JPH0729142A - Thin-film magnetic recording medium and its manufacture and memory device - Google Patents

Thin-film magnetic recording medium and its manufacture and memory device

Info

Publication number
JPH0729142A
JPH0729142A JP16886193A JP16886193A JPH0729142A JP H0729142 A JPH0729142 A JP H0729142A JP 16886193 A JP16886193 A JP 16886193A JP 16886193 A JP16886193 A JP 16886193A JP H0729142 A JPH0729142 A JP H0729142A
Authority
JP
Japan
Prior art keywords
thin film
recording medium
wave
magnetic recording
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16886193A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Chiba
克義 千葉
Yoshihiro Shiroishi
芳博 城石
Yuzuru Hosoe
譲 細江
Akira Ishikawa
石川  晃
Kenzo Sugino
建三 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16886193A priority Critical patent/JPH0729142A/en
Publication of JPH0729142A publication Critical patent/JPH0729142A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain specific high density by turning particles into a highly orientated and highly dispersed state via a physically evaporating ambience through an interaction between the wave energy from a wave driving body such as sound waves or the like and a light, etc., when a magnetic thin film is to be formed on a substrate in vacuum. CONSTITUTION:A supporting stage 2 of ceramic, Teflon, etc., is set in a vacuum box 1 of a sputtering apparatus. There are arranged wave driving bodies 4a, 4b so that particles physically evaporated on a, e.g. 3.5-inch aluminum non- magnetic substrate 3 having an NiP undercoating layer are transmitted onto the supporting stage 2 with accompanying the wave energy of sound waves and ultrasonic waves, and moreover, red semiconductor lasers 40a, 40b of a specific wavelength are provided. The wave energy from the wave driving bodies 4a, 4b is allowed to interact with the light or laser, whereby the particles are turned into a highly orientated and highly dispersed state through the physically evaporating ambience. Accordingly, recording with high density not smaller than 900Mb/in<2> or so is achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜形成および種々の
薄膜形成体ならびに処理体,処理方法及びメモリまたは
製造方法,製造装置ならびに記憶装置及び種々の転用可
能な半導体プロセス及び装置等から構成されるもので、
特に、小型大容量の磁気ディスク装置,磁気テープ装
置,フレキシブルディスク装置,磁気カード装置などの
磁気記憶装置ならびに、これに用いる高信頼性で高密度
記録可能な磁気記録媒体、さらにその製造方法,処理方
法ならびに製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises thin film forming and various thin film forming bodies and processing bodies, processing methods and memories or manufacturing methods, manufacturing devices and storage devices, and various reusable semiconductor processes and devices. Something
In particular, a magnetic storage device such as a small-sized and large-capacity magnetic disk device, a magnetic tape device, a flexible disk device, and a magnetic card device, and a highly reliable and high-density recordable magnetic recording medium used therefor, and a manufacturing method and processing thereof. A method and a manufacturing apparatus.

【0002】[0002]

【従来の技術】現在商業化されている磁気記録媒体は有
機バインダを使用した塗布型、すなわち、不連続媒体を
有するものが主である。この不連続媒体に用いられる磁
性粉は酸化物を使用し、この磁性体粒子を有機バインダ
で充填しているため不連続媒体として構成されている。
当然、磁化の値が小さくなり、出力を得ようとすると膜
厚が厚くなり高密度化には適さない。
2. Description of the Related Art Magnetic recording media currently commercialized are mainly coating types using an organic binder, that is, those having a discontinuous medium. An oxide is used as the magnetic powder used in this discontinuous medium, and the magnetic particles are filled with an organic binder, so that the discontinuous medium is formed.
Naturally, the value of magnetization becomes small, and the film thickness becomes thicker when trying to obtain an output, which is not suitable for high density.

【0003】近年、磁気記録媒体の高密度化が著しく発
展し、連続薄膜媒体からなる保磁力の大きい媒体が必要
になった。この高密度磁気記録可能な連続薄膜媒体の成
膜法は物理的方法(PVD;Phsical Vapour Depositio
n)で行われているのが現状である。すなわち、真空蒸
着,スパッタリング,イオンプレーティング,イオンビ
ーム蒸着,イオンアシステッドデポジション等の手法で
金属磁性薄膜、もしくは酸化物,窒化物磁性薄膜が形成
される。特に、磁性層が磁性合金の場合すぐれた特性を
有し、成膜装置としては高周波スパッタ法,RF,DC
マグネトロン・スパッタ法,バイアススパッタリング法
又はRFスパッタ法などが利用される。
In recent years, the density of magnetic recording media has been remarkably improved, and a medium having a large coercive force, which is a continuous thin film medium, has been required. This continuous thin film medium capable of high density magnetic recording is formed by a physical method (PVD; Physical Vapor Depositio).
The current situation is that it is done in n). That is, a metal magnetic thin film, or an oxide or nitride magnetic thin film is formed by a method such as vacuum deposition, sputtering, ion plating, ion beam deposition, or ion assisted deposition. In particular, when the magnetic layer is a magnetic alloy, it has excellent characteristics, and the film forming apparatus is a high frequency sputtering method, RF, DC.
The magnetron sputtering method, bias sputtering method, RF sputtering method, or the like is used.

【0004】従来例としては、特開昭59−88806 号公報
に、CoPtCr(Cr,1〜17%)の一層膜があ
る。また、米国特許第4789598 号ではCoPtCr(C
r;13〜20%)一層膜が、特開平2−281414 号公報
ではCoPtCr(Cr;17%)とCrの多層膜が記載
されている。
As a conventional example, there is a single layer film of CoPtCr (Cr, 1 to 17%) in Japanese Patent Laid-Open No. 59-88806. Further, in US Pat. No. 4,789,598, CoPtCr (C
r; 13 to 20%) and a multilayer film of CoPtCr (Cr; 17%) and Cr is described in JP-A-2-281414.

【0005】いずれも、高密度磁気記録時における媒体
ノイズが低くピーク・ジッタ及び媒体の信号対雑音比
(SNR)が高くビット誤り率の少ない媒体および本媒
体を用いた磁気記録装置を提供することを目的としてい
る。
In all cases, a medium having a low medium noise, a high peak jitter, a high signal-to-noise ratio (SNR) and a small bit error rate during high density magnetic recording, and a magnetic recording apparatus using the medium are provided. It is an object.

【0006】[0006]

【発明が解決しようとする課題】従来技術において高線
記録密度,高トラック密度に適した磁気記録媒体の特性
については十分考慮されてはいない。すなわち、従来技
術ではIEEEトランザクションズ.オン.マグネティ
クス22巻,579頁−581頁(1986)(IEE
E.Trans.on Magn.MAG−22,579−581
(1986)や米国特許第4735840 号に記載のように成
膜条件によっては円周方向の磁気特性,記録再生特性が
不均一になるという問題があった。
In the prior art, the characteristics of the magnetic recording medium suitable for high linear recording density and high track density have not been sufficiently taken into consideration. That is, in the prior art, IEEE Transactions. on. Magnetics, Vol. 22, 579-581 (1986) (IEEE)
E. Trans.on Magn. MAG-22, 579-581
As described in (1986) and U.S. Pat. No. 4,735,840, there is a problem in that the magnetic characteristics in the circumferential direction and the recording / reproducing characteristics become non-uniform depending on the film forming conditions.

【0007】この不均一性を軽減するために従来はディ
スク基板の円周方向に沿って中心線平均面粗さで5nm
程度の凹凸(テクスチャ)を設けていた。ところが11
0KBPI以上に高線記録密度で記録再生を行うには、ヘッ
ドと媒体との距離(スペーシング)を0.1μm 程度以
下につめることが必要で、このためには基板を極力平滑
にする必要がある。ところがテクスチャ処理を施すと基
板平面が粗れてしまうので、ヘッド媒体間のスペーシン
グを0.1μm 程度以下には安定して狭くはできないこ
とが分かった。テクスチャ処理を施した基板ではサーボ
信号の品質が悪く、正確な位置決めが出来なくなり5KT
PI以上の高トラック密度化が困難であった。これからし
てテクスチャを小さくする、もしくは無くすとこれらの
問題は回避できるが、円周方向の不均一性が一般に極め
て大きくなり、高い周方向の配向性、S/Nを有し、高
密度化に適した磁気ディスクを安定して供給することが
困難であるという問題があった。
In order to reduce this non-uniformity, conventionally, the center line average surface roughness along the circumferential direction of the disk substrate is 5 nm.
It had unevenness (texture). But 11
In order to perform recording / reproducing at a high linear recording density of 0 KBPI or more, it is necessary to keep the distance (spacing) between the head and the medium to about 0.1 μm or less. For this purpose, it is necessary to make the substrate as smooth as possible. is there. However, it has been found that the spacing between the head media cannot be stably narrowed to about 0.1 μm or less because the substrate plane becomes rough when the texture processing is performed. The quality of the servo signal is poor on the textured board, and accurate positioning cannot be done.
It was difficult to achieve higher track density than PI. These problems can be avoided if the texture is made smaller or eliminated from this, but the non-uniformity in the circumferential direction generally becomes extremely large, the orientation in the circumferential direction and the S / N ratio are high, and the high density is achieved. There is a problem that it is difficult to stably supply a suitable magnetic disk.

