JPH0729035B2 - Pressure balancer - Google Patents
Pressure balancerInfo
- Publication number
- JPH0729035B2 JPH0729035B2 JP62154378A JP15437887A JPH0729035B2 JP H0729035 B2 JPH0729035 B2 JP H0729035B2 JP 62154378 A JP62154378 A JP 62154378A JP 15437887 A JP15437887 A JP 15437887A JP H0729035 B2 JPH0729035 B2 JP H0729035B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- pressure
- chamber
- fluid resistance
- gas chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/80—Forming a predetermined ratio of the substances to be mixed
- B01F35/83—Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices
- B01F35/833—Flow control by valves, e.g. opening intermittently
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Accessories For Mixers (AREA)
- Control Of Non-Electrical Variables (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧力平衡器に係り、特にガス混合装置の混合比
の長期安定性をはかるのに好適な2つのガス間の圧力差
が零になるように保つ圧力平衡器に関するものである。Description: TECHNICAL FIELD The present invention relates to a pressure balancer, and more particularly to a zero pressure difference between two gases, which is suitable for achieving long-term stability of the mixing ratio of a gas mixing device. It relates to a pressure balancer that keeps
血液ガス分析装置においては、炭酸ガス及び酵素の分圧
を利用して既知の水溶液から2種類以上の校正用標準液
を装置内部で製造する必要がある。これには、一般的に
ボンベに充填した組成既知の炭酸ガス,炭素,窒素の混
合ガスを水溶液に飽和させて用いている。米国特許第34
64434号(以上公知例Aと称する)では、この点を改善
し、炭酸ガスは純ガスの状態でボンベから供給し、酸
素、窒素は空気を用いて混合ガスとするガス混合装置を
開示している。本公知例Aの特徴は、リリーフ形の差圧
圧力制御弁を用いたことにあり、炭酸ガスより高くなつ
た空気の圧力をリリーフポートを通して大気に逃がすこ
とにより、双方の圧力を等しくさせていることにある。
また、空気圧を0.1kgf/cm2程度の圧力で供給することに
より、リリーフポートを比較的簡単な構造で実現してい
るところにも他の特徴がある。In a blood gas analyzer, it is necessary to produce two or more kinds of calibration standard solutions from a known aqueous solution by utilizing the partial pressures of carbon dioxide and an enzyme inside the apparatus. For this, a mixed gas of carbon dioxide gas, carbon and nitrogen of known composition, which is generally filled in a cylinder, is saturated with an aqueous solution and used. U.S. Patent No. 34
No. 64434 (hereinafter referred to as known example A) improves this point and discloses a gas mixing device in which carbon dioxide is supplied from a cylinder in a pure gas state and oxygen and nitrogen are mixed gas using air. There is. The feature of the known example A is that a relief type differential pressure control valve is used, and the pressure of air higher than carbon dioxide gas is released to the atmosphere through a relief port to make both pressures equal. Especially.
Another feature is that the relief port is realized with a relatively simple structure by supplying the air pressure at a pressure of about 0.1 kgf / cm 2 .
次に、機能ではなく、構成としての近似の従来技術に特
開昭59−110968号公報(以下公知例Bと称する)があ
る。本公知例Bは、2流体が相互に混合しないように2
流体間に1ないし2以上の密閉体を有すること及び逃し
流路からの流体は再び供給槽に戻して再使用することに
特徴がある。Next, there is Japanese Patent Application Laid-Open No. 59-110968 (hereinafter referred to as a known example B) as a conventional technique which is not a function but an approximation as a configuration. In this known example B, two fluids are mixed so that they do not mix with each other.
It is characterized by having one or more seals between the fluids and returning the fluid from the escape channel to the supply tank for reuse.
上記公知例Aは、ガス損失の点について配慮がなされて
おらず、空気と炭酸ガスの圧力平衡を保つため、空気を
リリーフポートから抜いている。このため、必要量以上
の空気を供給しなければならず、ポンプ及びエアフイル
タの能力をその分だけ増す必要があつた。また、空気と
炭酸ガスのガスミキサ入力圧力の点について配慮がなさ
れておらず、空気側が炭酸ガス側に比べ入力圧力が高い
場合のみしか動作しないという問題があつた。In the above-mentioned publicly known example A, no consideration is given to the point of gas loss, and in order to maintain the pressure equilibrium between air and carbon dioxide, air is extracted from the relief port. Therefore, it is necessary to supply more air than necessary, and it is necessary to increase the capacity of the pump and the air filter by that amount. Further, no consideration has been given to the input pressure of the gas mixer for air and carbon dioxide gas, and there is a problem that the air side operates only when the input pressure is higher than the carbon dioxide gas side.
