JPH07291782A - Method for growing compound semiconductor single crystal - Google Patents

Method for growing compound semiconductor single crystal

Info

Publication number
JPH07291782A
JPH07291782A JP10621394A JP10621394A JPH07291782A JP H07291782 A JPH07291782 A JP H07291782A JP 10621394 A JP10621394 A JP 10621394A JP 10621394 A JP10621394 A JP 10621394A JP H07291782 A JPH07291782 A JP H07291782A
Authority
JP
Japan
Prior art keywords
raw material
material melt
compound semiconductor
single crystal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10621394A
Other languages
Japanese (ja)
Inventor
Toshiaki Asahi
聰明 朝日
Hidekazu Shimizu
英一 清水
Takayoshi Takeda
貴宜 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP10621394A priority Critical patent/JPH07291782A/en
Publication of JPH07291782A publication Critical patent/JPH07291782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent useless crystal growth and improve the yield of single crystal production by observing the state of a melt surface in growth of a compd. semiconductor single crystal by a perpendicular gradient freezing method. CONSTITUTION:A crucible 4 contg. a raw material 5 of the compd. semiconductor is arranged into a quartz ampoule 2 and after this quartz ampoule is vacuum sealed, the quartz ampoule 2 is heated in a heating furnace 1 to melt the raw material 5. While the temp. distribution in the perpendicular direction of the heating furnace 1 is so controlled that the temp. on the bottom side of the raw material melt is kept higher than the temp. on the front surface side of the raw material melt, the temp. of the heating furnace 1 is gradually lowered and the compd. semiconductor single crystal is grown downward from the surface of the raw material melt. At this time, the crystal is grown while the state of the raw material melt surface in the crucible 4 before and after generation of the nucleus on the front surface of the raw material melt is observed from the upper part of the heating furnace 1. For example, the raw material melt state is photographed by a video camera 8 and is observed by connecting this video camera to a video tape recorder 10 and/or a monitor television 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、垂直グラジエントフリ
ージング法(VGF法, Vertical GadientFreezing )
による化合物半導体単結晶の成長方法に関し、特にCd
Te,CdZnTeなどの化合物半導体単結晶を成長さ
せる方法に関する。
The present invention relates to a vertical gradient freezing method (VGF method, Vertical Gadient Freezing).
And a method of growing a compound semiconductor single crystal according to
The present invention relates to a method for growing a compound semiconductor single crystal such as Te or CdZnTe.

【0002】[0002]

【従来の技術】VGF法は、LEC法(液体封止チョク
ラルスキー法)と比較して、小さい温度勾配で結晶を育
成するため、結晶の熱応力が小さく転位などの結晶欠陥
を抑制できるという利点を持つ。しかしながら、るつぼ
内で結晶を成長させるため、るつぼ壁との応力によって
双晶やリニエジなどの結晶欠陥が発生しやすいという問
題がある。特に、一般的なVGF方法では、るつぼ下端
より上方に垂直方向に温度が高くなるように設定した温
度分布で、るつぼ下端に設置した種結晶側から結晶を成
長させており、るつぼ底部のるつぼ壁と成長軸とのなす
角度が大きいため、成長初期に前記の結晶欠陥が発生し
やすく、多結晶化の原因となる。
2. Description of the Related Art The VGF method grows a crystal with a smaller temperature gradient than the LEC method (liquid-encapsulated Czochralski method), so that the thermal stress of the crystal is small and crystal defects such as dislocations can be suppressed. Have an advantage. However, since the crystal is grown in the crucible, there is a problem that crystal defects such as twin crystals and lineage are likely to occur due to the stress with the crucible wall. In particular, in the general VGF method, a crystal is grown from the seed crystal side installed at the lower end of the crucible with a temperature distribution set so that the temperature is vertically higher than the lower end of the crucible, and the crucible wall at the bottom of the crucible is grown. Since the angle between the growth axis and the growth axis is large, the above-mentioned crystal defects are likely to occur in the initial stage of growth, which causes polycrystallization.

