JPH0729220A - Formation of fine pattern having plural heights - Google Patents

Formation of fine pattern having plural heights

Info

Publication number
JPH0729220A
JPH0729220A JP17011793A JP17011793A JPH0729220A JP H0729220 A JPH0729220 A JP H0729220A JP 17011793 A JP17011793 A JP 17011793A JP 17011793 A JP17011793 A JP 17011793A JP H0729220 A JPH0729220 A JP H0729220A
Authority
JP
Japan
Prior art keywords
substrate
base material
light
forming
fine pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17011793A
Other languages
Japanese (ja)
Inventor
Toshinori Kishi
俊法 貴志
Shinya Abe
伸也 阿部
Michiyoshi Nagashima
道芳 永島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17011793A priority Critical patent/JPH0729220A/en
Publication of JPH0729220A publication Critical patent/JPH0729220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To form a fine pattern having plural heights in a photolithographic process for producing the master of an optical disk. CONSTITUTION:The front side of a substrate 1 with a formed photoresist 2 is irradiated with light from the rear side of the substrate 1 at a larger angle than a critical angle from the substrate 1 to the photoresist 2, the photoresist 2 is exposed with light leaking in the photoresist 2 from the substrate 1 and development is carried out. The objective fine pattern having different heights is formed by varying the incident angle or wavelength of light at the time of exposure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば微細パターンを
有する光ディスク原盤の製造等に用いて有用なものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is useful, for example, in manufacturing an optical disk master having a fine pattern.

【0002】[0002]

【従来の技術】従来の微細パターン形成方法の例として
は、一般にフォトリソグラフィープロセスが用いられる
場合が多い。ここでは、フォトリソグラフィープロセス
を用いた再生専用光ディスク原盤の製造方法ついて説明
する。
2. Description of the Related Art Generally, a photolithography process is often used as an example of a conventional fine pattern forming method. Here, a method of manufacturing a reproduction-only optical disc master using a photolithography process will be described.

【0003】従来の再生専用の光ディスク原盤の製造方
法を図5に示す。再生専用の光ディスク原盤は、従来は
大別すると、 (a)鏡面研磨されたガラスディスク基材1上に、ポジ
型フォトレジスト20をスピンコート法等にて塗布する
工程 (b)前記ディスク基材1を回転させながら、レンズに
より集光されたレーザ光を記録信号に応じてON、OF
Fさせて基板上に照射し、フォトレジスト20を露光す
る工程 (c)現像により露光部3を溶解する工程 によって製造されていた。
FIG. 5 shows a conventional method for manufacturing a read-only optical disk master. The reproduction-only optical disk master is roughly classified into the following: (a) a step of applying a positive photoresist 20 onto a mirror-polished glass disk substrate 1 by a spin coating method or the like (b) the disk substrate While rotating 1, turn on and off the laser beam focused by the lens according to the recording signal.
It was manufactured by a step of exposing the photoresist 20 by exposing it to F and exposing it to the substrate (c) a step of dissolving the exposed portion 3 by development.

【0004】[0004]

【発明が解決しようとする課題】従来例に示した光ディ
スクの記憶容量は、記録用レーザ波長、および集光用レ
ンズの開口(NA)によって決まるビームウエストサイ
ズによる制限のため、面方向における高密度化には限界
がある。
Since the storage capacity of the optical disk shown in the conventional example is limited by the beam waist size determined by the recording laser wavelength and the aperture (NA) of the condenser lens, the high density in the surface direction is obtained. There is a limit to conversion.

【0005】現在の光ディスクは、面方向の高密度化は
ほぼ限界に達している一方、深さ方向には信号ピットの
有無による2値のみしか情報を有していない。それゆ
え、より記録密度を高くするために、信号ピットの深さ
(高さ)方向に情報を持たせる方法が考えられる。
Current optical discs have reached the limit of densification in the surface direction, but have only binary information in the depth direction depending on the presence or absence of signal pits. Therefore, in order to further increase the recording density, a method of providing information in the depth (height) direction of the signal pits can be considered.

【0006】しかしながら、従来の光ディスク原盤の製
造方法のように、通常のフォトリソグラフィープロセス
によっては、信号ピットの深さを変化させて記録するこ
とは困難であった。
However, it has been difficult to change the depth of the signal pit for recording by the ordinary photolithography process as in the conventional method for manufacturing an optical disk master.