公知例Bは、2流体が相互に混合しないように、2流体
を隔離する1つ以上の密閉体を用いているが、摩擦抵抗
の点については配慮がなされておらず、密閉体が円筒状
孔内を摺動するときの摩擦抵抗のため、微少差圧では作
動しないという問題点があつた。また、流体損失の点に
ついて配慮がなされておらず、圧力平衡を達するため
に、逃し流路から大きな流体の浪費をともなうという問
題があつた。In the known example B, one or more sealing bodies that separate the two fluids are used so that the two fluids do not mix with each other, but no consideration is given to the point of friction resistance, and the sealing body has a cylindrical shape. Due to the frictional resistance when sliding in the hole, there is a problem that it does not operate with a slight differential pressure. Further, no consideration has been given to the point of fluid loss, and there has been a problem that a large amount of fluid is wasted from the escape passage in order to reach pressure equilibrium.
本発明の目的は、上記の諸問題を解決すべくなされたも
ので、非常に簡単な構成で流体の損失がなく、2流路の
どちらの圧力が高くなつても圧力平衡をとることがで
き、かつ、極微少差圧でも作動する圧力平衡器を提供す
ることにある。The object of the present invention is to solve the above-mentioned problems, and it is possible to achieve a pressure balance with a very simple structure without loss of fluid and whichever of the two flow paths has a higher pressure. In addition, it is to provide a pressure balancer that operates even with an extremely small differential pressure.
本発明は、上記目的を達成するために、次のようにして
圧力平衡器を構成する。なお、以下に述べる発明の構成
要素に付した符号は、発明の把握を容易にする便宜から
第1図,第2図の実施例の符号を引用したものである。In order to achieve the above object, the present invention configures a pressure balancer as follows. The reference numerals given to the components of the invention described below are the reference numerals of the embodiments shown in FIGS. 1 and 2 for the sake of easy understanding of the invention.
すなわち、本発明は、2つの独立したガス流路50,51に
対応して、そのうちの第1のガス流路50に流出するガス
を調圧するための第1のガス室1と第2のガス流路51に
流出するガスを調圧するための第2のガス室11との2室
が一つのケーシング60内部にダイヤフラム20を介して気
密に隣接配置されて、前記第1,第2のガス室1,11の差圧
により前記ダイヤフラム20が応動する機構を構成し、 前記第1のガス室1は、一方の調圧対象となるガスを導
入するガス流入口4及び前記第1のガス流路50と接続さ
れるガス流出口6を有し、前記第2のガス室11は、もう
一方の調圧対象となるガスを導入するガス流入口14及び
前記第2のガス流路51と接続されるガス流出口16を有
し、 前記第1,第2のガス室1,11のガス流入口4,14は、それぞ
れ前記ダイヤフラム20の中心に同一軸線上に配置され、 前記ダイヤフラム20の中心両面には、前記第1,第2のガ
ス室1,11の各ガス流入口4,14に位置するように向けられ
た紡錘形の流体抵抗要素3,13付きのロツド2,12が固定配
置され、前記第1,第2のガス室1,11の各ガス流入口4,14
には、前記各流体抵抗要素3,13が前記ダイヤフラム20の
前記差圧応動に連動した時にこれらの流体抵抗要素3,13
の変位と協働して各ガス流入口4,14自身の流体抵抗値を
変える面を有する環状の凸部5,15を設けて、前記第1の
ガス室1の圧力が前記第2のガス室11の圧力より高くな
ると、その時の差圧による前記ダイヤフラム20の第2の
ガス室11側への応動に伴って前記第2のガス室11のガス
流入口14の凸部15からこれに対応の流体抵抗要素13が遠
ざかって該第2のガス室11のガス流入口14の流体抵抗値
を小さくすると共に、前記第1のガス室1のガス流入口
4の凸部5とこれに対応の流体抵抗要素3との間を狭め
て該第1のガス室1のガス流入口4の流体抵抗値を大き
くし、逆に前記第2のガス室11の圧力が前記第1のガス
室1の圧力より高くなると、その時の差圧による前記ダ
イヤフラム20の第1のガス室1側への応動に伴って前記
第1のガス室1のガス流入口4の凸部5からこれに対応
の流体抵抗要素3が遠ざかって該第1のガス室1のガス
流入口4の流体抵抗値を小さくすると共に、前記第2の
ガス室11のガス流入口14の凸部15とこれに対応の流体抵
抗要素13との間を狭めて該第2のガス室11のガス流入口
14の流体抵抗値を大きくするように設定して、これらの
流体抵抗値の自動調整により前記第1,第2のガス室1,11
から前記第1,第2のガス流路50,51までのガス圧同士が
同圧に収まる構成としたことを特徴とする。That is, the present invention corresponds to the two independent gas flow paths 50 and 51, and the first gas chamber 1 and the second gas chamber 1 for adjusting the pressure of the gas flowing out to the first gas flow path 50 among them. Two chambers, a second gas chamber 11 and a second gas chamber 11 for adjusting the pressure of the gas flowing out to the flow path 51, are airtightly arranged adjacent to each other inside the one casing 60 via the diaphragm 20, and the first and second gas chambers are arranged. A structure in which the diaphragm 20 responds to the differential pressure of 1,11 is configured, and the first gas chamber 1 includes a gas inflow port 4 for introducing a gas to be pressure-controlled on one side and the first gas flow path. The second gas chamber 11 has a gas outlet 6 connected to 50, and is connected to the other gas inlet 14 for introducing the gas whose pressure is to be adjusted and the second gas passage 51. And a gas outlet port 16 of each of the first and second gas chambers 1 and 11 is located at the center of the diaphragm 20. A spindle-shaped fluid resistance element 3, which is arranged on the axis and is oriented to be located at each of the gas inlets 4 and 14 of the first and second gas chambers 1 and 11 on both sides of the center of the diaphragm 20, The rods 2 and 12 with 13 are fixedly arranged, and the gas inlets 4 and 14 of the first and second gas chambers 1 and 11 are fixed.