【0003】このため、本出願人の出願した特公平5−
59873号公報に記載されているような、逆にるつぼ
下端より上方に垂直方向に温度が低くなるように設定し
た温度分布とし、融液表面より下方に向かって結晶を成
長させる方法ならば、少なくともるつぼ壁と接する部分
は結晶の周辺部分に限られるので、結晶欠陥の発生は結
晶の端に限定できる。特公平5−59873号公報に記
載されているように、温度勾配を0.1〜10℃/c
m、冷却速度を0.01〜1℃/hとし、融液表面の中
心が周辺に比べて低い温度として、中心から周辺に向か
って結晶が徐々に成長し単結晶となる。本発明者らはこ
の方法により比較的結晶品質が良く単結晶歩留まりも高
い結晶成長を行ってきた。
Therefore, the Japanese Patent Publication No.
As described in Japanese Patent Publication No. 59873, the temperature distribution is set so that the temperature is vertically lower than the lower end of the crucible, and the crystal is grown downward from the melt surface. Since the portion in contact with the crucible wall is limited to the peripheral portion of the crystal, the generation of crystal defects can be limited to the edge of the crystal. As described in Japanese Examined Patent Publication No. 5-59873, the temperature gradient is 0.1 to 10 ° C./c.
m, the cooling rate is 0.01 to 1 ° C./h, the temperature of the center of the melt surface is lower than that of the periphery, and the crystal gradually grows from the center to the periphery to become a single crystal. The present inventors have grown crystals by this method with relatively high crystal quality and high single crystal yield.

【0004】[0004]

【発明が解決しようとする課題】上記従来の結晶成長方
法で、たとえばCdZnTe単結晶を成長する場合、単
結晶の長さによっても異なるが、成長に2〜3週間を要
しており、成長させた全ての結晶が常に単結晶になると
は限らず、多結晶化してしまうこともあり、2〜3週間
もの間無駄な結晶成長を行ったことになりコストアップ
の原因となるという問題点があった。
When, for example, a CdZnTe single crystal is grown by the above-described conventional crystal growth method, it takes 2 to 3 weeks to grow, although it depends on the length of the single crystal. In addition, not all crystals are always single crystals, but they may become polycrystals, which results in unnecessary crystal growth for 2-3 weeks, which causes a cost increase. It was

【0005】[0005]

【問題を解決するため手段】本発明者らは、上記問題点
を解決するために鋭意検討した結果、融液表面の状態を
観察することで、そのまま結晶成長を続けると多結晶化
してしまう状態であるか否かを判断し、そのような状態
であれば結晶成長をやり直し、そうでなければそのまま
結晶成長を続けるという方法を見出した。
Means for Solving the Problems The inventors of the present invention have made earnest studies to solve the above-mentioned problems, and as a result, by observing the state of the surface of the melt, a state in which polycrystallization occurs when crystal growth is continued as it is Then, the inventors have found a method of judging whether or not it is, and if it is in such a state, redo the crystal growth, and otherwise continue the crystal growth.

【0006】すなわち、本発明は、石英アンプル内に化
合物半導体の原料を入れたるつぼを設置して同石英アン
プルを真空封止した後、該石英アンプルを加熱炉内で加
熱して前記原料を融解し、該加熱炉の垂直方向の温度分
布を該原料融液表面側の温度よりも該原料融液底部側の
温度が高くなるように制御しながら、同加熱炉の温度を
徐々に下げて、該原料融液の表面から下方に向かって該
化合物半導体単結晶を成長させる方法において、該加熱
炉の上部から該原料融液表面での核発生前後の該るつぼ
内の該原料融液表面の状態を観察しながら結晶成長させ
ることを特徴とする化合物半導体単結晶の成長方法を提
供するものである。
That is, according to the present invention, a crucible containing a raw material for a compound semiconductor is placed in a quartz ampoule, the quartz ampoule is vacuum-sealed, and then the quartz ampoule is heated in a heating furnace to melt the raw material. Then, while controlling the temperature distribution in the vertical direction of the heating furnace so that the temperature of the raw material melt bottom side is higher than the temperature of the raw material melt surface side, gradually lowering the temperature of the heating furnace, In the method of growing the compound semiconductor single crystal downward from the surface of the raw material melt, the state of the raw material melt surface in the crucible before and after nucleation on the raw material melt surface from the upper part of the heating furnace The present invention provides a method for growing a compound semiconductor single crystal, which is characterized in that the crystal is grown while observing.

