JPH03170335A - Oxide super conductor and its preparation - Google Patents

Oxide super conductor and its preparation

Info

Publication number
JPH03170335A
JPH03170335A JP1308618A JP30861889A JPH03170335A JP H03170335 A JPH03170335 A JP H03170335A JP 1308618 A JP1308618 A JP 1308618A JP 30861889 A JP30861889 A JP 30861889A JP H03170335 A JPH03170335 A JP H03170335A
Authority
JP
Japan
Prior art keywords
phase
temperature
superconductor
oxide
critical temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1308618A
Other languages
Japanese (ja)
Other versions
JP2789118B2 (en
Inventor
Yoshinori Matsunaga
松永 佳典
Hiromi Imura
井村 ひろみ
Yuji Iino
祐二 飯野
Saburo Nagano
三郎 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1308618A priority Critical patent/JP2789118B2/en
Priority to US07/600,194 priority patent/US5108985A/en
Publication of JPH03170335A publication Critical patent/JPH03170335A/en
Application granted granted Critical
Publication of JP2789118B2 publication Critical patent/JP2789118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve the critical temperature of an oxide superconductor while depressing the production of Ca2PbO4 by calcining the molded product of a specific metal oxide in an oxide-containing atmosphere. CONSTITUTION:The powder of a mixture comprising the carbonates, etc., of respective elements is calcinated at 700-845 deg.C and subsequently molded into a molded product comprising the oxides of Bi, Pb, Sr, Ca, Cu and, Na and/or Li in a molar ratio of 2:(1.5-2.2):(0.1-0.5):(2.0-3.5):(3.0-4.5):(0.01-0.5). The molded product is calcined at 820-850 deg.C for 100 hours or more to provide an oxide superconductor having a critical temperature of 100K or higher.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は高い臨界温度(Tce)を有するBi−Sr−
CaCu−0系酸化物超電導体およびその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1 The present invention is directed to Bi-Sr-
The present invention relates to a CaCu-0-based oxide superconductor and a method for producing the same.

[従来技術] 現在、超電導体としては、NbT i , Nb+Sn
で代表される金属系超電導体が使用されているが、これ
らの臨界温度Tc (超電導状態になる温度)は20K
程度であったが、近年に至り、Physical Re
view.Letters 5B(197B)pp90
B−910に於いて77K以上で超電導現象を示す遷移
金属、アルカリ土類元素、銅から威る複合酸化物が報告
され、高価な液体ヘリウムに換わり、安価な液体窒素温
度での使用が可能となり、その用途が大きく拡がる傾向
にある。
[Prior art] Currently, as superconductors, NbTi, Nb+Sn
Metal-based superconductors represented by
However, in recent years, Physical Re
view. Letters 5B (197B) pp90
In B-910, a complex oxide made of transition metals, alkaline earth elements, and copper that exhibits superconductivity at temperatures above 77 K has been reported, and it has become possible to use it at inexpensive liquid nitrogen temperatures in place of expensive liquid helium. , its uses are expanding significantly.

このような酸化物超電導体に対しては、その臨界温度T
cをさらに高める研究がなされ、最近に至っては、Ja
p.J.App+.Letters 27(1988)
 L209において臨界温度TcがIIOKあるいは8
0KのBi−Sr−Ca−Cu−0系超電導酸化物が報
告され、注目を集めるところとなった。
For such an oxide superconductor, its critical temperature T
Research has been conducted to further increase c, and recently, Ja
p. J. App+. Letters 27 (1988)
At L209, the critical temperature Tc is IIOK or 8
A 0K Bi-Sr-Ca-Cu-0 superconducting oxide has been reported and has attracted attention.