When the fluid resistance elements 3 and 13 are interlocked with the differential pressure response of the diaphragm 20, the fluid resistance elements 3 and 13 are
Of the first gas chamber 1 is provided with annular convex portions 5 and 15 having surfaces that change the fluid resistance values of the gas inlets 4 and 14 themselves in cooperation with the displacement of the second gas. When the pressure becomes higher than the pressure in the chamber 11, the convex portion 15 of the gas inflow port 14 of the second gas chamber 11 responds to the movement of the diaphragm 20 toward the second gas chamber 11 side due to the differential pressure at that time. Of the second gas chamber 11 reduces the fluid resistance value of the gas inflow port 14 of the second gas chamber 11, and the convex portion 5 of the gas inflow port 4 of the first gas chamber 1 and the corresponding The fluid resistance value of the gas inlet 4 of the first gas chamber 1 is increased by narrowing the space between the fluid resistance element 3 and the fluid resistance element 3, and conversely, the pressure of the second gas chamber 11 is equal to that of the first gas chamber 1. When the pressure becomes higher than the pressure, the gas inlet of the first gas chamber 1 accompanies the reaction of the diaphragm 20 to the first gas chamber 1 side due to the differential pressure at that time. The corresponding fluid resistance element 3 is moved away from the convex portion 5 to reduce the fluid resistance value of the gas inlet port 4 of the first gas chamber 1 and to reduce the fluid resistance value of the gas inlet port 14 of the second gas chamber 11. The gas inlet of the second gas chamber 11 is narrowed by narrowing the gap between the convex portion 15 and the fluid resistance element 13 corresponding thereto.
The fluid resistance values of 14 are set to be large, and the first and second gas chambers 1 and 11 are automatically adjusted by these fluid resistance values.
It is characterized in that the gas pressures from the above to the first and second gas flow paths 50 and 51 are set to the same pressure.
この圧力平衡器は次のように動作する。2室(第1のガ
ス室1,第2のガス室11)の圧力が等しいときには、ダイ
アフラム20には張力は働かず平衡状態にあり、各流体抵
抗要素3,13とガス流入口4,14の凸部5,15との間隔、すな
わち、流体抵抗は両ガスで同じである。This pressure balancer operates as follows. When the pressures of the two chambers (the first gas chamber 1 and the second gas chamber 11) are equal, no tension acts on the diaphragm 20 in equilibrium, and the fluid resistance elements 3 and 13 and the gas inlets 4 and 14 are in equilibrium. The distance between the convex portions 5 and 15 and the fluid resistance is the same for both gases.
ここで、ガス圧力の変動により、第1のガス(第1のガ
ス流路50に流れるガス)の圧力が第2のガス(第2のガ
ス流路51に流れるガス)の圧力に比べて高くなったと仮
定すると、第1のガス室1の圧力が第2のガス室11の圧
力より高くなるので、ダイアフラム20は第2のガス室11
の方へ変位する。これにともないダイアフラム20の両面
に固定配置した流体抵抗要素3,13が第2のガス室11寄り
に変位(移動)する。流体抵抗要素3,13は、紡錘形にな
つており、ここでは上記変位により、流体抵抗要素13が
第2のガス流入口14の凸部15から遠ざかることで流体抵
抗要素13と対応の凸部15との間隔が広がり、第2のガス
流入口14の流体抵抗値が小さくなり、一方、流体抵抗要
素3が第1のガル流入口4の凸部5に近づいて第1のガ
スの流入口4の流体抵抗値が大きくなる。Here, due to the fluctuation of the gas pressure, the pressure of the first gas (the gas flowing in the first gas flow passage 50) is higher than the pressure of the second gas (the gas flowing in the second gas flow passage 51). Assuming that the pressure in the first gas chamber 1 becomes higher than the pressure in the second gas chamber 11, the diaphragm 20 is
Is displaced toward. Along with this, the fluid resistance elements 3 and 13 fixedly arranged on both sides of the diaphragm 20 are displaced (moved) toward the second gas chamber 11. The fluid resistance elements 3 and 13 are spindle-shaped, and here, due to the above displacement, the fluid resistance element 13 moves away from the convex portion 15 of the second gas inlet port 14 and the convex portion 15 corresponding to the fluid resistance element 13 is formed. And the fluid resistance value of the second gas inlet port 14 decreases, while the fluid resistance element 3 approaches the convex portion 5 of the first gull inlet port 4 and the first gas inlet port 4 The fluid resistance value of becomes large.