【0007】そして、上記原料融液表面の状態が、該原
料融液の対流の有無や程度、及び/あるいは、固化が始
まる位置や拡がり方であり、また上記原料融液表面状態
の観察方法が、ビデオカメラで撮影し、ビデオテープレ
コーダー、及び/あるいはモニターテレビに接続して観
察を行う方法である化合物半導体単結晶の成長方法を提
供するものである。
The condition of the surface of the raw material melt is the presence or absence and the degree of convection of the raw material melt, and / or the position or spreading of solidification, and the method of observing the surface state of the raw material melt is The present invention provides a method for growing a compound semiconductor single crystal, which is a method of taking an image with a video camera and connecting to a video tape recorder and / or a monitor TV for observation.

【0008】さらに本発明は、石英アンプル内に化合物
半導体の原料を入れたるつぼを設置して同石英アンプル
を真空封止した後、該石英アンプルを加熱炉内で加熱し
て前記原料を融解し、該加熱炉の垂直方向の温度分布を
該原料融液表面側の温度よりも該原料融液底部側の温度
が高くなるように制御しながら、同加熱炉の温度を徐々
に下げて、該原料融液の表面から下方に向かって該化合
物半導体単結晶を成長させる方法において、該加熱炉の
上部から該原料融液表面での核発生前後の該るつぼ内の
該原料融液表面の状態を観察し、かつ同原料融液表面の
温度分布を測定しながら結晶成長させることを特徴とす
る化合物半導体単結晶の成長方法を提供するものであ
る。
Further, according to the present invention, a crucible containing a raw material for a compound semiconductor is placed in a quartz ampoule, the quartz ampoule is vacuum-sealed, and the quartz ampoule is heated in a heating furnace to melt the raw material. , While controlling the temperature distribution in the vertical direction of the heating furnace so that the temperature of the raw material melt bottom side is higher than the temperature of the raw material melt surface side, gradually lowering the temperature of the heating furnace, In the method of growing the compound semiconductor single crystal downward from the surface of the raw material melt, the state of the raw material melt surface in the crucible before and after nucleation on the raw material melt surface from the upper part of the heating furnace A method for growing a compound semiconductor single crystal, which comprises observing and growing a crystal while measuring the temperature distribution on the surface of the raw material melt.

【0009】そして、上記原料融液表面の状態が、該原
料融液の対流、及び/あるいは固化開始位置であり、ま
た上記原料融液表面状態の観察方法が、ビデオカメラで
撮影し、ビデオテープレコーダー、及び/あるいはモニ
ターテレビに接続して観察を行う方法であり、さらに上
記原料融液表面の温度分布の測定方法が、ビデオカメラ
からのビデオ信号を画像処理ボードを介してコンピュー
ターに入力し、可視領域のビデオ信号を温度に変換する
ことによって、該原料融液表面の温度分布を測定する方
法であることを特徴とする化合物半導体単結晶の成長方
法を提供するものである。
The surface state of the raw material melt is the convection and / or solidification start position of the raw material melt, and the method of observing the surface state of the raw material melt is videotaped by a video camera. A method of observing by connecting to a recorder and / or a monitor TV, and further, the method of measuring the temperature distribution on the surface of the raw material melt is such that a video signal from a video camera is input to a computer via an image processing board, A method for growing a compound semiconductor single crystal, which is a method for measuring a temperature distribution on the surface of the raw material melt by converting a video signal in the visible region into a temperature.

【0010】先ず、本発明者らは、石英アンプル内に化
合物半導体の原料を入れたるつぼを設置して同石英アン
プルを真空封止した後、該石英アンプルを加熱炉内で加
熱して前記原料を融解し、該加熱炉の垂直方向の温度分
布を該原料融液表面側の温度よりも該原料融液底部側の
温度が高くなるように制御しながら、同加熱炉の温度を
徐々に下げて、該原料融液の表面から下方に向かって該
化合物半導体単結晶を成長させていくときの、該るつぼ
内の該原料融液表面の状態を該加熱炉の上部から観察し
た。
First, the inventors of the present invention installed a crucible containing a raw material for a compound semiconductor in a quartz ampoule, vacuum-sealed the quartz ampoule, and then heated the quartz ampoule in a heating furnace. And gradually lowering the temperature of the heating furnace while controlling the temperature distribution in the vertical direction of the heating furnace so that the temperature of the raw material melt bottom side is higher than the temperature of the raw material melt surface side. Then, the state of the surface of the raw material melt in the crucible when the compound semiconductor single crystal was grown downward from the surface of the raw material melt was observed from the upper part of the heating furnace.