【0007】本発明は上記従来技術の課題に鑑み、信号
ピットが異なる深さを有する光ディスク原盤のような、
異なる高さを有する微細パターンの形成方法を提供する
ことを目的とする。
In view of the above-mentioned problems of the prior art, the present invention provides an optical disc master having signal pits having different depths.
It is an object of the present invention to provide a method for forming a fine pattern having different heights.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、微細パターンの形成方法の第1の手段として、基材
表側表面に、感光性物質層を形成する工程、記録光の基
材表面に対する入射角をθ、基材から感光性物質へ光を
入射する際の全反射角をθcとしたとき、θc<θ<π(r
ad)の範囲でθを変化するように、基板裏側面より記録
光を照射し、記録光のうちの基材から感光性物質へしみ
だす光によって、感光性物質を露光する工程、感光部以
外を除去する現像工程によって、複数の高さを有する微
細パターンを形成する。
In order to achieve the above object, as a first means of a method for forming a fine pattern, a step of forming a photosensitive material layer on the front surface of a base material, a base material surface for recording light. Is θ and the total reflection angle when light is incident on the photosensitive material from the substrate is θ c , θ c <θ <π (r
The process of irradiating the recording light from the back side of the substrate so as to change θ in the range of (ad), and exposing the photosensitive material by the light of the recording light that seeps from the base material to the photosensitive material, except the photosensitive part. A fine pattern having a plurality of heights is formed by a developing process for removing the.

【0009】また、第2の手段として、基板表面に、感
光性物質層を形成する工程、記録光の基材表面に対する
入射角をθ、基材から感光性物質へ光を入射する際の全
反射角をθcとしたとき、θc<θ<π(rad)の範囲内の
一入射角にて、記録光の波長を変化させて、基板裏側面
より記録光を照射し、記録光うちの基材から感光性物質
へしみだす光によって、感光性物質を露光する工程、感
光部以外を除去する現像工程によって、複数の高さを有
する微細パターンを形成する。
As a second means, the step of forming a photosensitive material layer on the surface of the substrate, the incident angle of the recording light with respect to the surface of the base material is θ, and all of the light is incident on the photosensitive material from the base material. When the reflection angle is θ c , the wavelength of the recording light is changed at one incident angle within the range of θ c <θ <π (rad), and the recording light is irradiated from the back side of the substrate. A fine pattern having a plurality of heights is formed by a step of exposing the photosensitive material by light bleeding from the base material to the photosensitive material and a developing step of removing a portion other than the photosensitive portion.

【0010】[0010]

【作用】上記手段によれば、次のような作用が得られ
る。
According to the above means, the following effects can be obtained.

【0011】入射光を基材の表(おもて)面の裏側よ
り、全反射する角度θで入射させると、入射光の大部分
は基材を通過することなく、基材表面にて全反射され
る。ところがこのとき、基材面と平行に進行し、その光
強度が基材と垂直方向へは指数関数的に減少する光が基
材表面から感光性物質側にしみだす。この光はエバネセ
ント波と称され、このしみでた光によって感光製物質が
露光される。
When incident light is incident from the back side of the front (front) surface of the base material at an angle θ of total reflection, most of the incident light does not pass through the base material and is totally reflected on the base material surface. Is reflected. However, at this time, light that travels in parallel with the surface of the substrate and whose light intensity exponentially decreases in the direction perpendicular to the substrate exudes from the surface of the substrate to the photosensitive material side. This light is called the evanescent wave, and the light emitted from this spot exposes the photosensitive material.

【0012】また、しみだす深さは、光強度が、基材と
感光性物質との界面での光強度に対して、1/e2とな
る深さをdとして、
With respect to the exudation depth, the depth at which the light intensity is 1 / e 2 with respect to the light intensity at the interface between the substrate and the photosensitive material is d,

【0013】[0013]

【数1】 [Equation 1]

【0014】なる式(数1)で表される。上式におい
て、λは記録光の波長、θは基材と感光性物質との境界
面への入射角、n1、n2はそれぞれ、基材の屈折率およ
び感光性物質の屈折率である。
It is expressed by the following equation (Equation 1). In the above equation, λ is the wavelength of the recording light, θ is the angle of incidence on the interface between the substrate and the photosensitive material, and n 1 and n 2 are the refractive index of the substrate and the refractive index of the photosensitive material, respectively. .

【0015】すなわち、入射角度θを変化させるか、あ
るいは記録光の波長を変化させることにより、感光性物
質への記録光のしみだし深さを制御することができるこ
とがわかる。しみだす深さが変化することにより、感光
性物質が感光する深さも変化するので、これを現像し未
露光部分を除去することによって、光の入射角度あるい
は波長に応じて、高さの異なったパターンを形成するこ
とができる。
That is, it can be seen that the seeping depth of the recording light into the photosensitive material can be controlled by changing the incident angle θ or the wavelength of the recording light. As the exuding depth changes, the photosensitive material also changes in depth, so by developing it and removing the unexposed areas, the height can be changed depending on the incident angle or wavelength of light. A pattern can be formed.

【0016】なお参考のために、レーザ波長を457.
9nm、基材屈折率を2.61、フォトレジスト屈折率
を1.5、基材裏面の斜面角度を45゜としたときの、
臨界角、基材入射角度に対する、基材表面入射角、およ
びフォトレジストへのしみだし深さを(表1)に示して
おく。
For reference, the laser wavelength is set to 457.
9 nm, the substrate refractive index is 2.61, the photoresist refractive index is 1.5, and the backside angle of the substrate is 45 °.
Table 1 shows the critical angle, the incident angle of the substrate surface with respect to the incident angle of the substrate, and the penetration depth into the photoresist.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【実施例】以下具体的な例をもって本発明を詳述する。The present invention will be described in detail below with reference to specific examples.