その結果、第1のガス室1の圧力が低下し、一方、第2
のガス室11の圧力が上昇し、これらの2室1,11のガスの
圧力が同圧になるように収束し、ダイアフラム20も第1
ガス室1の方へ戻り、第1のガス室1と第2のガス室11
ひいては第1,第2のガス流路50,51の圧力平衡が保たれ
ることになる。As a result, the pressure in the first gas chamber 1 drops, while the second gas chamber 1
Pressure in the gas chamber 11 rises, and the gas pressures in these two chambers 1 and 11 converge so as to be the same pressure, and the diaphragm 20 also moves to the first position.
Returning to the gas chamber 1, the first gas chamber 1 and the second gas chamber 11
As a result, the pressure equilibrium of the first and second gas flow paths 50 and 51 is maintained.
第2のガスの圧力が第1のガスの圧力に比べて高くなつ
た場合も同様に動作し(この場合には、ダイヤフラム20
及び流体抵抗要素3,13は、上記第1のガス圧力が第2の
ガス圧力より高くなった場合の動作と逆の動作となるが
動作原理は同じである)、圧力平衡が保たれる。The same operation is performed when the pressure of the second gas becomes higher than the pressure of the first gas (in this case, the diaphragm 20
The fluid resistance elements 3 and 13 operate in the opposite manner to the operation when the first gas pressure becomes higher than the second gas pressure, but the operating principle is the same), and the pressure balance is maintained.
以下、本発明の実施例を第1図〜第3図を用いて詳細に
説明する。Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS.
第1図は本発明の圧力平衡器の一実施例を示す断面図で
ある。FIG. 1 is a sectional view showing an embodiment of the pressure balancer of the present invention.
圧力平衡器は、構成要素として、第1のガス室(以下、
単に第1の室と称する)1、第2のガス室(以下、単に
第2の室と称する)11,流体抵抗要素の支持部(ロッ
ド)2,12、流体抵抗要素となる紡錘形状部3,13、第1の
ガスの流入口4、第2のガスの流入口14、流入口4の環
状の凸部5,流入口14の環状の凸部15、第1のガスの流出
口6、第2のガスの流出口16、ダイアフラム20、ダイア
フラム20と上記流体抵抗要素3,13との結合部21、ケーシ
ング60を構成すべきケース要素7,17等から成る。The pressure balancer includes a first gas chamber (hereinafter,
A first gas chamber) 1, a second gas chamber (hereinafter, simply referred to as a second chamber) 11, fluid resistance element supporting portions (rods) 2, 12, a spindle-shaped portion 3 serving as a fluid resistance element , 13, a first gas inlet 4, a second gas inlet 14, an annular protrusion 5 of the inlet 4, an annular protrusion 15 of the inlet 14, a first gas outlet 6, It comprises a second gas outlet 16, a diaphragm 20, a connecting portion 21 between the diaphragm 20 and the fluid resistance elements 3 and 13, case elements 7 and 17 which form a casing 60, and the like.
より具体的には、一つのケーシング60を構成するケース
要素7,17間にダイアフラム20を挟んで、これらのケース
要素7,17が止めねじ22により結合され、これにより、2
つの独立したガス流路50,51(第2図参照)に対応し
て、そのうちの第1のガス流路50に流出するガスを調圧
するための第1の室1と第2のガス流路51に流出するガ
スを調圧するための第2の室11との2室が一つのケーシ
ング60内部にダイヤフラム20を介して気密に隣接配置さ
れて、第1,第2の室1,11の差圧によりダイヤフラム20が
応動する機構が構成される。More specifically, the diaphragm 20 is sandwiched between the case elements 7 and 17 that form one casing 60, and these case elements 7 and 17 are coupled by a set screw 22, so that
Corresponding to the two independent gas flow passages 50 and 51 (see FIG. 2), a first chamber 1 and a second gas flow passage for adjusting the pressure of the gas flowing into the first gas flow passage 50 among them. Two chambers, a second chamber 11 and a second chamber 11 for adjusting the pressure of the gas flowing to 51, are airtightly adjacent to each other inside a casing 60 via a diaphragm 20, and the difference between the first and second chambers 1 and 11 is provided. A mechanism in which the diaphragm 20 responds to pressure is constructed.
第1の室1はガス流入口4及びガス流出口6を有し、ガ
ス流入口4は調圧対象となる第1のガスを導入するガス
流入管51′(第2図参照)と接続され、ガス流出口6は
調圧対象となる第1のガス流路50と接続される。第2の
室11はガス流入口14及びガス流出口16を有し、ガス流入
口14は調圧対象となる第2のガスを導入するガス流入管
51′(第2図参照)と接続され、ガス流出口16は調圧対
象となる第2のガス流路51と接続される。ガス流入口4,
14は、それぞれダイヤフラム20の中心と同一軸線上にダ
イヤフラム20を介して対称に配置される。The first chamber 1 has a gas inflow port 4 and a gas outflow port 6, and the gas inflow port 4 is connected to a gas inflow pipe 51 '(see FIG. 2) for introducing the first gas to be pressure-controlled. The gas outlet 6 is connected to the first gas flow path 50 whose pressure is to be adjusted. The second chamber 11 has a gas inflow port 14 and a gas outflow port 16, and the gas inflow port 14 is a gas inflow pipe for introducing the second gas to be pressure-controlled.