【0008】これは、従来の薄膜媒体製造法では、テク
スチャを施さない平滑な基板上に磁気ディスクの周方向
に異方性を具備せしめることが困難である。
In the conventional thin film medium manufacturing method, it is difficult to provide anisotropy in the circumferential direction of the magnetic disk on a smooth substrate without texture.

【0009】本発明の目的は、110KBPI,5KTPI、す
なわち、550Mb/in2 以上、さらに900Mb/
in2 以上の高密度化に対応しうる、中心線平均面粗さ
が3nm望ましくは1.55nm 以下と平滑な基板上に
も、ヘッド走行方向の磁気特性が均一で、しかも媒体ノ
イズが小さく、記録再生特性に優れた薄膜磁気記録媒体
及びその製造方法,製造装置及び本媒体を用いた磁気デ
ィスク装置また半導体プロセス等に技術提供することに
ある。
The object of the present invention is 110 KBPI, 5 KTPI, that is, 550 Mb / in 2 or more, and further 900 Mb / in.
Even if the center line average surface roughness is 3 nm, preferably 1.55 nm or less, which is compatible with high density in 2 or more, the magnetic characteristics in the head traveling direction are uniform, and the medium noise is small. It is an object of the present invention to provide a technique for a thin film magnetic recording medium having excellent recording / reproducing characteristics, a method for manufacturing the thin film magnetic recording medium, a manufacturing apparatus, a magnetic disk device using this medium, a semiconductor process and the like.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、磁気ヘッドの安定低浮上が可能な、表面
の中心線平均面粗さが3nm以下と平滑な非磁性基板を
用い、前記基板上に薄膜形成するプラズマ状,蒸気状の
粒子、すなわち、スパッタ蒸発法,蒸着法もしくはイオ
ンビームスパッタ法等による粒子に、外部から有効なエ
ネルギを与え得る音波,超音波の粗密波、望ましくは制
御された縦波,横波を発生せしめる設備と電磁波望まし
くはレーザを具備する薄膜形成装置を用い、音波,超音
波,マイクロ波モード,音波・超音波・マイクロ波の重
畳モード,干渉波さらには電磁波(レーザもしくはメー
ザ)とを利用して蒸発,スパッタ,プラズマ化された粒
子(参照;レーザアブレーション法とスパッタ法,粒子
線の先端的応用技術に関するシンポジウム,第3回,1
992年11月,P283〜)を、イオン音波法により
(参照;核融合研究,第67巻第6号,1992年6
月,P530〜)有効に制御しかつ励起、高エネルギ化
して成る薄膜形成方法および本方法による薄膜媒体及び
これを用いる。
In order to achieve the above object, the present invention uses a non-magnetic substrate having a surface center line average surface roughness of 3 nm or less, which enables stable and low flying of a magnetic head. A compression wave of a sound wave or an ultrasonic wave, which can give effective energy from the outside to plasma-like or vapor-like particles forming a thin film on the substrate, that is, particles obtained by a sputter evaporation method, an evaporation method or an ion beam sputtering method, preferably Uses a thin film forming device equipped with equipment for generating controlled longitudinal and transverse waves and an electromagnetic wave, preferably a laser, and uses sound wave, ultrasonic wave, microwave mode, superposed mode of sound wave / ultrasonic wave / microwave, interference wave, Particles vaporized, sputtered, or converted into plasma by using electromagnetic waves (laser or maser) (see laser ablation method and sputtering method, advanced application technology of particle beam) Concerning symposium, 3rd, 1
November 992, P283-) by the ion acoustic method (see; Fusion Research, Vol. 67, No. 6, 1992, 6).
The method for forming a thin film which is effectively controlled, excited, and increased in energy, and a thin film medium according to the present method and the same are used.

【0011】本発明は、真空容器(槽)内で、スパッタ
蒸発粒子などのプラズマ状の粒子を、直接種々の波動,
振動可変の音波,粗密波など超音波のぞましくは縦波と
横波との干渉波、さらにレーザもしくはメーザとを相互
作用させてより有効なエネルギを与えて励起せしめるこ
とで所望の特性の薄膜媒体を提供するものである。
In the present invention, plasma-like particles such as sputter-evaporated particles are directly subjected to various wave motions in a vacuum container (tank).
Ultrasonic waves, such as sound waves with variable vibration and compression waves, and preferably interference waves of longitudinal and transverse waves, and by interacting with a laser or maser, more effective energy is given to excite the thin film with desired characteristics. It provides a medium.

【0012】本発明は、自動車部品,各種電気・電子部
品,半導体装置の製造に転用でき、薄膜形成体及びその
製造方法及び製造装置、ならびに処理体及び処理方法、
ならびにメモリ及び記憶装置としても適用可能である。
INDUSTRIAL APPLICABILITY The present invention can be diverted to manufacture automobile parts, various electric / electronic parts, and semiconductor devices, and a thin film forming body, a manufacturing method and manufacturing apparatus therefor, a processing body and processing method,
It is also applicable as a memory and a storage device.

【0013】なお、干渉波の波動モードを制御すること
により特に優れた特性が得られる。これは、基板上での
歪すなわち格子振動(参照;電子励起が誘起する原子移
動過程,平成4年,文部省科学研究会,P2〜)が、薄
膜成長については極めて重要な役割を果たすからである
(参照;原子制御表面プロジェクト、新技術事業団・創
造科学技術研究会,1992年,12月、第3部、P6
9〜)。
By controlling the wave mode of the interference wave, particularly excellent characteristics can be obtained. This is because the strain or lattice vibration on the substrate (see; Atom transfer process induced by electronic excitation, 1992, Scientific Research Society of Japan, P2-) plays an extremely important role in thin film growth. (Reference: Atomic Control Surface Project, New Technology Agency, Creative Science and Technology Research Group, December 1992, Part 3, P6
9-).

【0014】すなわち、干渉波の波動モードを有する音
波,超音波の印加によって、粒子を励起し、さらにレー
ザもしくはメーザとの相互作用を強めることで通常の製
法では準安定で存在しにくい原子、イオンの結合状態を
より有効に実現し、下地層ないし磁性層の配向性と共
に、分散性,組成偏析を制御し、偏析状態を制御でき、
粒子の大きさも均一にできる。
That is, by applying a sound wave or an ultrasonic wave having a wave mode of an interference wave to excite particles and further strengthen the interaction with a laser or a maser, atoms and ions which are metastable and hardly exist in a usual manufacturing method. Can be realized more effectively, the dispersibility and composition segregation can be controlled along with the orientation of the underlayer or magnetic layer, and the segregation state can be controlled.
The size of the particles can also be made uniform.

【0015】磁気ディスクの場合には、本方法により、
高出力かつノイズが小さく、さらに周方向の磁気特性の
分布が7%以下と均一な高密度記録に適した媒体を提供
できることになる。特に媒体表面の中心線平均面粗さR
aが3nm以下の基板に対して本発明を適用することに
より、ヘッドの走行方向(ディスクの場合は周方向)の
磁気特性の分布を7%と均一にできるので特に好まし
い。
In the case of a magnetic disk, according to this method,
Thus, it is possible to provide a medium suitable for high-density recording, which has a high output, a small noise, and a magnetic characteristic distribution in the circumferential direction of 7% or less. Especially the center line average surface roughness R of the medium surface
By applying the present invention to a substrate having a of 3 nm or less, the distribution of magnetic characteristics in the head traveling direction (circumferential direction in the case of a disk) can be made uniform to 7%, which is particularly preferable.

【0016】Raを0.2nm よりも小さくするとヘッ
ドが媒体表面に粘着するので好ましくなく、0.2nm
以上とすることが好ましい。
If Ra is smaller than 0.2 nm, the head adheres to the medium surface, which is not preferable.
The above is preferable.