【0011】その結果、原料融液表面で核発生して表面
が固化していく前後での原料融液の対流が大きい場合に
は多結晶化しやすく、対流がほとんどないか、ごく小さ
い場合には単結晶となり、また原料融液表面での固化開
始位置がるつぼ壁に接した場合には多結晶化してしまう
ことを見出した。
As a result, when convection of the raw material melt is large before and after the nucleation of the surface of the raw material melt and solidification of the surface, polycrystallization tends to occur, and when the convection is little or very small. It has been found that a single crystal is formed, and when the solidification start position on the surface of the raw material melt comes into contact with the crucible wall, polycrystallization occurs.

【0012】従って、化合物半導体単結晶を成長させて
いくときの、核発生前後での原料融液表面の状態(対流
の大きさや固化開始位置)を観察することにより、多結
晶となりやすい状態のときには再度加熱炉の温度を上
げ、結晶成長をやり直すことで2〜3週間の無駄な結晶
成長を行わずに済む。
Therefore, when a compound semiconductor single crystal is grown, by observing the state of the surface of the raw material melt (the size of convection and the solidification start position) before and after the generation of nuclei, when it is in a state where it is likely to become polycrystalline, By raising the temperature of the heating furnace again and performing crystal growth again, wasteful crystal growth for 2-3 weeks can be avoided.

【0013】さらに、本発明者らは原料融液表面を観察
するだけでなく、原料融液表面の温度分布を測定する方
法について検討した。
Further, the present inventors have studied not only observing the surface of the raw material melt but also measuring the temperature distribution on the surface of the raw material melt.

【0014】物体がある温度になっているときに放射さ
れる電磁場の分布は次の式1のプランクの法則によって
表される。
The distribution of an electromagnetic field radiated when an object has a certain temperature is represented by Planck's law of the following equation 1.

【0015】[0015]

【式1】I(λ,T)=C1・ε(λ,T)/{λ5
[exp(C2/λT)―1]}
[Formula 1] I (λ, T) = C 1 · ε (λ, T) / {λ 5 ·
[exp (C 2 / λT) -1]}

【0016】ここで、Iは光の強度,T[K]は物体の温
度,λ[μm]は光の波長,εは放射率,C1,C2は定数
である。この式より、ある温度の物体から放射される電
磁場の波長依存性を求めると図1のようになる。一般に
温度分布を測定するには、赤外線領域に感度を有する素
子で構成されたカメラを用いることが多い。これは図1
からわかるように3600℃以下の温度の物体から放射
される光のピークが赤外線領域にあるためである。
Here, I is the intensity of light, T [K] is the temperature of the object, λ [μm] is the wavelength of light, ε is the emissivity, and C 1 and C 2 are constants. From this equation, the wavelength dependence of the electromagnetic field radiated from an object at a certain temperature is obtained as shown in FIG. Generally, in order to measure the temperature distribution, a camera including an element having sensitivity in the infrared region is often used. This is Figure 1
This is because the peak of light emitted from an object having a temperature of 3600 ° C. or lower is in the infrared region as can be seen from.

【0017】しかしながら、温度が1000℃程度の物
体からは肉眼で感知できるほどの明るさの可視光が放出
されている。物体からの光の放射強度は温度によって変
わるので、物体の温度が変われば可視領域の光強度も変
化する。従って、温度に分布があれば光強度にも分布が
できることとなる。
However, visible light having a brightness that can be perceived by the naked eye is emitted from an object having a temperature of about 1000 ° C. Since the radiation intensity of light from an object changes depending on the temperature, the light intensity in the visible region also changes when the temperature of the object changes. Therefore, if the temperature has a distribution, the light intensity can also have a distribution.