51 '(see FIG. 2), and the gas outlet 16 is connected to the second gas flow path 51 to be pressure-controlled. Gas inlet 4,
14 are symmetrically arranged via the diaphragm 20 on the same axis as the center of the diaphragm 20.
流体抵抗要素3,13の支持部2,12は、結合部21を介してダ
イアフラム20の中心両面に強固、かつ、気密に固定され
ている。The supporting portions 2 and 12 of the fluid resistance elements 3 and 13 are firmly and airtightly fixed to both sides of the center of the diaphragm 20 via the joint portion 21.
流体抵抗要素(紡錘形状部)3,13は、ダイアフラム20か
ら遠ざかるにしたがい、その外径は緩やかに大きくな
り、最大径の個所でガス流入口4,14側に設けた凸部5,15
の内径より大きくなるように設計してあり、流体抵抗要
素3がガス流入口4に位置するように向けられ、流体抵
抗要素13がガス流入口14に位置するように向けてある。The fluid resistance element (spindle-shaped portion) 3, 13 gradually increases in outer diameter as it moves away from the diaphragm 20, and the convex portion 5, 15 provided on the gas inlet 4, 14 side at the maximum diameter portion.
Is designed to be larger than the inner diameter of the fluid resistance element 3, the fluid resistance element 3 being oriented at the gas inlet 4, and the fluid resistance element 13 being oriented at the gas inlet 14.
このようにして、各流体抵抗要素3,13がダイヤフラム20
の前記差圧応動に連動した時にこれらの流体抵抗要素3,
13の変位と凸部5,15とが協働して各ガス流入口4,14自身
の流体抵抗値を変えるようにしてある。In this way, each fluid resistance element 3, 13 is connected to the diaphragm 20.
These fluid resistance elements 3, when interlocked with the differential pressure response of
The displacement of 13 and the convex portions 5 and 15 cooperate to change the fluid resistance value of each gas inlet port 4 and 14 itself.
凸部5,15及び紡錘形状部3,13の表面は非常に滑らかに加
工が施されており、流体抵抗素子、すなわち、紡錘形状
部3,13及び支持部2,12は軽金属あるいはプラスチツクで
構成してあり、凸部5,15はO−リング等を使用してあ
る。また、ダイアフラム20は止めねじ22により気密に本
体7,17に取り付けてある。ダイアフラム20にはフラツト
ダイアフラム、溝付ダイアフラムが使用できる。The surfaces of the convex portions 5 and 15 and the spindle-shaped portions 3 and 13 are processed very smoothly, and the fluid resistance element, that is, the spindle-shaped portions 3 and 13 and the supporting portions 2 and 12 are made of light metal or plastic. O-rings or the like are used for the convex portions 5 and 15. Further, the diaphragm 20 is airtightly attached to the main bodies 7, 17 with a set screw 22. The diaphragm 20 may be a flat diaphragm or a grooved diaphragm.
本圧力平衡器の動作は、第1の室1と第2の室11の圧力
が等しければ、ダイアフラム20には張力がかからないの
で、図示したように、本体7,17の中央に位置する。ここ
で、仮りに第1のガスの圧力が第2のガスの圧力に比べ
て高くなつたとすると、第1の室1の圧力が第2の室11
の圧力よりも高くなるので、ダイアフラム20は図の右方
向(第2の室11寄り)に変位する。これにともない紡錘
形状部3と凸部5の間隔が狭まり、流体抵抗値が大きく
なり、反対に紡錘形状部13と凸部15の間隔は広がり、流
体抵抗値が小さくなる。すなわち、第1の室1の圧力は
低下し、第2の室11の圧力は上昇し、2室1,11の圧力が
等しくなるように働く。逆に第2のガスの圧力が第1の
ガスの圧力に比べて高くなつた場合には、ダイアフラム
20は図の左方向(第1の室1寄り)に変位し、それにと
もなう流体抵抗値の変化により同様に2室1,11の圧力は
等しくなる。The operation of this pressure balancer is located at the center of the main bodies 7 and 17, as shown in the figure, because the diaphragm 20 is not tensioned if the pressures in the first chamber 1 and the second chamber 11 are equal. Here, if the pressure of the first gas is higher than the pressure of the second gas, the pressure of the first chamber 1 is equal to that of the second chamber 11.
Therefore, the diaphragm 20 is displaced to the right in the figure (close to the second chamber 11). Along with this, the distance between the spindle-shaped portion 3 and the convex portion 5 is narrowed, and the fluid resistance value is increased. On the contrary, the distance between the spindle-shaped portion 13 and the convex portion 15 is widened, and the fluid resistance value is reduced. That is, the pressure in the first chamber 1 decreases, the pressure in the second chamber 11 increases, and the pressures in the two chambers 1 and 11 are made equal. On the contrary, when the pressure of the second gas becomes higher than that of the first gas, the diaphragm
20 is displaced in the left direction (close to the first chamber 1) in the figure, and the pressure in the two chambers 1 and 11 becomes equal due to the change in the fluid resistance value accompanying the displacement.