【0017】本媒体を用いることで、磁気ヘッドの浮上
量を0.05μm 以下に出来、磁気抵抗効果型ヘッドと
組み合わせることで900Mb/in2 以上の高密度装
置が提供できる。基板の面粗さが0.1nm 以上2nm
以下のときに本効果は顕著である。また、さらに磁性層
上に、その中心線平均面粗さが基板の値よりも大きくな
るように保護層を形成することにより、CSS時の粘
着,接線力の増大等をより効果的に防止できるので特に
好ましい。
By using this medium, the flying height of the magnetic head can be reduced to 0.05 μm or less, and by combining with the magnetoresistive head, a high density device of 900 Mb / in 2 or more can be provided. The surface roughness of the substrate is 0.1 nm or more and 2 nm
This effect is remarkable in the following cases. Further, by forming a protective layer on the magnetic layer so that the center line average surface roughness thereof is larger than the value of the substrate, it is possible to more effectively prevent adhesion and increase in tangential force during CSS. Therefore, it is particularly preferable.

【0018】上記干渉波の例は図1を用いて後に詳細に
説明する。さらに、成膜時に−400V程度のバイアスを
印加し、10W/cm2 以上で成膜する高配向プロセスと
を同時に行うことにより、磁気デスクの保磁力,角形比
等の電磁気特性や均一性をさらに向上させることもでき
る。
An example of the interference wave will be described later in detail with reference to FIG. Further, by applying a bias of about -400 V during film formation and simultaneously performing a high orientation process of forming a film at 10 W / cm 2 or more, the coercive force of the magnetic desk and the electromagnetic characteristics such as squareness and uniformity can be further improved. It can also be improved.

【0019】さらに本発明において、プラズマ状すなわ
ちスパッタ蒸発された粒子に音波,超音波,マイクロ波
とレーザもしくはメーザとを印加する際にさらに磁場を
印加し、種々の磁気異方性を得ることもできる。また非
磁性基板としていは、NiP等をメッキしたAl合金基
板,Ti基板,ガラス,シリコン,SiC,結晶化ガラ
ス又はセラミック基板のように少なくとも表面が高強度
で、飛来する粒子の捕獲性が高く、配向,偏析制御用の
波動エネルギを有効に吸収する材質からなるものが好ま
しい。本方法によれば配向性,異方性,組織が制御でき
るので磁気ヘッド用材料、例えばMR再生素子用パーマ
ロイ薄膜や記録用のアモルファス磁性体などにも適用す
ることができる。なお本装置は半導体製造装置,自動車
等の各種部品製造装置として使用可能である。
Further, in the present invention, when a sound wave, an ultrasonic wave, a microwave and a laser or a maser are applied to particles in a plasma state, that is, sputter-evaporated particles, a magnetic field is further applied to obtain various magnetic anisotropies. it can. As the non-magnetic substrate, at least the surface has a high strength and has a high trapping property for flying particles, such as an Al alloy substrate plated with NiP, a Ti substrate, glass, silicon, SiC, crystallized glass or a ceramic substrate. It is preferable to use a material that effectively absorbs wave energy for controlling orientation and segregation. Since the orientation, anisotropy, and texture can be controlled by this method, the method can be applied to magnetic head materials, such as permalloy thin films for MR reproducing elements and amorphous magnetic materials for recording. This device can be used as a semiconductor manufacturing device and a manufacturing device for various parts such as automobiles.

【0020】[0020]

【作用】セラミック,結晶化ガラス,強化ガラス,カー
ボン,Si,SiC,Ti基板や、アルミニウム合金に
NiPをメッキした基板に少なくともNb、Cr,M
o,W,CrTi等の下地層を1層介して、もしくは直
接、CoCrPt,CoCrTa,CoNiCr,CoNiP
t等の磁性層を少なくとも1層形成する際に、物理蒸発
された種々の粒子に音波,超音波,マイクロ波,レー
ザ,メーザ等を空間内から印加することにより、結晶粒
がより微細化すると共に分散性が高まり、結晶粒径偏析
状態が均一化するため低ノイズ化に適した膜構造とな
る。磁性層を膜厚0.5 以上10nm以下のCr,M
o,W,CrTi,CrSi,Nb,C,B,Ta,V
等の非磁性層で少なくとも2層に分割すると著しくノイ
ズが低減できるので特に好ましい。
Function: At least Nb, Cr, M on a ceramic, crystallized glass, tempered glass, carbon, Si, SiC, Ti substrate or a substrate obtained by plating an aluminum alloy with NiP.
CoCrPt, CoCrTa, CoNiCr, CoNiP through a single underlying layer of o, W, CrTi, or the like.
When at least one magnetic layer such as t is formed, crystal grains are further miniaturized by applying sound waves, ultrasonic waves, microwaves, lasers, masers, etc. to various physically evaporated particles from the inside. At the same time, the dispersibility is increased and the segregated state of the crystal grain size is made uniform, so that the film structure is suitable for noise reduction. The magnetic layer is made of Cr, M having a thickness of 0.5 or more and 10 nm or less.
o, W, CrTi, CrSi, Nb, C, B, Ta, V
It is particularly preferable to divide it into at least two layers with a non-magnetic layer such as the above because noise can be significantly reduced.

【0021】さらに、通常の蒸着法,スパッタリング法
によって薄膜を形成した場合に、基板の面粗さの分布,
基板温度の分布や斜め入射成分の粒子の成長等により、
特に基板の中心線平均面粗さRaが2nm以下と小さい
場合にはデイスク周方向の磁気特性は大きく変動してし
まうが、本方法により音波,超音波の波動エネルギと電
磁波エネルギとを付与せしめることで上記外乱による分
布を抑制でき、さらに通常の成膜法によるエネルギ状態
では存在しない物理蒸発粒子群、結合状態も存在するよ
うになり、配向性が容易に制御でき、特性の均一化を図
ることもできる。
Furthermore, when a thin film is formed by the usual vapor deposition method or sputtering method, the surface roughness distribution of the substrate,
Due to the distribution of substrate temperature and the growth of particles of oblique incidence component,
In particular, when the center line average surface roughness Ra of the substrate is as small as 2 nm or less, the magnetic characteristics in the disk circumferential direction fluctuate significantly, but this method can impart wave energy of ultrasonic waves and ultrasonic waves and electromagnetic wave energy. In addition, the distribution due to the above disturbance can be suppressed, and physical vaporized particle groups and binding states that do not exist in the energy state by the ordinary film forming method also exist, the orientation can be easily controlled and the characteristics can be made uniform. You can also

【0022】Raが0.1nm よりも小さいとヘッドが
媒体表面に粘着してしまうので好ましくない。
If Ra is smaller than 0.1 nm, the head sticks to the surface of the medium, which is not preferable.

【0023】なお波動の状態は、音波とレーザとを相互
作用させた縦波,横波および干渉波モードの三つに大き
く分けることができる。特に本発明に有効な相互干渉波
モードは、音波,超音波,マイクロ波の縦波,横波など
異なる波動とレーザ,メーザとの相互作用から得られる
ものである。
The wave state can be roughly divided into three modes, namely, a longitudinal wave mode, a transverse wave mode, and an interference wave mode in which a sound wave and a laser are interacted with each other. In particular, the mutual interference wave mode effective in the present invention is obtained from the interaction between different waves such as sound waves, ultrasonic waves, longitudinal waves of microwaves and transverse waves, and laser and maser.

【0024】さらに音波,超音波,マイクロ波,レー
ザ,メーザはどのようなモードで波動させてもよい。ま
た、薄膜形成時における本効果は物理蒸発時に於いて、
印加される音波,超音波,レーザの周波数,位相及び振
幅が等しく、かつ周波数が基板の振動(厳密には膜を含
めたもの)の整数倍に一致する場合に顕著であるが異な
っていても良い。
Further, sound waves, ultrasonic waves, microwaves, lasers, and masers may be waved in any mode. In addition, this effect during thin film formation is
The frequency, phase, and amplitude of the applied sound waves, ultrasonic waves, and lasers are equal, and it is remarkable when the frequency matches an integer multiple of the vibration of the substrate (strictly including the film), but even if it is different good.

【0025】また波形は通常サイン波が好ましいが、パ
ルス波でも可能である。例えば直径5.25 インチ,厚
さ2mmのアルミニウムにNiPの下地層を設けた基板と
するときは、約35kHz又はその整数倍の周波数、7
Wの超音波と670nm,1Wのレーザとで空間内に伝
播させればよい。同様に、例えば3.5 インチ,厚さ
1.2mm の場合には約52kHz,5Wの超音波と0.
5W のレーザが望ましい。また、成膜中にディスクを
回転させるとより効果がある。
The waveform is usually a sine wave, but a pulse wave is also possible. For example, when a NiP underlayer is provided on aluminum with a diameter of 5.25 inches and a thickness of 2 mm, a frequency of about 35 kHz or an integral multiple thereof, 7
The ultrasonic wave of W and the laser of 670 nm and 1 W may be propagated in the space. Similarly, for example, in the case of 3.5 inches and thickness 1.2 mm, ultrasonic waves of about 52 kHz, 5 W and 0.15 kHz.
A 5W laser is preferred. Further, it is more effective to rotate the disk during the film formation.

