗浄方法を提供
することを目的とする。The inventions according to claims 1 to 4 have been made in view of the above-mentioned conventional problems, and can be cleaned regardless of the shape and material of the object to be cleaned, and any part can be cleaned with good yield, and further, thermal efficiency can be improved. It is an object of the present invention to provide a precision cleaning method and a cleaning device with improved work efficiency, which can reduce heat consumption and ensure the quality of precision cleaning. In particular, the invention according to claims 2 and 3 aims to provide a precision cleaning method having further improved cleaning ability in addition to the above objects.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
に、請求項1に係る発明は、精密洗浄を行うにあたり、
被洗浄物を有機ケイ素化合物を主成分とした洗浄液に浸
漬する工程と、前記洗浄液に浸漬した被洗浄物を70mm
/s以下の引き上げ速度で洗浄液界面より引き上げる工程
とを備えることとした。In order to solve the above-mentioned problems, the invention according to claim 1 is such that in performing precision cleaning,
The step of immersing the object to be cleaned in a cleaning liquid containing an organic silicon compound as a main component, and the object to be cleaned immersed in the cleaning liquid to 70 mm
and a step of pulling up from the cleaning liquid interface at a pulling rate of / s or less.
【0007】請求項2に係る発明は、請求項1記載の精
密洗浄方法において、有機ケイ素化合物として、一般式
化1で表される直鎖状ポリオルガノシロキサンおよび一
般式化2で表される環状ポリオルガノシロキサンより選
ばれた少なくとも1種の低分子量ポリオルガノシロキサ
ンを用いることとした。According to a second aspect of the present invention, in the precision cleaning method according to the first aspect, the linear polyorganosiloxane represented by the general formula 1 and the cyclic group represented by the general formula 2 are used as the organosilicon compound. At least one low molecular weight polyorganosiloxane selected from polyorganosiloxanes was used.
【0008】[0008]
【化1】[Chemical 1]
【0009】[0009]
【化2】[Chemical 2]
【0010】請求項3に係る発明は、請求項2記載の精
密洗浄方法において、洗浄液の純度を99.9wt%以
上とした。According to a third aspect of the present invention, in the precision cleaning method according to the second aspect, the cleaning liquid has a purity of 99.9 wt% or more.
【0011】請求項4に係る発明は、有機ケイ素化合物
を主成分とした洗浄液を貯蔵するタンクと、この洗浄液
を循環しながら精密濾過処理し、清浄な液を給水する循
環機器と、被洗浄物を70mm/s以下の引き上げ速度で液
面から引き上げる引き上げ機構と、引き上げられた被洗
浄物の乾燥を促進する乾燥補助手段と、洗浄装置の制御
を行う制御ユニットとを具備して、精密洗浄装置を構成
した。The invention according to claim 4 is a tank for storing a cleaning liquid containing an organic silicon compound as a main component, a circulation device for performing microfiltration treatment while circulating the cleaning liquid, and supplying a clean liquid, and an object to be cleaned. A precision cleaning device equipped with a lifting mechanism for lifting the liquid from the liquid surface at a lifting speed of 70 mm / s or less, a drying assisting means for promoting the drying of the lifted object to be cleaned, and a control unit for controlling the cleaning device. Configured.
【0012】すなわち、従来の水では克服できなかった
問題点について多くの検討を行った結果、概念図を図1
に示すように、請求項1〜3に係る発明は、有機ケイ素
化合物を主成分とした洗浄液1を洗浄槽2に注入し、被
洗浄物3をその洗浄液1に浸漬する工程と、前記洗浄液
1に浸漬した被洗浄物3を低速で洗浄液界面より引き上
げる引き上げ工程よりなり、引き上げ工程の引き上げ速
度が70mm/s以下である精密洗浄方法を提供する。In other words, as a result of many studies on problems that could not be overcome by conventional water, a conceptual diagram is shown in FIG.
As described above, in the invention according to claims 1 to 3, a step of injecting a cleaning liquid 1 containing an organosilicon compound as a main component into a cleaning tank 2 and immersing an object to be cleaned 3 in the cleaning liquid 1, and the cleaning liquid 1 Provided is a precision cleaning method comprising a pulling-up step of pulling the object to be cleaned 3 dipped in the substrate at a low speed from the cleaning liquid interface, and the pulling-up speed of the pulling step is 70 mm / s or less.
【0013】[0013]
【作用】本発明者等は、従来の問題に対して色々な材料
を検討した結果、従来は離型剤や化粧品、潤滑剤、消泡
剤等に主に用いられ、近年洗浄剤としても使用されてい
る有機ケイ素化合物を用いて、精密洗浄に適した洗浄方
法を見いだした。有機ケイ素化合物は、化粧品に用いら
れるほど人体に安全でかつ高純度の精製が可能であり、
さらにその物理的性質等の諸性質についても水よりも精
密洗浄に適している。このように、水に比べてかなり優
れた性質を有する有機ケイ素化合物も、その使用方法に
よっては能力を発揮することができない。そのため、そ
の有機ケイ素化合物の性質に沿った洗浄条件を設定する
必要があり、検討の結果、本発明の精密洗浄方法に至っ
た。The present inventors have studied various materials to solve the conventional problems, and as a result, they have been mainly used as a mold release agent, cosmetics, lubricants, defoaming agents, etc. in recent years and also used as a cleaning agent in recent years. A cleaning method suitable for precision cleaning was found using the known organosilicon compound. Organosilicon compounds are safe for the human body and can be purified with high purity as they are used in cosmetics.
Furthermore, it is also suitable for precision cleaning as compared with water in terms of its physical properties and other properties. Thus, even an organosilicon compound, which has properties considerably superior to water, cannot exert its ability depending on the method of use. Therefore, it is necessary to set the cleaning conditions according to the properties of the organosilicon compound, and as a result of the investigation, the precision cleaning method of the present invention was achieved.