【0019】(第1実施例)図1に本願発明の第1実施
例の工程図を示す。図1において1は基材、2はフォト
レジスト、3は露光部分である。また図2に、本実施例
で用いる露光装置の模式図を示す。図2において4、5
はミラー、6は記録用Arレーザ(λ=457.9n
m)である。
(First Embodiment) FIG. 1 shows a process chart of a first embodiment of the present invention. In FIG. 1, 1 is a base material, 2 is a photoresist, and 3 is an exposed portion. Further, FIG. 2 shows a schematic diagram of the exposure apparatus used in this embodiment. In FIG. 2, 4, 5
Is a mirror, 6 is an Ar laser for recording (λ = 457.9n
m).

【0020】まず、図1(a)に示す三角柱状の形状を
した基材の一側面に、高さの異なるパターンを形成する
場合を用いて説明する。基材はSrTiO3(波長45
7.9nmにおいてn1≒2.61)を切り出したもの
を用いる。
First, a case will be described where a pattern having different heights is formed on one side surface of a base material having a triangular prism shape as shown in FIG. The base material is SrTiO 3 (wavelength 45
A cutout of n 1 ≈2.61) at 7.9 nm is used.

【0021】まず、側面Aにネガ型のフォトレジストO
MR−85(東京応化工業、屈折率≒1.5)を厚み2
00nm程度で塗布する。なお本発明においては、現像
時に未露光部が除去されるタイプのフォトレジストをネ
ガ型と称する。
First, a negative photoresist O is formed on the side surface A.
MR-85 (Tokyo Ohka Kogyo, refractive index ≈1.5) thickness 2
Apply at about 00 nm. In the present invention, a photoresist of the type in which the unexposed portion is removed during development is called a negative type photoresist.

【0022】次に図2に示したように、レーザ光を側面
Cより、側面Aに対する入射角が24゜となる角度にて
照射し(図2中実線で示された光路)、基材1をz方向
に移動させる。これにより基材1の側面Aのz方向に線
状に露光できる。なお、基材入射レーザ光強度は40m
W、基材1の移動速度は10mm/秒としている。
Next, as shown in FIG. 2, laser light is irradiated from the side surface C at an angle at which the incident angle with respect to the side surface A is 24 ° (optical path shown by the solid line in FIG. 2), and the substrate 1 In the z direction. This allows linear exposure in the z direction on the side surface A of the substrate 1. The laser light intensity incident on the substrate is 40 m.
The moving speed of W and the substrate 1 is 10 mm / sec.

【0023】次に、ミラー4の位置および角度を変化さ
せてレーザ光の入射角度を40゜とし、他の条件は上記
の条件と同様にして(図2中波線で示された光路)、側
面Aの裏側よりフォトレジスト2を露光する(図1
(b))。
Next, the position and angle of the mirror 4 are changed so that the incident angle of the laser beam is 40 °, and the other conditions are the same as the above conditions (the optical path indicated by the broken line in FIG. 2). The photoresist 2 is exposed from the back side of A (see FIG. 1).
(B)).

【0024】上記の処理を終えた基材を現像して、未露
光部を除去することにより、図1(c)に示されたよう
な、高さが異なった溝パターンが得られる。得られる溝
高さは、入射角度が24゜、40゜の場合にそれぞれ約
90nm、約45nmである。なお本実施例において
は、この溝高さはしみだし深さの約0.6倍になってい
るが、現像条件を変えることによって、高さを多少変化
させることはできる。
By developing the base material which has been subjected to the above-mentioned treatment and removing the unexposed portion, groove patterns having different heights as shown in FIG. 1 (c) can be obtained. The obtained groove heights are about 90 nm and about 45 nm when the incident angle is 24 ° and 40 °, respectively. In this embodiment, the groove height is about 0.6 times the bleeding depth, but the height can be changed to some extent by changing the developing conditions.

【0025】以上、本実施例によれば、基材1上に高さ
の異なるパターンを形成することが可能であり、記録光
の入射角を変化させることにより、パターン高さを制御
することができる。
As described above, according to this embodiment, it is possible to form patterns having different heights on the substrate 1, and it is possible to control the pattern height by changing the incident angle of the recording light. it can.

【0026】なお、本実施例においては入射角を2条件
のみで変化させたが、入射角をより多くの条件で変化さ
せることは容易であり、それにより、それぞれの入射角
に応じた多数の高さの異なるパターンを形成することが
できる。
In the present embodiment, the incident angle was changed only under two conditions, but it is easy to change the incident angle under more conditions, whereby a large number of incident angles can be obtained. It is possible to form patterns having different heights.

【0027】また、本実施例においては基材としては、
斜面角度が45゜のものを用いたが、基材表面に対する
基材裏面の斜面角度が小さくなるほど、記録光の基材入
射角度を、基材に対してより平行な方向から入射させな
ければならないため、斜面角度は基材表面に対して少な
くとも20゜以上の傾きを有していることが好ましい。
In this embodiment, the base material is
Although the slope angle of 45 ° was used, the smaller the slope angle of the back surface of the base material with respect to the front surface of the base material, the smaller the incidence angle of the recording light on the base material has to be made to enter from the direction parallel to the base material. Therefore, it is preferable that the slope angle has an inclination of at least 20 ° or more with respect to the surface of the base material.

