JPH07297274A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH07297274A
JPH07297274A JP8844994A JP8844994A JPH07297274A JP H07297274 A JPH07297274 A JP H07297274A JP 8844994 A JP8844994 A JP 8844994A JP 8844994 A JP8844994 A JP 8844994A JP H07297274 A JPH07297274 A JP H07297274A
Authority
JP
Japan
Prior art keywords
film
silicon oxide
semiconductor substrate
oxide film
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8844994A
Other languages
Japanese (ja)
Inventor
Hiroshi Gojiyoubori
博 五條堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8844994A priority Critical patent/JPH07297274A/en
Publication of JPH07297274A publication Critical patent/JPH07297274A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for forming a buried element isolation region without causing any cracks on a semiconductor substrate by relaxing the concentration of abrasion pressure. CONSTITUTION:A groove part formed on a semiconductor substrate 11 is buried by a second silicon oxide film 16. A first polycrystalline silicon film 13 which becomes a stopper film on abrasion is formed at the element region of the semiconductor substrate 11 and at the same time a second polycrystalline silicon film 17 is formed selectively at the element isolation region. Then, a third silicon oxide film 18 is deposited on an entire surface and the recessed and projecting shape of the second silicon oxide film 16 is relaxed and then abraded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に埋め込み型素子分離方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a buried element isolation method.

【0002】[0002]

【従来の技術】半導体装置における素子分離方法とし
て、一般にLOCOS法等が用いられている。しかしL
OCOS法による素子分離では微細化するに限界であ
り、より微細化を進めるものとして埋め込み型素子分離
方法が提案されている。以下、従来の埋め込み型素子分
離方法を図7乃至図10を参照して説明する。
2. Description of the Related Art The LOCOS method or the like is generally used as an element isolation method in a semiconductor device. But L
The element isolation by the OCOS method has a limit to miniaturization, and an embedded element isolation method has been proposed as a method for further miniaturization. Hereinafter, a conventional embedded device isolation method will be described with reference to FIGS.

【0003】半導体基板101上に第1のシリコン酸化
膜102を250オングストロ−ム(以下、Aと記す)
形成し、その後、第1の多結晶シリコン膜103を40
00A堆積する。全面にレジストを塗布し、リソグラフ
ィ法により所望のレジストパタ−ン104を形成する
(図7)。
A first silicon oxide film 102 is formed on a semiconductor substrate 101 by 250 Å (hereinafter referred to as A).
Then, the first polycrystalline silicon film 103 is formed by 40
00A is deposited. A resist is applied on the entire surface, and a desired resist pattern 104 is formed by the lithography method (FIG. 7).

【0004】次に、レジストパタ−ン104をマスクに
用いて、多結晶シリコン膜103、第1のシリコン酸化
膜102を順次エッチングし、更に半導体基板101を
エッチングして素子分離領域となる溝部105を形成す
る(図8)。
Next, using the resist pattern 104 as a mask, the polycrystalline silicon film 103 and the first silicon oxide film 102 are sequentially etched, and the semiconductor substrate 101 is further etched to form a groove portion 105 to be an element isolation region. Formed (FIG. 8).

【0005】その後、レジストパタ−ン104を除去
し、気相成長法を用いて第2のシリコン酸化膜106を
1μm堆積して溝部105を充填する。その際、下地形
状に応じて第2のシリコン酸化膜106の表面には凹凸
ができる。そこで、凹部の第2のシリコン酸化膜106
上に第2の多結晶シリコン膜107を例えば2000A
形成する(図9)。
After that, the resist pattern 104 is removed, and a second silicon oxide film 106 is deposited to a thickness of 1 μm by a vapor phase growth method to fill the groove 105. At that time, irregularities are formed on the surface of the second silicon oxide film 106 depending on the shape of the base. Therefore, the second silicon oxide film 106 in the recess is formed.
A second polycrystalline silicon film 107, for example, 2000A is formed on the upper surface.
Formed (FIG. 9).

【0006】その後、第2のシリコン酸化膜106を多
結晶シリコン膜103と第2の多結晶シリコン膜107
とが露出するまで研磨する(図10)。次に、異方性エ
ッチング法を用いて、多結晶シリコン膜103及び第2
の多結晶シリコン膜107、続いてシリコン酸化膜10
2を除去して、素子分離領域が形成される。
After that, the second silicon oxide film 106 is formed on the polycrystalline silicon film 103 and the second polycrystalline silicon film 107.
Polish until and are exposed (FIG. 10). Next, by using an anisotropic etching method, the polycrystalline silicon film 103 and the second
Polycrystalline silicon film 107, followed by silicon oxide film 10
2 is removed to form an element isolation region.