【0014】有機ケイ素化合物が精密洗浄に適している
点としては、第1に、有機ケイ素化合物は比熱が0.3
〜0.5cal/g ℃で、水と比べると2分の1〜3分の1
と非常に低い。そのため、加熱にかける熱量も半分以下
に抑えることができる。第2に、有機ケイ素化合物は表
面張力が約20dyne/cm で、水の表面張力72.75dy
ne/cm と比べて極めて低い。そのため、水では出入りが
できないような細かい隙間や、ねじ部等の非貫通穴につ
いても容易に液の出入りができ、凹凸の激しい複雑形状
に対しても問題なく対応できる。第3に、有機ケイ素化
合物は蒸発潜熱が25〜50cal/g で、水の539cal/
g と比較すると約10分の1〜20分の1である。通
常、水が蒸発した後の部材は蒸発熱が多量に奪われて表
面温度が一瞬にして低下し、そこにまわりの雰囲気中に
存在する水蒸気が結露する。この結露が被洗浄物の最終
品質を低下させる原因となるわけだが、有機ケイ素化合
物は数ある材料の中でも最も蒸発潜熱が低い方に属し、
実際に蒸発した後の部材の表面温度の低下はほとんど見
られないため、表面に水蒸気が結露する問題がなく、そ
れに付随する最終品質の低下は見られない。また、蒸発
潜熱が低いことによって蒸発しやすく、蒸留再生も容易
である。The point that the organosilicon compound is suitable for precision cleaning is that, firstly, the organosilicon compound has a specific heat of 0.3.
~ 0.5cal / g ℃, 1/2 to 1/3 compared to water
And very low. Therefore, the amount of heat applied for heating can be suppressed to half or less. Second, the surface tension of the organosilicon compound is about 20 dyne / cm, and the surface tension of water is 72.75 dy.
Very low compared to ne / cm. Therefore, it is possible to easily get in and out of a small gap that cannot be put in and out with water and a non-through hole such as a screw portion, and it is possible to cope with a complicated shape having a large unevenness without any problem. Thirdly, the latent heat of vaporization of organosilicon compounds is 25 to 50 cal / g, and that of water is 539 cal / g.
It is about 1/10 to 1/20 compared with g. Usually, a large amount of heat of evaporation is removed from the member after the water is evaporated, and the surface temperature is instantly lowered, and the water vapor existing in the surrounding atmosphere is condensed there. Although this condensation causes the final quality of the object to be cleaned to deteriorate, the organosilicon compound belongs to the one with the lowest latent heat of vaporization among many materials,
Since there is almost no decrease in the surface temperature of the member after the actual evaporation, there is no problem of dew condensation of water vapor on the surface, and no accompanying deterioration in final quality is observed. Further, since the latent heat of vaporization is low, it is easy to evaporate, and the distillation regeneration is also easy.
【0015】このように、水に比べてかなり優れた性質
を有する有機ケイ素化合物の性質に沿った洗浄条件を設
定する検討の結果、本洗浄方法が得られた。その作用に
ついて、以下に示す。通常、洗浄液に浸漬した被洗浄物
を洗浄液から引き出すと、洗浄液が表面にスポット状や
ブロック状に残り、乾燥プロセスでの濃縮による塵埃の
付着や前段の液の残りによるシミが生ずる。それが、実
際の洗浄残りとして品質低下につながる。しかし、本発
明の洗浄方法のごとく、被洗浄物を低速に引き上げるこ
とにより、洗浄液の凝集力や粘性と表面張力のバランス
によって、被洗浄物表面にスポット状やブロック状に残
ることなく、液切りされることが確認された。さらに、
同じ作用により被洗浄物の隙間やねじ穴などの非貫通穴
からも液が排出され、液残りがなくなる。このことによ
り、液の濃縮による塵埃の付着や前段の液の残りによる
シミは無く、常に均一な清浄面を得ることができた。As described above, as a result of the examination of setting the cleaning conditions in accordance with the property of the organosilicon compound, which has properties considerably superior to those of water, the present cleaning method was obtained. The operation will be described below. Usually, when an object to be cleaned that has been dipped in the cleaning liquid is pulled out from the cleaning liquid, the cleaning liquid remains on the surface in the form of spots or blocks, and dust adheres due to concentration in the drying process or stains due to the remaining liquid in the previous stage. That leads to quality deterioration as the actual cleaning residue. However, like the cleaning method of the present invention, by pulling the object to be cleaned at a low speed, by the balance of the cohesive force and viscosity of the cleaning liquid and the surface tension, the liquid is drained without remaining in a spot or block on the surface of the object to be cleaned. It was confirmed to be done. further,
By the same action, the liquid is discharged from the gap between the objects to be cleaned and the non-through holes such as screw holes, and the liquid remains. As a result, there was no dust adhesion due to the concentration of the liquid or stains due to the remaining liquid in the previous stage, and it was possible to always obtain a uniform clean surface.