【0028】また、パターン高さの制御について、パタ
ーンの高さを低くするには、斜面角度を大きくするか、
屈折率の高い材料を基材として用いれば良い。
Regarding the control of the pattern height, in order to reduce the pattern height, the slope angle should be increased or
A material having a high refractive index may be used as the base material.

【0029】高屈折率基材材料としては、本実施例で用
いたSrTiO3の他に、BaTiO3(n1=2.5
4)、ZnS(n1=2.46)(n1はいずれも記録光
波長が457.9nmの場合の屈折率)等を用いても同
様の効果がある。逆に、パターン高さを高くするには、
斜面角度を小さくするか、屈折率の低い材料を基材とし
て用いれば良い。
As the high refractive index base material, in addition to SrTiO 3 used in this embodiment, BaTiO 3 (n 1 = 2.5) is used.
4), ZnS (n 1 = 2.46) (n 1 is the refractive index when the recording light wavelength is 457.9 nm) and the like have the same effect. Conversely, to increase the pattern height,
The slope angle may be reduced or a material having a low refractive index may be used as the base material.

【0030】(第2実施例)次に本願発明の第2実施例
として、基材として、あらかじめダイヤモンドバイトに
て基材裏面に、斜面角度30゜のV字形の溝を螺旋状に
形成した円形基材を用い、基材表面上に2種類の深さを
有する信号ピット列を形成する場合を説明する。なお基
材材質は実施例1と同様にSrTiO3(n1≒2.61
(但しλ=457.9nm)、≒3.00(但しλ=3
63.8nm ))を用いる。
(Second Embodiment) Next, as a second embodiment of the present invention, as a base material, a V-shaped groove having a slope angle of 30 ° is spirally formed on the back surface of the base material with a diamond cutting tool in advance. A case will be described in which a base material is used and a signal pit array having two types of depths is formed on the surface of the base material. The material of the base material was SrTiO 3 (n 1 ≈2.61) as in Example 1.
(However, λ = 457.9 nm), ≈3.00 (however, λ = 3
63.8 nm)) is used.

【0031】本実施例と第1実施例との相違点は、第1
実施例が異なる高さを形成するために、入射角度を変化
させたのに対して、本実施例では入射角度は固定し、記
録光の波長を変えることにより高さの制御を行うところ
である。
The difference between this embodiment and the first embodiment is that the first embodiment
The incident angle is changed to form different heights in the embodiment, whereas the incident angle is fixed in this embodiment and the height is controlled by changing the wavelength of the recording light.

【0032】以下、本実施例について具体的に説明す
る。図3は本実施例で用いた露光装置を模式的に示した
ものである。図3において、7はダイクロイックミラー
(363.8nm反射、457.9nm透過)、8はA
rレーザ(波長363.8nm)、9はArレーザ(波
長457.9nm)、10および11は対物レンズ、1
4は制御用レーザ、15はフォーカスおよびトラッキン
グの制御系ブロック、16、17はそれぞれの波長対応
のEO変調器である。
The present embodiment will be specifically described below. FIG. 3 schematically shows the exposure apparatus used in this embodiment. In FIG. 3, 7 is a dichroic mirror (363.8 nm reflection, 457.9 nm transmission), 8 is A
r laser (wavelength 363.8 nm), 9 is Ar laser (wavelength 457.9 nm), 10 and 11 are objective lenses, 1
Reference numeral 4 is a control laser, 15 is a focus and tracking control system block, and 16 and 17 are EO modulators corresponding to respective wavelengths.

【0033】まず、基材1の表面にネガ型フォトレジス
ト2を約200nmの厚みで塗布する。
First, the negative photoresist 2 is applied on the surface of the substrate 1 to a thickness of about 200 nm.

【0034】次に、基材1を回転させながら、2種類の
レーザ光8、9をそれぞれEO変調器16、17にてO
N、OFFし、対物レンズ10で絞り込んで基材裏面側
から、基材表面に照射する。なお、2種類のビームのフ
ォーカス位置が、基材1の動径方向に対して円周上に揃
うように、ダイクロイックミラー7へのビーム入射位置
を調整している。
Next, while rotating the substrate 1, two kinds of laser light 8 and 9 are emitted by the EO modulators 16 and 17, respectively.
It is turned off N, narrowed down with the objective lens 10, and the front surface of the base material is irradiated from the back surface side of the base material. The beam incident positions on the dichroic mirror 7 are adjusted so that the focus positions of the two types of beams are aligned on the circumference in the radial direction of the substrate 1.