【0007】埋め込み型素子分離領域を形成するには、
研磨及びエッチングを行う必要がある。まず、研磨を行
う際に、素子領域部分を研磨材に対して埋込材(第2の
シリコン酸化膜106)より選択比の高い材料(第1の
多結晶シリコン膜103)で覆い研磨をストップさせ、
更に、素子分離領域部分も埋込材の落ち込みを防ぐた
め、素子領域と同様の材料(第2の多結晶シリコン膜1
07)で覆い研磨をストップさせている。
To form a buried element isolation region,
It is necessary to carry out polishing and etching. First, when polishing is performed, the element region portion is covered with a material (first polycrystalline silicon film 103) having a higher selection ratio than the embedding material (second silicon oxide film 106) with respect to the polishing material, and the polishing is stopped. Let
Furthermore, in order to prevent the burying material from dropping in the element isolation region, the same material as the element region (second polycrystalline silicon film 1
07) to stop the polishing.

【0008】このように、素子領域及び素子分離領域と
も、第1の多結晶シリコン膜103及び第2の多結晶シ
リコン膜104により研磨過多を防止している。しかし
ながら、第2のシリコン酸化膜106の表面は凹凸があ
るため、図11に示す様に、凸部のエッジ部分に局部的
な研磨圧力が集中する。そのため、そのエッジ部分の研
磨速度は早くなり、半導体基板が削れる現象が起こる。
As described above, overpolishing is prevented by the first polycrystalline silicon film 103 and the second polycrystalline silicon film 104 in both the element region and the element isolation region. However, since the surface of the second silicon oxide film 106 has irregularities, as shown in FIG. 11, the local polishing pressure concentrates on the edge portions of the convex portions. Therefore, the polishing rate of the edge portion is increased, and the phenomenon that the semiconductor substrate is scraped occurs.

【0009】[0009]

【発明が解決しようとする課題】上述のように、埋め込
み型素子分離領域を形成する際に、平坦化を研磨で行っ
た場合に、埋め込み素子分離領域のパタ−ンやストッパ
−構造に起因して、研磨圧力の集中が起こる。そのた
め、半導体基板の素子領域部分が削れることがあり問題
である。
As described above, when the buried element isolation region is formed, when the planarization is performed by polishing, the pattern of the buried element isolation region and the stopper structure are caused. As a result, the polishing pressure is concentrated. Therefore, the element region of the semiconductor substrate may be scraped, which is a problem.

【0010】それ故に、本発明は、埋め込み型素子分離
領域を形成する際に、研磨圧力の集中を緩和して、半導
体基板の削れを生じることなく、良好に研磨することが
可能な半導体装置の製造方法を提供することが目的であ
る。
Therefore, the present invention is directed to a semiconductor device capable of satisfactorily polishing the semiconductor substrate by relaxing the concentration of the polishing pressure when forming the buried element isolation region and without causing the semiconductor substrate to be abraded. It is an object to provide a manufacturing method.

【0011】[0011]

【課題を解決するための手段】本発明による半導体装置
の製造方法は、半導体基板上に第1のストッパ−膜を形
成する工程と、上記第1のストッパ−膜と上記半導体基
板とを選択的にエッチングして、上記半導体基板に溝部
を形成する工程と、上記溝部を埋め込むと共に全面に第
1の絶縁膜を形成する工程と、上記第1の絶縁膜上に選
択的に第2のストッパ−膜を形成する工程と、主面上に
第2の絶縁膜を形成する工程と、上記第2の絶縁膜及び
上記第1の絶縁膜を上記第1のストッパ−膜及び上記第
2のストッパ−膜が露出するまで研磨する工程とを含
む。
A method of manufacturing a semiconductor device according to the present invention comprises a step of forming a first stopper film on a semiconductor substrate, and a step of selectively selecting the first stopper film and the semiconductor substrate. Etching to form a groove in the semiconductor substrate, a step of filling the groove and forming a first insulating film on the entire surface, and a second stopper selectively on the first insulating film. A step of forming a film, a step of forming a second insulating film on the main surface, and a step of forming the second insulating film and the first insulating film in the first stopper film and the second stopper film. Polishing until the film is exposed.