【0016】この作用を図2を用いて説明すると、被洗
浄物3を洗浄液1中に浸漬した後、洗浄液1から引き上
げる過程で、液面1aより上の被洗浄物3の洗浄面、す
なわち洗浄液1と被洗浄物3表面の境界面に、洗浄液1
の粘性により薄膜状に洗浄液1が付着し、被洗浄物3に
伴って上昇する。しかし、当然に、一方では洗浄液1自
身の凝集力や表面張力が作用するため、液面1a部に洗
浄液1の引き上げ高さhが発生する。凝集力と粘性に起
因する洗浄液1の落下速度より被洗浄物3の引き上げ速
度が遅ければ、洗浄液1の薄膜が均一に形成されて液切
りが行われるため、洗浄面に不良を発生させることはな
い。しかし、洗浄液1の落下速度より被洗浄物3の引き
上げ速度が速ければ、図3に示すように、引き上げた被
洗浄物3の表面に均一な洗浄液1の薄膜が形成されず、
被洗浄物3の表面に洗浄液1がスポット状やブロック状
に残り、塵埃の付着や前段の液の残りによるシミ4が発
生する。This operation will be described with reference to FIG. 2. In the process of immersing the object to be cleaned 3 in the cleaning liquid 1 and then lifting it from the cleaning liquid 1, the cleaning surface of the object to be cleaned 3 above the liquid surface 1a, that is, the cleaning liquid. 1 on the boundary surface between the cleaning object 1 and the surface of the cleaning object 3
The cleaning liquid 1 adheres in the form of a thin film due to the viscosity of, and rises with the object to be cleaned 3. However, naturally, on the other hand, since the cohesive force and surface tension of the cleaning liquid 1 itself act, a lifting height h of the cleaning liquid 1 is generated at the liquid surface 1a. If the speed of pulling up the object to be cleaned 3 is slower than the falling speed of the cleaning liquid 1 due to the cohesive force and the viscosity, a thin film of the cleaning liquid 1 is uniformly formed and draining is performed, so that a defect does not occur on the cleaning surface. Absent. However, if the pulling speed of the cleaning object 3 is faster than the falling speed of the cleaning liquid 1, as shown in FIG. 3, a uniform thin film of the cleaning liquid 1 is not formed on the surface of the lifted cleaning object 3,
The cleaning liquid 1 remains in the form of spots or blocks on the surface of the object to be cleaned 3, and stains 4 are generated due to the adhesion of dust and the remaining liquid in the previous stage.
【0017】この引き上げ方法によって清浄面を得るこ
とが可能な速度は、洗浄液の物理的性質や被洗浄物等に
より異なる。本発明者等は、被洗浄物に金属、樹脂、ガ
ラス、セラミック、エラストマーを用い、また洗浄液に
有機ケイ素化合物を用いて数々の検討を行った結果、引
き上げ速度が70mm/s以下であれば、いずれの材料であ
っても清浄面を得ることが可能であることを確認した。
これに対し、70mm/sを越える速度で引き上げると、被
洗浄物表面の膜厚が均一に形成されず、それによるシミ
状の残渣が確認された。そのため、本洗浄方法は、その
引き上げ速度を70mm/s以下に設定した。もちろん、引
き上げ速度は均一であることが望ましいが、洗浄工程の
短縮化により可変させても良く、その場合は被洗浄物が
洗浄液の液面にある時のみ70mm/s以下の速度であれば
全く問題はない。また、引き上げ速度は遅ければ遅いほ
ど洗浄液の持ち出し量が減り、ランニングコストが低下
する。The speed at which a clean surface can be obtained by this lifting method depends on the physical properties of the cleaning liquid, the object to be cleaned, and the like. The present inventors have conducted various studies using metal, resin, glass, ceramic, and elastomer for the object to be cleaned, and organic silicon compounds for the cleaning liquid, and as a result, if the pulling rate is 70 mm / s or less, It was confirmed that it is possible to obtain a clean surface with any material.
On the other hand, when the film was pulled up at a speed exceeding 70 mm / s, the film thickness on the surface of the object to be cleaned was not formed uniformly, and a stain-like residue was confirmed. Therefore, in this cleaning method, the pulling rate was set to 70 mm / s or less. Of course, it is desirable that the pulling speed is uniform, but it may be varied by shortening the cleaning process. In that case, if the speed is 70 mm / s or less only when the object to be cleaned is on the surface of the cleaning liquid, No problem. Further, the slower the pulling rate is, the less the amount of the cleaning liquid taken out is, and the running cost is lowered.
【0018】本発明で用いた有機ケイ素化合物を主成分
とした洗浄液としては、低分子のポリオルガノシロキサ
ンを単体で用いることが最も望ましいが、低分子ポリオ
ルガノシロキサンと炭化水素の混合物や、低分子ポリオ
ルガノシロキサンとアルコールの混合物、低分子ポリオ
ルガノシロキサンとエステル類の混合物のいずれを用い
ても良く、特に共沸組成にて用いるのが良い。As the cleaning liquid containing an organosilicon compound as a main component used in the present invention, it is most desirable to use a low molecular weight polyorganosiloxane as a simple substance, but a mixture of a low molecular weight polyorganosiloxane and a hydrocarbon, or a low molecular weight polyorganosiloxane. Either a mixture of polyorganosiloxane and alcohol or a mixture of low molecular weight polyorganosiloxane and esters may be used, and particularly, an azeotropic composition is preferable.
【0019】ここで使われる炭化水素としては、炭素数
が6〜12のパラフィン系、イソパラフィン系、ナフテ
ン系の炭化水素が挙げられ、アルコールとしては炭素数
2〜10のアルコールが挙げられ、エステル類として
は、炭素数1〜6のカルボン酸と炭素数1〜4のアルコ
ールのエステルが挙げられる。The hydrocarbons used here include paraffinic, isoparaffinic, and naphthenic hydrocarbons having 6 to 12 carbon atoms, and the alcohols include alcohols having 2 to 10 carbon atoms and esters. Examples thereof include esters of carboxylic acids having 1 to 6 carbon atoms and alcohols having 1 to 4 carbon atoms.
【0020】さらに、精密洗浄用に清浄な面を得るため
には、洗浄液内の不純物の濃度が0.1wt%未満であ
ることが望ましく、さらに超精密洗浄用としては洗浄液
内の不純物の濃度が0.01wt%以下であることが望
ましい。0.1wt%以上の場合、被洗浄物表面の膜厚
が均一に形成されず、それによるシミ状の残渣が発生し
て本洗浄方法には不適当である。ここで不純物とは、洗
浄液成分よりも高沸点の成分および不揮発性成分のこと
をいう。Further, in order to obtain a clean surface for precision cleaning, the concentration of impurities in the cleaning liquid is preferably less than 0.1 wt%, and for ultra-precision cleaning, the concentration of impurities in the cleaning liquid is desired. It is preferably 0.01 wt% or less. When it is 0.1 wt% or more, the film thickness on the surface of the object to be cleaned is not formed uniformly, and stain-like residues are generated, which is unsuitable for the present cleaning method. Here, the impurities mean a component having a boiling point higher than that of the cleaning liquid component and a non-volatile component.