【0035】記録条件は、記録光の基材への入射角度を
47゜、波長363.8nm、457.9nmのビーム
の対物レンズへの入射ビーム強度を、それぞれ10m
W、20mW、および線速度を10m/秒とする。
The recording conditions are as follows: the incident angle of the recording light on the substrate is 47 °, and the incident beam intensities of the beams with wavelengths of 363.8 nm and 457.9 nm are 10 m, respectively.
W, 20 mW, and linear velocity of 10 m / sec.

【0036】また、制御用レーザ14からのレーザ光
を、対物レンズ11にて基材1裏面の斜面山部あるいは
谷部に集光し、その反射光の強度分布が非対称となるの
を利用することにより、トラッキングの制御、および、
基材1とフォトレジスト2との境界部に記録光の焦点が
くるように、制御光学系にてフォーカス制御を行う。
Further, it is utilized that the laser light from the control laser 14 is condensed by the objective lens 11 on the slope mountain portion or the valley portion on the back surface of the substrate 1 and the intensity distribution of the reflected light is asymmetric. This enables tracking control and
Focus control is performed by the control optical system so that the recording light is focused on the boundary between the substrate 1 and the photoresist 2.

【0037】露光を終えた基材を現像し、未露光部を除
去することにより、ピット高さが、波長363.8nm
のビームにて記録した方が約40nm、457.9nm
のビームの方が約110nmの2種類の高さを有する信
号パターンが得られる。参考として、それぞれの波長で
の、フォトレジスト側へのしみだし深さ(強度が境界の
1/e2となる深さ)の値を(表2)、(表3)に示
す。
By developing the exposed base material and removing the unexposed portion, the pit height becomes a wavelength of 363.8 nm.
40nm, 457.9nm for recording with beam
The beam of 2 gives a signal pattern having two heights of about 110 nm. For reference, the values of the bleeding depth to the photoresist side (depth at which the intensity is 1 / e 2 of the boundary) at each wavelength are shown in (Table 2) and (Table 3).

【0038】ここで、(表2)は、レーザ波長を36
3.8nm、基材屈折率を3.00、フォトレジスト屈
折率を1.5、基材裏面の斜面角度を30゜としたとき
の、臨界角、基材入射角度に対する、基材表面入射角、
およびフォトレジストへのしみだし深さを示したもので
ある。
Here, (Table 2) shows that the laser wavelength is 36
The incident angle of the substrate surface with respect to the critical angle and the incident angle of the substrate when the refractive index of the substrate is 3.8 nm, the refractive index of the substrate is 3.00, the refractive index of the photoresist is 1.5, and the slope angle of the back surface of the substrate is 30 °. ,
And the depth of seeping into the photoresist.

【0039】また(表3)は、レーザ波長を457.9
nm、基材屈折率を2.61、フォトレジスト屈折率を
1.5、基材裏面の斜面角度を30゜としたときの、臨
界角、基材入射角度に対する、基材表面入射角、および
フォトレジストへのしみだし深さを示したものである。
Further, (Table 3) shows a laser wavelength of 457.9.
nm, the substrate refractive index is 2.61, the photoresist refractive index is 1.5, and the backside angle of the substrate is 30 °, the critical angle, the substrate incident angle with respect to the substrate incident angle, and This shows the depth of seeping into the photoresist.

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】以上、本実施例によれば、基材上に高さの
異なるパターンを形成することが可能であり、記録光の
波長を変えることにより、パターン高さを制御すること
ができる。
As described above, according to this embodiment, it is possible to form patterns having different heights on the base material, and the pattern height can be controlled by changing the wavelength of the recording light.

【0043】なお本実施例では、V溝が螺旋状に形成さ
れた基材を用いたが、同心円状のV溝列でも本質的に
は、なんら変わるところがなく、同様の効果が得られ
る。
In this embodiment, the base material in which the V-shaped groove is formed in a spiral shape is used, but there is essentially no change in the concentric V-shaped groove array, and the same effect can be obtained.

【0044】また、本実施例のように対称なV溝形状で
はなく、基材表面とフォトレジストの界面で記録光が全
反射する角度にて入射できる条件を満たしていれば、非
対称なくさび型、あるいは長方形、台形、半円形形状等
の溝でも同様の効果が得られる。
If the recording light is incident on the interface between the substrate surface and the photoresist at an angle at which the recording light is totally reflected at the interface between the substrate surface and the photoresist instead of the symmetrical V-groove shape as in this embodiment, an asymmetric wedge shape is obtained. Alternatively, a similar effect can be obtained with a groove having a rectangular shape, a trapezoidal shape, a semicircular shape, or the like.

【0045】(第3実施例)次に本願発明の第3実施例
として、基材としては実施例2と同様に裏面に斜面角度
30゜のV字形の溝を有する円形基材を用い、基材表面
上に連続的に高さの変化する信号ピット列を形成する場
合を説明する。なお基材材質は実施例1、2と同様にS
rTiO3を用いる。
(Third Embodiment) Next, as a third embodiment of the present invention, a circular base material having a V-shaped groove with a slope angle of 30 ° on the back surface is used as the base material as in the second embodiment. A case will be described in which a signal pit row whose height continuously changes is formed on the material surface. The material of the base material is S as in the first and second embodiments.
rTiO 3 is used.