第2図は本発明に係る圧力平衡器を2つのガスを混合す
るガスミキサに設置した一実施例を示す概略図である。
ガスミキサは、第1のガスの供給口30、第2のガスの供
給口31、第1のガス流入管50′に設けた減圧弁32、第2
のガス流入管51′に設けた減圧弁33、第1図と同一構成
の圧力平衡器34、第1のガス流路50から分岐する分流器
35,36、第2のガス流路51から分岐する分流器37,38、一
方の混合ガスの出口39、他方の混合ガスの出口40が図示
のように接続してある。ここで、分流器35と分流器37の
ガス同士が混合され、分流器36と分流器38のガス同士が
混合される。すなわち、第1,第2の室1,11の後段には、
第1,第2のガス流路50,51のガスを混合するガス混合部
が配置されている。減圧弁32,33はその2次圧が一定に
なるように設定してあるが、1次圧の変動等によつて常
に等圧とはならない。このため、図に示すように、2次
圧間に圧力平衡器34を設置して、分流器35,36,37,38の
前段,すなわち第1のガス流路50及び第1の室1、第2
のガス流路51及び第2の室11の圧力が等しくなるように
すると混合ガス出口39,40でのガス成分の精度が著しく
向上する。FIG. 2 is a schematic view showing an embodiment in which the pressure balancer according to the present invention is installed in a gas mixer for mixing two gases.
The gas mixer includes a first gas supply port 30, a second gas supply port 31, a pressure reducing valve 32 provided in the first gas inflow pipe 50 ', a second gas supply port 50'.
Pressure reducing valve 33 provided in the gas inflow pipe 51 ′ of the same, a pressure balancer 34 having the same configuration as in FIG. 1, and a flow diverter branched from the first gas flow path 50.
35, 36, flow dividers 37, 38 branched from the second gas flow path 51, one mixed gas outlet 39, and the other mixed gas outlet 40 are connected as shown. Here, the gases of the flow divider 35 and the flow divider 37 are mixed, and the gases of the flow divider 36 and the flow divider 38 are mixed. That is, after the first and second chambers 1 and 11,
A gas mixing section for mixing the gases in the first and second gas flow paths 50, 51 is arranged. The pressure reducing valves 32 and 33 are set so that their secondary pressures are constant, but they do not always become equal pressure due to variations in the primary pressure. Therefore, as shown in the figure, a pressure balancer 34 is installed between the secondary pressures, and the former stage of the flow dividers 35, 36, 37, 38, that is, the first gas flow path 50 and the first chamber 1, Second
If the pressures of the gas flow path 51 and the second chamber 11 are made equal, the accuracy of the gas components at the mixed gas outlets 39, 40 is significantly improved.
第3図はガスミキサの2つの減圧弁32,33の2次圧を同
時測定した記録図である。第3図(a)は圧力平衡器34
設置前、(b)は圧力平衡器設置後の記録例である。ガ
スは空気と炭酸ガスを混合する場合であり、減圧弁32,3
3はともに2次圧が0.2kg/cm2に設定してある。空気はエ
アーコンプレツサからガスミキサに供給しているので、
ONはコンプレツサの電源が入り、空気圧が高くなる時点
である。空気は混合ガスの製造に使われるので、空気圧
はコンプレツサON後漸次低下している。記録計のペン差
を考慮すると、(a)は空気圧と炭酸ガス圧力が異なる
値で別々に変動しているのに対して、圧力平衡器34設定
後の(b)の場合は、両ガス圧は常に同圧に保たれてい
る。この結果、混合ガスの炭酸ガス濃度は、第1表に示
すように、圧力平衡器34の設置により、変動係数CVで約
1/6と著しく精度が向上している。FIG. 3 is a recording diagram in which the secondary pressures of the two pressure reducing valves 32, 33 of the gas mixer are simultaneously measured. FIG. 3 (a) shows a pressure balancer 34.
Before installation, (b) is an example of recording after installation of the pressure balancer. The gas is for mixing air and carbon dioxide, and the pressure reducing valve 32,3
For both 3, the secondary pressure is set to 0.2 kg / cm 2 . Since air is supplied from the air compressor to the gas mixer,
ON is the time when the power of the compressor is turned on and the air pressure rises. Since air is used to manufacture the mixed gas, the air pressure gradually decreases after the compressor is turned on. Considering the pen difference of the recorder, in (a), the air pressure and carbon dioxide gas pressure fluctuate separately, but in the case of (b) after setting the pressure balancer 34, both gas pressures are changed. Is always kept at the same pressure. As a result, as shown in Table 1, the carbon dioxide concentration of the mixed gas is about a coefficient of variation CV when the pressure balancer 34 is installed.
The accuracy is significantly improved to 1/6.