【0021】本洗浄方法において、被洗浄物を洗浄液に
浸漬する際に、洗浄槽の中で洗浄の物理的手段として超
音波や噴流を用いることで、被洗浄物の隙間やねじ穴な
どの非貫通穴に対する浸透性を更に向上させる作用を付
与することもできる。また、本発明の洗浄方法に用いた
有機ケイ素化合物は、前記のように蒸発潜熱が小さいた
め、僅かなエネルギーによっても蒸発が可能であり、本
発明の方法にて引き上げ時に温風をあてて乾燥を促進す
ることも可能である。In the present cleaning method, ultrasonic waves and jets are used as physical means for cleaning in the cleaning tank when the cleaning target is immersed in the cleaning liquid, so that the clearances and screw holes of the cleaning target are not removed. It is also possible to impart an effect of further improving the permeability to the through holes. Further, since the organosilicon compound used in the cleaning method of the present invention has a small latent heat of vaporization as described above, it can be vaporized with a small amount of energy, and is dried by applying warm air when pulling it up by the method of the present invention. It is also possible to promote.
【0022】[0022]
【実施例1】本発明の実施例1を図1および図4を用い
て説明する。図1に示すように、浸漬工程における洗浄
液1として、オクタメチルトリシロキサンを満たした洗
浄槽2に、光学レンズからなる被洗浄物3を浸漬し、さ
らにパルスモータ(図示省略)を用いてゆっくり引き上
げて洗浄を行った。洗浄液1として用いたオクタメチル
トリシロキサンの純度は、ガスクロマトグラフィによる
測定の結果、99.99wt%以下に精製されたもので
あった。また、洗浄液1の液温は25℃である。被洗浄
物3として用いた光学レンズは、超精密測定機用として
加工されたもので、形状がφ7.0mm、厚さ1.5mm、
曲率半径25.3mmの凹形状と片平面の平凹レンズで、
硝材はSK11の両面研磨面のレンズを用いた。この被
洗浄物3は、図4に示すように、被洗浄物3の外周部を
2点支持するヤトイ5に取り付けて洗浄した。引き上げ
時の速度は、5mm/s、10mm/s、15mm/s、20mm/sの
4種類について行った。First Embodiment A first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, as the cleaning liquid 1 in the dipping process, a cleaning tank 2 filled with octamethyltrisiloxane is dipped with an object to be cleaned 3 including an optical lens, and is slowly pulled up using a pulse motor (not shown). And washed. The octamethyltrisiloxane used as the cleaning liquid 1 had a purity of 99.99 wt% or less as a result of measurement by gas chromatography. The liquid temperature of the cleaning liquid 1 is 25 ° C. The optical lens used as the object to be cleaned 3 is processed for an ultra-precision measuring machine, and has a shape of φ7.0 mm, thickness of 1.5 mm,
With a concave shape with a radius of curvature of 25.3 mm and a plano-concave lens with one plane,
As the glass material, a lens with double-sided polished surface of SK11 was used. As shown in FIG. 4, the article to be cleaned 3 was attached to a toy 5 which supports the outer peripheral portion of the article to be cleaned 2 at two points and was cleaned. The pulling speed was four types of 5 mm / s, 10 mm / s, 15 mm / s, and 20 mm / s.
【0023】比較例として、洗浄液1を電導度が5μS
の純水を25℃で用いて本実施例と同様に4種類の引き
上げ方法にて行った。As a comparative example, the cleaning liquid 1 has an electric conductivity of 5 μS.
Pure water was used at 25 ° C. and four pulling-up methods were performed as in this example.
【0024】洗浄の評価は、洗浄後の光学レンズを蛍光
灯下反射光および透過光での目視評価と、蛍光灯下反射
光での光学レンズ表面に呼気をかけて目視で評価する呼
気評価と、光学レンズ表面にフッ化マグネシウム(Mg
F2 )のコーティングを施して蛍光灯下反射光で目視で
評価するコーティング評価の3評価で行い、異物が確認
されたものは全て不良品と判断した。評価数はn=20
で行った。また、洗浄液の持ち出し量について光学レン
ズ付きヤトイを用いてn=20のときの重量を測定し
た。The cleaning was evaluated by visual evaluation of the optical lens after cleaning with reflected light and transmitted light under fluorescent light, and breath evaluation with visual evaluation by applying breath to the optical lens surface with reflected light under fluorescent light. , Magnesium fluoride (Mg
With coatings of F 2) is performed in 3 Evaluation of coating evaluation for evaluating visually under a fluorescent lamp reflected light, which foreign matter was observed was determined that all defective. The number of evaluations is n = 20
I went there. The weight of the cleaning liquid carried out was measured when n = 20 using a lens toy with an optical lens.
【0025】以上の結果を表1に示す。The above results are shown in Table 1.
