JPH07296654A - Manufacture of oxide superconductor - Google Patents

Manufacture of oxide superconductor

Info

Publication number
JPH07296654A
JPH07296654A JP10765294A JP10765294A JPH07296654A JP H07296654 A JPH07296654 A JP H07296654A JP 10765294 A JP10765294 A JP 10765294A JP 10765294 A JP10765294 A JP 10765294A JP H07296654 A JPH07296654 A JP H07296654A
Authority
JP
Japan
Prior art keywords
wire
base material
oxide
tape
critical current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10765294A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tanaka
吉秋 田中
Toshihisa Asano
稔久 浅野
Fumiaki Matsumoto
文明 松本
Hiroshi Maeda
弘 前田
Tomoyuki Yanagiya
知之 柳谷
Masayuki Ishizuka
正之 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Sumitomo Heavy Industries Ltd
Original Assignee
National Research Institute for Metals
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals, Sumitomo Heavy Industries Ltd filed Critical National Research Institute for Metals
Priority to JP10765294A priority Critical patent/JPH07296654A/en
Publication of JPH07296654A publication Critical patent/JPH07296654A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve plastic processability togetherwith a mechanical strength and superconductive characteristics, in manufacture of a superconductive wire rod in which a base material, such as a sheath material, is used. CONSTITUTION:A silver copper alloy added with titanium is used as a base material. Critical current density is increased in a range containing 0.05-90 atom % Cu and 0.01-0.4 atom % Ti.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願発明は、酸化物超電導体の複
合線材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a composite wire of oxide superconductor.

【0002】[0002]

【従来の技術】従来より、Y,Bi系等の酸化物超電導導
体については、超電導特性、特に臨界電流密度Jc特性を
向上させるために様々な検討がなされてきており、これ
までに種々の製造方法が模索されている。
2. Description of the Related Art Conventionally, various studies have been made on oxide superconductors such as Y and Bi series in order to improve superconducting properties, particularly critical current density Jc properties, and various manufacturing processes have been conducted so far. Ways are being sought.

【0003】たとえば、純銀パイプに酸化物の原料粉末
を充填し、塑性加工と焼結処理を行う複合加工法や、純
銀基盤上にペースト状の酸化物を塗布し、乾燥させた後
に熱処理を行うドクターブレード法などが知られてい
る。
For example, a composite processing method in which a raw material powder of an oxide is filled in a pure silver pipe and a plastic working and a sintering process is performed, or a paste-like oxide is applied on a pure silver base, dried and then heat treated. The doctor blade method is known.

【0004】そのなかで複合線材加工法は、Bi系酸化物
超電導体の線材作製法として有力視されている。この製
法は、純銀シース中に大気中で仮焼した原料酸化物を詰
め、塑性加工により、種々の断面形状を有する細線を得
る。細線をテープ状に圧延加工し、高温の焼結熱処理を
施して超電導線材を作製する方法である。
Among them, the composite wire processing method is regarded as a promising method for manufacturing a Bi-based oxide superconductor wire. In this manufacturing method, a pure silver sheath is filled with a raw material oxide calcined in the air, and a thin wire having various cross-sectional shapes is obtained by plastic working. This is a method in which a thin wire is rolled into a tape shape and subjected to high-temperature sintering heat treatment to produce a superconducting wire.

【0005】しかしながら、これらの従来法は、純銀を
シース材等の基材として使用することにより臨界電流密
度Jc特性を向上させるのに有望ではあるものの、純銀材
は、一般的に、その機械的強度が低い。純銀材を酸化物
等の原料粉末と複合して加工すると、ソーセージングと
呼ばれる長さ方向の異形変形や線材断面内における厚さ
の不均一などが生じ、酸化物層の団塊化や断線が発生し
やすいという欠点がある。
However, although these conventional methods are promising for improving the critical current density Jc characteristics by using pure silver as a base material such as a sheath material, the pure silver material is generally used for its mechanical properties. Low strength. When a pure silver material is compounded with a raw material powder such as an oxide and processed, irregular deformation in the length direction called sausaging and uneven thickness in the cross section of the wire material occur, causing agglomeration and disconnection of the oxide layer. It has the drawback of being easy to do.

【0006】また、純銀基材と酸化物層との界面の整合
性が充分ではないという問題もある。これらは、超電導
特性のバラつき、臨界電流密度Jc特性の劣化、信頼性の
低下等の原因となっている。
There is also a problem that the interface between the pure silver base material and the oxide layer is not sufficiently matched. These are the causes of variations in superconducting properties, deterioration of critical current density Jc properties, and deterioration of reliability.