〔発明の効果〕 以上説明したように、本発明によれば、ダイアフラムと
連動する流体抵抗要素の働きにより調圧対象となる2つ
の独立したガス流路と圧力を等しくすることができ、し
かも、非常に簡単な構成であり、かつ流体の損失がな
く、2流路のどちらの圧力が高くても圧力平衡がとれ、
しかも、極微少差圧でも作動するという効果がある。 [Effects of the Invention] As described above, according to the present invention, it is possible to equalize the pressure with two independent gas flow paths to be pressure-controlled by the action of the fluid resistance element interlocked with the diaphragm. It has a very simple structure, there is no loss of fluid, and pressure balance can be achieved regardless of which pressure of the two flow paths is high.
Moreover, it has the effect of operating even with a very small differential pressure.
第1図は本発明の圧力平衡器の一実施例を示す断面図、
第2図は本発明に係る圧力平衡器を2つのガスを混合す
るガスミキサに設置した一実施例を示す概略図、第3図
はガスミキサの2つの減圧弁の2次圧を同時測定した記
録図である。 1,11……室、2,12……流体抵抗要素の支持部、3,13……
流体抵抗要素の紡錘形状部、4,14……流入口、5,15……
凸部、6,16……流出口、20……ダイアフラム、21……結
合部。FIG. 1 is a sectional view showing an embodiment of the pressure balancer of the present invention,
FIG. 2 is a schematic view showing an embodiment in which the pressure balancer according to the present invention is installed in a gas mixer that mixes two gases, and FIG. 3 is a recording diagram in which secondary pressures of two pressure reducing valves of the gas mixer are simultaneously measured. Is. 1,11 …… Room, 2,12 …… Support part of fluid resistance element, 3,13 ……
Spindle-shaped part of fluid resistance element, 4,14 …… Inlet, 5,15 ……
Convex part, 6,16 …… Outlet, 20 …… Diaphragm, 21 …… Coupling part.
Claims (2)
うちの第1のガス流路に流出するガスを調圧するための
第1のガス室と第2のガス流路に流出するガスを調圧す
るための第2のガス室との2室が一つのケーシング内部
にダイヤフラムを介して気密に隣接配置されて、前記第
1,第2のガス室の差圧により前記ダイヤフラムが応動す
る機構を構成し、 前記第1のガス室は、一方の調圧対象となるガスを導入
するガス流入口及び前記第1のガス流路と接続されるガ
ス流出口を有し、前記第2のガス室は、もう一方の調圧
対象となるガスを導入するガス流入口及び前記第2のガ
ス流路と接続されるガス流出口を有し、 前記第1,第2のガス室のガス流入口は、それぞれ前記ダ
イヤフラムの中心と同一軸線上に配置され、 前記ダイヤフラムの中心両面には、前記第1,第2のガス
室の各ガス流入口に位置するように向けられた紡錘形の
流体抵抗要素付きのロツドが固定配置され、前記第1,第
2のガス室の各ガス流入口には、前記各流体抵抗要素が
前記ダイヤフラムの前記差圧応動に連動した時にこれら
の流体抵抗要素の変位と協働して各ガス流入口自身の流
体抵抗値を変える面を有する環状の凸部を設けて、前記
第1のガス室の圧力が前記第2のガス室の圧力より高く
なると、その時の差圧による前記ダイヤフラムの第2の
ガス室側への応動に伴って前記第2のガス室のガス流入
口の凸部からこれに対応の流体抵抗要素が遠ざかって該
第2のガス室のガス流入口の流体抵抗値を小さくすると
共に、前記第1のガス室のガス流入口の凸部とこれに対
応の流体抵抗要素との間を狭めて該第1のガス室のガス
流入口の流体抵抗値を大きくし、逆に前記第2のガス室
の圧力が前記第1のガス室の圧力より高くなると、その
時の差圧による前記ダイヤフラムの第1のガス室側への
応動に伴って前記第1のガス室のガス流入口の凸部から
これに対応の流体抵抗要素が遠ざかって該第1のガス室
のガス流入口の流体抵抗値を小さくすると共に、前記第
2のガス室のガス流入口の凸部とこれに対応の流体抵抗
要素との間を狭めて該第2のガス室のガス流入口の流体
抵抗値を大きくするように設定して、これらの流体抵抗
値の自動調整により前記第1,第2のガス室から前記第1,
第2のガス流路までのガス圧同士が同圧に収まる構成と
したことを特徴とする圧力平衡器。1. A gas flowing out to a first gas chamber and a gas flowing out to a second gas flow passage for adjusting the pressure of the gas flowing out to the first gas flow passage corresponding to two independent gas flow passages. Two chambers, a second gas chamber and a second gas chamber for adjusting the pressure, are airtightly adjacent to each other inside a casing through a diaphragm,
The first gas chamber constitutes a mechanism in which the diaphragm responds to the pressure difference between the first gas chamber and the second gas chamber, and the first gas chamber includes a gas inlet for introducing the gas to be pressure-controlled on one side and the first gas flow. A gas outlet connected to a channel, and the second gas chamber has a gas inlet for introducing another gas whose pressure is to be adjusted and a gas outlet connected to the second gas passage. And the gas inlets of the first and second gas chambers are respectively arranged on the same axis as the center of the diaphragm, and both sides of the center of the diaphragm include the gas chambers of the first and second gas chambers. A rod with a spindle-shaped fluid resistance element oriented so as to be positioned at each gas inlet is fixedly arranged, and each fluid resistance element is provided at each gas inlet of the first and second gas chambers. The displacement of these fluid resistance elements is coordinated with the differential pressure response of Then, an annular convex portion having a surface that changes the fluid resistance value of each gas inlet is provided, and when the pressure of the first gas chamber becomes higher than the pressure of the second gas chamber, the difference in pressure at that time causes Along with the reaction of the diaphragm toward the second gas chamber, the fluid resistance element corresponding to the convex