【0018】そこで、可視領域の光強度によって、原料
融液表面の温度を測定することを考え、ビデオカメラか
らのビデオ信号を画像処理ボードを介してコンピュータ
ーに入力し、可視領域のビデオ信号を温度に変換するこ
とによって、原料融液表面の温度分布を測定する方法を
見出した。
Therefore, considering that the temperature of the surface of the raw material melt is measured by the light intensity in the visible region, the video signal from the video camera is input to the computer through the image processing board, and the video signal in the visible region is heated. The method of measuring the temperature distribution on the surface of the raw material melt by converting into

【0019】なお、ビデオ信号を温度に変換する具体的
な方法は、3原色(R,G,B)の内の赤色(R)の波
長580〜700nmの範囲での輝度の積分値を用い、
前もって熱電対で測定した温度で絶対値の較正を行って
変換する方法である。
A specific method of converting a video signal into temperature uses an integrated value of luminance in a wavelength range of 580 to 700 nm of red (R) among the three primary colors (R, G, B),
This is a method in which the absolute value is calibrated in advance at the temperature measured with a thermocouple and conversion is performed.

【0020】この方法によれば、温度測定用の赤外線カ
メラを新たに必要とせず、原料融液表面観察用のビデオ
カメラを併用でき、装置を簡略にできるという利点があ
る。
According to this method, there is an advantage that an infrared camera for measuring temperature is not newly required, a video camera for observing the surface of the raw material melt can be used together, and the apparatus can be simplified.

【0021】また、原料融液表面の温度を測定すること
により、結晶成長状況をより正確に推測することがで
き、無駄な成長時間を短縮できるという利点も期待でき
る。
Further, by measuring the temperature of the surface of the raw material melt, it is possible to more accurately estimate the crystal growth state, and it is possible to expect an advantage that wasteful growth time can be shortened.

【0022】[0022]

【実施例】本発明に関わる結晶成長をCdZnTe結晶
の例を用い、図2の結晶成長装置の概略図により説明す
る。加熱炉1に外径110φの石英アンプル2が設置さ
れ、このアンプル内にはCdZnTe多結晶原料5を入
れた直径4インチのpBNるつぼ4が入っている。結晶
のストイキオメトリー制御のために、アンプルのリザー
バー部にCd6を収納してある。結晶成長炉の入り口に
は石英製の覗き窓6があり、その上部に耐熱性のミラー
13が置かれ、このミラーで炉内の像を水平に反射し、
炉外に設置したビデオカメラ8で撮影する。炉の入り口
にミラーを設置したのは、炉から放射される熱によって
炉口付近が高温になり、ビデオカメラを設置できないた
めで、炉口が高温にならないような装置とすれば直接設
置できる。加熱炉1を昇温し結晶成長部の温度を111
0℃で保持し、Cdリザーバー部を800℃で保持す
る。pBNるつぼ位置のアンプル側壁の温度勾配は上部
よりも下部の温度が高く1℃/cm以下とし、0.1℃
/hの速度で徐冷し融液を表面から固化させる。この際
に、ビデオカメラ8で撮影した画像信号をテレビモニタ
ー9とビデオテープレコーダー10、そして画像処理ボ
ードを介してパーソナルコンピューター12に入力し、
テレビモニターと同時にコンピューターのモニター11
に、表面の温度分布を表示させた。
EXAMPLE The crystal growth according to the present invention will be described with reference to the schematic view of the crystal growth apparatus of FIG. 2 using an example of a CdZnTe crystal. A quartz ampoule 2 having an outer diameter of 110φ is installed in a heating furnace 1, and a 4-inch diameter pBN crucible 4 containing a CdZnTe polycrystalline raw material 5 is placed in the ampoule 2. In order to control the stoichiometry of the crystal, Cd6 is stored in the reservoir part of the ampoule. At the entrance of the crystal growth furnace, there is a viewing window 6 made of quartz, and a heat-resistant mirror 13 is placed on top of it, which horizontally reflects the image inside the furnace,
The picture is taken with the video camera 8 installed outside the furnace. The reason why the mirror is installed at the entrance of the furnace is that the heat radiated from the furnace causes the temperature near the furnace opening to become high temperature and the video camera cannot be installed. The temperature of the crystal growth part is raised to 111 by heating the heating furnace 1.
Hold at 0 ° C and hold Cd reservoir at 800 ° C. The temperature gradient on the side wall of the ampoule at the pBN crucible is 0.1 ° C / cm or less, with the temperature of the lower part being higher than that of the upper part.
The melt is solidified from the surface by slow cooling at a rate of / h. At this time, the image signal captured by the video camera 8 is input to the personal computer 12 via the television monitor 9, the video tape recorder 10, and the image processing board,
Computer monitor 11 at the same time as TV monitor
The temperature distribution on the surface was displayed on.