【0012】[0012]

【作用】上記方法によれば、上記溝部のパタ−ンにより
必然的にできる上記第1の絶縁膜の段差形状は、その上
に上記第2の絶縁膜を形成することにより、段差を緩和
することができる。従って、研磨圧力は局部的に集中す
ることなく、均一に研磨を施すことができる。
According to the above method, the stepped shape of the first insulating film, which is inevitably formed by the pattern of the groove portion, is mitigated by forming the second insulating film on the stepped shape. be able to. Therefore, the polishing pressure can be uniformly applied without being locally concentrated.

【0013】[0013]

【実施例】以下、本発明の一実施例を図1乃至図5を用
いて説明する。まず、半導体基板11上に第1のシリコ
ン酸化膜12を250A形成し、続いて第1の多結晶シ
リコン膜13を4000A堆積する。第1の多結晶シリ
コン膜13上にレジストを塗布し、リソグラフィ法を用
いて、所望の形状のレジストパタ−ン14を形成する。
(図1)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. First, 250 A of the first silicon oxide film 12 is formed on the semiconductor substrate 11, and subsequently 4000 A of the first polycrystalline silicon film 13 is deposited. A resist is applied on the first polycrystalline silicon film 13, and a resist pattern 14 having a desired shape is formed by using a lithography method.
(Figure 1).

【0014】その後、レジストパタ−ン14をマスクに
用いて、第1の多結晶シリコン膜13、第1のシリコン
酸化膜12及び半導体基板11を順次エッチングして埋
め込み型素子分離領域となる溝部15を形成する(図
2)。
Thereafter, using the resist pattern 14 as a mask, the first polycrystalline silicon film 13, the first silicon oxide film 12 and the semiconductor substrate 11 are sequentially etched to form a groove portion 15 which will become a buried element isolation region. Form (Fig. 2).

【0015】レジストパタ−ン14を除去後、気相成長
法を用いて第2のシリコン酸化膜16を1μm堆積し
て、溝部15を埋め込む。その際に、第2のシリコン酸
化膜16の表面は溝部15のパタ−ンに起因して凹凸形
状となる(図3)。
After removing the resist pattern 14, a second silicon oxide film 16 is deposited to a thickness of 1 μm by the vapor phase growth method to fill the groove 15. At that time, the surface of the second silicon oxide film 16 becomes uneven due to the pattern of the groove 15 (FIG. 3).

【0016】次に、第2の多結晶シリコン膜17を20
00A堆積し、パタ−ニングを施して第2のシリコン酸
化膜16の凹部を被覆する。その後、全面に第3のシリ
コン酸化膜18を堆積し、第2のシリコン酸化膜16の
凹凸形状を緩和させる。第3のシリコン酸化膜18は、
第2のシリコン酸化膜16と同程度の膜厚に形成されま
た研磨材に対する選択比もほぼ同じであることが望まし
い(図4)。
Next, the second polycrystalline silicon film 17 is formed to 20
00A is deposited and patterned to cover the concave portion of the second silicon oxide film 16. After that, the third silicon oxide film 18 is deposited on the entire surface to relax the uneven shape of the second silicon oxide film 16. The third silicon oxide film 18 is
It is desirable that the second silicon oxide film 16 is formed to have a film thickness similar to that of the second silicon oxide film 16 and that the selection ratio with respect to the polishing material is substantially the same (FIG. 4).

【0017】この状態で、第3のシリコン酸化膜18及
び第2のシリコン酸化膜16を第1の多結晶シリコン膜
13及び第2の多結晶シリコン膜17が露出するまで研
磨する(図5)。次に、第1の多結晶シリコン膜13と
第2の多結晶シリコン膜17と第1のシリコン酸化膜1
2とをエッチングにより除去し素子分離領域が形成され
る。
In this state, the third silicon oxide film 18 and the second silicon oxide film 16 are polished until the first polycrystalline silicon film 13 and the second polycrystalline silicon film 17 are exposed (FIG. 5). . Next, the first polycrystalline silicon film 13, the second polycrystalline silicon film 17, and the first silicon oxide film 1
2 is removed by etching to form an element isolation region.