【0007】酸化物超電導線材の製造方法として有望視
されている複合線材加工法も、800〜900℃の高温熱処理
によりシース材の銀が軟化してしまうという欠点があ
る。軟化した銀シース材は、室温での超電導マグネット
の巻き線加工時に容易に塑性変形し、回復不能な超電導
特性劣化を生ずる技術的問題点となっている。
The composite wire processing method, which is regarded as a promising method for manufacturing an oxide superconducting wire, also has a drawback that the silver of the sheath material is softened by the high temperature heat treatment at 800 to 900 ° C. The softened silver sheath material easily becomes plastically deformed at the time of winding the superconducting magnet at room temperature, which causes a technical problem that irreversibly deteriorates the superconducting characteristics.

【0008】このような機械的強度の問題を改善するた
めに、従来では、補強材を付加することが試みられても
いるが、この場合には、補強材を付加すると線材当たり
の臨界電流密度Jcが低下するという問題がある。このた
め、超電導機器の小型軽量化の障害となっている。
In order to improve such a problem of mechanical strength, it has been attempted to add a reinforcing material in the past, but in this case, when the reinforcing material is added, the critical current density per wire is increased. There is a problem that Jc decreases. This is an obstacle to reducing the size and weight of superconducting equipment.

【0009】[0009]

【発明が解決しようとする課題】この発明は、以上の通
りの事情に鑑みてなされたものであり、従来の純銀をシ
ース材等の基材として使用する超電導線材の製造方法の
欠点を解消し、機械的強度、超電導特性とともに塑性加
工性を向上させることのできる酸化物超電導線材の製造
方法を提供することを目的としている。
The present invention has been made in view of the above circumstances, and solves the drawbacks of the conventional method for producing a superconducting wire using pure silver as a base material such as a sheath material. It is an object of the present invention to provide a method for manufacturing an oxide superconducting wire, which can improve the plastic workability as well as the mechanical strength and the superconducting property.

【0010】[0010]

【課題を解決するための手段】本発明は、上記の課題を
解決するものとして、基材と酸化物超電導材料とからな
る複合体を作製する酸化物超電導線材の作製方法におい
て、基材として、チタンを添加した銀銅合金を用いるこ
とを特徴とする酸化物超電導線材の製造方法を提供す
る。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a method for producing an oxide superconducting wire for producing a composite comprising a substrate and an oxide superconducting material, wherein: Provided is a method for producing an oxide superconducting wire, which comprises using a silver-copper alloy to which titanium is added.

【0011】本発明において、酸化物超電導線材の基材
として銀銅合金を使用する場合、合金における銅の含有
率は、0.05〜90原子%が望ましい。また、銀銅合金基材
に添加される元素として、Tiを挙げることができる。添
加する元素の種類と添加量を適正に選ぶ必要がある。
In the present invention, when a silver-copper alloy is used as the base material of the oxide superconducting wire, the content of copper in the alloy is preferably 0.05 to 90 atom%. Moreover, Ti can be mentioned as an element added to the silver-copper alloy base material. It is necessary to properly select the type of element to be added and the amount to be added.

【0012】銀銅合金基材に、Tiを、0.005〜1.0原子%
を添加すると、基材に純銀を用いた場合と比較して、臨
界電流特性において同等以上の効果が認められるが、0.
01〜0.5原子%において、基材に純銀を用いた場合と比
較して、臨界電流密度Jcが1.2倍以上(0.01〜0.4原子%
において臨界電流密度が2倍以上に)になるという効果
が認められる。
0.005 to 1.0 atomic% of Ti on a silver-copper alloy base material
The addition of the above, compared with the case of using pure silver as the base material, the equivalent or more effect in the critical current characteristics is observed,
At 01 to 0.5 atom%, the critical current density Jc is 1.2 times or more (0.01 to 0.4 atom%) compared with the case of using pure silver as the base material.
In the above, the effect that the critical current density becomes more than double) is recognized.

【0013】銀銅合金基材に、Tiを、0.01〜0.5原子%
を添加することにより、超電導特性の向上に加えて、機
械的強度、塑性加工性が著しく向上する。
0.01 to 0.5 atomic% of Ti on a silver-copper alloy base material
By adding, the mechanical strength and plastic workability are significantly improved in addition to the improvement of the superconducting property.