[発明が解決しようとする問題点1 しかしながら、上記Bi−Sr−Ca−Cu−0系超電
導体を焼結体(バルク体)として製造する場合、焼結体
中に臨界温度TcがIIOK相と80K相が混在し、8
0K相が不純物的挙動を示すために焼結体自体のTcを
高めることができないという問題点があった。
[Problem to be Solved by the Invention 1] However, when producing the above-mentioned Bi-Sr-Ca-Cu-0 based superconductor as a sintered body (bulk body), the critical temperature Tc in the sintered body is different from the IIOK phase. 80K phase is mixed, 8
There was a problem in that the Tc of the sintered body itself could not be increased because the 0K phase behaved like an impurity.

因みに、現在知られているこれらの相は110K相がB
izSr2CazCu30+ o.(80K相がBi.
Sr2Ca+CuzO8.tとされている。
Incidentally, the 110K phase of these currently known phases is B.
izSr2CazCu30+ o. (80K phase is Bi.
Sr2Ca+CuzO8. It is said to be t.

この110K相を単相化する技術としては、Jap.J
.Appl.Phys Vo127,No.6(198
B) L 1041−1043において高野らがPbを
添加することにより、110K相の含有量を高めること
が報告されている。ところが、Pb添加によれば、粒界
に安定なCazPb04が生威し、超電導特性が低下す
るという欠点を有する。
As a technology for converting this 110K phase into a single phase, see Jap. J
.. Appl. Phys Vo127, No. 6 (198
B) In L 1041-1043, Takano et al. reported that the content of the 110K phase was increased by adding Pb. However, the addition of Pb has the disadvantage that stable CazPb04 grows in the grain boundaries and the superconducting properties deteriorate.

[問題点を解決するための千段1 本発明者等は上記点に対し、研究を重ねた結果、特定比
率から威るBi−Pb−Sr−Ca−Cu−0系組威物
に対し、Na,Liの化合物を特定の割合で添加するこ
とによって焼結温度を低くすることができるとともに、
Ca2Pb04の生威を抑制しつつ、110K相の生威
を促進し、IIOK相の含有率の高い高臨界温度を有す
る酸化物超電導体が提供できることを知見した。
[1,000 Steps to Solve the Problems The present inventors have conducted repeated research on the above points, and have found that the Bi-Pb-Sr-Ca-Cu-0 system is effective due to specific ratios. By adding Na and Li compounds in a specific ratio, the sintering temperature can be lowered, and
It has been found that it is possible to promote the growth of the 110K phase while suppressing the growth of Ca2Pb04, and to provide an oxide superconductor having a high critical temperature and a high content of the IIOK phase.

即ち、本発明の酸化物超電導体は製造方法としてはその
構成物としてBi,Pb,Sr,Ca,Cu, とNa
,Liの少なくともいずれかからなる複合酸化物から成
り、これらの各金属元素のモル比率が、Srのモル数を
2とした時に、Biが1.8乃至2.2 、Pbが0.
1乃至0.6 、Caが2.0乃至3.5 、Cuが3
.0乃至4,5、NaとLiが合量で0.Ol乃至0.
5の割合から威る或形体を酸素含有雰囲気で820乃至
850℃の温度で焼成することを特徴とするもので、得
られる超電導体の組成を構成金属威分のモル比率におい
て、Srのモル数を2とした時に、Biが1.8乃至2
.2 、Pbが0.1乃至0.5 、Caが2.0乃至
3.5 、Cuが3.0乃至4.5 、NaとLiが合
量で0.01以下の割合とすることによって臨界温度(
Tc)100K以上が達成でぎるものである。
That is, the oxide superconductor of the present invention can be manufactured using Bi, Pb, Sr, Ca, Cu, and Na as its constituents.
, Li, and the molar ratio of each of these metal elements is 1.8 to 2.2 for Bi and 0.2 for Pb, when the number of moles of Sr is 2.
1 to 0.6, Ca 2.0 to 3.5, Cu 3
.. 0 to 4,5, the total amount of Na and Li is 0. Ol~0.
This method is characterized by firing a certain shape having a ratio of 5% to 820°C to 850°C in an oxygen-containing atmosphere, and the composition of the obtained superconductor is determined by the number of moles of Sr in the molar ratio of the constituent metals. When Bi is set to 2, Bi is 1.8 to 2.
.. 2, Pb is 0.1 to 0.5, Ca is 2.0 to 3.5, Cu is 3.0 to 4.5, and the total amount of Na and Li is 0.01 or less to achieve criticality. temperature(
Tc) 100K or more can be achieved.