【0046】図4は本実施例で用いた露光装置を模式的
に示したものである。図4において、図3と異なる部分
は18の波長可変な有機色素レーザ(7−ヒドロキシク
マリン:波長450〜470nm)、および図3におい
ては独立していた対物レンズ10、11を共用対物レン
ズ19としたところであり、他は図3と同様であるため
説明を省略する。
FIG. 4 schematically shows the exposure apparatus used in this embodiment. 4, 18 is a wavelength tunable organic dye laser (7-hydroxycoumarin: wavelength 450 to 470 nm), and the objective lenses 10 and 11 which are independent in FIG. The other parts are the same as those shown in FIG.

【0047】以下、本実施例について具体的に説明す
る。まず、基材1の表面にネガ型フォトレジスト2を約
200nmの厚みで塗布する。
The present embodiment will be specifically described below. First, the negative photoresist 2 is applied to the surface of the base material 1 to a thickness of about 200 nm.

【0048】次に、基材1を回転させながら、レーザ光
の波長を記録すべき信号に対応させて変調し、かつEO
変調器18にて記録パルス長も変調して、共用対物レン
ズ19の外周部分から全反射条件を満たす角度となるよ
うに基材裏面側から入射させる。
Next, while rotating the substrate 1, the wavelength of the laser light is modulated in accordance with the signal to be recorded, and EO
The recording pulse length is also modulated by the modulator 18, and the recording pulse length is made incident from the rear surface side of the base material so that the angle is satisfied from the outer peripheral portion of the shared objective lens 19.

【0049】記録条件は、記録光の基材への入射角度を
45゜、波長変化幅を450nm〜470nm、対物レ
ンズへの入射ビーム強度を20mW、および線速度を1
0m/秒である。
The recording conditions are as follows: the angle of incidence of the recording light on the base material is 45 °, the wavelength variation width is 450 nm to 470 nm, the incident beam intensity on the objective lens is 20 mW, and the linear velocity is 1.
It is 0 m / sec.

【0050】また、制御用レーザ14からのレーザ光
は、共用対物レンズ19の中心を通過させ、実施例の2
に示した方法と同様にして、トラッキングおよびフォー
カス制御を行う。
Further, the laser light from the control laser 14 passes through the center of the common objective lens 19, and the laser light from the second embodiment is used.
Tracking and focus control are performed in the same manner as the method shown in FIG.

【0051】露光を終えた基材を現像し、未露光部を除
去することにより、ピット高さが、約160nm〜17
0nmの範囲で変化する信号ピット列を得ることができ
る。
By developing the exposed substrate and removing the unexposed portion, the pit height is about 160 nm to 17 nm.
It is possible to obtain a signal pit train that changes in the range of 0 nm.

【0052】また記録用ビーム、制御用ビームを1つの
対物レンズにて集光するため光学系が実施例2と比較し
て簡易に実現できる長所がある。ただし、レンズの開口
を十分に生かせないため、記録用ビームが十分に集光さ
れない短所がある。実際には、必要な記録密度を考えた
うえでいずれの集光光学系を用いるかを決めればよいと
いえる。
Further, since the recording beam and the control beam are condensed by one objective lens, there is an advantage that the optical system can be easily realized as compared with the second embodiment. However, since the aperture of the lens cannot be fully utilized, the recording beam is not sufficiently condensed. In practice, it can be said that the condensing optical system to be used should be decided after considering the required recording density.

【0053】以上、本実施例によれば、基材上に高さが
連続的に変化する信号ピット列を形成することが可能と
なる。
As described above, according to the present embodiment, it is possible to form the signal pit train whose height continuously changes on the base material.

【0054】以上、第1実施例〜第3実施例に基づき本
発明の詳細な説明を行った。なお、異なる高さのパター
ンを形成するために、第1実施例では記録用ビームの入
射角を変化させ、第2、第3実施例では記録用ビームの
波長を変化させたが、いずれの方法によっても得られる
効果は等しく、第1実施例において波長変化による方法
を、第2、第3実施例において入射角変化による方法を
用いてもよい。
The present invention has been described above in detail based on the first to third embodiments. In order to form patterns having different heights, the incident angle of the recording beam was changed in the first embodiment and the wavelength of the recording beam was changed in the second and third embodiments. The same effect can be obtained as in the first embodiment, and the method of changing the wavelength in the first embodiment and the method of changing the incident angle in the second and third embodiments may be used.

【0055】[0055]

【発明の効果】本発明によれば、基板表面に複数の高さ
を有する微細パターンを形成することが可能となり、従
って従来よりも高密度の記録が可能となる。
According to the present invention, it becomes possible to form a fine pattern having a plurality of heights on the surface of a substrate, and thus it is possible to perform recording at a higher density than in the past.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す工程図FIG. 1 is a process chart showing an embodiment of the present invention.

【図2】同実施例で用いた露光装置の模式図FIG. 2 is a schematic diagram of an exposure apparatus used in the example.