【0026】[0026]
【表1】 [Table 1]
【0027】上記表1に示すように、本実施例では全く
不良が発生しなかった。これに対し、比較例では、引き
上げ速度が小さかったものについては目視による評価で
のみ全数合格だったが、コーティング評価ではほぼ半数
が不良となり、本実施例とは明らかに差が生じた。この
不良レンズの汚れは、図5に示すように、ヤトイの支持
部付近の汚れ6が多かった。これは、比較例に用いた純
水の表面張力が大きいため、ヤトイ支持部に液だまりが
生じ、その部分での汚れ分の濃縮や、空気中の汚れの吸
着等がおこって不良となったものである。逆に、本実施
例に示す方法で洗浄を行うと、洗浄液であるオクタメチ
ルトリシロキサンの表面張力が小さいため、ヤトイ支持
部にも液だまりが生じることがないため、清浄に仕上が
っているのである。さらに、本実施例では、洗浄液の持
ち出し量が少なく、しかも、引き上げ速度を遅くするこ
とでかなりそれを小さくすることができることも確認で
きた。また、同様の実験方法にて引き上げ速度が、30
mm/s、50mm/s、70mm/sの場合においても、n=20
の評価で問題のないことも確認した。As shown in Table 1 above, no defects occurred at all in this embodiment. On the other hand, in the comparative example, all of the samples having a low pulling rate passed the visual evaluation only, but almost half of them were defective in the coating evaluation, which was clearly different from the present example. As shown in FIG. 5, the stains on the defective lens were mostly stains 6 in the vicinity of the supporting portion of the toy. This is because the pure water used in the comparative example has a large surface tension, so that a liquid pool is generated in the yatoy support part, and the concentration of dirt in that part, the adsorption of dirt in the air, etc. occur, resulting in a defect. It is a thing. On the contrary, when cleaning is performed by the method shown in the present embodiment, the cleaning liquid octamethyltrisiloxane has a small surface tension, and therefore, liquid pool does not occur in the yatoy support portion, so that the cleaning is completed. . Furthermore, in this example, it was confirmed that the amount of the cleaning liquid taken out was small, and that it could be considerably reduced by slowing the pulling rate. In addition, the pulling rate is 30 with the same experimental method.
n = 20 even at mm / s, 50 mm / s, 70 mm / s
It was also confirmed that there was no problem in the evaluation.
【0028】以上のように、本実施例の洗浄方法を用い
ることによって、超精密用光学レンズにおいて洗浄が可
能であり、従来のものと比べても非常に効果があること
が確認された。すなわち、被洗浄物の形状や材質にとら
われずに洗浄でき、いかなる部分でも歩留まりよく洗浄
でき、さらに熱効率を向上させて熱消費量を低減し、ま
た精密洗浄の品質が確保でき、作業効率もよくなる。As described above, by using the cleaning method of this embodiment, it was confirmed that the optical lens for ultra-precision can be cleaned, and that it is very effective as compared with the conventional one. In other words, you can wash regardless of the shape and material of the object to be washed, you can wash any part with a good yield, further improve thermal efficiency to reduce heat consumption, and ensure the quality of precision cleaning and work efficiency .
【0029】さらに、本実施例の洗浄方法に加えて、被
洗浄物の浸漬工程に超音波をかけた方法も行った。ただ
し、超音波は引き上げ工程においては液面を静止させる
ために停止した。超音波をかけることにより細かい隙間
への洗浄液の浸入が容易になるため、浸漬工程の時間の
短縮が可能となった。この方法については、超音波以外
にも噴流、揺動等の物理力を用いても同様の作用による
効果が得られる。また、洗浄液としては上記実施例の他
にも表2に示す共沸洗浄液を用いてn=20の洗浄数で
かつ表1と同様の評価を行ったところ、いずれの洗浄液
を用いても不良の発生がなかった。Further, in addition to the cleaning method of this embodiment, a method of applying ultrasonic waves to the step of immersing the object to be cleaned was also performed. However, ultrasonic waves were stopped in the pulling up process in order to keep the liquid surface stationary. By applying ultrasonic waves, the cleaning liquid can easily penetrate into the fine gaps, and the dipping process time can be shortened. As for this method, the same effect can be obtained by using a physical force such as a jet flow or oscillation in addition to ultrasonic waves. Further, as an example of the cleaning liquid, an azeotropic cleaning liquid shown in Table 2 was used as the cleaning liquid, and the same evaluation as in Table 1 was carried out at the number of cleanings of n = 20. There was no occurrence.
【0030】[0030]
【表2】 [Table 2]
【0031】[0031]
【実施例2】本実施例では実施例1の洗浄方法に加え
て、洗浄液の温度を40℃に上げて洗浄を行った。浸漬
時間は1分で、洗浄液には有機ケイ素化合物であるヘキ
サメチルジシロキサンを用いた。ヘキサメチルジシロキ
サンの純度は、ガスクロマトグラフィによる測定で9
9.995wt%以下に精製されたものであった。比較
例としては実施例1と同様に純水を用いて洗浄を行っ
た。それぞれ同じ洗浄槽にて洗浄を行ったのだが、本実
施例に使用した洗浄液のヘキサメチルジシロキサンは比
熱が小さいため、本実施例では比較例と比べてほぼ2分
の1の時間で40℃に加温できた。さらに、ヘキサメチ
ルジシロキサンは蒸発しやすく、洗浄後の乾燥時間も比
較例に比べて5倍以上短縮できた。さらに、この洗浄液
は蒸発潜熱が小さいため、冷風での乾燥時に空気中の水
分が結露することなく乾燥したが、比較例の純水を用い
た洗浄方法で洗浄した物は、乾燥時に結露し冷風で乾燥
させることができなかった。Example 2 In this example, in addition to the cleaning method of Example 1, the temperature of the cleaning liquid was raised to 40 ° C. for cleaning. The immersion time was 1 minute, and hexamethyldisiloxane, which is an organosilicon compound, was used as the cleaning liquid. The purity of hexamethyldisiloxane is 9 as measured by gas chromatography.
It was purified to 9.995 wt% or less. As a comparative example, cleaning was performed using pure water as in Example 1. Cleaning was performed in the same cleaning tank, but since the specific heat of hexamethyldisiloxane of the cleaning liquid used in this example was small, in this example, it was 40 ° C. in about half the time of the comparative example. I was able to warm to. Further, hexamethyldisiloxane was easily evaporated, and the drying time after washing was shortened by 5 times or more as compared with the comparative example. Furthermore, since this cleaning liquid has a low latent heat of vaporization, it was dried without condensation of moisture in the air when dried with cold air, but the product washed by the cleaning method using the pure water of the comparative example was condensed with cold air. Could not be dried.