− 3 − 以下、本発明を詳述する。− 3 − The present invention will be explained in detail below.

本発明における特徴の一つは、製法上、或形体組成を複
合酸化物として存在する各金属元素のモル比率を特定の
範囲、即ちSrのモル数を2とした時、Biが1.8乃
至2.2 、Caが2.0乃至3.5 、Cuが3.0
乃至4.5の割合とし、且つこの系に対し、Sr一2に
対し、Pbを0.1乃至0.6 、NaとLiが合量で
0.01乃至0.5の割合に調製する点にある。Pbの
添加効果は先行技術に記載の通り、IIOK相の生威を
促進することができるが、Pbの添加によってCa2P
bO.の不純物が生威され、特性を逆に劣化させてしま
う。そこで、NaあるいはLiを添加することによって
焼威温度を低くし、下記式 2B+zSrzCa+CuzOy →Bi2Sr2Ca
zCu30y’十BizSrzCuOy” で示される反応によって焼威過程で生威された80K相
の超電導体の1 10K相の超電導体への変換を促進す
るとともにCa2Pb04の生戒を抑制し、焼結体の粒
界析出物の影響を低減することができる。
One of the features of the present invention is that due to the manufacturing method, when the molar ratio of each metal element present as a composite oxide is set within a specific range, that is, when the number of moles of Sr is 2, Bi is 1.8 to 2. 2.2, Ca 2.0 to 3.5, Cu 3.0
The ratio is adjusted to 4.5 to 4.5, and for this system, Pb is adjusted to 0.1 to 0.6 and Na and Li are adjusted to a ratio of 0.01 to 0.5 in total to Sr. It is in. As described in the prior art, the effect of adding Pb can promote the growth of the IIOK phase, but the addition of Pb can promote the growth of the IIOK phase.
bO. The impurities in the product are absorbed and the properties deteriorate. Therefore, by adding Na or Li, the firing temperature is lowered and the following formula 2B+zSrzCa+CuzOy →Bi2Sr2Ca
zCu30y'10BizSrzCuOy'' promotes the conversion of the 80K phase superconductor produced in the firing process into the 110K phase superconductor, suppresses the generation of Ca2Pb04, and improves the grain size of the sintered body. The influence of interfacial precipitates can be reduced.

出発組威を前述の範囲に限定した理由は、構威− 4 
一 金属元素のうち、Bi,Ca,Cuのいずれかでも前述
した範囲より少ないと80K相が多量に残り、また多い
と不純物相が生威し、超電導相が形威されない場合もあ
る。Pbが0.1より小さいと、焼結速度が遅くなると
ともに110K相の生威が少なくなり、また、0.6を
越えるとCa!PbO4等の不純物が生威し臨界温度(
Tce)や臨界電流密度(Jc)を低下させる。
The reason for limiting the starting group weight to the above range is as follows.
Among the metal elements, if any of Bi, Ca, and Cu is less than the above-mentioned range, a large amount of 80K phase remains, and if it is too much, an impurity phase grows and a superconducting phase may not be formed. If Pb is less than 0.1, the sintering rate will be slow and the 110K phase will be less viable, and if it exceeds 0.6, Ca! Impurities such as PbO4 grow and the critical temperature (
Tce) and critical current density (Jc).

また、NaaLiが合量で0.01未満では系の焼威温
度が高くなり、それに伴いCa2PbO4の増加を招く
とともに110K相の生或量を高めることができず、0
.5を越えると粒界に常伝導相が増加しTcを低下させ
るからである。
Furthermore, if the total amount of NaaLi is less than 0.01, the firing temperature of the system will increase, resulting in an increase in Ca2PbO4, and it will not be possible to increase the amount of 110K phase produced.
.. This is because if it exceeds 5, the normal phase increases at the grain boundaries, lowering Tc.