【0018】図6に研磨時の圧力分布を示す。(1)〜
(5)の各実線は研磨状態の推移を示すものである。
(1)の段階では凸部のエッジ部分に研磨圧力は集中し
ているが、(2)〜(3)の段階を経るにしたがい研磨
圧力は均一化され、(4)の段階ではほぼ均一となり、
(5)の段階となり第1の多結晶シリコン膜13及び第
2の多結晶シリコン膜17とがストッパ−膜となって研
磨が終了する。従って、半導体基板11が削られること
もなく良好に研磨される。
FIG. 6 shows the pressure distribution during polishing. (1) ~
Each solid line in (5) shows the transition of the polishing state.
At the stage of (1), the polishing pressure is concentrated on the edge portion of the convex portion, but the polishing pressure becomes uniform as it goes through the stages of (2) to (3), and becomes almost uniform at the stage of (4). ,
At the stage of (5), the first polycrystalline silicon film 13 and the second polycrystalline silicon film 17 serve as stopper films, and polishing is completed. Therefore, the semiconductor substrate 11 is polished well without being scraped.

【0019】尚、ストッパ−膜として多結晶シリコン膜
に限ることなく、シリコン窒化膜、多結晶シリコン膜、
カ−ボン膜、高融点金属膜もしくは高融点金属のシリサ
イド膜を用いることができ、単層膜あるいは積層膜とす
ることができる。
The stopper film is not limited to the polycrystalline silicon film, but may be a silicon nitride film, a polycrystalline silicon film,
A carbon film, a refractory metal film or a refractory metal silicide film can be used, and a single layer film or a laminated film can be used.

【0020】[0020]

【発明の効果】本方法によれば、素子分離領域となる溝
部を充填する絶縁膜の表面が断差形状であっても、更に
絶縁膜を形成することにより、研磨圧力の集中が緩和さ
れる。それゆえ、半導体基板をけずることもなく、埋め
込み型素子分離領域を形成することができる。
According to the method of the present invention, even if the surface of the insulating film that fills the groove to be the element isolation region has a differential shape, the concentration of the polishing pressure is alleviated by further forming the insulating film. . Therefore, the buried element isolation region can be formed without breaking the semiconductor substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体装置の製造方法を示す第1
の工程断面図である。
FIG. 1 shows a first method for manufacturing a semiconductor device according to the present invention.
FIG.

【図2】本発明による半導体装置の製造方法を示す第2
の工程断面図である。
FIG. 2 is a second diagram showing a method for manufacturing a semiconductor device according to the present invention.
FIG.

【図3】本発明による半導体装置の製造方法を示す第3
の工程断面図である。
FIG. 3 is a third view showing a method for manufacturing a semiconductor device according to the present invention.
FIG.

【図4】本発明による半導体装置の製造方法を示す第4
の工程断面図である。
FIG. 4 is a fourth view showing a method for manufacturing a semiconductor device according to the present invention.
FIG.

【図5】本発明による半導体装置の製造方法を示す第5
の工程断面図である。
FIG. 5 shows a fifth method for manufacturing a semiconductor device according to the present invention.
FIG.

【図6】本発明における研磨時の圧力分布を示す図であ
る。
FIG. 6 is a diagram showing a pressure distribution during polishing in the present invention.

【図7】従来の半導体装置の製造方法を示す第1の工程
断面図である。
FIG. 7 is a first process sectional view showing the method of manufacturing the conventional semiconductor device.

【図8】従来の半導体装置の製造方法を示す第2の工程
断面図である。
FIG. 8 is a second process sectional view showing the method of manufacturing the conventional semiconductor device.

【図9】従来の半導体装置の製造方法を示す第3の工程
断面図である。
FIG. 9 is a third process sectional view showing the method of manufacturing the conventional semiconductor device.

【図10】従来の半導体装置の製造方法を示す第4の工
程断面図である。
FIG. 10 is a fourth process sectional view showing the method of manufacturing the conventional semiconductor device.

【図11】従来における研磨時の圧力分布を示す図であ
る。
FIG. 11 is a diagram showing a conventional pressure distribution during polishing.