【0032】よって、本実施例は実施例1と同様の効果
が得られるとともに、比較例と比べて熱効率が良くな
り、さらに乾燥時間も短くなり、乾燥時の結露も無いと
いう効果が得られた。本実施例を実際の洗浄工程に応用
することで、光熱費が安価で済み、洗浄工程の時間短縮
をも図ることができる。Therefore, the present embodiment has the same effects as those of the first embodiment, the thermal efficiency is better than that of the comparative example, the drying time is shorter, and there is no dew condensation during the drying. . By applying this embodiment to the actual cleaning process, the utility cost can be reduced and the cleaning process time can be shortened.
【0033】また、本実施例の洗浄方法でアルミニウム
合金を洗浄してアタック性の試験を行った。アルミニウ
ム合金はその形状が50×50×2mmの板状で正方形の
面は鏡面で仕上げた物である。洗浄後、1時間放置し、
表面を20倍の実体顕微鏡で確認したところ、本洗浄方
法で洗浄したアルミニウム合金は清浄面でアタックは全
く見られなかったが、比較例ではアルミニウム表面がア
タックされ、鏡面が曇っていた。よって、本実施例の洗
浄方法により従来洗浄できなかった精密用鏡面アルミ材
料も洗浄できることが確認できた。Further, the aluminum alloy was cleaned by the cleaning method of the present example, and the attack test was conducted. The aluminum alloy has a plate shape of 50 × 50 × 2 mm, and the square surface is mirror finished. After washing, leave it for 1 hour,
When the surface was confirmed by a stereoscopic microscope with a magnification of 20 times, the aluminum alloy washed by this cleaning method did not show any attack on the clean surface, but in the comparative example, the aluminum surface was attacked and the mirror surface was clouded. Therefore, it was confirmed that the precision mirror surface aluminum material which could not be conventionally cleaned by the cleaning method of the present embodiment can also be cleaned.
【0034】なお、実施例1および実施例2において、
それぞれ被洗浄物の引上げ速度を70mm/sを越える速度
とした実験を行ったところ、被洗浄物の表面に洗浄液が
スポット状やブロック状に残り、乾燥プロセスでの濃縮
による塵埃の付着や前段の液の残りによるシミ等が生じ
てしまった。Incidentally, in Example 1 and Example 2,
When an experiment was performed with the pulling speed of the object to be cleaned exceeding 70 mm / s, the cleaning liquid remained in the form of spots or blocks on the surface of the object to be cleaned, and dust adhesion due to concentration in the drying process and Spots and the like due to the remaining liquid have occurred.
【0035】[0035]
【実施例3】本実施例は本発明の洗浄方法を用いた洗浄
機の例であり、図6を用いて説明する。 (構成)有機ケイ素化合物を主剤とした洗浄液11を貯
蔵し、オーバーフロー排液管12とドレン排液管13と
給液管14がそれぞれ配管接続された本槽24と、この
本槽24とクローズ配管系にて接続され、加熱コイル1
5を内蔵し、上記洗浄液11を補助的に貯蔵する予備槽
16と、本槽24と予備槽16との間をフィルタ17に
よりサブミクロンレベルでフィルタリング循環させる安
全増しポンプ18とにより、主な配管系を構成してい
る。[Embodiment 3] This embodiment is an example of a cleaning machine using the cleaning method of the present invention and will be described with reference to FIG. (Structure) A main tank 24 that stores a cleaning liquid 11 containing an organic silicon compound as a main component, and is connected to an overflow drain pipe 12, a drain drain pipe 13, and a liquid supply pipe 14, respectively, and this main tank 24 and a closed pipe System connected, heating coil 1
The main piping including the auxiliary tank 16 containing the cleaning solution 11 and the auxiliary tank 16 for auxiliary storage of the cleaning liquid 11 and the safety booster pump 18 which circulates between the main tank 24 and the auxiliary tank 16 by the filter 17 at a submicron level. It constitutes the system.
【0036】予備槽16内の加熱コイル15の内部に熱
媒を循環させ、その洗浄液11に急激な熱衝撃を与える
ことなく加熱可能な構造をなしている。被洗浄物を保持
した洗浄搬送治具19が搭載可能で、サーボモータ20
を駆動源とし、その回転運動を上下方向直線運動に変換
する送りねじ21により上下運動をする昇降台22があ
り、被洗浄物の液面部の形状による最適な引き上げ速度
にて動作するように、コントロールボックス23により
移動距離(現在位置)と引き上げ速度を管理している。
また、洗浄液11から引き上げた後の被洗浄物に形成さ
れた薄膜状の乾燥液の乾燥を促進するために、温風をあ
てる乾燥補助手段としてのエアブロー25も設置されて
いる。A heating medium is circulated in the heating coil 15 in the preliminary tank 16 so that the cleaning liquid 11 can be heated without a sudden thermal shock. A cleaning / transporting jig 19 holding an object to be cleaned can be mounted on the servo motor 20.
There is an elevating table 22 which moves up and down by a feed screw 21 which converts the rotational movement into a linear movement in the vertical direction, so that it operates at an optimum pulling speed depending on the shape of the liquid surface of the object to be cleaned. The control box 23 manages the moving distance (current position) and the pulling speed.
Further, in order to accelerate the drying of the thin film-shaped drying liquid formed on the object to be cleaned after being pulled up from the cleaning liquid 11, an air blow 25 as a drying assisting means for applying warm air is also installed.
【0037】(作用)洗浄機本体の搬送系により、洗浄
搬送治具19が本槽24の上方の受け渡し高さまで搬送
され、この場所で被洗浄物のセットされた洗浄搬送治具
19を洗浄機本体の搬送系から本乾燥装置の昇降台22
へ受け渡し、浸漬乾燥作業が開始される。サーボモータ
20の回転力が送りねじ21により往復運動に変換さ
れ、これにより洗浄搬送治具19が搭載された昇降台2
2は下降し、被洗浄物が洗浄液11に浸漬する。この
際、洗浄液11は熱媒の流れる加熱コイル15により伝
熱加熱され、所定の温度に加熱されており、循環ポンプ
18および0.5μmメッシュのフィルタ17によりサ
ブミクロンレベルの塵埃等の不純物も除去された状態で
ある。(Operation) The cleaning / transporting jig 19 is transported to the delivery height above the main tank 24 by the transporting system of the main body of the cleaning machine, and the cleaning / transporting jig 19 in which the object to be cleaned is set is washed at this location. From the main body transport system to the lifting platform 22 of the dryer
And the soaking and drying work is started. The rotating force of the servo motor 20 is converted into a reciprocating motion by the feed screw 21, and as a result, the lifting table 2 on which the cleaning and transporting jig 19 is mounted.