前述した出発組成の範囲の中でも、特にモル比において
S r=2に対しBiを1.9乃至2.0 、Pbを0
.2乃至0.5 、Caを3.1乃至3.2 、Cuを
4.1乃至4.3およびNaとLiが合量で0.05乃
至0.20の範囲になるように調合するとより優れた1
 10K相の含有量の多い超電導体を得ることができる
Among the starting composition ranges mentioned above, in particular, the molar ratio of Bi to S r = 2 is 1.9 to 2.0, and Pb is 0.
.. It is better to prepare the mixture so that the total amount of Ca is 3.1 to 3.2, Cu is 4.1 to 4.3, and the total amount of Na and Li is 0.05 to 0.20. Ta1
A superconductor with a high content of 10K phase can be obtained.

本発明によれば、上記の戒形体は、各金属の酸化物ある
いは焼威によって酸化物に変換し得るものから成るが、
Na,Liにおいてはフフ化物、塩化物、シュウ化物、
ヨウ化物も適用される。例えば炭酸塩等の形態で調合し
た調合粉末、或いは調合粉末を例えば700〜845℃
の温度で仮焼し、その後仮焼粉末を所望の公知の威形方
法で戒形したものであり、具体的にはプレス成形、ドク
ターブレード成形、押出威形、射出威形、圧延威形或い
は銀パイプ中に入れ圧延する方法等が採用される。
According to the present invention, the above-mentioned precepts are made of oxides of each metal or those that can be converted into oxides by incineration,
For Na, Li, fluoride, chloride, oxalide,
Iodide also applies. For example, a blended powder prepared in the form of carbonate, or a blended powder at a temperature of 700 to 845°C, for example.
The calcined powder is then calcined at a temperature of A method such as placing it in a silver pipe and rolling it is adopted.

また、830℃以上で仮焼して、110K相を合威する
と結晶粒が大きくなり、威形時に配向させることができ
る。
Further, if the 110K phase is formed by calcining at 830° C. or higher, the crystal grains become larger and can be oriented during shaping.

次に、上記或形品を820乃至850℃1特に835〜
845℃の温度で且つ系に対し十分に酸素供給可能な酸
化性雰囲気、例えば′大気中で焼威することにより、高
1 10K相含有の超電導体を得ることができる。
Next, the above-mentioned shaped product is heated to 820 to 850°C, especially 835 to 835°C.
A superconductor having a high 110 K phase content can be obtained by firing at a temperature of 845 DEG C. in an oxidizing atmosphere such as air that can supply sufficient oxygen to the system.

上記焼威条件において、焼威温度が820℃より低いと
超電導化合物が合威されず850℃より高いとCazP
b04などの不純物が生或する。
Under the above firing conditions, if the firing temperature is lower than 820°C, the superconducting compound will not coalesce, and if it is higher than 850°C, CazP
Impurities such as b04 are present.

また焼成時間は100時間以上であることが好ましく、
100時間より短いと80K相等の低Tc相が大部分を
占め、IIOK相の単相化が達威されない傾向にある。
Further, the firing time is preferably 100 hours or more,
If it is shorter than 100 hours, the low Tc phase such as the 80K phase occupies most of the time, and there is a tendency that the IIOK phase cannot be made into a single phase.

なお、この焼威によれば、出発組威中Pbは、超電導相
に固溶し、Biサイトに置換するが、Na或いはLiは
超電導相には固溶することなく、粒界に存在するがほと
んどが揮散する傾向にある。このNa化合物或いはLi
化合物は最終焼結体中に存在すると超電導特性に対し悪
影響を及ぼすもので焼或中に積極的に揮散させることが
必要である。
According to this firing, Pb in the starting group is dissolved in the superconducting phase and substituted at Bi sites, but Na or Li is not dissolved in the superconducting phase and exists at the grain boundaries. Most tend to evaporate. This Na compound or Li
If the compound is present in the final sintered body, it will have an adverse effect on the superconducting properties, so it is necessary to actively volatilize it during sintering.