【符号の説明】[Explanation of symbols]

11…半導体基板、12…第1のシリコン酸化膜 13…第1の多結晶シリコン膜、14…レジストパタ−
ン 15…溝部、16…第2のシリコン酸化膜 17…第2の多結晶シリコン膜、18…第3のシリコン
酸化膜
11 ... Semiconductor substrate, 12 ... First silicon oxide film 13 ... First polycrystalline silicon film, 14 ... Resist pattern
15 ... Groove portion, 16 ... Second silicon oxide film 17 ... Second polycrystalline silicon film, 18 ... Third silicon oxide film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に第1の被膜を形成する工
程と、 上記第1の被膜と上記半導体基板とを選択的にエッチン
グして、上記半導体基板に溝部を形成する工程と、 上記溝部を埋め込むように上記第1の被膜上に第1の絶
縁膜を形成する工程と、 上記第1の絶縁膜上に選択的に第2の被膜を形成する工
程と、 少なくとも上記第2の被膜上に第2の絶縁膜を形成する
工程と、 上記第2の絶縁膜及び上記第1の絶縁膜を上記第1の被
膜及び上記第2の被膜が露出するまで研磨する工程とを
具備することを特徴とする半導体装置の製造方法。
1. A step of forming a first coating film on a semiconductor substrate, a step of selectively etching the first coating film and the semiconductor substrate to form a groove portion in the semiconductor substrate, and the groove portion. A step of forming a first insulating film on the first coating film so as to bury it, a step of selectively forming a second coating film on the first insulating film, and at least on the second coating film. A step of forming a second insulating film on the substrate, and a step of polishing the second insulating film and the first insulating film until the first coating and the second coating are exposed. A method for manufacturing a characteristic semiconductor device.
【請求項2】 上記第1の被膜は、絶縁膜若しくは絶縁
膜と半導体膜との積層膜であることを特徴とする請求項
1記載の半導体装置の製造方法。
2. The method for manufacturing a semiconductor device according to claim 1, wherein the first coating film is an insulating film or a laminated film of an insulating film and a semiconductor film.
【請求項3】 上記第2の被膜は、シリコン窒化膜、多
結晶シリコン膜、カ−ボン膜、高融点金属膜もしくは高
融点金属のシリサイド膜であることを特徴とする請求項
1記載の半導体装置の製造方法。
3. The semiconductor according to claim 1, wherein the second film is a silicon nitride film, a polycrystalline silicon film, a carbon film, a refractory metal film or a refractory metal silicide film. Device manufacturing method.
JP8844994A 1994-04-26 1994-04-26 Manufacture of semiconductor device Pending JPH07297274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8844994A JPH07297274A (en) 1994-04-26 1994-04-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8844994A JPH07297274A (en) 1994-04-26 1994-04-26 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH07297274A true JPH07297274A (en) 1995-11-10

Family

ID=13943116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8844994A Pending JPH07297274A (en) 1994-04-26 1994-04-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH07297274A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100414742B1 (en) * 1996-12-20 2004-03-31 주식회사 하이닉스반도체 Method for forming isolation layer of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100414742B1 (en) * 1996-12-20 2004-03-31 주식회사 하이닉스반도체 Method for forming isolation layer of semiconductor device

Similar Documents

Publication Publication Date Title
US5851899A (en) Gapfill and planarization process for shallow trench isolation
EP0284840B1 (en) Method for forming uniform layers of material
US6239499B1 (en) Consistent alignment mark profiles on semiconductor wafers using PVD shadowing
EP0637065A2 (en) Chemical mechanical planarization of shallow trenches in semiconductor substrates
JP2687948B2 (en) Method for manufacturing semiconductor device
KR0133264B1 (en) Fabricating method of semiconductor device
US5863828A (en) Trench planarization technique
US6060787A (en) Consistent alignment mark profiles on semiconductor wafers using fine grain tungsten protective layer
JP3302142B2 (en) Method for manufacturing semiconductor device
JPH03295239A (en) Manufacture of semiconductor device
US6103581A (en) Method for producing shallow trench isolation structure
JPH07297274A (en) Manufacture of semiconductor device
JP3116879B2 (en) Method for manufacturing semiconductor device
JP3311486B2 (en) Integrated circuit planarization method
US6897121B2 (en) Method of removing HDP oxide deposition
JP3097630B2 (en) Method for manufacturing semiconductor device
JPH0621054A (en) Manufacture of integrated circuit provided with flattened polycrystalline silicon gate
US6214691B1 (en) Method for forming shallow trench isolation
JPH05182885A (en) Manufacture of semiconductor device
US7256100B2 (en) Manufacturing method of semiconductor device having trench type element isolation
KR100607331B1 (en) Method for forming bit line in semiconductor device
KR100190065B1 (en) Trench isolation method
JPH0846032A (en) Manufacture of semiconductor device
JPH056935A (en) Manufacture of semiconductor device provided with groove filling step
KR100312647B1 (en) Planarization method of semiconductor device