【0026】図1に本発明の薄膜形成装置の実施例の断
面図を示す。対の波動駆動体4a,4b及び対の半導体
レーザ40a,40bが設置(特殊補強体付)されてお
り、音波,超音波の周波数を共に一致せしめても良い
し、レーザは可視光でもよい。また僅かにずらして音
波,超音波の干渉波モードを発生せしめて、さらにレー
ザとの相互干渉をさせても良い。
FIG. 1 shows a sectional view of an embodiment of the thin film forming apparatus of the present invention. A pair of wave driving bodies 4a, 4b and a pair of semiconductor lasers 40a, 40b are installed (with a special reinforcing body) so that the frequencies of sound waves and ultrasonic waves may be matched, and the laser may be visible light. It is also possible to slightly shift them to generate interference wave modes of sound waves and ultrasonic waves to further cause mutual interference with the laser.

【0027】ここで、いずれの方法でも磁性面の表面は
平滑であった。また、音波,超音波,マイクロ波及びレ
ーザもしくはメーザと同時に磁石からの磁界を作用させ
ることにより両者の相互作用により、基板上の金属磁性
粒子の磁気異方性の向きを望ましい方向にさらに整列さ
せることもできるので特に望ましい。
Here, the surface of the magnetic surface was smooth by any method. Further, by applying a magnetic field from a magnet at the same time as a sound wave, an ultrasonic wave, a microwave and a laser or a maser, the magnetic anisotropy direction of the metal magnetic particles on the substrate is further aligned in a desired direction by the interaction between the two. It is particularly desirable because it can be done.

【0028】また、装置の仕様から要求される記録再生
特性の仕様に応じ、上記モードを使い分けることが望ま
しい。すなわち、再生出力が特に要求される場合には、
周方向の配向性に優れたより完全性の高い結晶が成長さ
れる、超音波、もしくはマイクロ波の両駆動体の同相モ
ード(縦波または横波)に同位相のレーザ、もしくはメ
ーザを重畳させる。特に著しい低ノイズ性が要求される
場合には偏析状態を促進し、均一で微細な結晶粒を成長
させることができる干渉波モードすなわちモード,位相
を異にする。両者の平均的特性が要求される場合には干
渉波モード(音波,超音波,マイクロ波)の一方を0.
001〜20kHz の音波、他方を25〜500kH
z超音波とする重畳波動とレーザ,メーザとの相互作用
することが望ましい。
Further, it is desirable to properly use the above modes according to the specifications of the recording / reproducing characteristics required from the specifications of the apparatus. That is, when reproduction output is particularly required,
A laser of the same phase or a maser is superposed on the in-phase mode (longitudinal wave or transverse wave) of both ultrasonic or microwave driving bodies in which a crystal with higher circumferential orientation and higher integrity is grown. In particular, when extremely low noise is required, the segregation state is promoted and the interference wave modes, that is, modes and phases, capable of growing uniform and fine crystal grains are made different. When the average characteristics of both are required, one of the interference wave modes (sound wave, ultrasonic wave, microwave) is set to 0.
Sound wave of 001 to 20 kHz, the other is 25 to 500 kHz
It is desirable that the superposed wave as z ultrasonic waves interact with the laser and the maser.

【0029】以上のように本発明により成る媒体は、基
板の中心線平均面粗さを2nm以下としても配向性,組
織を制御できるため磁気特性の均一性に優れ、低ノイズ
とすることができる。特にこのように平滑な表面上に磁
性層を形成するとディスクからの信号が、トラック幅の
1/10程度の単位(0.5μm以下)で評価しても充分
均一であり、サーボ信号の品質が従来ディスクに比べて
2倍以上改善されるので特に好ましい。なお、基板の面
粗さを0.1nm よりも小さくすると、製造コストが極
めて高くなると共にヘッドが媒体に粘着し易くなるので
好ましくない。基板はテクスチャ処理を施してあっても
なくても良いがテクスチャ処理が施してない方がサーボ
信号の品質が高いのでより好ましく、本効果がより顕著
である。
As described above, the medium according to the present invention can control the orientation and texture even if the center line average surface roughness of the substrate is 2 nm or less, so that the magnetic properties are excellent in uniformity and the noise can be reduced. . In particular, when a magnetic layer is formed on such a smooth surface, the signal from the disk is sufficiently uniform even when evaluated in units of about 1/10 of the track width (0.5 μm or less), and the quality of the servo signal is improved. It is particularly preferable because it is improved by a factor of two or more as compared with the conventional disc. If the surface roughness of the substrate is smaller than 0.1 nm, the manufacturing cost becomes extremely high and the head easily sticks to the medium, which is not preferable. The substrate may or may not be textured, but it is more preferable not to texture it because the quality of the servo signal is higher, and this effect is more remarkable.

【0030】本媒体は低ノイズで特性の均一性に優れる
ため、特に再生感度の高い磁気抵抗効果型ヘッドと組み
合わせることで、6KTPI以上,150KBPI以上の高密度
で高いS/Nが実現でき、900Mb/in2 以上の高
密度磁気デイスク装置が提供できる。ここで、磁性面の
表面に、その平均面粗さ(Ra)が基板の値よりも大き
くなるような保護膜を設けることで、CSS時の粘着
力、接線力の増大を抑制でき、信頼性も格段に改善でき
る。これは、面粗さを大きくすることで空気中の水分等
がヘッドと媒体間で凝集するのを妨げるためである。本
媒体を保護膜を一旦設けた後、マスクを用いて数%程度
の面積で凸起部を残したり、保護膜形成中に異相を成長
させることなどで達成できる。面粗さとしては、最大突
起高さRpの値で25nm以下、より望ましくは20n
m以下とすることで、見かけのヘッド媒体間スペーシン
グを低減でき、900Mb/in2 以上の高記録密度化
を達成できる。
Since this medium has low noise and excellent uniformity of characteristics, a high S / N of 6 KTPI or more and 150 KBPI or more can be realized by combining with a magnetoresistive head having particularly high reproducing sensitivity, and 900 Mb A high-density magnetic disk device of / in 2 or more can be provided. Here, by providing a protective film on the surface of the magnetic surface such that its average surface roughness (Ra) is larger than the value of the substrate, it is possible to suppress an increase in adhesive force and tangential force during CSS, and to improve reliability. Can be significantly improved. This is because increasing the surface roughness prevents the moisture in the air from aggregating between the head and the medium. This medium can be achieved by once providing a protective film and then leaving a protrusion in an area of about several percent using a mask, or growing a different phase during the formation of the protective film. As the surface roughness, the maximum protrusion height Rp is 25 nm or less, more preferably 20 n.
By setting m or less, apparent spacing between head media can be reduced, and high recording density of 900 Mb / in 2 or more can be achieved.

【0031】上記の技術を自動車,各種電気・電子部
品,半導体に転用すれば、従来にない高信頼,高性能の
薄膜形成体及びその製造方法及び製造装置、ならびに処
理体及び処理方法、ならびにメモリ及び記憶装置が提供
できることは明らかである。
If the above technique is applied to automobiles, various electric / electronic parts, and semiconductors, a highly reliable and high-performance thin film forming body, a manufacturing method and a manufacturing apparatus therefor, a processing body and a processing method, and a memory, which have not been hitherto available. And it is clear that a storage device can be provided.

【0032】[0032]