【0014】チタン等の元素を添加した銀銅合金をチュ
ーブ材、基盤材等の基材として用いることにより、機械
的強度が改善され、複合加工材の場合には、その線材断
面形状が均一となる。酸化物超電導体となる酸化物等の
原料粉末との加工時の整合性が良好となり、線材の長さ
方向及び断面内において酸化物層が一様に変形する。こ
のため従来では避けることのできなかった酸化物層の団
塊化や断線を防止することができる。
By using a silver-copper alloy to which an element such as titanium is added as a base material such as a tube material or a base material, the mechanical strength is improved, and in the case of a composite processed material, the wire material has a uniform cross-sectional shape. Become. The compatibility with the raw material powder such as an oxide that becomes an oxide superconductor is improved, and the oxide layer is uniformly deformed in the length direction and the cross section of the wire. For this reason, it is possible to prevent nodulation and disconnection of the oxide layer, which cannot be avoided in the past.

【0015】[0015]

【実施例】以下、実施例を示し、この発明の酸化物超電
導線材の製造方法について更に詳しく説明する。
EXAMPLES The following will describe the method for producing an oxide superconducting wire of the present invention in more detail with reference to examples.

【0016】(実施例) 種々のBi系高Tc粗Ag基および
AgCu基シーステープを作製して、超電導臨界電流値Icを
比較した。
(Example) Various Bi-based high Tc crude Ag groups and
An AgCu-based sheath tape was produced and the superconducting critical current value Ic was compared.

【0017】Bi2O3,PbO,SrCO3,CaCO3及びCuOの粉末をB
i:Pb:Sr:Ca:Cu=1.8:0.4:2:2.1:3の比になるように混合
し、820℃で20時間仮焼し、粉砕後、真空中で500℃、4
時間の熱処理を施し原料粉末とした。
Powders of Bi2O3, PbO, SrCO3, CaCO3 and CuO were added to B
i: Pb: Sr: Ca: Cu = 1.8: 0.4: 2: 2.1: 3, so that the ratio is mixed, calcined at 820 ℃ for 20 hours, crushed, and then 500 ℃ in vacuum, 4
Heat treatment was performed for a time to obtain a raw material powder.

【0018】原料粉末を外径10mm、内径7mm、長さ100mm
の純Ag管、Ag-10at%Cu-0.01at%Ti管、Ag-10%Cu-0.03at%
Ti管、Ag-10at%Cu-0.04at%Ti管、Ag-10atCu-0.1at%T
i管、Ag-10at%Cu-0.5at%Ti管、に詰めて両端を銀栓で
封入じた。
Raw material powder is 10 mm in outer diameter, 7 mm in inner diameter, and 100 mm in length
Pure Ag tube, Ag-10at% Cu-0.01at% Ti tube, Ag-10% Cu-0.03at%
Ti tube, Ag-10at% Cu-0.04at% Ti tube, Ag-10atCu-0.1at% T
The i-tube and the Ag-10at% Cu-0.5at% Ti tube were packed, and both ends were sealed with silver stoppers.

【0019】充填管をスエージング、丸伸線加工により
外径1.1mmまでに加工し、平ロールにより最終的に厚さ
0.25mmまで圧延加工を行った。得られたそれぞれのテー
プから、長さ約200mmの試料を切り出した。
The filled tube is swaged and processed by round wire drawing to an outer diameter of 1.1 mm, and the final thickness is obtained with a flat roll.
Rolling was performed up to 0.25 mm. A sample having a length of about 200 mm was cut out from each of the obtained tapes.

【0020】それぞれの試料を、昇温速度約20℃/時間
で最高830℃まで昇温後、100時間の焼結処理を行った。
次いでテープを室温において平ロールにより厚さ0.15mm
まで圧延を行い、さらに830℃で50時間の焼結処理を行
い、線材試料を得た。各線材試料について超電導特性を
測定した結果を図1及び図2に示す。
Each sample was heated to a maximum temperature of 830 ° C. at a temperature rising rate of about 20 ° C./hour and then sintered for 100 hours.
Then, the tape is 0.15 mm thick at room temperature with a flat roll.
To 830 ° C. for 50 hours to obtain a wire rod sample. The results of measuring the superconducting characteristics of each wire rod sample are shown in FIGS. 1 and 2.