よって、本発明によれば、最終的に得られる超電導体の
組威を、モル比率でSr=2とした時、Biが1.8乃
至2.2、特に1.9乃至2.1 、Pbが0.1乃至
0.5、特に0.4乃至0.5 、Caが2.0乃至3
.5、特に3.0乃至3.1 、Cuが3.0乃至4.
5、特に4.0乃至4.2 、NaとLiが合量で0.
01以下、特に0.001乃至o.oosの範囲になる
ように、Pb或いはNa,Liの揮散量を焼威時間等に
より調整することにより、臨界温度Tceが100K以
上の優れた超電導体が得られる。
Therefore, according to the present invention, when the molar ratio of Sr is set to 2, Bi is 1.8 to 2.2, particularly 1.9 to 2.1, Pb is 0.1 to 0.5, especially 0.4 to 0.5, and Ca is 2.0 to 3.
.. 5, especially 3.0 to 3.1, and Cu of 3.0 to 4.
5, especially 4.0 to 4.2, and the total amount of Na and Li is 0.
01 or less, especially 0.001 to o. An excellent superconductor with a critical temperature Tce of 100K or higher can be obtained by adjusting the volatilization amount of Pb, Na, or Li by the firing time or the like so that the amount falls within the range of oos.

7 本発明における超電導体中の酸素量については定かでは
ないが、焼或中、系自体が必要とする酸素を十分に供給
し得る雰囲気に保つことを除けば何ら制限するものでは
ない。
7. The amount of oxygen in the superconductor of the present invention is not certain, but there is no restriction on it except that during firing, the atmosphere is maintained in an atmosphere that can sufficiently supply the oxygen required by the system itself.

このようにして得られる本発明の酸化物超電導体の特徴
としては、後述する実施例及び第1図乃至第3図から明
らかなように、80K相やCa.Pb04等の不純物相
の生或が少なく、100K以上の高い臨界温度(Tce
)を有することの他に、第2図と第3図との比較からも
明らかなように、従来、8(Oe)の磁場中において4
.2Kの液体ヘリウム中でゼロ磁場に対し超電導相が約
90%から約50%まで減少するのに対し、本発明品は
8(Oe)の磁場中でもほとんど変化しないという全く
予想し得なかった優れた特性を有するものである。この
ような現象の理由については定かではないが、粒界析出
物の生威が抑制されることによって粒界の弱結合部分(
ウィークリンク)が解消され、磁場に対し影響を受け難
い材料になるためと考えられる。
The characteristics of the oxide superconductor of the present invention obtained in this way include an 80K phase, a Ca. The production of impurity phases such as Pb04 is small, and the critical temperature is higher than 100K (Tce
), as is clear from the comparison between Figures 2 and 3, conventionally, in a magnetic field of 8 (Oe),
.. In liquid helium at 2K, the superconducting phase decreases from about 90% to about 50% in a zero magnetic field, whereas the product of the present invention shows almost no change even in a magnetic field of 8 (Oe), which is an entirely unexpected and excellent property. It has characteristics. The reason for this phenomenon is not clear, but by suppressing the vitality of grain boundary precipitates, weakly bonded portions of grain boundaries (
This is thought to be due to the fact that the weak link) is eliminated, making the material less susceptible to magnetic fields.

以下、本発明を次の例で説明する。The invention will now be explained with the following examples.

9 − 8 [実施例] 原料粉末としてBizOs,PbO,SrCOs,Ca
CO.,,CuOの各粉末を用いて各金属のモル比が第
1表になるように秤量後、750〜810℃で20時間
仮焼後、粉砕し平均粒径5μ川の仮焼粉末を得た。この
仮焼粉末に対し、Na 2 C0 3 + L I 2
 CO xを第1表のモル比になるよう秤量添加して乳
鉢で混合後、φl2の金型を用いて威形圧It/cm”
で厚み約1mmの円板状試料を作製した。
9-8 [Example] BizOs, PbO, SrCOs, Ca as raw material powder
C.O. ,, CuO powders were weighed so that the molar ratio of each metal was as shown in Table 1, calcined at 750 to 810°C for 20 hours, and then ground to obtain calcined powders with an average particle size of 5μ. . For this calcined powder, Na 2 C0 3 + L I 2
CO
A disk-shaped sample with a thickness of about 1 mm was prepared.