【実施例】【Example】

(実施例1)本発明の磁気ディスクの断面図及び製造装
置の一例の概略断面図を図3及び図1に示す。図3で、
3はガラス,カーボン,Si,Ti,SiC,NiPメ
ッキAl合金,セラミック等の非磁性基板である。51
はCr,Mo,W,CrTi,Nb,Cr−W,Cr−
Mo,Cr−Si等の少なくとも1層の薄膜からなる非
磁性下地層、52はCoCrTa,CoCrPt,Co
NiPt,CoNiCr等の単層もしくは非磁性中間層を
有する多層磁性層、53はB,C,i−C,B4C,Z
rO2,SiO2,Al23等の保護層である。なお保護
膜表面に極性,吸着性,反応性等の末端基を有するパー
フルオロアルキルポリエーテル等の潤滑剤54が形成さ
れていてもよい。本ディスクの形成方法についてさらに
詳しく述べる。スパッタ装置真空箱1内にセラミック,
テフロン等の材料からなる支持台2が配置される。この
支持台2の上にNiPの下地層を有した3.5 インチの
アルミニウム非磁性基板等の基板3が取り付けられ、こ
の非磁性基板3に物理蒸発された粒子が音波,超音波の
波動エネルギを伴って伝わるように波動駆動体4a,4
bとさらに670nm、0.5W の赤色半導体レーザ4
0a,40bが設置される。基板の表面粗さRaは3n
mであり、成膜時基板温度を250℃とした。さらに、
磁場を印加するための磁石5a,5b(電磁石もしくは
永久磁石)は目的に応じて配置する。
(Embodiment 1) A cross-sectional view of a magnetic disk of the present invention and a schematic cross-sectional view of an example of a manufacturing apparatus are shown in FIGS. In Figure 3,
Reference numeral 3 is a non-magnetic substrate made of glass, carbon, Si, Ti, SiC, NiP plated Al alloy, ceramic or the like. 51
Is Cr, Mo, W, CrTi, Nb, Cr-W, Cr-
A nonmagnetic underlayer made of at least one thin film of Mo, Cr-Si, or the like, 52 is CoCrTa, CoCrPt, Co
A single magnetic layer such as NiPt or CoNiCr or a multilayer magnetic layer having a non-magnetic intermediate layer, 53 is B, C, i-C, B 4 C, Z
It is a protective layer of rO 2 , SiO 2 , Al 2 O 3, etc. A lubricant 54 such as perfluoroalkylpolyether having a polar, adsorptive, and reactive end group may be formed on the surface of the protective film. The method for forming this disc will be described in more detail. Sputtering equipment vacuum box 1 ceramic,
A support base 2 made of a material such as Teflon is arranged. A substrate 3 such as a 3.5-inch aluminum non-magnetic substrate having a NiP underlayer is mounted on the support base 2, and the physically evaporated particles on the non-magnetic substrate 3 have wave energy of sound waves and ultrasonic waves. Wave drive bodies 4a, 4 so as to be transmitted with
b and 670nm, 0.5W red semiconductor laser 4
0a and 40b are installed. Surface roughness Ra of the substrate is 3n
m, and the substrate temperature during film formation was 250 ° C. further,
The magnets 5a and 5b (electromagnets or permanent magnets) for applying a magnetic field are arranged according to the purpose.

【0033】なお、図1の波動駆動体4a,4bは円環
状である。また、同図において、一方を0.001〜〜
20kHzの音波、他方を25〜500kHzの超音波
(いずれも3〜7W)とした重畳モードを示したが、当
然その他の可変モードも有効である。また、外部から高
エネルギのレーザすなわち波長193nmのArFエキ
シマレーザ望ましくはパルス波等も加えることもでき
る。さらに、装置内の蒸発源は、CrSi,Nb,Cr
−W,Cr−Mo,Cr,CrTi,Mo,W等の非磁
性下地層もしくは中間層用ターゲット,FeCoNiC
r,CoCrTa,CoCrPt,CoNiCr等の磁
性材ターゲット;C,B,B4C,WC 等の保護膜用タ
ーゲットが設置されている(図では磁性ターゲットのみ
示す)。
The wave drive bodies 4a and 4b in FIG. 1 are annular. Further, in the figure, one of 0.001 to
Although the superposition mode in which the sound wave of 20 kHz and the ultrasonic wave of 25 to 500 kHz (3 to 7 W in each case) are used for the other is shown, naturally other variable modes are also effective. Further, a high energy laser, that is, an ArF excimer laser having a wavelength of 193 nm, preferably a pulse wave or the like can be added from the outside. Further, the evaporation sources in the apparatus are CrSi, Nb, Cr.
-W, Cr-Mo, Cr, CrTi, Mo, W, etc. targets for non-magnetic underlayers or intermediate layers, FeCoNiC
Magnetic material targets such as r, CoCrTa, CoCrPt, and CoNiCr; targets for protective films such as C, B, B 4 C, and WC are provided (only magnetic targets are shown in the figure).

【0034】本装置を用い、2.5″φ,Ra1.2nm
のカーボン基板上に、各波動モードでCr下地層をAr
ガス圧3mTorr、15W/cm2 で50nm、CoCr0.16Pt
0.4磁性層を20nm、C保護層を15nm、DCマグ
ネトロンスパッタリング法で形成し、真空層からデイス
クを取り出して最後に吸着性の極性基を有するパーフル
オロアルキルポリエーテルを5nm形成した。各デイス
クを、ギャップ長0.25μm,トラック幅2.5μm の薄
膜ヘッドを記録部とし、パーマロイを磁極とする磁気抵
抗効果素子を再生部とする録再分離型ヘッドで、浮上量
0.07μm で900Mb/in2 の条件で記録再生し
た時の特性を表1に示す。
Using this apparatus, 2.5 ″ φ, Ra 1.2 nm
Cr underlayer in each wave mode on the carbon substrate of
Gas pressure 3 mTorr, 50 nm at 15W / cm 2, CoCr 0. 16 Pt
0. 4 20 nm magnetic layer, 15 nm of the C protective layer was formed by DC magnetron sputtering, finally a perfluoroalkyl polyether having adsorptive polar group to 5nm is formed from the vacuum layer is taken out disk. Each disk is a recording / reproducing head with a thin film head having a gap length of 0.25 μm and a track width of 2.5 μm as a recording portion and a magnetoresistive element having a permalloy as a magnetic pole as a reproducing portion, and a flying height of 900 Mb at a flying height of 900 Mb. Table 1 shows the characteristics when recording / reproducing under the condition of / in 2 .

【0035】すなわち、スパッタ蒸発時の粒子へのレー
ザと波動エネルギを伴う本発明のディスク製造方法は、
いずれもS/Nが高く、出力変動も7%以下と小さいこ
とが分かる。干渉波の適合に最も高いS/Nが得られる
が、いずれもS/Nは4以上であり、900Mb/in
2 と高い面記録密度で装置が8−9変換、PRMLを用
い10-9のエラーレートで動作した。
That is, the disk manufacturing method of the present invention involving laser and wave energy to particles during sputter evaporation is
It can be seen that in each case, the S / N ratio is high and the output fluctuation is small at 7% or less. The highest S / N is obtained for the adaptation of interference waves, but in all cases, the S / N is 4 or more, and 900 Mb / in
The device operated with 8-9 conversion and PRML with an areal recording density as high as 2 and an error rate of 10 -9 .

【0036】なお、カーボン保護層をマスクを用いて4
nmエッチングし、5μmφの凸起部と面積比で4%設
けたものは媒体表面のRaが2.3nm であり、特にCS
S10K回後の接線力がほとんど認められなかった。
It should be noted that the carbon protective layer was formed using a mask.
nm etching and providing a 5 μmφ convex portion and an area ratio of 4% provided Ra of the medium surface of 2.3 nm, and
Almost no tangential force was observed after S10K times.

【0037】[0037]

【表1】 [Table 1]

【0038】(実施例2)基板に1.3″φ のカーボン
基板を用い、非磁性保護層を−400Vのバイアスを印
加して成膜した平均膜厚25nmの(WNb)Nとした
以外は実施例1と同じ条件で磁気デイスクを形成した。
保護層成膜時も波動を印加せしめることで、高さ6nm
の主成分NbNの凸起が成長し、ディスクの面粗さはR
pで11nmとなった。本ディスクA〜Cと比較例Dの
ディスクの10k回後のCSS後の接線力を比べたとこ
ろ、Dでは接線力が2.7g 増加したのに対し、本実施
例A〜Cでは接線力の増大は全く認められず、極めて良
好な耐摺動性を示した。磁気特性,記録再生特性につい
ても実施例と同様の良好な特性を示した。
(Example 2) A carbon substrate having a diameter of 1.3 "was used as the substrate, and the nonmagnetic protective layer was formed by applying a bias of -400 V to form (WNb) N having an average film thickness of 25 nm. A magnetic disk was formed under the same conditions as in Example 1.
By applying waves even when forming the protective layer, the height is 6 nm.
Of the main component NbN grows, and the surface roughness of the disk is R
It was 11 nm at p. Comparing the tangential force after CSS for 10 k times between the present disks A to C and the disk of Comparative Example D, the tangential force increased by 2.7 g in D, whereas the tangential force in Examples A to C increased. No increase was observed at all, indicating extremely good sliding resistance. The magnetic characteristics and recording / reproducing characteristics also showed good characteristics similar to those of the examples.

【0039】(実施例3)基板をポリイミド,PET等
の3.5″φ 有機フィルムとした以外は同じ条件でフロ
ッピディスク状の媒体は、縦波+レーザ,横波+レー
ザ,干渉波+レーザのいずれのモードで形成した場合も
表1と同様の優れた特性が得られた。テープ状の媒体に
は、縦波の波動モードとレーザの相互作用で成膜した時
に出力変動が1.7%と最も少なく、干渉波で6.6%、
横波で7%であった。S/Nについては、900Mb/
in2 の条件でいずれも4以上であった。
(Example 3) Under the same conditions except that the substrate was a 3.5 "φ organic film such as polyimide or PET, the floppy disk-shaped medium was longitudinal wave + laser, transverse wave + laser, interference wave + laser. In any mode, the excellent characteristics similar to those in Table 1 were obtained.The output fluctuation was 1.7% when the film was formed on the tape-shaped medium by the interaction of the longitudinal wave mode and the laser. And the least, 6.6% in interference wave,
It was 7% in transverse waves. For S / N, 900 Mb /
All were 4 or more under the condition of in 2 .