【0021】図1は本発明の実施例において、線材試料
の磁界−臨界電流値曲線を示した相関図である。図中の
符号は、1が比較例の従来の純Agテープの曲線で、2お
よび3が本発明の実施例であるAg-10at%Cu-0.03at%Tiテ
ープ、Ag-10at%Cu-0.01at%Tiテープの曲線である。外
部磁場が変化しても比較例に比較して臨界電流密度Jcが
約2倍以上であることがわかる。
FIG. 1 is a correlation diagram showing a magnetic field-critical current value curve of a wire rod sample in an example of the present invention. In the figure, the reference numeral 1 is a curve of a conventional pure Ag tape of a comparative example, and 2 and 3 are Ag-10at% Cu-0.03at% Ti tape and Ag-10at% Cu-0.01 which are examples of the present invention. It is a curve of at% Ti tape. It can be seen that even if the external magnetic field changes, the critical current density Jc is about twice or more that of the comparative example.

【0022】図2は本発明の実施例の、Ag-10at%Cu合
金基シーステープに添加したTi量(Cu量は10at%で一
定)と臨界電流値Icの相関関係(4.2K、14T中)を示
したものである。添付の参考文献から:Ti無添加のAg-C
u合金シーステープでは臨界電流値Icが25A程度であ
るのに対して、0.1at%程度以下の少量のTiの添加におい
てIcは大幅に向上し、特に0.03at%添加では55AのIcが
得られた。このときの臨界電流密度Jcは約6×104A/c
m2であった。さらにTi添加量を増やすと臨界電流値Icは
減少し、0.5at%添加では30A程度となった。
FIG. 2 shows the correlation between the amount of Ti added to the Ag-10at% Cu alloy base sheath tape (the Cu amount is constant at 10at%) and the critical current value Ic (4.2K, 14T in the example of the present invention). ) Is shown. From the attached references: Ag-C without Ti
In the case of u alloy sheath tape, the critical current value Ic is about 25A, whereas the addition of a small amount of Ti of about 0.1at% or less significantly improves the Ic, and especially the addition of 0.03at% gives an Ic of 55A. It was The critical current density Jc at this time is about 6 × 10 4 A / c
It was m 2 . Further, when the Ti addition amount was increased, the critical current value Ic decreased, and when 0.5 at% was added, it became about 30A.

【0023】図3は本発明の実施例において、線材試料
の外部磁場−磁化率を示した相関図である。図中の符号
は、1−純Agテープ、2−Ag-10at%Cu-0.03at%Tiテー
プ、3−Ag-10at%Cu-0.01at%Tiテープである。磁化率の
履歴曲線が大きいほど、外部磁場に対する超電導特性の
劣化が小さいことと、超電導結晶の配向が良好であるこ
とを示す。
FIG. 3 is a correlation diagram showing the external magnetic field-susceptibility of the wire sample in the example of the present invention. The symbols in the figure are 1-pure Ag tape, 2-Ag-10at% Cu-0.03at% Ti tape, and 3-Ag-10at% Cu-0.01at% Ti tape. The larger the history curve of the magnetic susceptibility, the smaller the deterioration of the superconducting property with respect to the external magnetic field and the better the orientation of the superconducting crystal.

【0024】また、図4に各線材試料の基材の硬度を示
す。純Agテープに比較して、本願発明のAg-10at%Cu-0.
01at%TiテープおよびAg-10at%Cu-0.03at%Tiテープの方
がビッカース硬度が高いことからみて機械的強度に優れ
ることが理解できる。
FIG. 4 shows the hardness of the base material of each wire rod sample. Compared with pure Ag tape, Ag-10at% Cu-0.
It can be understood that the 01at% Ti tape and the Ag-10at% Cu-0.03at% Ti tape are superior in mechanical strength because of their higher Vickers hardness.

【0025】[0025]

【発明の効果】以上の通り、本発明の酸化物電導線材の
製造方法によって、基材の機械的強度と超電導特性が改
善される。
As described above, the mechanical strength and superconducting properties of the base material are improved by the method for producing an oxide conductive wire of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】線材試料の磁界−臨界電流値曲線を示した相関
図である。
FIG. 1 is a correlation diagram showing a magnetic field-critical current value curve of a wire rod sample.

【図2】Ag-10at%Cu合金基シーステープに添加したTi
量と臨界電流値Icの相関図である。
Figure 2: Ti added to Ag-10at% Cu alloy base sheath tape
It is a correlation diagram of quantity and critical current value Ic.

【図3】線材試料の外部磁場−磁化率を示した相関図で
ある。
FIG. 3 is a correlation diagram showing an external magnetic field-susceptibility of a wire rod sample.