【図3】本発明の他の実施例で用いた露光装置の模式図FIG. 3 is a schematic diagram of an exposure apparatus used in another embodiment of the present invention.

【図4】本発明の更に他の実施例で用いた露光装置の模
式図
FIG. 4 is a schematic diagram of an exposure apparatus used in still another embodiment of the present invention.

【図5】従来例のパターン形成方法を示す工程図FIG. 5 is a process diagram showing a conventional pattern forming method.

【符号の説明】[Explanation of symbols]

1 基材 2 ネガ型フォトレジスト 3 露光部 4 ミラー 5 ミラー 6 Arレーザ 7 ダイクロイックミラー 8 Arレーザ(波長363.8nm) 9 Arレーザ(波長457.9nm) 10 対物レンズ 11 対物レンズ 12 λ/4波長板 13 偏光ビームスプリッタ 14 制御用レーザ 15 制御系ブロック 16 EO変調器 17 EO変調器 18 波長可変レーザ 19 共用対物レンズ 20 ポジ型フォトレジスト 1 Base Material 2 Negative Photoresist 3 Exposure Section 4 Mirror 5 Mirror 6 Ar Laser 7 Dichroic Mirror 8 Ar Laser (Wavelength 363.8 nm) 9 Ar Laser (Wavelength 457.9 nm) 10 Objective Lens 11 Objective Lens 12 λ / 4 Wavelength Plate 13 Polarizing Beam Splitter 14 Control Laser 15 Control System Block 16 EO Modulator 17 EO Modulator 18 Wavelength Tunable Laser 19 Common Objective Lens 20 Positive Photoresist

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】複数の高さを有する微細パターンの形成方
法であって、 基材表側表面に、感光性物質層を形成する工程、 記録光の基材表面に対する入射角をθ、基材から感光性
物質へ光を入射する際に全反射する臨界角をθcとした
とき、θc<θ<π(rad)の範囲でθを変化するように、
基板裏側面より記録光を照射し、記録光のうちの基材か
ら感光性物質へしみだす光によって、感光性物質を露光
する工程、 感光部以外を除去する現像工程 からなる、複数の高さを有する微細パターンの形成方
法。
1. A method of forming a fine pattern having a plurality of heights, comprising: a step of forming a photosensitive material layer on the front surface of a substrate; an incident angle of recording light with respect to the substrate surface being θ; when the critical angle of total reflection when incident light to the photosensitive material was θ c, θ c <θ <to vary the theta range of π (rad),
Multiple heights consisting of the process of irradiating the recording light from the back side of the substrate and exposing the photosensitive substance by the light of the recording light that leaks from the base material to the photosensitive substance, and the developing process to remove the non-photosensitive portion. A method for forming a fine pattern having:
【請求項2】複数の高さを有する微細パターンの形成方
法であって、 基板表面に、感光性物質層を形成する工程、 記録光の基材表面に対する入射角をθ、基材から感光性
物質へ光を入射する際に全反射する臨界角をθcとした
とき、θc<θ<π(rad)の範囲内の一入射角にて、記録
光の波長を変化させて、基板裏側面より記録光を照射
し、記録光うちの基材から感光性物質へしみだす光によ
って、感光性物質を露光する工程、 感光部以外を除去する現像工程 からなる、複数の高さを有する微細パターンの形成方
法。
2. A method of forming a fine pattern having a plurality of heights, the method comprising: forming a photosensitive material layer on a substrate surface; an incident angle of recording light with respect to the substrate surface being θ; When the critical angle of total reflection when light is incident on a substance is θ c , the wavelength of the recording light is changed at one incident angle within the range of θ c <θ <π (rad), and the backside of the substrate is changed. Fine light with multiple heights, consisting of the steps of irradiating recording light from the surface and exposing the photosensitive material by the light of the recording light that exudes from the base material to the photosensitive material, and the developing step of removing the areas other than the photosensitive area. Pattern formation method.
【請求項3】基材として、基材裏側面が基材表側面に対
して略斜面形状をなすものを用いる、請求項1または2
記載の複数の高さを有する微細パターンの形成方法。
3. The base material, wherein the back surface of the base material has a substantially inclined surface shape with respect to the front surface of the base material is used.
A method for forming a fine pattern having a plurality of heights described.
【請求項4】基材として、基材裏側面に、略くさび形状
の溝列を有するものを用いる、請求項1または2記載の
複数の高さを有する微細パターンの形成方法。
4. The method for forming a fine pattern having a plurality of heights according to claim 1 or 2, wherein a base material having a substantially wedge-shaped groove array on the back surface is used as the base material.
【請求項5】略くさび形状の溝を同心円状あるいは螺旋
状に形成する、請求項4記載の複数の高さを有する微細
パターンの形成方法。
5. The method for forming a fine pattern having a plurality of heights according to claim 4, wherein the substantially wedge-shaped groove is formed in a concentric shape or a spiral shape.
【請求項6】基材裏面の略斜面の角度が、基材表側面に
対して20゜以上90゜未満の傾きを有する、請求項3
または4記載の複数の高さを有する微細パターンの形成
方法。
6. The substrate according to claim 3, wherein the angle of the substantially inclined surface of the back surface of the base material is 20 ° or more and less than 90 ° with respect to the front surface of the base material.
Alternatively, the method for forming a fine pattern having a plurality of heights according to 4 above.
【請求項7】感光性物質としてネガ型フォトレジストを
用いる、請求項1または2記載の複数の高さを有する微
細パターンの形成方法。
7. The method for forming a fine pattern having a plurality of heights according to claim 1, wherein a negative photoresist is used as the photosensitive material.
【請求項8】記録光をレンズにより基材と感光性物質の
略境界面に集光する、請求項1または2記載の複数の高
さを有する微細パターンの形成方法。
8. The method for forming a fine pattern having a plurality of heights according to claim 1, wherein the recording light is condensed by a lens on a substantially boundary surface between the substrate and the photosensitive material.
【請求項9】記録光照射時に、略斜面形状溝からの反射
光によってトラッキング制御を行う、請求項4記載の複
数の高さを有する微細パターンの形成方法。
9. The method for forming a fine pattern having a plurality of heights according to claim 4, wherein the tracking control is performed by the reflected light from the substantially sloped groove when the recording light is irradiated.
【請求項10】記録光照射時に、基材と感光性物質の略
境界面に記録光が集光するようにフォーカス制御を行
う、請求項4記載の複数の高さを有する微細パターンの
形成方法。
10. The method for forming a fine pattern having a plurality of heights according to claim 4, wherein the focus control is performed so that the recording light is focused on a substantially boundary surface between the substrate and the photosensitive material when the recording light is irradiated. .
JP17011793A 1993-07-09 1993-07-09 Formation of fine pattern having plural heights Pending JPH0729220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17011793A JPH0729220A (en) 1993-07-09 1993-07-09 Formation of fine pattern having plural heights