この試料を第1表の条件にて焼威した。This sample was incinerated under the conditions shown in Table 1.

得られた焼結体に対し、比重をアルキメデス法により、
臨界温度(Tce)を電気抵抗変化から求め、更に交流
帯磁率測定から、90Kにおける超電導体の比率を求め
た。
The specific gravity of the obtained sintered body was determined by the Archimedes method.
The critical temperature (Tce) was determined from the electrical resistance change, and the superconductor ratio at 90K was determined from the AC magnetic susceptibility measurement.

結果は第1表に示した。The results are shown in Table 1.

(以下余白) − I O − 表中、Naを添加したNo. 2と、全<Na或いはL
iを添加しなかったNo. 1の試料のX線回折チャー
トを第1図に示した。第1図によれば、従来品No. 
lは80K相及びCa.PbO,のピークが観察される
のに対し、本発明品No.2は80K相のピーク及びC
a2PbO,の相が小さくなっていることが理解される
(The following is a margin) - IO - In the table, No. with added Na. 2 and all<Na or L
No. i was not added. The X-ray diffraction chart of sample No. 1 is shown in FIG. According to FIG. 1, conventional product No.
l is 80K phase and Ca. A peak of PbO was observed, whereas a peak of PbO was observed, whereas a peak of PbO. 2 is the peak of 80K phase and C
It is understood that the phase of a2PbO, is smaller.

次に、第1図で用いた同じ試料に対し、温度抵抗及び温
度一帯磁率との関係をそれぞれ第2図に本発明品No.
2 、第3図に従来品No. lを図示した。
Next, for the same sample used in FIG. 1, the relationship between temperature resistance and magnetic susceptibility versus temperature is shown in FIG. 2, respectively.
2. Figure 3 shows conventional product No. l is illustrated.

第2図と第3図との比較によれば、従来品である第3図
では温度一抵抗曲線において110K付近にオンセッ1
1度(Tco)が存在するものの、中間付近にて段差が
生しオフセット温度(Tce)は89Kであった。これ
は、110K相を含むものの、80K相等の異相が生し
ていることを意味するものである。
According to a comparison between Figures 2 and 3, the conventional product in Figure 3 has an onset temperature of around 110K in the temperature-resistance curve.
Although there was a temperature difference of 1 degree (Tco), there was a step near the middle, and the offset temperature (Tce) was 89K. This means that although the 110K phase is included, different phases such as an 80K phase are present.

また、温度一帯磁率曲線において4.2Kの液体ヘリウ
ム中で0.8(Oe)では約88%と高いものの、8(
Oe)では約52%とその帯磁率が大きく変化すること
がわかる。
In addition, in the temperature-magnetic susceptibility curve, 0.8 (Oe) in liquid helium at 4.2 K is as high as about 88%, but 8 (
It can be seen that the magnetic susceptibility changes greatly at approximately 52% for Oe).

それに対し、第2図の本発明品では温度−抵抗曲線にお
いて200K付近における抵抗値は約41IlΩと小さ
く、120K付近にオンセット温度(Tco)を有し、
第3図のような段差を生しることなく、単調に減少し、
オフセット温度(Tce)は107Kと高い値を示し、
80K等の異相がほとんど生していないことがわかる。
On the other hand, in the temperature-resistance curve of the product of the present invention shown in FIG. 2, the resistance value near 200K is as small as about 41IlΩ, and the onset temperature (Tco) is near 120K.
It decreases monotonically without creating a step as shown in Figure 3,
The offset temperature (Tce) shows a high value of 107K,
It can be seen that there are almost no foreign phases such as 80K.