【0023】結晶成長は実画像と温度分布画像とそして
アンプル側壁に配置した熱電対によって逐次観察しなが
ら行った。
Crystal growth was carried out while successively observing an actual image, a temperature distribution image, and a thermocouple arranged on the side wall of the ampoule.

【0024】このように観察しながら結晶成長を行い、
核発生前後での対流や固化位置の状態から多結晶化しや
すいと思われるものについて再融解し成長条件を変更し
再び結晶成長を行った結果、多結晶化したものは5回の
うち1回であり、このような観察を行わずそのまま成長
させていれば多結晶化したと思われるものの約80%を
無駄にさせずに済んだ。
Crystal growth is carried out while observing in this manner,
As a result of re-melting and re-growing the growth conditions and re-growing the crystal that seems to be likely to be polycrystallized from the state of convection and solidification position before and after nucleation, polycrystallized crystal was found to be 1 out of 5 times. However, if it is allowed to grow as it is without performing such an observation, about 80% of what seems to be polycrystal was not wasted.

【0025】なお、上記実施例で炉の入り口にミラーを
設置したのは、炉から放射される熱によって炉口付近が
高温になり、ビデオカメラを設置できないためで、炉口
が高温にならないような装置とすれば直接設置してもよ
い。
The reason why the mirror is installed at the entrance of the furnace in the above-described embodiment is that the heat radiated from the furnace causes the temperature near the furnace to become high and the video camera cannot be installed. Any device may be installed directly.

【0026】また、上記実施例ではCdZnTe単結晶
について説明したが、これに限定されず他の化合物半導
体単結晶にも適用できるが、積層欠陥エネルギ−が小さ
くて結晶欠陥が入りやすいCdTe単結晶およびCdZ
nTe単結晶に適用して最も効果がある。
Further, although CdZnTe single crystal has been described in the above embodiment, the present invention is not limited to this, but can be applied to other compound semiconductor single crystals, but CdTe single crystal with small stacking fault energy and crystal defects easily enter. CdZ
It is most effective when applied to nTe single crystals.

【0027】[0027]

【発明の効果】本発明によれば、融液表面を観察しなが
ら結晶成長を行うことで、多結晶化しやすい状態を早期
に見つけ出せるので、無駄な結晶成長をしなくて済み、
コストを低減することができるという利点がある。
According to the present invention, by performing crystal growth while observing the surface of the melt, it is possible to quickly find a state in which polycrystallization is likely to occur, so that unnecessary crystal growth can be avoided.
There is an advantage that the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】物体の温度と放射エネルギーの波長分布を示す
図である。
FIG. 1 is a diagram showing a wavelength distribution of temperature and radiant energy of an object.

【図2】本発明の実施例を説明するための結晶成長装置
の概念図である。
FIG. 2 is a conceptual diagram of a crystal growth apparatus for explaining an example of the present invention.

【符号の説明】[Explanation of symbols]

1 加熱炉 2 石英アンプル 3 石英キャップ 4 pBNるつぼ 5 CdTe原料 6 リザーバーCd 7 石英覗き窓 8 ビデオカメラ 9 テレビモニター 10 ビデオテープレコーダー 11 モニター 12 パーソナルコンピューター 13 ミラー 1 Heating Furnace 2 Quartz Ampoule 3 Quartz Cap 4 pBN Crucible 5 CdTe Raw Material 6 Reservoir Cd 7 Quartz Viewing Window 8 Video Camera 9 TV Monitor 10 Video Tape Recorder 11 Monitor 12 Personal Computer 13 Mirror