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17011793A JPH0729220A (en) 1993-07-09 1993-07-09 Formation of fine pattern having plural heights

Publications (1)

Publication Number Publication Date
JPH0729220A true JPH0729220A (en) 1995-01-31

Family

ID=15898962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17011793A Pending JPH0729220A (en) 1993-07-09 1993-07-09 Formation of fine pattern having plural heights

Country Status (1)

Country Link
JP (1) JPH0729220A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700017A2 (en) 1994-08-31 1996-03-06 Nippon Telegraph And Telephone Corporation Method and apparatus for directional counting of moving objects
JP2005019407A (en) * 2003-06-27 2005-01-20 Chi Mei Optoelectronics Corp Organic el element and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700017A2 (en) 1994-08-31 1996-03-06 Nippon Telegraph And Telephone Corporation Method and apparatus for directional counting of moving objects
JP2005019407A (en) * 2003-06-27 2005-01-20 Chi Mei Optoelectronics Corp Organic el element and its manufacturing method
JP4644757B2 (en) * 2003-06-27 2011-03-02 奇美電子股▲ふん▼有限公司 Manufacturing method of organic EL element

Similar Documents

Publication Publication Date Title
US5581531A (en) Method of making optical disk master and an optical disk
EP0304312B1 (en) An optical disk for use in optical memory devices
KR100225105B1 (en) Multilayer optical disc and method of making same
EP0596439A2 (en) Method of making a master disc usable for the production of optical discs
JP4380004B2 (en) Recording medium manufacturing method and recording medium manufacturing master manufacturing method
JPH0729220A (en) Formation of fine pattern having plural heights
JPH05189813A (en) Manufacture of master plate for optical disk
JP4320916B2 (en) Optical recording medium, master for manufacturing optical recording medium, and optical recording / reproducing apparatus
JP2000048409A (en) Optical recording medium, master disk for production of optical recording medium and optical recording and reproducing device
JP4320915B2 (en) Optical recording medium, master for manufacturing optical recording medium, and optical recording / reproducing apparatus
JP2000173094A (en) Method and apparatus for manufacture of matrix for optical disk
JPH02244440A (en) Production of optical master disk
KR100469277B1 (en) Method for fabricating cover layer in recording media of high density
KR100188922B1 (en) Method of manufacturing glass substrate and photo mask for optical disc
JP4687783B2 (en) Recording medium manufacturing apparatus and recording medium manufacturing master manufacturing apparatus
JPH11339329A (en) Device and method for exposure
JP4687782B2 (en) Recording medium manufacturing method and recording medium manufacturing master manufacturing method
JP2713083B2 (en) Fine pattern drawing method
JPH10302300A (en) Production of stamper for recording medium, exposing method and recorder/reproducer
JP2000339780A (en) Production of master disk of optical disk
JPH07334869A (en) Recording member for information
JP2001291275A (en) Recording type optical disk, original optical disk, disk substrate, and original optical disk manufacturing method
JPH0793828A (en) Method for exposing optical master disk
JP2001229577A (en) Optical recording medium
JP2001319382A (en) Exposure device of master disk for optical recording medium, exposure method of master disk for optical recording medium, optical pickup and optical recording method