また温度一帯磁率曲線において4.2Kにて約98%の
高い帯磁率を示し、8(Oe)の磁場中においてもほと
んど曲線に変化がなく、磁場に対し強いことが理解され
る。
In addition, the temperature-magnetic susceptibility curve shows a high magnetic susceptibility of about 98% at 4.2 K, and there is almost no change in the curve even in a magnetic field of 8 (Oe), indicating that it is strong against magnetic fields.

一方、第1表によれば、NaおよびLiの添加合量がS
r−2に対し0.5を越える試料No.4. 10. 
13はいずれも最終焼結体中の残存量が多《、高い臨界
温度は示さなかった。また、Bi量が少なすぎる試料N
o5ではほとんど超電導体が生或されなかった。また、
PbO量が少ないと臨界温度が低く、超電導相の生戒割
合も低いものであった。
On the other hand, according to Table 1, the total amount of Na and Li added is S
Sample No. exceeding 0.5 for r-2. 4. 10.
No. 13 had a large amount remaining in the final sintered body and did not exhibit a high critical temperature. In addition, sample N with too little Bi content
Almost no superconductor was produced in o5. Also,
When the amount of PbO was small, the critical temperature was low and the proportion of superconducting phase was also low.

これに対し、本発明の試料はいずれも臨界温度100K
を越えるもので且つ超電導相の生或比率も80%以上で
あった。
In contrast, all samples of the present invention have a critical temperature of 100K.
In addition, the production ratio of the superconducting phase was more than 80%.

[発明の効果1 以上、詳述した通り、本発明によれば、Bi−PbSr
−Ca−Cu−0系超電導体にNaあるいはLiを適量
添加することによって、80K相や他の不純物の析出を
抑制し、110K相を多量に含むことによって高い臨界
温度(Tc)が付与でき、しかも磁場変化に対し、特性
に変化の少ない優れた超電導体を得ることができ、磁気
シールド材をはしめ各種電子部品等への適用を促進する
ことができる。
[Effect of the Invention 1 As detailed above, according to the present invention, Bi-PbSr
By adding an appropriate amount of Na or Li to the -Ca-Cu-0 superconductor, precipitation of the 80K phase and other impurities can be suppressed, and by containing a large amount of the 110K phase, a high critical temperature (Tc) can be imparted. In addition, it is possible to obtain an excellent superconductor whose properties change little with respect to changes in the magnetic field, and it is possible to apply it to various electronic components by inserting a magnetic shielding material therein.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明品Nα2及び従来品No. 1における
X線回折チャート図、第2図及び第3図はいずれも温度
一抵抗及び温度一帯磁率との関係を示す図で第2図が本
発明品No.2 、第3図が従来品NO.1のものを示
す。
FIG. 1 shows the present invention product Nα2 and the conventional product No. The X-ray diffraction chart for No. 1, FIG. 2, and FIG. 3 all show the relationship between temperature and resistance and temperature and magnetic susceptibility. 2. Figure 3 is the conventional product No. 1 is shown.

Claims (2)