portion of the gas inlet of the second gas chamber moves away from the convex portion of the gas inlet of the second gas chamber. The fluid resistance value is reduced, and the convex portion of the gas inflow port of the first gas chamber and the fluid resistance element corresponding thereto are narrowed to reduce the fluid resistance value of the gas inflow port of the first gas chamber. When the pressure in the second gas chamber becomes higher than the pressure in the first gas chamber, conversely, when the pressure in the second gas chamber becomes higher than the pressure in the first gas chamber, the differential pressure at that time causes the first gas chamber to react with the first gas chamber. When the fluid resistance element corresponding to the convex portion of the gas inlet of the gas chamber moves away from the convex portion, Of the second gas chamber, the fluid resistance value of the gas inlet of the second gas chamber is reduced, and the gap between the convex portion of the gas inlet of the second gas chamber and the corresponding fluid resistance element is narrowed. The fluid resistance value at the gas inlet is set to be large, and the fluid resistance values are automatically adjusted from the first and second gas chambers to the first and second gas chambers.
A pressure balancer characterized in that the gas pressures up to the second gas flow path are set to be equal to each other.
ガス流入口に接続される第1,第2のガス流入配管を介し
てそれぞれのガス減圧弁が接続され、前記第1,第2のガ
ス室の後段には前記第1,第2のガス流路のガスを混合す
るガス混合部が配置されている請求項1記載の圧力平衡
器。2. A gas pressure reducing valve is connected to a front stage of the first and second gas chambers via first and second gas inflow pipes connected to the gas inlets, respectively. 2. The pressure balancer according to claim 1, wherein a gas mixing section for mixing the gases in the first and second gas passages is arranged at the subsequent stage of the first and second gas chambers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62154378A JPH0729035B2 (en) | 1987-06-23 | 1987-06-23 | Pressure balancer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62154378A JPH0729035B2 (en) | 1987-06-23 | 1987-06-23 | Pressure balancer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63319033A JPS63319033A (en) | 1988-12-27 |
JPH0729035B2 true JPH0729035B2 (en) | 1995-04-05 |
Family
ID=15582842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62154378A Expired - Lifetime JPH0729035B2 (en) | 1987-06-23 | 1987-06-23 | Pressure balancer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0729035B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4923092A (en) * | 1988-07-20 | 1990-05-08 | The Coca-Cola Company | Binary syrup metering system for beverage dispensing |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60220133A (en) * | 1984-04-14 | 1985-11-02 | Henmi Keisanjiyaku Kk | Gas mixer |
-
1987
- 1987-06-23 JP JP62154378A patent/JPH0729035B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63319033A (en) | 1988-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4275752A (en) | Fluid flow apparatus and method | |
WO2008023711A1 (en) | Integrated gas panel apparatus | |
JP2010517744A (en) | Fluid mixture | |
US6237635B1 (en) | Exhauster pressure control system | |
US3693653A (en) | Fluid mixing regulator | |
JPH0729035B2 (en) | Pressure balancer | |
US4827966A (en) | Pressure equilibrator for gases | |
DK154856C (en) | DEVICE FOR REGULATING THE QUANTITY AND / OR MIXING RELATIONSHIP OF TWO GAS AND / OR CLEANING FLOWS | |
US4863691A (en) | Gas-passage change-over apparatus | |
CN208911207U (en) | A kind of gas regulating system and modular air regulating device | |
JPS60646Y2 (en) | flow rate adjustment device | |
CN215806557U (en) | Pressure balancing device for mixed gas blending device | |
JP3234662B2 (en) | Gas chromatograph flow path | |
JPH02149328A (en) | Mixing device | |
JPS5959238A (en) | Fluid diluting apparatus | |
JPH0716594B2 (en) | Gas mixing equipment | |
JPS5865382A (en) | Variable constant flow ratio mixing device | |
KR830000279Y1 (en) | Constant flow rate mixing device | |
JPS5855033A (en) | Gas mixing device | |
JPS60220133A (en) | Gas mixer | |
JPH0118936Y2 (en) | ||
SU1485205A1 (en) | Data input unit | |
JPS588542A (en) | Apparatus for mixing fluid | |
JPS638420Y2 (en) | ||
JPH09127079A (en) | Liquid chromatograph |