【図4】各線材試料の基材のビッカース硬度を示す図表
である。
FIG. 4 is a chart showing the Vickers hardness of the base material of each wire rod sample.

【符号の説明】[Explanation of symbols]

1 純Agテープの曲線 2 Ag-10at%Cu-0.03at%Tiテープの曲線 3 Ag-10at%Cu-0.01at%Tiテープの曲線 1 Curve of pure Ag tape 2 Curve of Ag-10at% Cu-0.03at% Ti tape 3 Curve of Ag-10at% Cu-0.01at% Ti tape

フロントページの続き (72)発明者 松本 文明 茨城県つくば市千現1丁目2番1号科学技 術庁金属材料研究所内 (72)発明者 前田 弘 茨城県つくば市千現1丁目2番1号科学技 術庁金属材料研究所内 (72)発明者 柳谷 知之 神奈川県平塚市夕陽ヶ丘63番30号住友重機 械工業株式会社平塚研究所内 (72)発明者 石塚 正之 神奈川県平塚市夕陽ヶ丘63番30号住友重機 械工業株式会社平塚研究所内Front page continuation (72) Inventor Fumiaki Matsumoto 1-2-1 Sengen, Tsukuba-shi, Ibaraki Science and Technology Agency, Institute for Materials Research (72) Inventor Hiroshi Maeda 1-2-1 Sengen, Tsukuba-shi, Ibaraki (72) Inventor Tomoyuki Yanagiya 63-30 Yuhigaoka, Hiratsuka-shi, Kanagawa Sumitomo Heavy Industries, Ltd. Hiratsuka Research Laboratory (72) Inventor Masayuki Ishizuka 63-30, Yuhigaoka, Hiratsuka-shi, Kanagawa No. Sumitomo Heavy Industries, Ltd. Hiratsuka Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導体と基材とからなる複合体
を作製する酸化物超電導線材の製造方法において、前記
基材が、0.05〜90原子%の銅を含有し、Tiを0.01〜0.4
原子%添加してなる銀銅合金であることを特徴とする酸
化物超電導体の製造方法。
1. A method for producing an oxide superconducting wire for producing a composite comprising an oxide superconductor and a base material, wherein the base material contains 0.05 to 90 atomic% of copper and Ti is 0.01 to 0.4.
A method for producing an oxide superconductor, which is a silver-copper alloy formed by adding at%.
JP10765294A 1994-04-22 1994-04-22 Manufacture of oxide superconductor Pending JPH07296654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10765294A JPH07296654A (en) 1994-04-22 1994-04-22 Manufacture of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10765294A JPH07296654A (en) 1994-04-22 1994-04-22 Manufacture of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH07296654A true JPH07296654A (en) 1995-11-10

Family

ID=14464621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10765294A Pending JPH07296654A (en) 1994-04-22 1994-04-22 Manufacture of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH07296654A (en)

Similar Documents

Publication Publication Date Title
US5063200A (en) Ceramic superconductor article
JPH06196031A (en) Manufacture of oxide superconductive wire
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
JP3100877B2 (en) Manufacturing method of oxide superconducting wire
JPH07296654A (en) Manufacture of oxide superconductor
Flukiger et al. Composite core Nb/sub 3/Sn wires: preparation and characterization
JP2569413B2 (en) Method for producing Bi-based oxide superconducting wire
WO1995005680A1 (en) Improved superconductor tapes and coils and method of manufacture
JP3848449B2 (en) Manufacturing method of oxide superconducting wire
JPS63285155A (en) Oxide type superconductive material and production thereof
JP3692657B2 (en) Oxide superconducting wire
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JPH06251929A (en) Manufacture of oxide superconducting coil
JPH028335A (en) Sheath for manufacturing of oxide superconducting wire rod
JPH06510157A (en) Textured superconductor and its manufacturing method
JPH04292814A (en) Manufacture of bismuth-based oxide superconductive wire
JPH04317415A (en) Production of bi-based oxide superconductor
JPH03265523A (en) Bismuth-containing oxide superconductor and production thereof
JPH0513216A (en) Oxide superconducting coil magnet
JPH0925125A (en) Production of oxide superconductor
JPH02252650A (en) Oxide superconductor and preparation thereof
NZ329449A (en) Producing a ceramic superconductor comprising cryogenically deforming and sintering the deformed material
JPH0528857A (en) Manufacture of ceramic superconductor
JPH03280308A (en) Manufacture of bismuth group oxide superconductor
JPH03170335A (en) Oxide super conductor and its preparation