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 石英アンプル内に化合物半導体の原料を
入れたるつぼを設置して同石英アンプルを真空封止した
後、該石英アンプルを加熱炉内で加熱して前記原料を融
解し、該加熱炉の垂直方向の温度分布を該原料融液表面
側の温度よりも該原料融液底部側の温度が高くなるよう
に制御しながら、同加熱炉の温度を徐々に下げて、該原
料融液の表面から下方に向かって該化合物半導体単結晶
を成長させる方法において、該加熱炉の上部から該原料
融液表面での核発生前後の該るつぼ内の該原料融液表面
の状態を観察しながら結晶成長させることを特徴とする
化合物半導体単結晶の成長方法。
1. A quartz ampoule is provided with a crucible containing a raw material of a compound semiconductor, the quartz ampoule is vacuum-sealed, and the quartz ampoule is heated in a heating furnace to melt the raw material, and the heating is performed. While controlling the temperature distribution in the vertical direction of the furnace so that the temperature of the raw material melt bottom side is higher than the temperature of the raw material melt surface side, the temperature of the heating furnace is gradually lowered to obtain the raw material melt. In the method of growing the compound semiconductor single crystal downward from the surface of the, while observing the state of the raw material melt surface in the crucible before and after nucleation on the raw material melt surface from the upper part of the heating furnace A method for growing a compound semiconductor single crystal, which comprises growing a crystal.
【請求項2】 上記原料融液表面の状態が、該原料融液
の対流の有無や程度、及び/あるいは、固化が始まる位
置や拡がり方であることを特徴とする請求項1記載の化
合物半導体単結晶の成長方法。
2. The compound semiconductor according to claim 1, wherein the state of the surface of the raw material melt is the presence or absence and the degree of convection of the raw material melt, and / or the position or spread of solidification. Single crystal growth method.
【請求項3】 上記原料融液表面状態の観察方法が、ビ
デオカメラで撮影し、ビデオテープレコーダー、及び/
あるいはモニターテレビに接続して観察を行う方法であ
ることを特徴とする請求項1あるいは2に記載の化合物
半導体単結晶の成長方法。
3. The method for observing the surface state of the raw material melt is the method of photographing with a video camera, a video tape recorder, and / or
Alternatively, the method for growing a compound semiconductor single crystal according to claim 1 or 2, which is a method of observing by connecting to a monitor television.
【請求項4】 石英アンプル内に化合物半導体の原料を
入れたるつぼを設置して同石英アンプルを真空封止した
後、該石英アンプルを加熱炉内で加熱して前記原料を融
解し、該加熱炉の垂直方向の温度分布を該原料融液表面
側の温度よりも該原料融液底部側の温度が高くなるよう
に制御しながら、同加熱炉の温度を徐々に下げて、該原
料融液の表面から下方に向かって該化合物半導体単結晶
を成長させる方法において、該加熱炉の上部から該原料
融液表面での核発生前後の該るつぼ内の該原料融液表面
の状態を観察し、かつ同原料融液表面の温度分布を測定
しながら結晶成長させることを特徴とする化合物半導体
単結晶の成長方法。
4. A quartz ampoule is provided with a crucible containing a raw material of a compound semiconductor, the quartz ampoule is vacuum-sealed, the quartz ampoule is heated in a heating furnace to melt the raw material, and the heating is performed. While controlling the temperature distribution in the vertical direction of the furnace so that the temperature of the raw material melt bottom side is higher than the temperature of the raw material melt surface side, the temperature of the heating furnace is gradually lowered to obtain the raw material melt. In the method of growing the compound semiconductor single crystal downward from the surface of, the state of the raw material melt surface in the crucible before and after nucleation on the raw material melt surface is observed from the upper part of the heating furnace, A method for growing a compound semiconductor single crystal, which comprises growing a crystal while measuring the temperature distribution on the surface of the raw material melt.
【請求項5】 上記原料融液表面の状態が、該原料融液
の対流の有無や程度、及び/あるいは、固化が始まる位
置や拡がり方であることを特徴とする請求項4記載の化
合物半導体単結晶の成長方法。
5. The compound semiconductor according to claim 4, wherein the state of the surface of the raw material melt is the presence or absence and the degree of convection of the raw material melt, and / or the position where the solidification starts and the way the compound semiconductor spreads. Single crystal growth method.
【請求項6】 上記原料融液表面状態の観察方法が、ビ
デオカメラで撮影し、ビデオテープレコーダー、及び/
あるいはモニターテレビに接続して観察を行う方法であ
ることを特徴とする請求項4あるいは5に記載の化合物
半導体単結晶の成長方法。
6. The method of observing the surface state of the raw material melt, comprising: photographing with a video camera;
Alternatively, the method for growing a compound semiconductor single crystal according to claim 4 or 5, which is a method of observing by connecting to a monitor television.
【請求項7】 上記原料融液表面の温度分布の測定方法
が、ビデオカメラからのビデオ信号を画像処理ボードを
介してコンピューターに入力し、可視領域のビデオ信号
を温度に変換することによって、該原料融液表面の温度
分布を測定する方法であることを特徴とする請求項4、
5あるいは6に記載の化合物半導体単結晶の成長方法。
7. The method for measuring the temperature distribution on the surface of the raw material melt comprises the steps of inputting a video signal from a video camera to a computer via an image processing board and converting the video signal in the visible region into temperature. 5. A method for measuring a temperature distribution on the surface of a raw material melt, 5.
7. The method for growing a compound semiconductor single crystal according to 5 or 6.
JP10621394A 1994-04-22 1994-04-22 Method for growing compound semiconductor single crystal Pending JPH07291782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10621394A JPH07291782A (en) 1994-04-22 1994-04-22 Method for growing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10621394A JPH07291782A (en) 1994-04-22 1994-04-22 Method for growing compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH07291782A true JPH07291782A (en) 1995-11-07

Family

ID=14427880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10621394A Pending JPH07291782A (en) 1994-04-22 1994-04-22 Method for growing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH07291782A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1114884A1 (en) * 2000-01-07 2001-07-11 Nikko Materials Company, Limited Process for producing compound semiconductor single crystal
FR2911150A1 (en) * 2007-01-10 2008-07-11 Fr De Detecteurs Infrarouges S DEVICE FOR REALIZING THE GROWTH OF A SEMICONDUCTOR MATERIAL
US10731271B2 (en) 2015-12-22 2020-08-04 Siltronic Ag Silicon wafer with homogeneous radial oxygen variation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1114884A1 (en) * 2000-01-07 2001-07-11 Nikko Materials Company, Limited Process for producing compound semiconductor single crystal
US7175705B2 (en) 2000-01-07 2007-02-13 Nippon Mining & Metals Co., Ltd. Process for producing compound semiconductor single crystal
FR2911150A1 (en) * 2007-01-10 2008-07-11 Fr De Detecteurs Infrarouges S DEVICE FOR REALIZING THE GROWTH OF A SEMICONDUCTOR MATERIAL
EP1944393A1 (en) 2007-01-10 2008-07-16 Societe Francaise De Detecteurs, Infrarouges- Sofradir Device for ensuring the growth of a semiconductor material
US9719187B2 (en) 2007-01-10 2017-08-01 Societe Francaise De Detecteurs Infrarouges-Sofradir Method for producing the growth of a semiconductor material
US10731271B2 (en) 2015-12-22 2020-08-04 Siltronic Ag Silicon wafer with homogeneous radial oxygen variation

Similar Documents

Publication Publication Date Title
US5037621A (en) System for the in-situ visualization of a solid liquid interface during crystal growth
JP3232461B2 (en) Single crystal growth method
US4578145A (en) Method of making monocrystalline ternary semiconductor compounds
JPH07291782A (en) Method for growing compound semiconductor single crystal
KR910006743B1 (en) Horizental bridgman monocrystal growing device
US5431125A (en) Twin-free crystal growth of III-V semiconductor material
JP4265269B2 (en) SiC single crystal manufacturing furnace
KR930006955B1 (en) Apparatus for growing single-crystal
JP2553485B2 (en) Method for producing gallium arsenide single crystal
JP2517803B2 (en) Method for synthesizing II-VI compound semiconductor polycrystal
JP2004203721A (en) Apparatus and method for growing single crystal
JP3154351B2 (en) Single crystal growth method
JP3018738B2 (en) Single crystal manufacturing equipment
JP2612897B2 (en) Single crystal growing equipment
JP3812573B2 (en) Semiconductor crystal growth method
JPH0380180A (en) Device for producing single crystal
JPH07237990A (en) Method for growing single crystal according to method for solidification in vertical container and apparatus therefor
JP3042168B2 (en) Single crystal manufacturing equipment
JPH0329035B2 (en)
RU1157889C (en) Method of growing crystals of zinc selenide
RU2552463C1 (en) Method of fuse securing during growth of monocrystals by method of direct crystallisation from melt in horizontal glass vacuum-treated container
JPS6127975Y2 (en)
JPH10142063A (en) Method for measuring temperature of surface of single crystal
JPH0297480A (en) Single crystal pulling up device
JP3125313B2 (en) Single crystal growth method