【0040】(実施例4)基板の両側にターゲットを有
するDCマグネトロン・スパッタリング装置で、面粗さ
Raが0.1,1,1.5,2,3,5,7,10nmの
外径2.5″φNiPメッキAI合金ディスク基板に、基板
温度300℃、Arガス圧1mTorr,投入電力密度10
W/cm2 で膜厚100nmのCr0.9Ti0.1合金非磁性
下地層、膜厚30nmのCo0.82Cr0.14Pt0.04磁性
層、膜厚25nmの(W0.8−Mo0.20.30.7保護膜
をそれぞれ本発明の波動駆動体(75kHz,10W)
より縦波モードに670nm,1Wの半導体レーザを相
互作用させて逐次形成した。最後に、極性基を有するパ
ーフルオロアルキルポリエーテルを5nm形成して磁気
ディスクとした。
(Embodiment 4) A DC magnetron sputtering apparatus having targets on both sides of the substrate was used, and the surface roughness Ra was 0.1, 1, 1.5, 2, 3, 5, 7, 10 nm and the outer diameter was 2 nm. 0.5 ″ φ NiP plated AI alloy disk substrate, substrate temperature 300 ° C., Ar gas pressure 1 mTorr, input power density 10
W / cm 2 Cr 0 with a thickness of 100nm in. 9 Ti 0. 1 alloy and a nonmagnetic underlayer, Co having a thickness of 30nm 0. 82 Cr 0. 14 Pt 0. 04 magnetic layer, the thickness of 25 nm (W 0. 8 -Mo 0. 2) 0. 3 C 0. 7 protective film wave driver of the present invention, respectively (75 kHz, 10 W)
Further, a semiconductor laser of 670 nm and 1 W was made to interact in the longitudinal wave mode to form sequentially. Finally, a perfluoroalkyl polyether having a polar group was formed to a thickness of 5 nm to obtain a magnetic disk.

【0041】また、図4に実施例1と同条件で評価した
場合の出力変動(%)と面粗さRa(nm)との関係を
示す。波動エネルギのない比較例(J曲線)、波動エネ
ルギのある場合(H曲線)に比べていずれの中心線平均
面粗さでも7%以下の出力変動が得られている(本発明
法R曲線すなわち音波の波動エネルギとレーザとの相互
作用)。本効果は、特にRaが1.7nm 以下の時に顕
著である。
FIG. 4 shows the relationship between the output fluctuation (%) and the surface roughness Ra (nm) when evaluated under the same conditions as in Example 1. Compared to the comparative example without wave energy (J curve) and the case with wave energy (H curve), an output fluctuation of 7% or less was obtained with any center line average surface roughness (R curve of the present invention, Interaction between wave energy of sound waves and laser). This effect is particularly remarkable when Ra is 1.7 nm or less.

【0042】(実施例5)実施例1と同様により有効な
両面同時連続薄膜媒体を得る他の方法として、図2には
本発明の別のスパッタリング方法による成膜装置ならび
に成膜方法の概略図を示す。すなわち、Arイオンを放
電によりプラズマ化し、ターゲット60のスパッタリン
グを行うが、ターゲットからのスパッタリング原子、分
子,イオン等の粒子に音波,超音波,マイクロ波の波動
エネルギとレーザもしくはメーザとを与えることでエネ
ルギ励起,均一化,高配向化さらには有効な歪と表面処
理させながら基板に付着させるものである。なお、音
波,超音波,マイクロ波の波動エネルギとレーザもしく
はメーザとを交互に印加しても同じであった。
(Embodiment 5) As another method for obtaining a more effective double-sided simultaneous continuous thin film medium as in Embodiment 1, FIG. 2 is a schematic view of a film forming apparatus and film forming method by another sputtering method of the present invention. Indicates. That is, Ar ions are turned into plasma by electric discharge and the target 60 is sputtered. By applying wave energy of sound waves, ultrasonic waves, microwaves and laser or maser to particles such as sputtering atoms, molecules, and ions from the target. It is applied to the substrate with energy excitation, homogenization, high orientation, and effective strain and surface treatment. The same was true when the wave energy of sound waves, ultrasonic waves, and microwaves and laser or maser were applied alternately.

【0043】ここで、ターゲット材60としてはFeC
oNiCrや、コバルト基合金からなるものを用いるこ
とができる。強磁性金属薄膜層を記録層とする磁気記録
媒体としては、配向性が高く磁気特性に優れたものを得
るため、強磁性材の入射方向を基体に対して斜め方向に
すると良い。このことを考慮して得られるものが、特
に、図2に示す波動駆動体を傾斜(θa,θb=15
゜;4a′,4b′)させた縦波(矢印111)であ
り、さらに、レーザもしくはメーザとの相互作用を加え
ることが本発明の別の特徴とするところである。すなわ
ち、基板3の垂直法と波動エネルギとの相乗効果(条件
設定)より連続薄膜媒体のより高配向化,高密度化(微
粒子の緻密性),高S/N化(微粒子の均一な配向性)
さらには高信頼化が期待できるものである。
Here, FeC is used as the target material 60.
Those made of oNiCr or cobalt-based alloy can be used. As a magnetic recording medium having a ferromagnetic metal thin film layer as a recording layer, it is preferable to make the incident direction of the ferromagnetic material oblique with respect to the substrate in order to obtain a magnetic recording medium having high orientation and excellent magnetic characteristics. What is obtained in consideration of this is, in particular, that the wave drive body shown in FIG. 2 is inclined (θa, θb = 15).
4a ', 4b') longitudinal waves (arrow 111), and it is another feature of the present invention to add interaction with a laser or a maser. That is, due to the synergistic effect (condition setting) of the vertical method of the substrate 3 and the wave energy, the continuous thin film medium has higher orientation, higher density (fine particle fineness), and higher S / N (fine particle uniform orientation). )
Furthermore, high reliability can be expected.

【0044】なお、ベルジャ1内に傾斜駆動支持具10
a,10bに波動駆動体4a,4a′,4b,4b′(音
波,超音波)と支持具42a,42bに特殊補強体付半
導体レーザ等40a,40b、さらに、粒子飛散防止用
の透明石英カバー41a,41bが取り付けられてい
る。膜厚の均一性を確保するために基板は成膜中回転し
ておくことが望ましい。この際、基板の前にマスク66
(窓)を設けても良い。また、電極部61にはターゲッ
ト材60が設置され、これはさらにプラズマ発生用電源
(RF用100,高圧DC用101)と支持金具62,
リード線63,64,および電極平板65等とによって
回路構成されている。なお、図の音波,超音波,マイク
ロ波駆動用およびレーザ,メーザ用電源,回路構成は外
部で制御され、真空保持用の71はロータリーポンプ、
70はクライオポンプである。これらはターボポンプで
も良い。
It should be noted that the tilt drive support 10 is provided in the bell jar 1.
a and 10b are wave drivers 4a, 4a ', 4b and 4b' (sound waves, ultrasonic waves), supporters 42a and 42b are semiconductor lasers 40a and 40b with a special reinforcing member, and a transparent quartz cover for preventing particle scattering. 41a and 41b are attached. It is desirable that the substrate be rotated during film formation in order to ensure uniformity of film thickness. At this time, the mask 66 is placed in front of the substrate.
(Window) may be provided. Further, a target material 60 is installed on the electrode portion 61, which further includes a power source for plasma generation (100 for RF, 101 for high-voltage DC), a support metal fitting 62,
A circuit is composed of the lead wires 63 and 64, the electrode plate 65, and the like. In the figure, the power source for sonic wave, ultrasonic wave, microwave drive, laser, maser, and circuit configuration are controlled externally, 71 for holding vacuum is a rotary pump,
70 is a cryopump. These may be turbo pumps.

【0045】なお、エネルギ励起用音波としては生産に
優れた1GHz以上の極超音波(マイクロ波超音波)や
マグネトロン型と光望ましくはレーザ,メーザとの相互
作用が特に好ましく、また、ターゲットの替わりに電子
ビーム,イオンビーム法などによる蒸着源を用い、蒸着
法で成膜することも可能である。
As the sound wave for energy excitation, it is particularly preferable to use a supersonic wave (microwave ultrasonic wave) of 1 GHz or more, which is excellent in production, or an interaction between a magnetron type and light, preferably a laser or a maser. It is also possible to use an evaporation source such as an electron beam or ion beam method to form a film by the evaporation method.

【0046】以下さらに詳細に本実施例について説明す
る。成膜条件は実施例4と同じにし、面粗さ2nmのN
iPを10μmメッキした外径5.25″φ のAl合金
基板を50rpmで回転(図示せず)し波動エネルギを
与えながら、膜厚35nmをCoNiPtCrを共に
(超音波とレーザ)傾斜角θ=45°平均入射角50°
で形成し、さらに同条件で膜厚25nmのWC保護を形
成した。最後に、7nmのアミン系有機物潤滑剤を形成
して磁気ディスクとした。
This embodiment will be described in more detail below. The film forming conditions were the same as in Example 4, and the surface roughness of N was 2 nm.
An Al alloy substrate with an outer diameter of 5.25 ″ φ plated with 10 μm of iP was rotated (not shown) at 50 rpm to give wave energy, and a film thickness of 35 nm was used together with CoNiPtCr (ultrasound and laser). ° Average incident angle 50 °
And WC protection with a film thickness of 25 nm was formed under the same conditions. Finally, a 7 nm amine-based organic lubricant was formed to obtain a magnetic disk.

【0047】本ディスクを実施例1と同じ条件で評価し
たところ、S/Nで4.3 、出力変動で3.8% であっ
た。
When this disk was evaluated under the same conditions as in Example 1, the S / N ratio was 4.3 and the output fluctuation was 3.8%.

【0048】(実施例6)実施例1〜4記載の磁気ディ
スク81と磁気抵抗効果を用いた再生部を有する記録再
生分離型の磁気ヘッド83を、図5(a),(b)に示
す磁気ディスク装置90に組み込んだ。本媒体により位
置決めが高精度で行え、さらにスペーシングを0.05
μmとできたことで900Mb/in2の高い記録密度
で動作する磁気デイスク装置が提供できた。なお、82
は高速回転7000rpm のための駆動部、84は高精度
位置決めのためのヘッド駆動部、85はPRML方式に
よる高度復号信号処理回路処理系を示す。
(Sixth Embodiment) FIGS. 5A and 5B show a recording / reproducing separated type magnetic head 83 having a magnetic disk 81 described in the first to fourth embodiments and a reproducing section using a magnetoresistive effect. It was incorporated in the magnetic disk device 90. With this medium, positioning can be performed with high precision, and the spacing is 0.05
By making the thickness to be μm, a magnetic disk device that operates at a high recording density of 900 Mb / in 2 can be provided. Note that 82
Is a drive unit for high-speed rotation of 7,000 rpm, 84 is a head drive unit for high-accuracy positioning, and 85 is a highly decoded signal processing circuit processing system of the PRML system.

【0049】(実施例7)図6に、生産性に優れたEB
法(Electron Beam)による本発明の方法の実施例の主要
概略断面図を示す。本方法では特に、低エネルギから高
エネルギの電子線200a,200bを利用することが
出来るのが特徴である。すなわち、図に示す電子銃20
1a,201bによる電子線(電子ビーム)を利用して
ボード(受皿)202a,202bの中の磁性合金20
3a,203bを蒸発させる。この蒸発された粒子に、
空間内に設置する波動駆動体4a,4bから音波,超音
波の波動エネルギとさらにレーザ40a,40bとを付
与せしめ、これらの相互作用で得られる高エネルギ励起
状態の粒子により回転(70rpm)する3.5インチ基板
3上にさらに有効な歪すなわち格子振動を与えながら高
配向,高分散状態で蒸着される。
(Embodiment 7) FIG. 6 shows an EB excellent in productivity.
The main schematic sectional drawing of the Example of the method of this invention by the method (Electron Beam) is shown. This method is particularly characterized in that it is possible to use the electron beams 200a and 200b of low energy to high energy. That is, the electron gun 20 shown in the drawing
The magnetic alloy 20 in the boards (sauces) 202a and 202b using the electron beam (electron beam) from 1a and 201b.
3a and 203b are evaporated. To these evaporated particles,
The wave energies of sound waves and ultrasonic waves and the lasers 40a and 40b are applied from the wave drive bodies 4a and 4b installed in the space, and rotated (70 rpm) by the particles in the high energy excited state obtained by their interaction. It is vapor-deposited in a highly oriented and highly dispersed state on the .5-inch substrate 3 while giving more effective strain, that is, lattice vibration.

【0050】ここでの製造法,条件は前記の実施例とほ
ぼ同様であるが、特に、成膜の真空度は10-6〜10-9
Torrで行った。また、本方式においては回転する基
板3は真空槽内に設けた別の空洞から連続的に供給され
る(周知であるので図示せず)。なお、可視光レーザ0.
1W〜10W に於いて音波,超音波の波動エネルギ
(出力)はいずれも1W以上としたが望ましくは7W〜
155Wが良い。さらに、また、成膜条件において、波
動エネルギの周波数57KHz,15Wの場合は真空圧
10-6〜10-9Torrで充分効果が得られたが、この超音
波の波動エネルギを高めた場合すなわち、周波数57k
Hz、35Wの場合、レーザとの相互作用に於いて真空
圧10-3〜10-5Torrでも充分な効果が得られた。な
お、真空圧10Torr〜真空圧10-6Torrの範囲内でさら
にイオン(Ar,B,P,S,N、他)印加しても、同
様に良い結果が得られた。
The manufacturing method and conditions here are almost the same as those in the above-mentioned embodiment, but in particular, the vacuum degree of film formation is 10 -6 to 10 -9.
I went to Torr. Further, in this system, the rotating substrate 3 is continuously supplied from another cavity provided in the vacuum chamber (not shown because it is well known). In addition, visible light laser 0.1.
The wave energy (output) of the sound wave and the ultrasonic wave was set to 1 W or more in the range of 1 W to 10 W, but it is preferably 7 W to
155W is good. Furthermore, under the film forming conditions, when the wave energy frequency was 57 KHz and 15 W, a sufficient effect was obtained at a vacuum pressure of 10 -6 to 10 -9 Torr, but when the wave energy of this ultrasonic wave was increased, that is, Frequency 57k
In the case of Hz and 35 W, a sufficient effect was obtained in the interaction with the laser even at a vacuum pressure of 10 -3 to 10 -5 Torr. Even if ions (Ar, B, P, S, N, etc.) were further applied within the range of the vacuum pressure of 10 Torr to the vacuum pressure of 10 −6 Torr, similarly good results were obtained.

【0051】(実施例8)実施例5と同様に、自動車の
バンパ,LSI,配線,加工用ドリル刃,テープなどを
作成したところ、従来以上の高信頼性が得られた。
(Embodiment 8) As in Embodiment 5, when automobile bumpers, LSIs, wirings, drilling blades for processing, tapes, etc. were prepared, higher reliability than before was obtained.

【0052】[0052]

【発明の効果】本発明により、特性が均一でノイズ特性
に優れ、さらに、ヘッドと媒体との間隔(スペーシン
グ)を0.05μm 以下に小さくした場合にも安定して
ヘッドが浮上し高い耐摺動特性を有し、さらに高トラッ
ク密度でも高いサーボ信号が得られる薄膜磁気記録媒体
を製造,提供できるので、900Mb/in2 の高い記
録密度でも動作する磁気記憶装置が提供できる。
According to the present invention, the characteristics are uniform and the noise characteristics are excellent. Further, even when the distance (spacing) between the head and the medium is reduced to 0.05 μm or less, the head stably floats and has high resistance. Since it is possible to manufacture and provide a thin film magnetic recording medium that has sliding characteristics and can obtain a high servo signal even at a high track density, it is possible to provide a magnetic storage device that operates even at a high recording density of 900 Mb / in 2 .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の製造装置の系統図。FIG. 1 is a system diagram of a manufacturing apparatus according to an embodiment of the present invention.

【図2】本発明の第二実施例の製造装置の系統図。FIG. 2 is a system diagram of a manufacturing apparatus according to a second embodiment of the present invention.

【図3】本発明より成る磁気記録媒体の断面図。FIG. 3 is a sectional view of a magnetic recording medium according to the present invention.

【図4】本発明の媒体の特性図。FIG. 4 is a characteristic diagram of the medium of the present invention.

【図5】本発明の磁気記憶装置の説明図。FIG. 5 is an explanatory diagram of a magnetic storage device of the present invention.

【図6】本発明の第三実施例の部分説明図。FIG. 6 is a partial explanatory view of a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…スパッタ装置真空箱、2,2′…支持台、3…基
板、4a,4a′,4b,4b′…波動駆動体、5a,
5b…磁石(電磁石)、10a,10b…傾斜駆動支持
具、40a,40b…光、レーザ(半導体レーザ)、4
1a,41b…透明石英カバー(粒子飛散防止用)、4
2a,42b…支持具(レーザ用)、60…ターゲット
材、61…電極部、62…支持金具、63、64…リー
ド線、65…電極平面板、66…マスク、70…クライ
オポンプ(または拡散ポンプ)、71…ロータリーポン
プ、100…RF電源、101…高圧DC電源。
DESCRIPTION OF SYMBOLS 1 ... Sputtering apparatus vacuum box, 2, 2 '... Support stand, 3 ... Substrate, 4a, 4a', 4b, 4b '... Wave drive body, 5a,
5b ... Magnet (electromagnet), 10a, 10b ... Tilt drive support, 40a, 40b ... Light, laser (semiconductor laser), 4
1a, 41b ... Transparent quartz cover (for preventing particle scattering), 4
2a, 42b ... Supporting tool (for laser), 60 ... Target material, 61 ... Electrode part, 62 ... Supporting metal, 63, 64 ... Lead wire, 65 ... Electrode flat plate, 66 ... Mask, 70 ... Cryopump (or diffusion) Pump), 71 ... rotary pump, 100 ... RF power supply, 101 ... high voltage DC power supply.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 晃 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 杉野 建三 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Akira Ishikawa Akira Ishikawa 1-280, Higashi Koikeku, Kokubunji, Tokyo (72) Central Research Laboratory, Hitachi, Ltd. (72) Kenzo Sugino 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Ltd. Central Research Laboratory

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】非磁性の基板上に、直接もしくは少なくと
も一層の中間層を介して形成された少なくとも一層の磁
性層を含む薄膜磁気記録媒体において、媒体表面の中心
線平均面粗さが3nm以下0.2nm 以上であり、周方
向の特性ばらつきが7%以下であることを特徴とする薄
膜磁気記録媒体。
1. A thin film magnetic recording medium including at least one magnetic layer formed directly or via at least one intermediate layer on a non-magnetic substrate, wherein the center line average surface roughness of the medium surface is 3 nm or less. A thin film magnetic recording medium having a thickness of 0.2 nm or more and a characteristic variation in the circumferential direction of 7% or less.
【請求項2】中間層および/または磁性層を含む際の物
理蒸発に際し、音波もしくは超音波もしくはマイクロ波
と電磁波を含んで薄膜形成することを特徴とする薄膜磁
気記録媒体の製造方法。
2. A method for producing a thin film magnetic recording medium, which comprises forming a thin film containing a sound wave, an ultrasonic wave, a microwave and an electromagnetic wave in the physical vaporization when the intermediate layer and / or the magnetic layer is included.
【請求項3】請求項2において、薄膜形成時の音波,超
音波,レーザを正弦波もしくはパルス波とする薄膜磁気
記録媒体の製造方法。
3. The method for manufacturing a thin film magnetic recording medium according to claim 2, wherein the sound wave, the ultrasonic wave, and the laser at the time of forming the thin film are sine waves or pulse waves.
【請求項4】基板上に薄膜形成する際に、音波とレーザ
とを重畳させた表面処理を施すことを特徴とする薄膜磁
気記録媒体の製造方法。
4. A method of manufacturing a thin film magnetic recording medium, characterized in that when a thin film is formed on a substrate, a surface treatment in which a sound wave and a laser are superposed is applied.
【請求項5】音波もしくは超音波を薄膜形成後の不用粒
子の吸着防止制御用に、レーザを薄膜の表面処理に利用
したことを特徴とする薄膜磁気記録媒体の製造方法。
5. A method for manufacturing a thin film magnetic recording medium, wherein a laser is used for surface treatment of a thin film for controlling adsorption of unwanted particles after forming a thin film by applying a sound wave or an ultrasonic wave.
【請求項6】薄膜形成時に音波とレーザとを交互に印加
することを特徴とする薄膜磁気記録媒体の製造方法。
6. A method of manufacturing a thin film magnetic recording medium, characterized in that a sound wave and a laser are applied alternately when the thin film is formed.
【請求項7】物理蒸発に電子ビームもしくはイオンビー
ムを用いることを特徴とする薄膜磁気記録媒体の製造方
法。
7. A method of manufacturing a thin film magnetic recording medium, characterized in that an electron beam or an ion beam is used for physical vaporization.
【請求項8】請求項1において、前記非磁性基板の中心
線平均面粗さが1.55nm 以下、0.05nm 以上で
ある薄膜磁気記録媒体。
8. The thin film magnetic recording medium according to claim 1, wherein the non-magnetic substrate has a center line average surface roughness of 1.55 nm or less and 0.05 nm or more.
【請求項9】請求項1において、前記磁性層上に、その
平均面粗さが基板の値より大きくなるように保護層を設
けてなる薄膜磁気記録媒体。
9. The thin film magnetic recording medium according to claim 1, wherein a protective layer is provided on the magnetic layer so that the average surface roughness thereof is larger than that of the substrate.
【請求項10】請求項1において、前記薄膜磁気記録媒
体と、磁気抵抗効果を用いた再生手段を有する磁気ヘッ
ドからなり、面記録密度900Mb/in2 以上の磁気
記憶装置。
10. A magnetic storage device according to claim 1, comprising the thin film magnetic recording medium and a magnetic head having a reproducing means utilizing a magnetoresistive effect, and having an areal recording density of 900 Mb / in 2 or more.
【請求項11】請求項1,2,3,4,5,6,7,8
または9において、自動車,各種電気・電子部品,半導
体に転用した薄膜形成体。
11. Claims 1, 2, 3, 4, 5, 6, 7, 8
Alternatively, in 9, a thin film forming body diverted to automobiles, various electric / electronic parts, and semiconductors.
JP16886193A 1993-07-08 1993-07-08 Thin-film magnetic recording medium and its manufacture and memory device Pending JPH0729142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16886193A JPH0729142A (en) 1993-07-08 1993-07-08 Thin-film magnetic recording medium and its manufacture and memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16886193A JPH0729142A (en) 1993-07-08 1993-07-08 Thin-film magnetic recording medium and its manufacture and memory device

Publications (1)

Publication Number Publication Date
JPH0729142A true JPH0729142A (en) 1995-01-31

Family

ID=15875923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16886193A Pending JPH0729142A (en) 1993-07-08 1993-07-08 Thin-film magnetic recording medium and its manufacture and memory device

Country Status (1)

Country Link
JP (1) JPH0729142A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116527B1 (en) 1996-09-30 2006-10-03 Kabushiki Kaisha Toshiba Magnetoresistance effect device having hard magnetic film structural body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116527B1 (en) 1996-09-30 2006-10-03 Kabushiki Kaisha Toshiba Magnetoresistance effect device having hard magnetic film structural body
US7336454B2 (en) 1996-09-30 2008-02-26 Kabushiki Kaisha Toshiba Magnetoresistance effect device having a bi-crystal structure composed of main grains each having a plurality of sub-grains

Similar Documents

Publication Publication Date Title
US5589262A (en) Perpendicular magnetic recording medium having a soft magnetic underlayer with a stripe magnetic domain structure
US20050202286A1 (en) Inter layers for perpendicular recording media
JP2003123239A (en) Perpendicular magnetic recording medium
JP4874526B2 (en) Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording / reproducing apparatus
JPWO2008059562A1 (en) Magnetic storage
JP4102221B2 (en) Method for manufacturing magnetic recording medium
JPH0669033A (en) Cobalt platinum magnetic film and its manufacture
US6506508B1 (en) Magnetic recording medium, method of production and magnetic storage apparatus
JPH0729142A (en) Thin-film magnetic recording medium and its manufacture and memory device
JP2003288713A (en) Vertical magnetic recording medium, magnetic recording device using the same, and manufacturing method and machine for the vertical magnetic recording medium
JP3345199B2 (en) Perpendicular magnetic recording medium and magnetic recording device
JP2002032907A (en) Carbon protective film, magnetic recording medium, method for manufacturing them and magnetic disk device
WO2006043711A1 (en) Method of manufacturing perpendicular magnetic recording medium and perpendicular magnetic recording medium
JPH06338040A (en) Thin film magnetic recording medium production thereof, producing device therefor and storage device
JPH1186277A (en) Flat/curved memory and manufacture thereof
JPH0853754A (en) Chaos film formation and device therefor and information recording medium by chaos film formation
JPH05266474A (en) Method and device for film formation, method and device for producing thin-film magnetic recording medium and magnetic storage device
JPH097171A (en) Curved surface body memory and its manufacture
JP2002197634A (en) Information recording medium and information recording device using the same
JPH10222839A (en) Curved surface body memory device and its production
JPH10241935A (en) Magnetic recording medium and its manufacture
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JPH10289437A (en) Magnetic recording medium and magnetic storage device
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPH09157845A (en) Chaos treatment film forming device, chaos treatment film formation and chaos treatment film forming medium