2 descends, and the object to be cleaned is immersed in the cleaning liquid 11. At this time, the cleaning liquid 11 is heat-transfer-heated by the heating coil 15 through which the heating medium flows and is heated to a predetermined temperature, and impurities such as dust at the submicron level are also removed by the circulation pump 18 and the filter 17 of 0.5 μm mesh. It is in the state of being
【0038】浸漬した昇降台22は所定時間浸漬の後、
その高さごとの最適な上昇速度になるようコントロール
ボックス23により制御されながら上昇する。さらに昇
降台22は、コントロールボックス23によって、被洗
浄物の形状や材質に応じて最適に上昇速度を設定されて
いる。完全に上昇した後に被洗浄物に付着した薄膜状の
乾燥液の乾燥を促進するためにエアブロー25が施され
る。The soaked lift table 22 is soaked for a predetermined time and then
The ascending speed is controlled while being controlled by the control box 23 so as to have an optimum ascending speed for each height. Further, the lifting speed of the lift table 22 is optimally set by the control box 23 according to the shape and material of the object to be cleaned. After completely rising, an air blow 25 is performed to accelerate the drying of the thin film-shaped drying liquid attached to the object to be cleaned.
【0039】(効果)実施例1と同様の効果が得られる
とともに、被洗浄物の性状(表面積や表面粗さ等)とに
起因する乾燥液面からの最適引き上げ速度の変化に対し
てタイムリーに対応でき、乾燥工程内の不良の低減が実
現できる。(Effects) The same effects as in Example 1 are obtained, and timely changes with respect to changes in the optimum pulling rate from the dry liquid surface due to the properties (surface area, surface roughness, etc.) of the object to be cleaned. It is possible to reduce the number of defects in the drying process.
【0040】なお、上記実施例では洗浄液としてオクタ
メチルトリシロキサン、ヘキサメチルジシロキサンを用
いたが、このような有機ケイ素化合物の他に、低分子ポ
リオルガノシロキサンと炭化水素の混合物や、低分子ポ
リオルガノシロキサンとアルコールの混合物、低分子ポ
リオルガノシロキサンとエステル類の混合物のいずれを
用いても良く、この場合には特に共沸組成にて用いるの
が良い。In the above examples, octamethyltrisiloxane and hexamethyldisiloxane were used as the cleaning liquid. However, in addition to such organosilicon compounds, a mixture of low molecular weight polyorganosiloxane and hydrocarbon, or low molecular weight polysiloxane. Either a mixture of an organosiloxane and an alcohol or a mixture of a low molecular weight polyorganosiloxane and an ester may be used, and in this case, an azeotropic composition is particularly preferable.
【0041】ここで使われる炭化水素としては、炭素数
が6〜12のパラフィン系、イソパラフィン系、ナフテ
ン系の炭化水素が挙げられ、アルコールとしては炭素数
2〜10のアルコールが挙げられ、またエステル類とし
ては、炭素数1〜6のカルボン酸と炭素数1〜4のアル
コールのエステルが挙げられる。The hydrocarbons used here include paraffinic, isoparaffinic and naphthenic hydrocarbons having 6 to 12 carbon atoms, and the alcohols include alcohols having 2 to 10 carbon atoms and esters. Examples of the class include esters of carboxylic acids having 1 to 6 carbon atoms and alcohols having 1 to 4 carbon atoms.
【0042】[0042]
【発明の効果】以上のように、請求項1〜4に係る発明
の精密洗浄方法および洗浄装置によれば、被洗浄物の形
状や材質にとらわれず、いかなる部分にも歩留まりよく
洗浄でき、さらに熱効率を向上させて熱消費量を低減
し、さらに精密洗浄品質確保でき、作業効率が向上す
る。また特に、請求項2に係る発明のように、使用する
洗浄液の組成を規定したことにより、上記効果に加え、
さらに洗浄能力を向上することができる。また特に、請
求項3に係る発明のように、使用する洗浄液の純度を規
定したことにより、上記効果に加え、さらに洗浄能力を
向上することができる。As described above, according to the precision cleaning method and the cleaning apparatus of the present invention according to claims 1 to 4, it is possible to clean any portion with good yield regardless of the shape and material of the object to be cleaned. The heat efficiency is improved, the heat consumption is reduced, the precision cleaning quality can be secured, and the work efficiency is improved. Further, in particular, by defining the composition of the cleaning liquid used as in the invention according to claim 2, in addition to the above effect,
Further, the cleaning ability can be improved. Further, in particular, as in the invention according to claim 3, by defining the purity of the cleaning liquid to be used, in addition to the above effects, the cleaning ability can be further improved.
【図1】本発明の精密洗浄方法を概念的に示す工程図で
ある。FIG. 1 is a process diagram conceptually showing the precision cleaning method of the present invention.
【図2】本発明の精密洗浄方法の作用を説明するための
引き上げ工程の側面図である。FIG. 2 is a side view of the lifting step for explaining the operation of the precision cleaning method of the present invention.
【図3】従来の洗浄方法による引き上げ工程の正面図で
ある。FIG. 3 is a front view of a pulling step by a conventional cleaning method.
【図4】実施例1の被洗浄物の支持状態を示す正面図で
ある。FIG. 4 is a front view showing a supported state of an object to be cleaned according to the first embodiment.
【図5】比較例による洗浄結果を示す被洗浄物の正面図
である。FIG. 5 is a front view of an object to be cleaned showing a cleaning result according to a comparative example.