【特許請求の範囲】[Claims] (1)金属元素としてBi、Pb、Sr、Ca、Cuと
、Na、Liの少なくともいずれか、および酸素とから
成り、各金属元素のモル比率がSrのモル数を2とした
時、Biが1.8乃至2.2、Pbが0.1乃至0.5
、Caが2.0乃至3.5、Cuが3.0乃至4.5、
Na、Liの少なくともいずれかが合量で0.01以下
(但し、0を含まず)の組成から成る臨界温度(Tce
)が100K以上の酸化物超電導体。
(1) Consists of Bi, Pb, Sr, Ca, Cu, at least one of Na, Li, and oxygen as metal elements, and when the molar ratio of each metal element is set to 2 moles of Sr, Bi is 1.8 to 2.2, Pb 0.1 to 0.5
, Ca is 2.0 to 3.5, Cu is 3.0 to 4.5,
The critical temperature (Tce
) is an oxide superconductor with a temperature of 100K or more.
(2)構成元素としてBi、Pb、Sr、Ca、Cuと
、Na、Liの少なくともいずれかの酸化物から成り、
各金属のモル比率においてSrのモル数を2とした時、
Biが1.8乃至2.2、Pbが0.1乃至0.5、C
aが2.0乃至3.5、Cuが3.0乃至4.5、Na
、Liの少なくともいずれかが合量で0.01乃至0.
5の割合から成る成形体を820乃至850℃の酸素含
有雰囲気で焼成する酸化物超電導体の製造方法。
(2) Consists of an oxide of Bi, Pb, Sr, Ca, Cu, and at least one of Na and Li as constituent elements,
When the number of moles of Sr is 2 in the molar ratio of each metal,
Bi: 1.8 to 2.2, Pb: 0.1 to 0.5, C
a is 2.0 to 3.5, Cu is 3.0 to 4.5, Na
, Li in a total amount of 0.01 to 0.
A method for producing an oxide superconductor, which comprises firing a molded body having a ratio of 5 to 5 in an oxygen-containing atmosphere at 820 to 850°C.
JP1308618A 1989-11-27 1989-11-27 Oxide superconductor and manufacturing method thereof Expired - Lifetime JP2789118B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1308618A JP2789118B2 (en) 1989-11-27 1989-11-27 Oxide superconductor and manufacturing method thereof
US07/600,194 US5108985A (en) 1989-11-27 1990-10-17 Bi-Pb-Sr-Ca-Cu oxide superconductor containing alkali metal and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308618A JP2789118B2 (en) 1989-11-27 1989-11-27 Oxide superconductor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03170335A true JPH03170335A (en) 1991-07-23
JP2789118B2 JP2789118B2 (en) 1998-08-20

Family

ID=17983217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308618A Expired - Lifetime JP2789118B2 (en) 1989-11-27 1989-11-27 Oxide superconductor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2789118B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324712A (en) * 1991-08-16 1994-06-28 Gte Laboratories Incorporated Formation of the high TC 2223 phase in BI-SR-CA-CU-O by seeding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324712A (en) * 1991-08-16 1994-06-28 Gte Laboratories Incorporated Formation of the high TC 2223 phase in BI-SR-CA-CU-O by seeding

Also Published As

Publication number Publication date
JP2789118B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
JPH03170335A (en) Oxide super conductor and its preparation
Takano et al. Single crystal growth of (LaO) CuS
US5340794A (en) Flux pinning in superconducting cuprates
JPH04500196A (en) Superconducting metal oxide composition
JP2789104B2 (en) Oxide superconductor and manufacturing method thereof
JP4109363B2 (en) Oxide superconducting material and manufacturing method thereof
JP2789103B2 (en) Oxide superconductor and manufacturing method thereof
JP2523928B2 (en) Oxide superconductor and method for producing the same
JP2964258B2 (en) Manufacturing method of oxide superconductor
JP2803819B2 (en) Manufacturing method of oxide superconductor
JP3195041B2 (en) Oxide superconductor and manufacturing method thereof
JP2761727B2 (en) Manufacturing method of oxide superconductor
JPH01224229A (en) Superconducting material and production thereof
JPH07106906B2 (en) Oxide superconducting material containing rare earth element and method for producing the same
JP4019132B2 (en) RE-Ba-Cu-O-based oxide superconductor and method for producing the same
JPH04292812A (en) Manufacture of bismuth-based oxide superconductive wire
JP2817170B2 (en) Manufacturing method of superconducting material
JPH06219817A (en) Production of bi-containing oxide superconductor
JPH0465395A (en) Superconducting fibrous crystal and its production
JP2778104B2 (en) Oxide superconducting material
JPH03197347A (en) Production of oxide superconductor
JPH061616A (en) Production of bi based oxide superconductor
JP2567967B2 (en) Manufacturing method of oxide superconducting wire
JP2590242B2 (en) Manufacturing method of oxide superconductor
JP2854338B2 (en) Copper oxide superconductor