【図6】実施例3の洗浄装置を示す概略構成図である。FIG. 6 is a schematic configuration diagram showing a cleaning device according to a third embodiment.
1,11 洗浄液 2 洗浄槽 3 被洗浄物 4 シミ 5 汚れ 16 予備槽 17 フィルタ 19 洗浄搬送治具 20 サーボモータ 22 昇降台 23 コントロールボックス 24 本槽 25 エアブロー 1, 11 Cleaning liquid 2 Cleaning tank 3 Cleaning object 4 Stain 5 Dirt 16 Preliminary tank 17 Filter 19 Cleaning and conveying jig 20 Servo motor 22 Elevating table 23 Control box 24 Main tank 25 Air blow
Claims (4)
した洗浄液に浸漬する工程と、前記洗浄液に浸漬した被
洗浄物を70mm/s以下の引き上げ速度で洗浄液界面より
引き上げる工程とを備えたことを特徴とする精密洗浄方
法。1. A step of immersing the object to be cleaned in a cleaning solution containing an organic silicon compound as a main component, and a step of lifting the object to be cleaned immersed in the cleaning solution from the interface of the cleaning solution at a lifting speed of 70 mm / s or less. A precision cleaning method characterized by the above.
有機ケイ素化合物が一般式化1 【化1】 で表される直鎖状ポリオルガノシロキサンおよび一般式
化2 【化2】 で表される環状ポリオルガノシロキサンより選ばれた少
なくとも1種の低分子量ポリオルガノシロキサンよりな
ることを特徴とする精密洗浄方法。2. The precision cleaning method according to claim 1, wherein
Organosilicon compounds have the general formula 1 The linear polyorganosiloxane represented by A precision cleaning method comprising at least one low molecular weight polyorganosiloxane selected from the cyclic polyorganosiloxanes represented by
洗浄液の純度が99.9wt%以上であることを特徴と
する精密洗浄方法。3. The precision cleaning method according to claim 2, wherein
A precision cleaning method, wherein the cleaning liquid has a purity of 99.9 wt% or more.
を貯蔵するタンクと、この洗浄液を循環しながら精密濾
過処理し、清浄な液を給水する循環機器と、被洗浄物を
70mm/s以下の引き上げ速度で液面から引き上げる引き
上げ機構と、引き上げられた被洗浄物の乾燥を促進する
乾燥補助手段と、洗浄装置の制御を行う制御ユニットと
を具備したことを特徴とする精密洗浄装置。4. A tank for storing a cleaning liquid containing an organosilicon compound as a main component, a circulation device for performing microfiltration while circulating this cleaning liquid to supply a clean liquid, and an object to be cleaned of 70 mm / s or less. A precision cleaning device comprising: a lifting mechanism for lifting from the liquid surface at a lifting speed; a drying assisting means for promoting drying of the lifted object to be cleaned; and a control unit for controlling the cleaning device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11959094A JP3518892B2 (en) | 1994-05-09 | 1994-05-09 | Precision cleaning method and cleaning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11959094A JP3518892B2 (en) | 1994-05-09 | 1994-05-09 | Precision cleaning method and cleaning device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07299426A true JPH07299426A (en) | 1995-11-14 |
JP3518892B2 JP3518892B2 (en) | 2004-04-12 |
Family
ID=14765144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11959094A Expired - Fee Related JP3518892B2 (en) | 1994-05-09 | 1994-05-09 | Precision cleaning method and cleaning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3518892B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012018167A (en) * | 2010-07-09 | 2012-01-26 | Leica Biosystems Nussloch Gmbh | Method of reducing droplet entrainment in dyeing device |
JP2020037726A (en) * | 2018-09-05 | 2020-03-12 | 株式会社トクヤマMetel | Method of cleaning metallic article |
-
1994
- 1994-05-09 JP JP11959094A patent/JP3518892B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012018167A (en) * | 2010-07-09 | 2012-01-26 | Leica Biosystems Nussloch Gmbh | Method of reducing droplet entrainment in dyeing device |
JP2020037726A (en) * | 2018-09-05 | 2020-03-12 | 株式会社トクヤマMetel | Method of cleaning metallic article |
Also Published As
Publication number | Publication date |
---|---|
JP3518892B2 (en) | 2004-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0496899B1 (en) | Method for cleaning | |
CA2040989A1 (en) | Washing/drying method and apparatus | |
US7980000B2 (en) | Vapor dryer having hydrophilic end effector | |
JPH0349627B2 (en) | ||
JPH07275813A (en) | Method for cleaning and device therefor | |
JP3518892B2 (en) | Precision cleaning method and cleaning device | |
EP0523678A2 (en) | Washing method | |
EP0846334B1 (en) | Procedure for drying substrates | |
JP3530639B2 (en) | Precision cleaning method | |
JP7507462B2 (en) | Method for cleaning metal articles | |
JP2000038598A (en) | Composition for drain drying and drain drying method therewith | |
JPH10195080A (en) | Azeotropic composition, and agent, method and apparatus for steam drying after water removing, using the same | |
CN1220193A (en) | No-watermark generating method and its device | |
Stowers et al. | Cleaning optical surfaces | |
JP2756381B2 (en) | Cleaning method | |
JP4357014B2 (en) | Drainer cleaning method and apparatus | |
JPH07265817A (en) | Method for cleaning method and device therefor | |
JP5494263B2 (en) | Drainer drying method and drainer drying system | |
JPH06230325A (en) | Method for cleaning optical component | |
JPH1071373A (en) | Washing method | |
JPH1176959A (en) | Finish cleaning | |
JPH0550046A (en) | Dewatering and drying method after cleaning high polymer body | |
JP2951862B2 (en) | Cleaning method | |
KR970002044B1 (en) | Detergent and drying compositions and their method | |
JP2008304120A (en) | Dripping dryer and its method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030826 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040127 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090206 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090206 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100206 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110206 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |