WO2008023711A1 - Integrated gas panel apparatus - Google Patents

Integrated gas panel apparatus Download PDF

Info

Publication number
WO2008023711A1
WO2008023711A1 PCT/JP2007/066211 JP2007066211W WO2008023711A1 WO 2008023711 A1 WO2008023711 A1 WO 2008023711A1 JP 2007066211 W JP2007066211 W JP 2007066211W WO 2008023711 A1 WO2008023711 A1 WO 2008023711A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
branch
gas
channel
main
Prior art date
Application number
PCT/JP2007/066211
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiro Oya
Tatsuya Hayashi
Original Assignee
Horiba Stec, Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Stec, Co., Ltd. filed Critical Horiba Stec, Co., Ltd.
Priority to US12/438,348 priority Critical patent/US8196609B2/en
Priority to JP2008530925A priority patent/JP5037510B2/en
Priority to CN2007800311579A priority patent/CN101506561B/en
Publication of WO2008023711A1 publication Critical patent/WO2008023711A1/en
Priority to US13/479,016 priority patent/US8820360B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/003Housing formed from a plurality of the same valve elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • F15B13/08Assemblies of units, each for the control of a single servomotor only
    • F15B13/0803Modular units
    • F15B13/0821Attachment or sealing of modular units to each other
    • F15B13/0825Attachment or sealing of modular units to each other the modular elements being mounted on a common member, e.g. on a rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • F17D1/04Pipe-line systems for gases or vapours for distribution of gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/5109Convertible
    • Y10T137/5283Units interchangeable between alternate locations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/877With flow control means for branched passages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/877With flow control means for branched passages
    • Y10T137/87885Sectional block structure

Definitions

  • the present invention relates to an integrated gas panel device used in a semiconductor manufacturing process or the like.
  • An integrated gas panel device is a device for finally mixing a plurality of types of gases used in semiconductor device manufacturing or the like while controlling their flow rates, and supplying them to a film formation chamber. It was developed to reduce the gas supply control line configured with the previous piping structure.
  • a gas control device such as a valve or a mass flow controller can be attached to a panel body having a substantially face plate shape.
  • Patent Document 1 JP-A-10-169881
  • branch flow paths are arranged in parallel on one side of the main flow path, and the junction part of each branch flow path and the main flow path is the main flow in the order of the branch flow paths. They are arranged at almost equal intervals from the upstream to the downstream of the road.
  • branch flow paths are arranged in parallel on one side of the main flow path, and the confluence portion of each branch flow path and the main flow path is the arrangement of the branch flow paths. Since the pipes are arranged at almost equal intervals in order from the upstream to the downstream of the main flow path, the final flow of the gas in each branch flow path is the one that merges upstream and the downstream of the main flow path. There is a problem that the time to reach the exit is different. In this case, the arrival time of the gas from the branch channel located at the most upstream side becomes long, and this gas arrival time determines the response of the fluid circuit system.
  • the present invention has been made in order to solve the problem of force and trouble, and can obtain a remarkably excellent response and can stabilize the gas concentration. Moreover, the conventional panel type shape can be obtained. Its main purpose is to provide an integrated gas panel device that can be maintained as it is, without complicating or enlarging the structure or even being made compact.
  • the integrated gas panel device according to the invention of claim 1 is provided with a plurality of branches configured to control a gas flowing therein by providing a gas control device such as a valve or a mass flow controller in the middle.
  • a branch channel block body that forms the branch channel.
  • the branch channel force that has been disposed only on one side of the main channel in the related art is disposed on the left and right of the main channel, so that the length of the main channel can be shortened.
  • the arrival time of the gas to the final outlet can be shortened, and the responsiveness can be improved.
  • This also contributes to stabilization of the gas concentration.
  • the block bodies forming the respective flow paths can be arranged in a plane to form a panel body similar to the conventional one, it is possible to easily replace the conventional apparatus.
  • each joining portion of the one branch flow path and the other branch flow path facing each other across the main flow path with respect to the main flow path is in the extending direction of the main flow path. And what is set in almost the same place.
  • the almost same place in the extending direction of the main flow path means that the merged portion is completely matched, and includes the pipe side wall portions facing each other and the orthogonal pipe side wall portions of the main flow path.
  • the main channel block body is formed with an insertion hole communicating with the main channel inside thereof, and the outlet portion of the branch channel
  • the branch channel block body having a portion inside is provided with a projecting pipe that projects the branch channel outward, and the projecting pipe is inserted into the insertion hole so that the main channel block body is provided.
  • the tip of the protruding pipe is configured to protrude further inward from the inner surface of the main channel.
  • the integrated gas panel device is configured such that a gas control device such as a valve or a mass flow controller is provided on the way to control the gas flowing inside.
  • a gas control device such as a valve or a mass flow controller is provided on the way to control the gas flowing inside.
  • the main channel block body having the main channel therein is formed with a penetration hole communicating with the main channel therein, and the branch channel
  • a branch pipe having a branch flow passage projecting outward is provided in a branch flow path block body having an outlet portion of the main pipe, and the projecting pipe is inserted into the insertion hole so as to be used for the main flow path.
  • a block body and a branch channel block body were assembled. In state, the tip of the protruding pipe characterized that you have configured to protrude further inward from the inner surface of the main
  • the protruding pipe that is the outlet of the branch flow channel protrudes into the main flow channel, and the diameter of the flow channel is narrowed.
  • the gas in the branch channel is strongly drawn into the main channel by the choke effect, and the gas is diffused by the turbulent flow generated behind the protruding pipe. Mixing with the gas in the branch channel is greatly promoted.
  • the gas mixing in the gas panel device can be sufficiently performed, and the pipe length and the gas mixer capacity to be arranged in the subsequent stage can be reduced.
  • By omitting or omitting it becomes possible to make the speed response much superior to the conventional one.
  • this makes it possible to improve gas concentration stability at the time of start-up.
  • the gas in the branch channel is a small flow rate, it is reliably drawn into the main channel. That is, the ability to perform S, and the fluctuation of the flow rate at the time of the merging of the small flow rate gas occurs, and from this point, the gas concentration stability can be improved.
  • the end of the protruding pipe is configured to protrude to the vicinity of the center of the main flow path when viewed in cross section.
  • the three-dimensionally integrated gas panel device is provided with a plurality of gas control devices such as valves and mass flow controllers, which are arranged in the middle to control the gas flowing inside.
  • Gas control devices such as valves and mass flow controllers, which are arranged in the middle to control the gas flowing inside.
  • Branch flow channel one main flow channel into which gas flows from these branch flow channels and merges, and a branch flow that forms a long panel with one branch flow channel formed inside and the bottom surface as the mounting surface
  • the branch channel block bodies that have been developed in a flat shape in the past are arranged three-dimensionally, so the channel length can be reduced, the channel length can be reduced, and responsiveness can be improved.
  • the ability to let S because of the three-dimensional configuration, the degree of freedom of arrangement of each flow path is increased, and by improving the flow path length and merging site, it is possible to improve the simultaneity of the gas merging timing and consequently the gas concentration stability. be able to.
  • the merging portion is set at one position of the main flow path.
  • the main flow path length can be shortened if the confluence part is set, for example, at the end of the central block body, so that the response can be improved as much as possible.
  • each holding surface forms a rotationally symmetric shape about the axis of the central block body, and the merging portion It is preferable that the intermediate flow paths are provided on the axis and are set to have the same length.
  • the diameter of the intermediate flow path and the flow path diameter in the branch flow path are varied according to the gas flow rate (the smaller the gas flow rate, the smaller the diameter). Just make it smaller).
  • the center block body is preferably a regular polygonal column!
  • the length of the pipe to be arranged in the subsequent stage and the gas mixer By reducing or omitting the capacity, it is possible to improve the high-speed response as compared with the conventional one, and also improve the gas concentration stability at the time of start-up. Furthermore, it is basically possible to construct a protruding pipe of a predetermined length from the branch channel block body, so that there is little structural complexity, and in the assembled state, this protruding pipe is inside. Since it is hidden, it can be maintained substantially the same as the conventional one.
  • the branch channel block bodies are three-dimensionally arranged, so that compactness and improvement in design freedom can be achieved. As a result, Responsiveness and gas concentration stability can be improved.
  • FIG. 1 is an overall perspective view of an integrated gas panel device according to a first embodiment of the present invention. It is.
  • FIG. 2 is a fluid circuit diagram of the integrated gas panel device in the same embodiment.
  • FIG. 3 is a schematic view showing a connection portion in the same embodiment as seen from a plane direction.
  • FIG. 4 is a schematic view showing a connecting portion of an integrated gas panel device according to a modification of the embodiment, as viewed from the plane direction.
  • Fig. 5 is a longitudinal sectional view of an essential part showing a main flow path of the integrated gas panel device in the same modification.
  • FIG. 6 is an overall perspective view of an integrated gas panel device according to a second embodiment of the present invention.
  • FIG. 7 is a fluid circuit diagram of the integrated gas panel device in the same embodiment.
  • FIG. 8 is a partial cross-sectional view of the main part of the integrated gas panel device in the same embodiment.
  • FIG. 9 is an exploded perspective view showing a connection portion in the same embodiment.
  • FIG. 10 is a fragmentary sectional view of an essential part of the integrated gas panel device in the same embodiment.
  • FIG. 11 is an overall perspective view showing the interior of a three-dimensionally integrated gas panel device according to a third embodiment of the present invention with a part broken away.
  • FIG. 12 is a fluid circuit diagram of the three-dimensionally integrated gas panel device in the same embodiment.
  • FIG. 13 is a schematic lateral end view showing a merging site in the same embodiment.
  • FIG. 14 is a schematic cross-sectional view of a central block body in a modified example of the same embodiment.
  • An integrated gas panel device 1 constitutes a part of a semiconductor manufacturing system. As shown in FIG. 1, an outline of various gas for film formation is supplied from a gas supply source (not shown). Each is introduced, mixed and used to supply a semiconductor film forming chamber (not shown).
  • the integrated gas panel device 1 will be described first with reference to FIG. 2, including the fluid circuit structure, including the peripheral circuit.
  • the integrated gas panel device 1 is provided with a plurality of branch channels R1 arranged in parallel in terms of a circuit, and one main channel R2 to which the outlets of the branch channels R1 are connected.
  • Each branch channel R1 is connected to an inlet port PI at the base end thereof, and the gas supply is performed via an external pipe (not shown! /) Connected to the inlet port PI. From the source, several types of gases are fed into each branch channel R1.
  • a gas control device such as a valve V or a mass flow controller MFC is arranged in the middle of each branch flow path R1, and the operation of these controls the flow rate of gas flowing through each branch flow path R1 and switching to the purge gas. Let's do it like a wholesale.
  • the main flow path R2 has a single flow path structure as described above, and the connection portion CN with each branch flow path R1 described above is not concentrated at one place, but along the flow. It is provided to fly away.
  • a gas mixer MIX that stirs and mixes the combined gas is disposed downstream of the integrated gas panel device 1, that is, downstream of the main flow path R2, and further downstream of the gas mixer.
  • a flow rate controller FRC that distributes the gas mixed by MIX to a predetermined flow rate ratio and outputs it to each film forming chamber from the outlet port PO is provided.
  • the gas supplied from each gas supply source is introduced into the main flow path R2 with the flow rate controlled in the branch flow path R1 of the integrated gas panel device 1, and then mixed with the gas.
  • MIX is thoroughly mixed by the mixer MIX and output from each outlet port PO at a predetermined flow rate ratio from the flow rate controller FRC.
  • FIG. 2 also shows the purge gas flow path, the inlet port PX, the outlet port PY, and the like.
  • the member indicated by the symbol MFM Is a verifier to check whether the flow rate indicated by the mass flow controller is correct.
  • the gas panel device 1 includes a panel body 2 having a substantially plate shape in which the main flow path R2 and the branch flow path R1 are formed, and the gas control device V attached to the panel body 2. It is equipped with MFC and additional piping equipment such as inlet port PI.
  • the panel body 2 has a face plate shape configured by connecting a plurality of block bodies in a plane. Various forces are used as this block body.
  • the branch channel block body 31 constituting the branch channel R1 and the main channel block body 32 constituting the main channel R2 are used.
  • the branch channel block body 31 has a flat rectangular flat plate shape, and there are some types having different internal pipes, such as those for mounting valves and those for mounting mass flow controllers.
  • One branch channel R1 is a force formed by connecting a plurality of such branch channel block bodies 31 in series to form a long plate shape.
  • a plurality of branch flow paths R1 are arranged in parallel by arranging the rows of bodies 31 (hereinafter also referred to as branch flow block block rows 5) side by side to form a face plate.
  • the main channel block body 32 has, for example, a single long plate shape, and the main channel R2 extends along the longitudinal direction (stretching direction) thereof. And it is laminated
  • branch flow block bodies 5 are arranged symmetrically about the main flow path block 32 as a center.
  • branch flow path R1 is symmetrically arranged on both the left and right sides of the main flow path R2 with the force S shown in FIG. 3 as a schematic diagram viewed from the plane direction.
  • each connecting portion (hereinafter also referred to as a merged portion) CN of the one branch channel R1 and the other branch channel R1 facing each other across the main channel R2 with respect to the main channel R2 is the main stream.
  • Road R2 stretch It is set at the same position in the direction and on opposite sides of the main channel R2.
  • one of the connection portions CN may be a bottom portion of the main flow path and the other may be a side portion or the like for convenience of design such as arrangement of parts as long as they are at the same position in the extending direction of the main flow path R2.
  • the branch flow channel R1 that has been conventionally disposed only on one side of the main flow channel is disposed on the left and right of the main flow channel R2.
  • the length of the region where each merging portion CN is provided in the main channel R 2 can be reduced to about half of the conventional length.
  • the block body is arranged in a plane to form a panel body 2 similar to the conventional one and the planar shape is maintained, for example, it can be easily replaced with an existing apparatus.
  • the left and right branch channels R1 may be connected in a staggered manner to the main channel R2.
  • each merging portion CN force with respect to the main channel between one branch channel and the other branch channel facing each other is a different place in the extending direction of the main channel R2, compared with the case of the above embodiment.
  • the length of the main flow path R2 becomes slightly longer.
  • the branch channel is arranged only on one side of the main channel, the length of the main channel R2 can be remarkably shortened, and almost the same effect as the previous embodiment is expected. it can.
  • the outlet pipe 311 of the branch flow path R1 when projected into the main flow path R2 by a predetermined length at the junction site CN, the outlet pipe 311 Can be configured without any difficulty in causing the two to interfere with each other.
  • an insertion hole 321 is opened on the surface of the main channel block body 32, and the insertion hole 321 is communicated with the internal main channel R2, while the branch channel Branch block 31 having the outlet portion of the branch channel R1
  • the body 31 (1) is provided with a cylindrical outlet pipe (hereinafter also referred to as a protruding pipe) 311 with the branch flow path Rl protruding from the surface (which may be a separate body! /). /!
  • the tip of the protruding pipe 311 is The main channel R2 is configured to protrude further inward from the inner side surface R2a (shown in FIG. 5).
  • the projecting dimension is, for example, about the tip force of the projecting pipe 311 and the vicinity of the center of the main flow path R2 in the cross section.
  • the main channel block body 32 and the branch channel block body 31 are also provided.
  • a seal member 6 such as an O-ring is interposed between the opposing planes of (1) to make a close contact in the thrust direction, preventing gas leakage at this connection CN.
  • the protruding pipe 311 that is the outlet of the branch flow path R1 protrudes into the main flow path R2 to narrow the diameter of the flow path.
  • the gas flow rate in the main flow path R2 in this portion increases and the pressure decreases, so that the gas in the branch flow path R1 can be strongly drawn into the main flow path R2.
  • the drawn gas is diffused by turbulent flow or the like generated behind the protruding pipe 311 in the main flow path R2, so that the force S can be more uniformly mixed with the gas flowing through the main flow path R2.
  • the gas can be sufficiently mixed in the panel body 2 in advance.
  • the pipe length after the connection portion which has been set long in order to sufficiently mix the gas in the past, can be shortened, and the capacity of the gas mixer MIX can be reduced. In some cases, this can be omitted.
  • the responsiveness of the fluid circuit system can be further improved as much as the flow path capacity is reduced in this way.
  • the length at the branch flow path merging point of the main flow path R2 and the subsequent flow path length can be shortened at the same time, thereby improving the responsiveness. Based on this, it will be possible to dramatically improve the gas concentration stability at the time of start-up.
  • the branch channel block body is provided so as to be opposed, and the branch pipe 311 having a predetermined length is projected from the branch channel block body 31. Since it is only a part, it does not cause any structural complication, and in the assembled state, this protruding pipe 311 is hidden inside, so that this joint is made to be externally compatible with the conventional one. be able to.
  • each branch channel may be set according to the flow rate of each gas (the smaller the flow rate, the smaller the inner diameter).
  • the flow rates of each gas become more equal, and the simultaneity of the merging timing of each gas in the main flow path can be improved compared to the conventional one, so that the mixed gas can be supplied in a shorter time regardless of the gas flow rate.
  • the block body may be not only a square shape but also a disk shape, for example. However, for a thrust seal structure, it is preferable to have a flat portion at the opposite location.
  • the integrated gas panel apparatus 1 constitutes a part of a semiconductor manufacturing system. As shown in FIG. 6, an outline of various gas for film formation is supplied from a gas supply source (not shown). Each is introduced, mixed and used to supply a semiconductor film forming chamber (not shown).
  • This integrated gas panel device 1 is provided with a plurality of branch channels R1 provided in parallel and one main channel R2 to which the outlets of the branch channels R1 are connected. .
  • Each branch channel R1 has an inlet port PI connected to the base end thereof, and the gas supply source (not shown) is connected via an external pipe (not shown) connected to the inlet port PI. Therefore, several kinds of gases are sent to each branch channel R1. Gas control devices such as valve V and mass flow controller MFC are arranged in the middle of each branch channel R1. Through these operations, the flow rate of gas flowing through each branch channel R1 and switching to purge gas can be controlled.
  • the main flow path R2 has a single flow path structure as described above, and the connection portion CN with each branch flow path R1 described above is not concentrated at one place, but along the flow. It is provided to fly away.
  • a gas mixer MIX that stirs and mixes the combined gas is disposed downstream of the integrated gas panel device 1, that is, downstream of the main flow path R2, and further downstream of the gas mixer.
  • a flow rate controller FRC that distributes the gas mixed in MIX to a predetermined flow rate ratio and outputs it to each film forming chamber from the outlet port PO is provided.
  • the gas supplied from each gas supply source is introduced into the main channel R2 after being controlled in flow rate in the branch channel R1 of the integrated gas panel device 1, and then mixed with the gas.
  • MIX is thoroughly mixed by the mixer MIX and output from each outlet port PO at a predetermined flow rate ratio from the flow rate controller FRC.
  • FIG. 7 also describes the purge gas flow path, the inlet port PX, the outlet port PY, and the like.
  • the member indicated by the symbol MFM is a verifier for checking whether the flow rate indicated by the mass flow controller is correct.
  • the gas panel device 1 includes a panel body 2 having a substantially plate shape in which the main flow path R2 and the branch flow path R1 are formed, and the gas control device attached to the panel body 2. In addition, it is equipped with attached plumbing tools such as inlet port PI.
  • the panel body 2 has a face plate shape constituted by connecting a plurality of block bodies in a plane. Various forces are used as this block body.
  • the branch channel block body 31 constituting the branch channel R1 and the main channel block body 32 constituting the main channel R2 are used.
  • the branch channel block body 31 has a flat rectangular flat plate shape and is mounted on a valve. There are some types with different internal pipes, such as those for mounting mass flow controllers.
  • One branch channel R1 is a force formed by connecting a plurality of such branch channel block bodies 31 in series to form a long plate shape.
  • a plurality of branch flow paths R1 are formed in parallel by arranging the rows of bodies 31 (hereinafter also referred to as branch flow block block rows 5) side by side to form a face plate.
  • the main flow path block body 32 has, for example, a single long plate shape, and a main flow path R2 is formed inside along the longitudinal direction thereof. Then, they are stacked and connected to the lower surface of the branch channel block body 31 vertically (in a direction perpendicular to the plane direction of the panel body). At this time, the extending direction of the main channel block bodies 32 is orthogonal to the extending direction of the branch channel block bodies 5. As a result, as described above, the outlet of each branch channel R1 is connected to the main channel R2.
  • connection portion CN between the main channel R2 and the branch channel R1.
  • an insertion hole 321 is opened in the upper plane of the main channel block body 32 so that the insertion hole 321 communicates with the internal main channel R2.
  • the branch channel R1 is connected to the most downstream side of the branch channel block body 31, that is, the branch channel block body 31 (1) having the outlet portion of the branch channel R1 from the lower plane.
  • the protruding cylindrical protruding pipe 311 is integrally provided. The outer diameter of the protruding pipe 311 and the inner diameter of the insertion hole 321 are substantially matched.
  • the tip of the protruding pipe 311 is The main channel R2 is configured to protrude further inward from the inner side surface R2a (shown in FIG. 10).
  • the projecting dimension is, for example, such that the tip of the projecting pipe 311 reaches the vicinity of the center of the main flow path R 2 in a cross section.
  • a sealing member 6 such as an O-ring is interposed between the opposing planes of the main flow path block body 32 and the branch flow path block body 31 (1) so as to be brought into close contact in the thrust direction. This prevents gas leakage at the connection CN.
  • Reference numeral 322 denotes a countersink portion that is provided in the main flow path block body 32 and accommodates the seal member 6. This counterclock The section 322 may be provided in the branch channel block body 31! /.
  • the protruding pipe 311 that is the outlet of the branch channel R1 projects into the main channel R2 at the connection portion CN between the branch channel R1 and the main channel R2. Since the diameter of the flow path is narrowed, the gas flow rate in the main flow path R2 at this portion increases and the pressure decreases, and the gas in the branch flow path R1 can be strongly drawn into the main flow path R2. The drawn gas is diffused by the turbulent flow generated behind the protruding pipe 311 in the main flow path R2, so that the force S can be more uniformly mixed with the gas flowing through the main flow path R2. .
  • the structurally different from the conventional one is only the portion that protrudes the protruding pipe 311 having a predetermined length from the branch channel block body 31, so that the structure is hardly complicated. In the assembled state, this protruding pipe 311 is hidden inside, so that it can be made externally compatible with the conventional one.
  • the present embodiment may be modified.
  • the projecting dimension to the main flow path is a balance between the force and gas flow rate that were preferred around the center of the main flow path this time. What is necessary is just to set it as the optimal for mixing.
  • each protruding pipe preferably the inner diameter of the branch flow channel after the mass flow controller
  • the inner diameter of each protruding pipe is set according to the flow rate of each gas (the smaller the flow rate, the smaller the inner diameter). May be.
  • the flow rate can be made equal to that of other gases and the arrival time can be shortened, so that the simultaneity of the merging timing of each gas in the main flow path can be improved. That is, the mixed gas can be supplied in a shorter time regardless of the gas flow rate.
  • the protruding pipe is not limited to a cylindrical shape, and may be a polygonal tube, and various other shapes are also conceivable.
  • the projecting pipe may be provided separately from the branch channel block body that is simply provided integrally with the branch channel block body and may be assembled.
  • the block body may be not only a square shape but also a disk shape, for example. However, for a thrust seal structure, it is preferable to have a flat portion at the opposite location.
  • the three-dimensionally integrated gas panel device 1 constitutes a part of a semiconductor manufacturing system. As shown in FIG. 11, the various gases for film formation are not illustrated. Each gas is introduced from a gas supply source, mixed and supplied to a semiconductor deposition chamber (not shown).
  • the three-dimensionally integrated gas panel apparatus 1 will first be described with reference to FIG. 12, including its peripheral circuit, including its fluid circuit structure.
  • the three-dimensionally integrated gas panel device 1 includes a plurality of branch channels R1 arranged in parallel in terms of a circuit, and one main channel R2 to which the outlets of the branch channels R1 are connected.
  • a plurality of intermediate flow paths R3 communicating with the branch flow paths R1 and the main flow path are provided.
  • Each branch channel R1 is connected to an inlet port PI at the base end thereof, and the gas supply is performed via an external pipe (not shown! /) Connected to the inlet port PI. From the source, several types of gases are sent to each branch channel R1.
  • a gas control device such as a valve V or a mass flow controller MFC is arranged in the middle of each branch flow path R1, and the operation of these controls the flow rate of gas flowing through each branch flow path R1 and switching to the purge gas. Let's do it like a wholesale.
  • the intermediate flow path R3 is continuously connected to the tip (exit) of each branch flow path R1, and connects each branch flow path R1 to the main flow path R2.
  • the main flow path R2 has a single flow path structure.
  • a gas mixer MIX that stirs and mixes the combined gas is disposed downstream of the main flow path R2, that is, downstream of the three-dimensionally integrated gas panel device 1, and further, gas mixing is performed downstream thereof.
  • a flow rate controller FRC that distributes the gas mixed in the mixer MIX to a predetermined flow rate and outputs the gas to each film forming chamber from the outlet port PO is provided. Note that these gas mixer MIX, flow rate controller FRC, outlet port PO, etc. are not shown in FIG.
  • the gas supplied from each gas supply source is flow-controlled in the branch channel R1 of the three-dimensionally integrated gas panel device 1 and then the intermediate channel R3. After that, it is introduced into the main flow path R2, and then thoroughly mixed by the gas mixer MIX, and output from each outlet port PO at a predetermined flow rate ratio from the flow rate ratio controller FRC.
  • FIG. 12 also shows the purge gas flow path, the inlet port PX, the outlet port PY, and the like. Also, for the member indicated by the symbol MFM, check whether the flow rate indicated by the mass flow controller MFC is correct! /
  • This three-dimensionally integrated gas panel device 1 includes a branch channel block body 3 having a long flat panel shape in which one branch channel R1 is formed, and a main channel R2 and an intermediate channel R3.
  • a center block body 4 having a regular polygonal column shape (in this case, a regular octagonal column shape) formed with the gas control devices V and MFC attached to the branch channel block body 3 and an inlet port PI, etc. And plumbing fixtures.
  • one branch channel R1 means one of a plurality of branch channels.
  • the branch channel block body 3 is constituted by a plurality of series-connected block body elements 31 each having a flat rectangular plate shape. There are several types of block body elements 31 with different internal piping, such as those for valves and those for mass flow controllers. Of course, the branch channel block body 3 may not be divided and may be configured as a single sheet.
  • the central block body 4 is a regular octagonal prism having a rotationally symmetric shape about the axis.
  • the bottom surface 3a which is the mounting surface of each branch channel block body 3, is held facing each side peripheral surface 41, which is a holding surface, respectively.
  • a main channel R2 is provided along the axis C at one end of the central block body 4.
  • An outlet port P for connection with an external pipe is attached to the front end (one end on the end side) of the main flow path R2, and protrudes from the end face 4a of the central block body 4.
  • a merging portion CN is set at the base end (one end opposite to the end) of the main flow path R2, and the central block body 4 is perpendicular to the axis C from the merging portion CN.
  • the intermediate flow path R3 is extended radially toward each side peripheral surface 41 of the. These intermediate flow paths R3 have the same length.
  • the flow path length from each branch flow path R1 to the main flow path R2 (the length of the intermediate flow path R3) is equal, and is also provided at one location of the main flow path R2. Since all of the intermediate flow path R3 merges at the merging site CN, the distance from each branch flow path R2 to the final outlet port P becomes equal. As a result, the simultaneity of the arrival times of the gases can be significantly improved.
  • the main flow path R2 is located at the end of the central block body 4 in the vicinity of the outlet port P and the distance thereof is very short, the responsiveness is very excellent. This is an effect that made use of three-dimensional structural characteristics.
  • the diameter of the intermediate flow path and the flow path diameter in the branch flow path are varied according to the gas flow rate (the smaller the gas flow rate, the smaller the diameter). Do it).
  • the intermediate block body is left in a rotationally symmetric shape, and the merging portion is deviated from the axis of the intermediate block body, or the intermediate block body itself has an irregular shape.
  • the length of the intermediate flow path may be varied.
  • the center block body is not limited to a single structure, and may be configured by combining a plurality of block body elements.
  • regular polygons The main point is not limited to the column, but it is only necessary that each holding surface 41 forms a plurality of rotationally symmetric shapes about the axis. An example is shown in FIG.

Abstract

Provided is an integrated gas panel apparatus which has excellent responsiveness, stabilizes gas concentration, and furthermore, can keep a conventional panel shape as it is. A panel body (2) is composed of at least a main channel block body (32) for forming a main channel (R2), and a branch channel block body (31) for forming a branch channel (R1). The branch channel block bodies (31) are arranged on the both right and left sides to face each other by having the main channel block body (32) at the center.

Description

明 細 書  Specification
集積型ガスパネル装置  Integrated gas panel device
技術分野  Technical field
[0001] 本発明は、半導体製造プロセス等に用いられる集積型ガスパネル装置に関するも のである。  [0001] The present invention relates to an integrated gas panel device used in a semiconductor manufacturing process or the like.
背景技術  Background art
[0002] 集積型ガスパネル装置とは、半導体デバイス製造等で用いられる複数種のガスを、 それぞれ流量制御しながら最終的には混合し、成膜チャンバに供給するためのもの であって、それ以前の配管構造で構成したガス供給制御ラインを縮小すべく開発さ れたものである。具体的には、一例を特許文献 1に示すように、概略面板状をなすパ ネル体にバルブやマスフローコントローラ等のガス制御機器を取り付けられるように構 成されている。パネル体の内部には、例えば、前記ガス制御機器が取り付けられる複 数の枝流路と、それら枝流路が接続されてそこを流れる各ガスが合流するように構成 した 1本の主流路と、が形成されている。  [0002] An integrated gas panel device is a device for finally mixing a plurality of types of gases used in semiconductor device manufacturing or the like while controlling their flow rates, and supplying them to a film formation chamber. It was developed to reduce the gas supply control line configured with the previous piping structure. Specifically, as shown in Patent Document 1, an example is configured such that a gas control device such as a valve or a mass flow controller can be attached to a panel body having a substantially face plate shape. Inside the panel body, for example, a plurality of branch flow paths to which the gas control device is attached, and a single main flow path configured such that the branch flow paths are connected and the respective gases flowing therethrough merge. , Is formed.
[0003] このような集積型ガスパネル装置には、近時種々の改良が加えられてきており、例 えば、使用するガスの種類数等に対応した柔軟な流路構成をとることができるように、 何種類かのブロック体を適宜連設して前記パネル体が組み立てられるように構成した ものなどが知られている。 [0003] Various improvements have recently been made to such an integrated gas panel device. For example, a flexible flow path configuration corresponding to the number of types of gas used can be taken. In addition, there are known ones configured such that the panel body can be assembled by appropriately connecting several types of block bodies.
特許文献 1 :特開平 10— 169881  Patent Document 1: JP-A-10-169881
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、従来のこの種の装置は、主流路の一方側に枝流路が並列に配置されて おり、各枝流路と主流路との合流部位は、枝流路の並び順に主流路の上流から下流 に向かってほぼ等間隔に配置されている。 [0004] By the way, in this type of conventional apparatus, branch flow paths are arranged in parallel on one side of the main flow path, and the junction part of each branch flow path and the main flow path is the main flow in the order of the branch flow paths. They are arranged at almost equal intervals from the upstream to the downstream of the road.
[0005] しかしながら、このような構成では、例えば枝流路が多数になると、その分だけ主流 路長が長くなつてガスの最終出口までの到達時間が長くなり、流体回路系の応答性 に悪影響を与える。その影響が顕著となるのは、主流路の上流側に位置する枝流路 力、らのガスや小流量のガスである。そしてその結果、短時間'高速応答性を要求され るようなプロセスに対し、十分な対応を図ることが難しくなる。また、応答性が悪いこと から、ガス濃度が不安定になりやす!/、と!/、う不具合も生じる。 [0005] However, in such a configuration, for example, when there are a large number of branch flow paths, the main flow path length increases correspondingly, and the arrival time of the gas to the final outlet increases, which adversely affects the response of the fluid circuit system. give. The effect is noticeable when the branch channel is located upstream of the main channel. It is a gas with a small amount of power or gas. As a result, it becomes difficult to sufficiently respond to a process that requires a short time and high-speed response. In addition, due to poor responsiveness, the gas concentration tends to become unstable!
[0006] 特に半導体プロセスでは、製造工程の高速ガス処理によるプロセス時間の短縮(立 上がり安定までの排気時間/終了時のパージ時間の短縮等)が重要なファクタ一にな つており、このような応答性劣化による不具合は、好ましいものではない。  [0006] Particularly in the semiconductor process, shortening the process time by high-speed gas treatment in the manufacturing process (such as shortening the exhaust time until the start-up stability and the purge time at the end) is one of the important factors. Problems due to responsive deterioration are not preferable.
[0007] また、例えば、半導体製造プロセスにお!/、ては、最終的に供給される複数種のガス が十分に混合した状態であることが要求される。これは供給ガスの混合状態にムラが あると、デバイスの品質劣化を招くからであるが、これに対し、従来は、この集積型ガ スパネル装置以降の配管長を長く取って混合を促進したり、あるいはその後段にさら にガス混合器を設けたりするような工夫を加えている。  [0007] Further, for example, in the semiconductor manufacturing process, it is required that a plurality of types of finally supplied gases are sufficiently mixed. This is because if the mixed state of the supply gas is uneven, the quality of the device will be deteriorated. On the other hand, conventionally, the pipe length after this integrated gas panel device is increased to promote mixing. Or, a device that adds a gas mixer to the subsequent stage is added.
[0008] しかし、このような構成では、十分な混合を行えるものの、配管容量が大きくなる分、 応答性に悪影響がでて、前述同様、短時間 ·高速応答性を要求されるようなプロセス に対して十分な対応を図ることが難しくなる。また応答性が悪くなる分、ガス濃度の立 ち上がり安定性などにも影響がでる。さらに、一部の枝流路からのガス流量が小さい 場合には、そのガスの到達時間が長くなるため、応答性が悪くなる上、主流路を流れ てきたガスの圧力変動等により、その小流量ガスの合流量変動が生じやすぐ最終的 なガス濃度の不安定化が顕著になる場合もある。  [0008] However, in such a configuration, although sufficient mixing can be performed, the response is adversely affected by the increase in piping capacity, and as described above, the process requires a short time and high speed response. However, it is difficult to sufficiently respond to the problem. In addition, as the response becomes worse, the rise of gas concentration and stability will be affected. Furthermore, when the gas flow rate from a part of the branch flow paths is small, the arrival time of the gas becomes long, resulting in poor responsiveness and low pressure due to fluctuations in the pressure of the gas flowing through the main flow path. In some cases, the combined flow rate of the flow gas may change or the final gas concentration may become unstable.
[0009] 加えて、従来のこの種の装置は、主流路の一方側に枝流路が並列に配置されてお り、各枝流路と主流路との合流部位が、枝流路の並び順に主流路の上流から下流に 向かってほぼ等間隔に配置されているため、各枝流路のうち、主流路の上流側で合 流するものと下流側で合流するものとでは、ガスの最終出口までの到達時間が異な つてしまうという不具合がある。この場合であれば、最も上流側に位置する枝流路から のガスの到達時間が長くなり、このガス到達時間がこの流体回路系の応答性を律速 してしまう。  [0009] In addition, in this type of conventional apparatus, branch flow paths are arranged in parallel on one side of the main flow path, and the confluence portion of each branch flow path and the main flow path is the arrangement of the branch flow paths. Since the pipes are arranged at almost equal intervals in order from the upstream to the downstream of the main flow path, the final flow of the gas in each branch flow path is the one that merges upstream and the downstream of the main flow path. There is a problem that the time to reach the exit is different. In this case, the arrival time of the gas from the branch channel located at the most upstream side becomes long, and this gas arrival time determines the response of the fluid circuit system.
[0010] さらに、各枝流路からのガス到達時間に同時性が担保できないことから、立ち上が り状態においてガスの濃度分布が不安定になりがちである。  [0010] Furthermore, since the synchronicity cannot be ensured in the gas arrival time from each branch channel, the gas concentration distribution tends to become unstable in the rising state.
また、枝流路が多数になると、その分だけ主流路長が長くなつて、このことも流体回 路系の応答性に悪影響を与える。 In addition, when there are a large number of branch channels, the length of the main channel increases accordingly, which is also the fluid circulation. It adversely affects the responsiveness of the road system.
[0011] つまり、従来の構成であると、短時間 ·高速応答性を要求されるようなプロセスに対 し、十分な対応を図ることが難しくなるし、ガス濃度が不安定になりやすいという不具 合あ生じる。 [0011] In other words, with the conventional configuration, it is difficult to sufficiently respond to a process that requires a short time and high-speed response, and the gas concentration tends to become unstable. It happens together.
[0012] 本発明は、力、かる不具合を解決すべくなされたものであって、格段に優れた応答性 を得ることができてガス濃度の安定化も図れ、しかも、従来のパネル型形状をそのま ま維持できて構造の複雑化や肥大化を招くことなぐあるいはコンパクト化さえ可能な 集積型ガスパネル装置を提供することをその主たる目的とするものである。  [0012] The present invention has been made in order to solve the problem of force and trouble, and can obtain a remarkably excellent response and can stabilize the gas concentration. Moreover, the conventional panel type shape can be obtained. Its main purpose is to provide an integrated gas panel device that can be maintained as it is, without complicating or enlarging the structure or even being made compact.
課題を解決するための手段  Means for solving the problem
[0013] すなわち、請求項 1の発明に係る集積型ガスパネル装置は、バルブやマスフローコ ントローラ等のガス制御機器が途上に設けられて内部を流れるガスを制御できるよう に構成された複数の枝流路と、それら枝流路からのガスが流れ込んで合流する 1本 の主流路と、複数のブロック体を組み立てることにより前記枝流路及び主流路が内部 に形成されるように構成したマ二ホールド型パネル体と、を備えたものであって、前記 パネル体が、前記主流路を形成する主流路用ブロック体と、その主流路用ブロック体 を中心として左右両側に対向するようにそれぞれ配置された、前記枝流路を形成す る枝流路用ブロック体と、を備えたものであることを特徴とする。 [0013] That is, the integrated gas panel device according to the invention of claim 1 is provided with a plurality of branches configured to control a gas flowing therein by providing a gas control device such as a valve or a mass flow controller in the middle. A main flow path, a main flow path where gases from the branch flow paths flow and merge, and a manifold configured to form the branch flow path and the main flow path by assembling a plurality of block bodies. A holding-type panel body, wherein the panel body is disposed so as to face the left and right sides of the main flow path block body that forms the main flow path, and the main flow path block body as a center. And a branch channel block body that forms the branch channel.
[0014] このようなものであれば、従来主流路の一方側にだけ配置されていた枝流路力 主 流路の左右に配置されることになるため、主流路の長さを短縮できる。そしてその結 果、ガスの最終出口までの到達時間を短縮でき、応答性を向上させることが可能に なる。このことはガス濃度の安定化にも寄与する。しかも、各流路を形成しているプロ ック体を平面的に配置して従来と同様のパネル体を構成することができるため、従来 装置と無理なく置き換えること力 Sできる。  [0014] With such a configuration, the branch channel force that has been disposed only on one side of the main channel in the related art is disposed on the left and right of the main channel, so that the length of the main channel can be shortened. As a result, the arrival time of the gas to the final outlet can be shortened, and the responsiveness can be improved. This also contributes to stabilization of the gas concentration. In addition, since the block bodies forming the respective flow paths can be arranged in a plane to form a panel body similar to the conventional one, it is possible to easily replace the conventional apparatus.
[0015] 主流路短縮に最も好ましい態様としては、前記主流路をはさんで対向する一の枝 流路と他の枝流路との主流路に対する各合流部位が、当該主流路の延伸方向にお いてほぼ同じ場所に設定されているものを挙げることができる。主流路の延伸方向に おいてほぼ同じ場所とは、合流部位が完全に合致する他、主流路の互いに対向する 管側壁部位や、直交する管側壁部位なども含むとレ、う意味である。 [0016] 応答性、ガス濃度安定性を、さらに向上させるためには、前記主流路用ブロック体 に、その内部の主流路に連通する揷入孔を形成するとともに、前記枝流路の出口部 分を内部に有した枝流路用ブロック体に、その枝流路を外側に突出させた突出配管 を設けておき、前記突出配管を前記揷入孔に揷入して当該主流路用ブロック体と枝 流路用ブロック体とを組み立てた状態において、前記突出配管の先端が前記主流路 の内側面からさらに内方に突出するように構成しているものが好ましい。 [0015] As the most preferable mode for shortening the main flow path, each joining portion of the one branch flow path and the other branch flow path facing each other across the main flow path with respect to the main flow path is in the extending direction of the main flow path. And what is set in almost the same place. The almost same place in the extending direction of the main flow path means that the merged portion is completely matched, and includes the pipe side wall portions facing each other and the orthogonal pipe side wall portions of the main flow path. [0016] In order to further improve the responsiveness and gas concentration stability, the main channel block body is formed with an insertion hole communicating with the main channel inside thereof, and the outlet portion of the branch channel The branch channel block body having a portion inside is provided with a projecting pipe that projects the branch channel outward, and the projecting pipe is inserted into the insertion hole so that the main channel block body is provided. In a state where the branch channel block body is assembled, it is preferable that the tip of the protruding pipe is configured to protrude further inward from the inner surface of the main channel.
[0017] また、請求項 5の発明に係る集積型ガスパネル装置は、バルブやマスフローコント口 ーラ等のガス制御機器が途上に設けられて内部を流れるガスを制御できるように構 成された複数の枝流路と、それら枝流路からのガスが流れ込む主流路と、複数のブ ロック体を組み立てることにより前記枝流路及び主流路が内部に形成されるように構 成したパネル体と、を備えたものであって、前記ブロック体のうち、前記主流路を内部 に有した主流路用ブロック体に、その内部の主流路に連通する揷入孔を形成すると ともに、前記枝流路の出口部分を内部に有した枝流路用ブロック体に、その枝流路 を外側に突出させた突出配管を設けておき、前記突出配管を前記揷入孔に揷入し て当該主流路用ブロック体と枝流路用ブロック体とを組み立てた状態において、前記 突出配管の先端が前記主流路の内側面からさらに内方に突出するように構成してい ることを特徴とする。  [0017] Further, the integrated gas panel device according to the invention of claim 5 is configured such that a gas control device such as a valve or a mass flow controller is provided on the way to control the gas flowing inside. A plurality of branch channels, a main channel into which gas from the branch channels flows, and a panel body configured such that the branch channels and the main channel are formed inside by assembling a plurality of block bodies; Among the block bodies, the main channel block body having the main channel therein is formed with a penetration hole communicating with the main channel therein, and the branch channel A branch pipe having a branch flow passage projecting outward is provided in a branch flow path block body having an outlet portion of the main pipe, and the projecting pipe is inserted into the insertion hole so as to be used for the main flow path. A block body and a branch channel block body were assembled. In state, the tip of the protruding pipe characterized that you have configured to protrude further inward from the inner surface of the main channel.
[0018] このようなものであれば、枝流路と主流路との接続部分において、枝流路の出口で ある突出配管が主流路内に突出し、その流路径を狭めるので、この部分でのチョーク 効果によって枝流路内のガスが主流路内に強く引き込まれるうえに、そのガスは、前 記突出配管の後方に生じる乱流等により拡散されるので、主流路を流れてきたガスと の枝流路のガスとの混合が大きく促進される。  [0018] In such a case, at the connection portion between the branch flow channel and the main flow channel, the protruding pipe that is the outlet of the branch flow channel protrudes into the main flow channel, and the diameter of the flow channel is narrowed. The gas in the branch channel is strongly drawn into the main channel by the choke effect, and the gas is diffused by the turbulent flow generated behind the protruding pipe. Mixing with the gas in the branch channel is greatly promoted.
[0019] したがって、従来のものに比べ、このガスパネル装置内でのガスの混合を十分に行 うことができるようになり、その後段に配すべき配管長やガス混合器の容量を小さくし たり、省いたりすることにより、従来のものに比して、高速応答性において、格段に優 れたものにすることができるようになる。また、そのことにより、立ち上がり時等のガス濃 度安定性も向上させることができるようになる。  [0019] Therefore, compared with the conventional one, the gas mixing in the gas panel device can be sufficiently performed, and the pipe length and the gas mixer capacity to be arranged in the subsequent stage can be reduced. By omitting or omitting, it becomes possible to make the speed response much superior to the conventional one. In addition, this makes it possible to improve gas concentration stability at the time of start-up.
[0020] また、枝流路内のガスがたとえ小流量であっても、これを主流路に確実に引き込む こと力 Sできること力、ら、その小流量ガスの合流時における流量変動が生じに《なり、こ の点からもガス濃度安定性を向上させることができる。 [0020] Further, even if the gas in the branch channel is a small flow rate, it is reliably drawn into the main channel. That is, the ability to perform S, and the fluctuation of the flow rate at the time of the merging of the small flow rate gas occurs, and from this point, the gas concentration stability can be improved.
[0021] さらに枝流路用ブロック体から所定長さの突出配管を突出させるだけで基本的には 構成できるため、構造上の複雑化をほとんど招かないし、組み立て状態では、この突 出配管が内部に隠れてしまうので、従来のものと外形的にほぼ同一なものに維持で きる。 [0021] Further, since it can be configured basically by simply projecting a protruding pipe of a predetermined length from the branch channel block body, there is little structural complexity, and in the assembled state, this protruding pipe is Since it is hidden inside, it can be maintained in the same shape as the conventional one.
[0022] ガスの混合を無理なく促進させるためには、前記突出配管の先端が、前記主流路 を横断面でみてその中央近傍にまで突出するように構成しているものが好ましい。  [0022] In order to facilitate gas mixing without difficulty, it is preferable that the end of the protruding pipe is configured to protrude to the vicinity of the center of the main flow path when viewed in cross section.
[0023] また、請求項 8の発明に係る立体集積型ガスパネル装置は、バルブやマスフローコ ントローラ等のガス制御機器が途上に設けられて内部を流れるガスを制御できるよう に構成された複数の枝流路と、それら枝流路からのガスが流れ込んで合流する 1本 の主流路と、一の枝流路が内部に形成された、底面を取付面とする長尺パネル状を なす枝流路用ブロック体と、側周面に形成した保持面で複数の枝流路用ブロック体 をそれらの長手方向が互いに平行となるように保持する中心ブロック体と、を備え、前 記中心ブロック体に前記主流路を形成するとともに、その主流路に設定した合流部 位から、当該中心ブロック体の側周面に取り付けた枝流路用ブロック体の枝流路に 向かってそれぞれ延びる中間流路を形成するようにしていることを特徴とする。  [0023] Further, the three-dimensionally integrated gas panel device according to the invention of claim 8 is provided with a plurality of gas control devices such as valves and mass flow controllers, which are arranged in the middle to control the gas flowing inside. Branch flow channel, one main flow channel into which gas flows from these branch flow channels and merges, and a branch flow that forms a long panel with one branch flow channel formed inside and the bottom surface as the mounting surface A central block body, and a central block body that holds a plurality of branch flow path block bodies so that their longitudinal directions are parallel to each other by a holding surface formed on a side peripheral surface. Forming intermediate flow channels extending from the merging portion set in the main flow channel toward the branch flow channel of the branch flow channel block body attached to the side peripheral surface of the central block body. That you are trying to form Features.
[0024] このようなものであれば、従来平面状に展開していた枝流路用ブロック体を立体的 に配置しているので、コンパクトになって流路長短縮を図れ、応答性を向上させること 力 Sできるようになる。また、立体的構成であることから各流路の配置自由度が増し、そ の流路長ゃ合流部位の工夫により、ガス合流タイミングの同時性向上や、ひいてはガ ス濃度の安定性向上を図ることができる。  [0024] If this is the case, the branch channel block bodies that have been developed in a flat shape in the past are arranged three-dimensionally, so the channel length can be reduced, the channel length can be reduced, and responsiveness can be improved. The ability to let S In addition, because of the three-dimensional configuration, the degree of freedom of arrangement of each flow path is increased, and by improving the flow path length and merging site, it is possible to improve the simultaneity of the gas merging timing and consequently the gas concentration stability. be able to.
[0025] より具体的には、主流路の短縮による応答性向上を図るには、前記合流部位が主 流路の一箇所に設定されているものが好ましい。特に、通常は中心ブロック体の端面 に出口ポートを取り付けることから、合流部位を例えば中心ブロック体の端部に設定 すれば、主流路長を短くできるので、応答性の可及的向上を図れる。  More specifically, in order to improve responsiveness by shortening the main flow path, it is preferable that the merging portion is set at one position of the main flow path. In particular, since the outlet port is usually attached to the end face of the central block body, the main flow path length can be shortened if the confluence part is set, for example, at the end of the central block body, so that the response can be improved as much as possible.
[0026] ガス合流タイミングの同時性を向上させるためには、前記各保持面によって中央ブ ロック体の軸線を中心とした回転対称形が構成されるとともに、前記合流部位が、前 記軸線上に設けられて各中間流路が互いに等しい長さに設定されているものが好適 である。 [0026] In order to improve the synchronism of gas merging timing, each holding surface forms a rotationally symmetric shape about the axis of the central block body, and the merging portion It is preferable that the intermediate flow paths are provided on the axis and are set to have the same length.
[0027] その場合、前記主流路が前記軸線上に沿って設けられていれば、主流路長の可 及的短縮にも寄与しうる。  [0027] In that case, if the main flow path is provided along the axis, it can contribute to the reduction of the main flow path length as much as possible.
[0028] 同時性をさらに向上させるには、ガス流量に応じて中間流路の径や、枝流路にお ける特にマスフローコントローラ以降の流路径を異ならせる(ガス流量の小さいものほ ど径を小さくする)ようにすればよい。 [0028] In order to further improve the simultaneity, the diameter of the intermediate flow path and the flow path diameter in the branch flow path, especially after the mass flow controller, are varied according to the gas flow rate (the smaller the gas flow rate, the smaller the diameter). Just make it smaller).
[0029] 製造容易性を考慮した具体的実施態様としては、前記中心ブロック体が正多角柱 状のものであることが好まし!/、。 [0029] As a specific embodiment in consideration of manufacturability, the center block body is preferably a regular polygonal column!
[0030] 本発明の効果が特に顕著となり、その有用性が発揮される具体的実施態様として は、半導体製造プロセスに用いられるものを挙げることができる。 [0030] Specific embodiments in which the effects of the present invention are particularly remarkable and their usefulness are exhibited include those used in semiconductor manufacturing processes.
発明の効果  The invention's effect
[0031] このように構成した請求項 1に係る発明によれば、主流路長を短縮できるので、応 答性や立ち上がり時等におけるガス濃度安定性を向上させること力 Sできる。しかも、 従来と同様の平面的な形状を維持できるため、従来装置と無理なく置き換えることが できる。  [0031] According to the invention according to claim 1 configured as described above, since the main flow path length can be shortened, it is possible to improve the gas concentration stability at the time of responsiveness and rising. Moreover, since the same planar shape as the conventional one can be maintained, the conventional device can be replaced without difficulty.
[0032] 請求項 5に係る発明によれば、主流路を流れてきたガスとの枝流路のガスとの混合 が大きく促進されるため、その後段に配すべき配管長やガス混合器の容量を小さくし たり、省いたりすることにより、従来のものに比して、高速応答性を向上させ、ひいて は立ち上がり時等のガス濃度安定性も向上させることができるようになる。さらに、枝 流路用ブロック体から所定長さの突出配管を突出させるだけで基本的には構成でき るため、構造上の複雑化をほとんど招かないし、組み立て状態では、この突出配管が 内部に隠れてしまうので、従来のものと外形的にほぼ同一なものに維持できる。  [0032] According to the invention of claim 5, since the mixing of the gas flowing through the main flow channel with the gas in the branch flow channel is greatly promoted, the length of the pipe to be arranged in the subsequent stage and the gas mixer By reducing or omitting the capacity, it is possible to improve the high-speed response as compared with the conventional one, and also improve the gas concentration stability at the time of start-up. Furthermore, it is basically possible to construct a protruding pipe of a predetermined length from the branch channel block body, so that there is little structural complexity, and in the assembled state, this protruding pipe is inside. Since it is hidden, it can be maintained substantially the same as the conventional one.
[0033] 請求項 8に係る発明によれば、上述したように、枝流路用ブロック体を立体的に配 置しているので、コンパクト化や設計自由度の向上を図れ、その結果として、応答性 やガス濃度安定性をも向上できるようになる。  [0033] According to the invention of claim 8, as described above, the branch channel block bodies are three-dimensionally arranged, so that compactness and improvement in design freedom can be achieved. As a result, Responsiveness and gas concentration stability can be improved.
図面の簡単な説明  Brief Description of Drawings
[0034] [図 1]図 1は、本発明の第 1実施形態における集積型ガスパネル装置の全体斜視図 である。 FIG. 1 is an overall perspective view of an integrated gas panel device according to a first embodiment of the present invention. It is.
[図 2]図 2は、同実施形態における集積型ガスパネル装置の流体回路図である。  FIG. 2 is a fluid circuit diagram of the integrated gas panel device in the same embodiment.
[図 3]図 3は、同実施形態における接続部分を示す平面方向から見た模式図である。  FIG. 3 is a schematic view showing a connection portion in the same embodiment as seen from a plane direction.
[図 4]図 4は、同実施形態の変形例における集積型ガスパネル装置の、接続部分を 示す平面方向から見た模式図である。  FIG. 4 is a schematic view showing a connecting portion of an integrated gas panel device according to a modification of the embodiment, as viewed from the plane direction.
[図 5]図 5は、同変形例における集積型ガスパネル装置の主流路を示す要部縦断面 図である。  [Fig. 5] Fig. 5 is a longitudinal sectional view of an essential part showing a main flow path of the integrated gas panel device in the same modification.
[図 6]図 6は、本発明の第 2実施形態における集積型ガスパネル装置の全体斜視図 である。  FIG. 6 is an overall perspective view of an integrated gas panel device according to a second embodiment of the present invention.
[図 7]図 7は、同実施形態における集積型ガスパネル装置の流体回路図である。  FIG. 7 is a fluid circuit diagram of the integrated gas panel device in the same embodiment.
[図 8]図 8は、同実施形態における集積型ガスパネル装置の要部部分断面図である。  FIG. 8 is a partial cross-sectional view of the main part of the integrated gas panel device in the same embodiment.
[図 9]図 9は、同実施形態における接続部分を示す分解斜視図である。  FIG. 9 is an exploded perspective view showing a connection portion in the same embodiment.
[図 10]図 10は、同実施形態における集積型ガスパネル装置の要部部分断面図であ  FIG. 10 is a fragmentary sectional view of an essential part of the integrated gas panel device in the same embodiment.
[図 11]図 11は、本発明の第 3実施形態における立体集積型ガスパネル装置の内部 を一部破断して示す全体斜視図である。 FIG. 11 is an overall perspective view showing the interior of a three-dimensionally integrated gas panel device according to a third embodiment of the present invention with a part broken away.
[図 12]図 12は、同実施形態における立体集積型ガスパネル装置の流体回路図であ  FIG. 12 is a fluid circuit diagram of the three-dimensionally integrated gas panel device in the same embodiment.
[図 13]図 13は、同実施形態における合流部位を示す模式的横端面図である。 FIG. 13 is a schematic lateral end view showing a merging site in the same embodiment.
[図 14]図 14は、同実施形態の変形例における中心ブロック体の模式的横断面図で ある。  FIG. 14 is a schematic cross-sectional view of a central block body in a modified example of the same embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0035] 以下に本発明のいくつかの実施形態について図面を参照して説明する。なお各実 施形態において、対応する部材には同一の符号を付している力 同一機能であって も形状が異なっていたり、その逆の場合などでは、異なる符号が付されている場合も ある。 [0035] Hereinafter, some embodiments of the present invention will be described with reference to the drawings. In each embodiment, the corresponding members have the same reference numerals, even if they have the same function, the shapes may be different, or vice versa. .
[0036] <第 1実施形態〉  <First Embodiment>
第 1実施形態では、図 1から図 5を参照する。 この実施形態に係る集積型ガスパネル装置 1は、半導体製造システムの一部を構 成するものであり、その概要を図 1に示すように、成膜用の各種ガスを図示しないガス 供給源からそれぞれ導入し、それらを混合して半導体の成膜チャンバ(図示しない) に供給するために用いられる。 In the first embodiment, reference is made to FIGS. An integrated gas panel device 1 according to this embodiment constitutes a part of a semiconductor manufacturing system. As shown in FIG. 1, an outline of various gas for film formation is supplied from a gas supply source (not shown). Each is introduced, mixed and used to supply a semiconductor film forming chamber (not shown).
[0037] そこでこの集積型ガスパネル装置 1について、まず、その流体回路構造を、周辺回 路も含め、図 2を参照しながら説明する。  [0037] In view of this, the integrated gas panel device 1 will be described first with reference to FIG. 2, including the fluid circuit structure, including the peripheral circuit.
この集積型ガスパネル装置 1には、回路的にみて並列させた複数の枝流路 R1と、 それら各枝流路 R1の出口が接続された 1本の主流路 R2とが設けられている。  The integrated gas panel device 1 is provided with a plurality of branch channels R1 arranged in parallel in terms of a circuit, and one main channel R2 to which the outlets of the branch channels R1 are connected.
[0038] 各枝流路 R1は、その基端にそれぞれインレットポート PIが接続されたものであり、こ のインレットポート PIに接続した外部配管(図示しな!/、)を介して前記ガス供給源から 、数種類のガスが各枝流路 R1にそれぞれ送り込まれる。各枝流路 R1の途上には、 バルブ Vやマスフローコントローラ MFCなどのガス制御機器が配されており、それら の動作によって、各枝流路 R1を流れるガス流量やパージガスへの切替などをそれぞ れ制卸でさるようにしてレ、る。  [0038] Each branch channel R1 is connected to an inlet port PI at the base end thereof, and the gas supply is performed via an external pipe (not shown! /) Connected to the inlet port PI. From the source, several types of gases are fed into each branch channel R1. A gas control device such as a valve V or a mass flow controller MFC is arranged in the middle of each branch flow path R1, and the operation of these controls the flow rate of gas flowing through each branch flow path R1 and switching to the purge gas. Let's do it like a wholesale.
[0039] 一方、主流路 R2は、前述したように単一流路構造をなすものであって、前述した各 枝流路 R1との接続部分 CNは、 1箇所に集約されず、その流れに沿って飛び飛びに 設けてある。この実施形態では、この集積型ガスパネル装置 1の下流、すなわち主流 路 R2の下流に、合流したガスを攪拌混合するガス混合器 MIXが配置されており、さ らにその下流に、ガス混合器 MIXで混合されたガスを、所定流量比率に分配してァ ゥトレットポート POから各成膜チャンバに出力する流量比率制御器 FRCが設けてあ る。なお、これらガス混合器 MIXや流量比率制御器 FRC、アウトレットポート POなど は、図 1には示されていない。  [0039] On the other hand, the main flow path R2 has a single flow path structure as described above, and the connection portion CN with each branch flow path R1 described above is not concentrated at one place, but along the flow. It is provided to fly away. In this embodiment, a gas mixer MIX that stirs and mixes the combined gas is disposed downstream of the integrated gas panel device 1, that is, downstream of the main flow path R2, and further downstream of the gas mixer. A flow rate controller FRC that distributes the gas mixed by MIX to a predetermined flow rate ratio and outputs it to each film forming chamber from the outlet port PO is provided. These gas mixer MIX, flow rate controller FRC, outlet port PO, etc. are not shown in Fig. 1.
[0040] このような構成によって、各ガス供給源から供給されたガスは、この集積型ガスパネ ル装置 1の枝流路 R1においてそれぞれ流量制御されて主流路 R2に導入され、その 後、ガス混合器 MIXで十分に混合されて、流量比率制御器 FRCから所定の流量比 で各アウトレットポート POからそれぞれ出力される。  [0040] With such a configuration, the gas supplied from each gas supply source is introduced into the main flow path R2 with the flow rate controlled in the branch flow path R1 of the integrated gas panel device 1, and then mixed with the gas. MIX is thoroughly mixed by the mixer MIX and output from each outlet port PO at a predetermined flow rate ratio from the flow rate controller FRC.
[0041] なお、図 2には、主流路 R2、枝流路 R1の他に、前述したパージガスの流路やその 入口ポート PX、出口ポート PYなども記載されている。また、符号 MFMで示す部材 は、マスフローコントローラの示す流量が正しいかどうかを確認するためのベリファイ ャである。 In addition to the main flow path R2 and the branch flow path R1, FIG. 2 also shows the purge gas flow path, the inlet port PX, the outlet port PY, and the like. In addition, the member indicated by the symbol MFM Is a verifier to check whether the flow rate indicated by the mass flow controller is correct.
[0042] 次に、この集積型ガスパネル装置 1の物理的な構成について、図 1等を参照しなが ら説明する。  Next, the physical configuration of the integrated gas panel device 1 will be described with reference to FIG.
[0043] このガスパネル装置 1は、前記主流路 R2や枝流路 R1が内部に形成された概略面 板状をなすパネル体 2と、そのパネル体 2に取り付けられた前記ガス制御機器 V、 M FCと、さらにインレットポート PIなどの付属配管具とを備えている。  [0043] The gas panel device 1 includes a panel body 2 having a substantially plate shape in which the main flow path R2 and the branch flow path R1 are formed, and the gas control device V attached to the panel body 2. It is equipped with MFC and additional piping equipment such as inlet port PI.
[0044] パネル体 2は、図 1に示すように、複数のブロック体を平面的に連設することで構成 される面板状のものである。このブロック体としては種々ある力 ここでは少なくとも、 枝流路 R1を構成する枝流路用ブロック体 31と、主流路 R2を構成する主流路用プロ ック体 32とを用いている。  As shown in FIG. 1, the panel body 2 has a face plate shape configured by connecting a plurality of block bodies in a plane. Various forces are used as this block body. Here, at least the branch channel block body 31 constituting the branch channel R1 and the main channel block body 32 constituting the main channel R2 are used.
[0045] 枝流路用ブロック体 31は、扁平な方形平板状をなすもので、バルブ搭載用のもの やマスフローコントローラ搭載用のものなど、内部配管の異なるものが若干種ある。 1 本の枝流路 R1は、このような枝流路用ブロック体 31を複数直列させて長尺板状にす ることで形成される力 さらに、このように直列させた枝流路用ブロック体 31の列(以 下、枝流路ブロック体列 5とも言う)を横に並べて面板状にすることで、回路構成で述 ベたように、複数の枝流路 R1が並列に配置されるようにして!/、る。  [0045] The branch channel block body 31 has a flat rectangular flat plate shape, and there are some types having different internal pipes, such as those for mounting valves and those for mounting mass flow controllers. One branch channel R1 is a force formed by connecting a plurality of such branch channel block bodies 31 in series to form a long plate shape. As described in the circuit configuration, a plurality of branch flow paths R1 are arranged in parallel by arranging the rows of bodies 31 (hereinafter also referred to as branch flow block block rows 5) side by side to form a face plate. Like! /
[0046] 主流路用ブロック体 32は、例えば一枚の長尺板状をなすもので、その長手方向( 延伸方向)に沿って、内部に主流路 R2が延びている。そして枝流路用ブロック体 31 の下面に上下に(パネル体 2の平面方向とは垂直方向に)積層され、接続される。こ のときの主流路用ブロック体 32の延伸方向は、前記枝流路ブロック体列 5の延伸方 向と直交させている。  [0046] The main channel block body 32 has, for example, a single long plate shape, and the main channel R2 extends along the longitudinal direction (stretching direction) thereof. And it is laminated | stacked on the lower surface of the block body 31 for branch flow paths (it is perpendicular to the plane direction of the panel body 2), and is connected. At this time, the extending direction of the main flow path block bodies 32 is orthogonal to the extending direction of the branch flow path block array 5.
[0047] しかして、この実施形態では、主流路用ブロック体 32を中心として左右対称に枝流 路用ブロック体列 5を、それぞれ複数 (例えば片側に 4本など)配列している。このこと により、平面方向からみた模式図を図 3に示す力 S、主流路 R2を中心としてその左右 両側に対称に枝流路 R1が配置されることとなる。  In this embodiment, however, a plurality (for example, four on each side) of branch flow block bodies 5 are arranged symmetrically about the main flow path block 32 as a center. As a result, the branch flow path R1 is symmetrically arranged on both the left and right sides of the main flow path R2 with the force S shown in FIG. 3 as a schematic diagram viewed from the plane direction.
[0048] また、主流路 R2をはさんで対向する一の枝流路 R1と他の枝流路 R1との当該主流 路 R2に対する各接続部分(以下、合流部位ともいう) CNは、当該主流路 R2の延伸 方向において同じ位置であって、主流路 R2の互いに対向する側部に設定するように している。なお、前記各接続部分 CNは、主流路 R2の延伸方向において同じ位置で あればよぐ部品配置など設計上の都合から、一方が主流路の底部で他方が側部等 であってもよい。 [0048] Further, each connecting portion (hereinafter also referred to as a merged portion) CN of the one branch channel R1 and the other branch channel R1 facing each other across the main channel R2 with respect to the main channel R2 is the main stream. Road R2 stretch It is set at the same position in the direction and on opposite sides of the main channel R2. Note that one of the connection portions CN may be a bottom portion of the main flow path and the other may be a side portion or the like for convenience of design such as arrangement of parts as long as they are at the same position in the extending direction of the main flow path R2.
[0049] このように構成したこのガスパネル装置 1によれば、従来主流路の一方側にだけ配 置されていた枝流路 R1が、主流路 R2の左右に配置されることになるため、主流路 R 2における各合流部位 CNが設けられている領域の長さを、従来の約半分に短縮で きる。その結果、ガスの最終出口までの到達時間を短縮できることから、応答性を向 上させることが可能になり、同時に立ち上がり時などにおけるガス濃度の安定化をも 向上させること力 Sでさるようになる。  [0049] According to the gas panel device 1 configured as described above, the branch flow channel R1 that has been conventionally disposed only on one side of the main flow channel is disposed on the left and right of the main flow channel R2. The length of the region where each merging portion CN is provided in the main channel R 2 can be reduced to about half of the conventional length. As a result, it is possible to improve the responsiveness because the time to reach the final outlet of the gas can be improved, and at the same time, the stabilization of the gas concentration at the time of rising etc. can be improved with the force S. .
しかも、ブロック体を平面的に配置して従来と同様のパネル体 2を構成し、平面的な 形状を維持しているので、例えば既存装置と置き換えることも無理なくできる。  In addition, since the block body is arranged in a plane to form a panel body 2 similar to the conventional one and the planar shape is maintained, for example, it can be easily replaced with an existing apparatus.
[0050] 次に、本実施形態の変形を説明する(以下の変形例において前記実施形態と対応 する部材には同一の符号を付して!/、る)。  [0050] Next, a modification of the present embodiment will be described (in the following modifications, members corresponding to those of the above-described embodiment are denoted by the same reference numerals!).
[0051] 例えば、図 4に模式的に示すように、左右の枝流路 R1を、主流路 R2に対して千鳥 状に接続してもよい。このような構成であると、対向する一の枝流路と他の枝流路との 主流路に対する各合流部位 CN力 当該主流路 R2の延伸方向において異なる場所 となり、前記実施形態の場合に比べ、主流路 R2の長さが若干長くなる。しかしながら 、従来のように主流路の一方側だけに枝流路を配置していた場合と比べると、やはり 格段に主流路 R2の長さを短縮でき、前記実施形態とほぼ同様の作用効果を期待で きる。  [0051] For example, as schematically shown in FIG. 4, the left and right branch channels R1 may be connected in a staggered manner to the main channel R2. With such a configuration, each merging portion CN force with respect to the main channel between one branch channel and the other branch channel facing each other is a different place in the extending direction of the main channel R2, compared with the case of the above embodiment. The length of the main flow path R2 becomes slightly longer. However, compared with the conventional case where the branch channel is arranged only on one side of the main channel, the length of the main channel R2 can be remarkably shortened, and almost the same effect as the previous embodiment is expected. it can.
[0052] さらにこのような構成であると、以下に説明するが、合流部位 CNにおいて、枝流路 R1の出口配管 311を主流路 R2内に所定長さだけ突出させる場合に、その出口配管 311を互いに干渉させることなぐ無理なく構成することができる。  [0052] Further, with such a configuration, as will be described below, when the outlet pipe 311 of the branch flow path R1 is projected into the main flow path R2 by a predetermined length at the junction site CN, the outlet pipe 311 Can be configured without any difficulty in causing the two to interfere with each other.
[0053] この合流部位 CNの構造につき、ここでその一例を詳述しておく。  [0053] An example of the structure of the confluence portion CN will be described in detail here.
この例では、図 5に示すように、前記主流路用ブロック体 32の表面に揷入孔 321を 開口させ、その揷入孔 321を内部の主流路 R2に連通させておく一方、枝流路用プロ ック体 31の最下流のもの、すなわち枝流路 R1の出口部分を有する枝流路用ブロック 体 31 (1)に、表面から当該枝流路 Rlを突出させた円筒状の出口配管(以下、突出 配管ともレ、う) 311を一体に (別体でも構わな!/、)設けるようにして!/、る。 In this example, as shown in FIG. 5, an insertion hole 321 is opened on the surface of the main channel block body 32, and the insertion hole 321 is communicated with the internal main channel R2, while the branch channel Branch block 31 having the outlet portion of the branch channel R1 The body 31 (1) is provided with a cylindrical outlet pipe (hereinafter also referred to as a protruding pipe) 311 with the branch flow path Rl protruding from the surface (which may be a separate body! /). /!
[0054] そして、前記突出配管 311を揷入孔 321に揷入し、主流路用ブロック体 32と枝流 路用ブロック体 31 (1)とを組み立てた状態において、前記突出配管 311の先端が、 前記主流路 R2の内側面 R2a (図 5に示す)からさらに内方に突出するように構成する 。その突出寸法は、例えば、突出配管 311の先端力、横断面でみて主流路 R2の中 央近傍にまで至る程度である。  [0054] Then, in the state where the protruding pipe 311 is inserted into the insertion hole 321 and the main flow path block body 32 and the branch flow path block body 31 (1) are assembled, the tip of the protruding pipe 311 is The main channel R2 is configured to protrude further inward from the inner side surface R2a (shown in FIG. 5). The projecting dimension is, for example, about the tip force of the projecting pipe 311 and the vicinity of the center of the main flow path R2 in the cross section.
[0055] また、この組み立て状態において、主流路用ブロック体 32と枝流路用ブロック体 31  In this assembled state, the main channel block body 32 and the branch channel block body 31 are also provided.
(1)の対向する平面間に Oリングなどのシール部材 6を介在させてスラスト方向に密 接させ、この接続部分 CNでのガス漏洩を防止して!/、る。  A seal member 6 such as an O-ring is interposed between the opposing planes of (1) to make a close contact in the thrust direction, preventing gas leakage at this connection CN.
[0056] このように構成であると、枝流路 R1と主流路 R2との接続部分 CNにおいて、枝流路 R1の出口である突出配管 311が主流路 R2内に突出してその流路径を狭めるので、 この部分での主流路 R2のガス流速が速くなつて圧力が低下し、枝流路 R1内のガス を強く主流路 R2内に引き込むことができる。そしてこの引き込まれたガスは、主流路 R2において突出配管 311の後方に生じる乱流等によって拡散されるため、主流路 R 2を流れてきたガスに、よりムラなく混合させること力 Sできるようになる。つまり、従来の ものに比べて、ガスの混合を予めパネル体 2の内部で十分に行うことができるようにな  [0056] With this configuration, at the connection portion CN between the branch flow path R1 and the main flow path R2, the protruding pipe 311 that is the outlet of the branch flow path R1 protrudes into the main flow path R2 to narrow the diameter of the flow path. As a result, the gas flow rate in the main flow path R2 in this portion increases and the pressure decreases, so that the gas in the branch flow path R1 can be strongly drawn into the main flow path R2. The drawn gas is diffused by turbulent flow or the like generated behind the protruding pipe 311 in the main flow path R2, so that the force S can be more uniformly mixed with the gas flowing through the main flow path R2. Become. In other words, compared to the conventional one, the gas can be sufficiently mixed in the panel body 2 in advance.
[0057] したがって、従来であればガスの十分な混合を行うために長く設定していていた接 続部分以降の配管長を、短くすることができるうえ、ガス混合器 MIXの容量を小さくし たり、場合によってはこれを省略したりすることもできるようになる。そして、このように 流路容量を小さくした分だけ、この流体回路系の応答性をさらに向上させることがで さるようになる。 [0057] Therefore, the pipe length after the connection portion, which has been set long in order to sufficiently mix the gas in the past, can be shortened, and the capacity of the gas mixer MIX can be reduced. In some cases, this can be omitted. The responsiveness of the fluid circuit system can be further improved as much as the flow path capacity is reduced in this way.
[0058] つまり、この構成を前記実施形態に適用すれば、主流路 R2の枝流路合流箇所に おける長さの短縮と、それ以降の流路長短縮とが同時に図れ、応答性の向上とそれ に基づく立ち上がり時等のガス濃度安定性の向上を、格段に促進させることが可能 になる。  That is, if this configuration is applied to the above-described embodiment, the length at the branch flow path merging point of the main flow path R2 and the subsequent flow path length can be shortened at the same time, thereby improving the responsiveness. Based on this, it will be possible to dramatically improve the gas concentration stability at the time of start-up.
[0059] また、枝流路 R1内のガスがたとえ小流量であっても、上述したように、これを主流路 R2に確実に引き込むことができるので、この点からも、最終的な混合ガスの濃度安定 十生をより向上させることができるようになる。 [0059] Further, as described above, even if the gas in the branch channel R1 has a small flow rate, Since the gas can be reliably drawn into R2, the final stability of the mixed gas concentration can be further improved from this point.
[0060] しかも、従来と構造的に大きく異なるのは、枝流路用ブロック体を対向するように設 けたことの他、枝流路用ブロック体 31から所定長さの突出配管 311を突出させる部 分だけであるため、構造上の複雑化をほとんど招かないし、組み立て状態では、この 突出配管 311が内部に隠れてしまうので、この接合部分において従来のものと外形 的にコンパチブルなものにすることができる。  [0060] In addition, the structurally different from the conventional one is that the branch channel block body is provided so as to be opposed, and the branch pipe 311 having a predetermined length is projected from the branch channel block body 31. Since it is only a part, it does not cause any structural complication, and in the assembled state, this protruding pipe 311 is hidden inside, so that this joint is made to be externally compatible with the conventional one. be able to.
[0061] その他の変形例としては、例えば、各枝流路の内径を、各ガスの流量に応じて設定 する(流量が少ないほど内径は小さくする)ようにしてもよい。このことにより、各ガスの 流速がより等しくなり、主流路での各ガスの合流タイミングの同時性を従来に比べ向 上できるため、ガス流量に左右されず、より短時間で混合ガスを供給できるようになる As another modified example, for example, the inner diameter of each branch channel may be set according to the flow rate of each gas (the smaller the flow rate, the smaller the inner diameter). As a result, the flow rates of each gas become more equal, and the simultaneity of the merging timing of each gas in the main flow path can be improved compared to the conventional one, so that the mixed gas can be supplied in a shorter time regardless of the gas flow rate. Become
Yes
[0062] ブロック体も、方形状のみならず例えば円板状のものでもよい。ただし、スラストシ一 ル構造のためには、対向箇所に平面部を有しているものが好ましい。  [0062] The block body may be not only a square shape but also a disk shape, for example. However, for a thrust seal structure, it is preferable to have a flat portion at the opposite location.
[0063] <第 2実施形態〉  <Second Embodiment>
以下に本発明の第 2実施形態について図 6〜図 10を参照して説明する。 この実施形態に係る集積型ガスパネル装置 1は、半導体製造システムの一部を構 成するものであり、その概要を図 6に示すように、成膜用の各種ガスを図示しないガス 供給源からそれぞれ導入し、それらを混合して半導体の成膜チャンバ(図示しない) に供給するために用いられる。  A second embodiment of the present invention will be described below with reference to FIGS. The integrated gas panel apparatus 1 according to this embodiment constitutes a part of a semiconductor manufacturing system. As shown in FIG. 6, an outline of various gas for film formation is supplied from a gas supply source (not shown). Each is introduced, mixed and used to supply a semiconductor film forming chamber (not shown).
[0064] そこでこの集積型ガスパネル装置 1について、まず、その流体回路構造を、周辺回 路も含め、図 7を参照しながら説明する。  [0064] In view of this, first, the fluid circuit structure of the integrated gas panel device 1 including the peripheral circuit will be described with reference to FIG.
[0065] この集積型ガスパネル装置 1には、並列して設けた複数の枝流路 R1と、それら各 枝流路 R1の出口が接続された 1本の主流路 R2とが設けられている。  This integrated gas panel device 1 is provided with a plurality of branch channels R1 provided in parallel and one main channel R2 to which the outlets of the branch channels R1 are connected. .
[0066] 各枝流路 R1は、その基端にそれぞれインレットポート PIが接続されたものであり、こ のインレットポート PIに接続した外部配管(図示しない)を介して前記ガス供給源(図 示しない)から、数種類のガスが各枝流路 R1にそれぞれ送り込まれる。各枝流路 R1 の途上には、バルブ Vやマスフローコントローラ MFCなどのガス制御機器が配されて おり、それらの動作によって、各枝流路 R1を流れるガス流量やパージガスへの切替 などをそれぞれ制御できるようにしている。 [0066] Each branch channel R1 has an inlet port PI connected to the base end thereof, and the gas supply source (not shown) is connected via an external pipe (not shown) connected to the inlet port PI. Therefore, several kinds of gases are sent to each branch channel R1. Gas control devices such as valve V and mass flow controller MFC are arranged in the middle of each branch channel R1. Through these operations, the flow rate of gas flowing through each branch channel R1 and switching to purge gas can be controlled.
[0067] 一方、主流路 R2は、前述したように単一流路構造をなすものであって、前述した各 枝流路 R1との接続部分 CNは、 1箇所に集約されず、その流れに沿って飛び飛びに 設けてある。この実施形態では、この集積型ガスパネル装置 1の下流、すなわち主流 路 R2の下流に、合流したガスを攪拌混合するガス混合器 MIXが配置されており、さ らにその下流に、ガス混合器 MIXで混合されたガスを所定流量比率に分配してァゥ トレットポート POから各成膜チャンバ等に出力する流量比率制御器 FRCが設けてあ る。なお、これらガス混合器 MIX、流量比率制御器 FRC、アウトレットポート PO等は、 図 6には示されていない。  [0067] On the other hand, the main flow path R2 has a single flow path structure as described above, and the connection portion CN with each branch flow path R1 described above is not concentrated at one place, but along the flow. It is provided to fly away. In this embodiment, a gas mixer MIX that stirs and mixes the combined gas is disposed downstream of the integrated gas panel device 1, that is, downstream of the main flow path R2, and further downstream of the gas mixer. A flow rate controller FRC that distributes the gas mixed in MIX to a predetermined flow rate ratio and outputs it to each film forming chamber from the outlet port PO is provided. These gas mixer MIX, flow rate controller FRC, outlet port PO, etc. are not shown in FIG.
[0068] このような構成によって、各ガス供給源から供給されたガスは、この集積型ガスパネ ル装置 1の枝流路 R1においてそれぞれ流量制御されて主流路 R2に導入され、その 後、ガス混合器 MIXで十分に混合されて、流量比率制御器 FRCから所定の流量比 で各アウトレットポート POからそれぞれ出力される。  [0068] With such a configuration, the gas supplied from each gas supply source is introduced into the main channel R2 after being controlled in flow rate in the branch channel R1 of the integrated gas panel device 1, and then mixed with the gas. MIX is thoroughly mixed by the mixer MIX and output from each outlet port PO at a predetermined flow rate ratio from the flow rate controller FRC.
[0069] なお、図 7には、主流路 R2、枝流路 Rlの他に、前述したパージガスの流路やその 入口ポート PXや出口ポート PYなども記載されている。また、符号 MFMで示す部材 は、マスフローコントローラの示す流量が正しいかどうかを確認するためのベリファイ ャである。  [0069] In addition to the main flow path R2 and the branch flow path Rl, FIG. 7 also describes the purge gas flow path, the inlet port PX, the outlet port PY, and the like. The member indicated by the symbol MFM is a verifier for checking whether the flow rate indicated by the mass flow controller is correct.
[0070] 次に、この集積型ガスパネル装置 1の物理的な構成について、図 6等を参照しなが ら説明する。  Next, the physical configuration of the integrated gas panel apparatus 1 will be described with reference to FIG.
[0071] このガスパネル装置 1は、前記主流路 R2や枝流路 R1が内部に形成された概略面 板状をなすパネル体 2と、そのパネル体 2に取り付けられた前記ガス制御機器と、さら にインレットポート PIなどの付属配管具とを備えている。  [0071] The gas panel device 1 includes a panel body 2 having a substantially plate shape in which the main flow path R2 and the branch flow path R1 are formed, and the gas control device attached to the panel body 2. In addition, it is equipped with attached plumbing tools such as inlet port PI.
[0072] パネル体 2は、図 6に示すように、複数のブロック体を平面的に連設することで構成 される面板状のものである。このブロック体としては種々ある力 ここでは少なくとも、 枝流路 R1を構成する枝流路用ブロック体 31と、主流路 R2を構成する主流路用プロ ック体 32とを用いている。  [0072] As shown in Fig. 6, the panel body 2 has a face plate shape constituted by connecting a plurality of block bodies in a plane. Various forces are used as this block body. Here, at least the branch channel block body 31 constituting the branch channel R1 and the main channel block body 32 constituting the main channel R2 are used.
[0073] 枝流路用ブロック体 31は、扁平な方形平板状をなすもので、バルブ搭載用のもの やマスフローコントローラ搭載用のものなど、内部配管の異なるものが若干種ある。 1 本の枝流路 R1は、このような枝流路用ブロック体 31を複数直列させて長尺板状にす ることで形成される力 さらに、このように直列させた枝流路用ブロック体 31の列(以 下、枝流路ブロック体列 5とも言う)を横に並べて面板状にすることで、回路構成で述 ベたように、複数の枝流路 R1が並列に形成されるようにして!/、る。 [0073] The branch channel block body 31 has a flat rectangular flat plate shape and is mounted on a valve. There are some types with different internal pipes, such as those for mounting mass flow controllers. One branch channel R1 is a force formed by connecting a plurality of such branch channel block bodies 31 in series to form a long plate shape. As described in the circuit configuration, a plurality of branch flow paths R1 are formed in parallel by arranging the rows of bodies 31 (hereinafter also referred to as branch flow block block rows 5) side by side to form a face plate. Like! /
[0074] 主流路用ブロック体 32は、例えば一枚の長尺板状をなすもので、その長手方向に 沿って、内部に主流路 R2が形成されている。そして枝流路用ブロック体 31の下面に 上下に(パネル体の平面方向とは垂直方向に)積層され、接続される。このときの主 流路用ブロック体 32の延伸方向は、前記枝流路ブロック体列 5の延伸方向と直交さ せている。そしてこのことにより、上述したように、主流路 R2に各枝流路 R1の出口が 接続されるように構成して!/、る。  [0074] The main flow path block body 32 has, for example, a single long plate shape, and a main flow path R2 is formed inside along the longitudinal direction thereof. Then, they are stacked and connected to the lower surface of the branch channel block body 31 vertically (in a direction perpendicular to the plane direction of the panel body). At this time, the extending direction of the main channel block bodies 32 is orthogonal to the extending direction of the branch channel block bodies 5. As a result, as described above, the outlet of each branch channel R1 is connected to the main channel R2.
[0075] しかして、この実施形態では、主流路 R2と枝流路 R1との接続部分 CNに、以下の ような構成を採用している。  Accordingly, in this embodiment, the following configuration is adopted for the connection portion CN between the main channel R2 and the branch channel R1.
[0076] すなわち、図 8〜図 10に示すように、前記主流路用ブロック体 32の上部平面に揷 入孔 321を開口させ、その揷入孔 321が内部の主流路 R2に連通するように構成す る一方、枝流路用ブロック体 31の最下流のもの、すなわち枝流路 R1の出口部分を 有する枝流路用ブロック体 31 (1)に、その下部平面から当該枝流路 R1を突出させた 円筒状の突出配管 311を一体的に設けている。なお、この突出配管 311の外径と揷 入孔 321の内径とは、ほぼ一致させてある。  That is, as shown in FIG. 8 to FIG. 10, an insertion hole 321 is opened in the upper plane of the main channel block body 32 so that the insertion hole 321 communicates with the internal main channel R2. On the other hand, the branch channel R1 is connected to the most downstream side of the branch channel block body 31, that is, the branch channel block body 31 (1) having the outlet portion of the branch channel R1 from the lower plane. The protruding cylindrical protruding pipe 311 is integrally provided. The outer diameter of the protruding pipe 311 and the inner diameter of the insertion hole 321 are substantially matched.
[0077] そして、前記突出配管 311を揷入孔 321に揷入し、主流路用ブロック体 32と枝流 路用ブロック体 31 (1)とを組み立てた状態において、前記突出配管 311の先端が、 前記主流路 R2の内側面 R2a (図 10に示す)からさらに内方に突出するように構成し ている。その突出寸法は、例えば、突出配管 311の先端が、横断面でみて主流路 R 2の中央近傍にまで至る程度である。  [0077] Then, when the protruding pipe 311 is inserted into the insertion hole 321 and the main channel block body 32 and the branch channel block body 31 (1) are assembled, the tip of the protruding pipe 311 is The main channel R2 is configured to protrude further inward from the inner side surface R2a (shown in FIG. 10). The projecting dimension is, for example, such that the tip of the projecting pipe 311 reaches the vicinity of the center of the main flow path R 2 in a cross section.
[0078] また、この組み立て状態においては、主流路用ブロック体 32と枝流路用ブロック体 31 (1)の対向する平面間に Oリングなどのシール部材 6を介在させてスラスト方向に 密接させ、この接続部分 CNでのガス漏洩を防止している。なお、符号 322は、主流 路用ブロック体 32に設けられた、シール部材 6を収容する座繰り部である。この座繰 り部 322は、枝流路用ブロック体 31に設けても構わな!/、。 Further, in this assembled state, a sealing member 6 such as an O-ring is interposed between the opposing planes of the main flow path block body 32 and the branch flow path block body 31 (1) so as to be brought into close contact in the thrust direction. This prevents gas leakage at the connection CN. Reference numeral 322 denotes a countersink portion that is provided in the main flow path block body 32 and accommodates the seal member 6. This counterclock The section 322 may be provided in the branch channel block body 31! /.
[0079] このように構成した本実施形態によれば、枝流路 R1と主流路 R2との接続部分 CN において、枝流路 R1の出口である突出配管 311が主流路 R2内に突出してその流 路径を狭めるので、この部分での主流路 R2のガス流速が速くなつて圧力が低下し、 枝流路 R1内のガスを強く主流路 R2内に引き込むことができる。そしてこの引き込ま れたガスは、主流路 R2において突出配管 311の後方に生じる乱流等によって拡散 されるため、主流路 R2を流れてきたガスに、よりムラなく混合させること力 Sできるように なる。つまり、従来のものに比べて、ガスの混合を予めパネル体 2の内部で十分に行 うこと力 Sでき、その後段のガス混合器 MIXの容量を小さくしたり、場合によってはこれ を省略したりすることも可能になる。そしてその結果、応答性を格段に向上させること が可能になる。また、そのことにより、立ち上がり時等のガス濃度安定性も向上させる ことカでさるようになる。 [0079] According to the present embodiment configured as described above, the protruding pipe 311 that is the outlet of the branch channel R1 projects into the main channel R2 at the connection portion CN between the branch channel R1 and the main channel R2. Since the diameter of the flow path is narrowed, the gas flow rate in the main flow path R2 at this portion increases and the pressure decreases, and the gas in the branch flow path R1 can be strongly drawn into the main flow path R2. The drawn gas is diffused by the turbulent flow generated behind the protruding pipe 311 in the main flow path R2, so that the force S can be more uniformly mixed with the gas flowing through the main flow path R2. . In other words, compared with the conventional one, it is possible to sufficiently mix the gas in the panel body 2 in advance, and the capacity of the gas mixer MIX in the subsequent stage can be reduced or omitted in some cases. It is also possible to do. As a result, the responsiveness can be greatly improved. This also improves the gas concentration stability when starting up.
[0080] さらに、枝流路 R1内のガスがたとえ小流量であっても、これを主流路 R2に確実に 引き込むことができるので、この点からも、最終的な混合ガスの濃度安定性をより向 上させること力 Sでさる。  [0080] Furthermore, even if the gas in the branch flow path R1 has a small flow rate, it can be reliably drawn into the main flow path R2, so that the final concentration stability of the mixed gas can also be improved from this point. Use the force S for further improvement.
[0081] しかも、従来と構造的に大きく異なるのは、枝流路用ブロック体 31から所定長さの 突出配管 31 1を突出させる部分だけであるため、構造上の複雑化をほとんど招かな いし、組み立て状態では、この突出配管 311が内部に隠れてしまうので、従来のもの と外形的にコンパチブルなものにすることができる。  [0081] In addition, the structurally different from the conventional one is only the portion that protrudes the protruding pipe 311 having a predetermined length from the branch channel block body 31, so that the structure is hardly complicated. In the assembled state, this protruding pipe 311 is hidden inside, so that it can be made externally compatible with the conventional one.
[0082] 加えて、各ブロック体 31 (1)、 32の対向する平面間で、シール部材 6を挟み込ませ たスラストシール構造を採用して!/、るので、接続部分 CNにおける確実なガス漏洩防 止をも簡単に図れる。  [0082] In addition, a thrust seal structure in which the seal member 6 is sandwiched between the opposing surfaces of the block bodies 31 (1) and 32 is adopted! /, So that reliable gas leakage at the connection portion CN is achieved. It can be easily prevented.
[0083] なお、本実施形態を変形させても構わない。例えば、突出配管の外径は、少なくと も主流路の内径より小さければよぐ主流路への突出寸法も、今回は主流路の中央 付近が好ましいものであった力、ガス流量との兼ね合いで混合に最適なものに設定 すればよい。  Note that the present embodiment may be modified. For example, if the outer diameter of the protruding pipe is at least smaller than the inner diameter of the main flow path, the projecting dimension to the main flow path is a balance between the force and gas flow rate that were preferred around the center of the main flow path this time. What is necessary is just to set it as the optimal for mixing.
[0084] さらに、各突出配管の内径はり好ましくはマスフローコントローラ以降の枝流路の内 径)を、各ガスの流量に応じて設定する(流量が少ないほど内径を小さくする)ようにし てもよい。このことにより、小流量ガスでも流速を他のガスと同等にして到達時間を短 縮できるため、各ガスの主流路での合流タイミングの同時性を向上させることができる 。つまり、ガス流量に左右されず、より短時間で混合ガスを供給できるようになる。 [0084] Further, the inner diameter of each protruding pipe (preferably the inner diameter of the branch flow channel after the mass flow controller) is set according to the flow rate of each gas (the smaller the flow rate, the smaller the inner diameter). May be. As a result, even with a small flow rate gas, the flow rate can be made equal to that of other gases and the arrival time can be shortened, so that the simultaneity of the merging timing of each gas in the main flow path can be improved. That is, the mixed gas can be supplied in a shorter time regardless of the gas flow rate.
[0085] また、突出配管は円筒状に限られず、多角形状の筒でもよいし、その他の形状も種 々考えられる。 [0085] The protruding pipe is not limited to a cylindrical shape, and may be a polygonal tube, and various other shapes are also conceivable.
加えて、突出配管は、枝流路用ブロック体に一体的に設けるだけでなぐ枝流路用 ブロック体とは別々に設けておいて、組み立てるようにしても構わない。  In addition, the projecting pipe may be provided separately from the branch channel block body that is simply provided integrally with the branch channel block body and may be assembled.
[0086] ブロック体も、方形状のみならず例えば円板状のものでもよい。ただし、スラストシ一 ル構造のためには、対向箇所に平面部を有しているものが好ましい。  [0086] The block body may be not only a square shape but also a disk shape, for example. However, for a thrust seal structure, it is preferable to have a flat portion at the opposite location.
[0087] <第 3実施形態〉  [0087] <Third Embodiment>
以下に本発明の第 3実施形態について図 11〜図 14を参照して説明する。  A third embodiment of the present invention will be described below with reference to FIGS.
[0088] この実施形態に係る立体集積型ガスパネル装置 1は、半導体製造システムの一部 を構成するものであり、その概要を図 11に示すように、成膜用の各種ガスを図示しな いガス供給源からそれぞれ導入し、それらを混合して半導体の成膜チャンバ(図示し なレ、)に供給するために用いられる。  The three-dimensionally integrated gas panel device 1 according to this embodiment constitutes a part of a semiconductor manufacturing system. As shown in FIG. 11, the various gases for film formation are not illustrated. Each gas is introduced from a gas supply source, mixed and supplied to a semiconductor deposition chamber (not shown).
[0089] そこでこの立体集積型ガスパネル装置 1につ!/、て、まず、その流体回路構造を、周 辺回路も含め、図 12を参照しながら説明する。  [0089] Therefore, the three-dimensionally integrated gas panel apparatus 1 will first be described with reference to FIG. 12, including its peripheral circuit, including its fluid circuit structure.
[0090] この立体集積型ガスパネル装置 1には、回路的にみて並列させた複数の枝流路 R 1と、それら各枝流路 R1の出口が接続された 1本の主流路 R2と、それら枝流路 R1及 び主流路とを連通する複数の中間流路 R3が設けられている。  [0090] The three-dimensionally integrated gas panel device 1 includes a plurality of branch channels R1 arranged in parallel in terms of a circuit, and one main channel R2 to which the outlets of the branch channels R1 are connected. A plurality of intermediate flow paths R3 communicating with the branch flow paths R1 and the main flow path are provided.
[0091] 各枝流路 R1は、その基端にそれぞれインレットポート PIが接続されたものであり、こ のインレットポート PIに接続した外部配管(図示しな!/、)を介して前記ガス供給源から 、数種類のガスが各枝流路 R1にそれぞれ送り込まれる。各枝流路 R1の途上には、 バルブ Vやマスフローコントローラ MFCなどのガス制御機器が配されており、それら の動作によって、各枝流路 R1を流れるガス流量やパージガスへの切替などをそれぞ れ制卸でさるようにしてレ、る。  [0091] Each branch channel R1 is connected to an inlet port PI at the base end thereof, and the gas supply is performed via an external pipe (not shown! /) Connected to the inlet port PI. From the source, several types of gases are sent to each branch channel R1. A gas control device such as a valve V or a mass flow controller MFC is arranged in the middle of each branch flow path R1, and the operation of these controls the flow rate of gas flowing through each branch flow path R1 and switching to the purge gas. Let's do it like a wholesale.
[0092] 中間流路 R3は、各枝流路 R1の先端(出口)にそれぞれ連続して接続されて主流 路 R2に各枝流路 R1を連通させるものである。 [0093] 主流路 R2は、前述したように 1本の単一流路構造をなすものである。そしてこの実 施形態では、この主流路 R2の下流、すなわち立体集積型ガスパネル装置 1の下流 に、合流したガスを攪拌混合するガス混合器 MIXが配置されており、さらにその下流 に、ガス混合器 MIXで混合されたガスを、所定流量比率に分配してアウトレットポート POから各成膜チャンバに出力する流量比率制御器 FRCが設けてある。なお、これら ガス混合器 MIXや流量比率制御器 FRC、アウトレットポート POなどは、図 11には示 されていない。 [0092] The intermediate flow path R3 is continuously connected to the tip (exit) of each branch flow path R1, and connects each branch flow path R1 to the main flow path R2. [0093] As described above, the main flow path R2 has a single flow path structure. In this embodiment, a gas mixer MIX that stirs and mixes the combined gas is disposed downstream of the main flow path R2, that is, downstream of the three-dimensionally integrated gas panel device 1, and further, gas mixing is performed downstream thereof. A flow rate controller FRC that distributes the gas mixed in the mixer MIX to a predetermined flow rate and outputs the gas to each film forming chamber from the outlet port PO is provided. Note that these gas mixer MIX, flow rate controller FRC, outlet port PO, etc. are not shown in FIG.
[0094] このような構成によって、各ガス供給源から供給されたガスは、この立体集積型ガス パネル装置 1の枝流路 R1にお!/、てそれぞれ流量制御された後、中間流路 R3を経て 主流路 R2に導入され、その後、ガス混合器 MIXで十分に混合されて、流量比率制 御器 FRCから所定の流量比で各アウトレットポート POからそれぞれ出力される。  [0094] With such a configuration, the gas supplied from each gas supply source is flow-controlled in the branch channel R1 of the three-dimensionally integrated gas panel device 1 and then the intermediate channel R3. After that, it is introduced into the main flow path R2, and then thoroughly mixed by the gas mixer MIX, and output from each outlet port PO at a predetermined flow rate ratio from the flow rate ratio controller FRC.
[0095] なお、図 12には、主流路 R2、枝流路 R1の他に、前述したパージガスの流路やそ のインレットポート PX、アウトレットポート PYなども記載されている。また、符号 MFM で示す部材は、マスフローコントローラ MFCの示す流量が正し!/、かどうかを確認する  In addition to the main flow path R2 and the branch flow path R1, FIG. 12 also shows the purge gas flow path, the inlet port PX, the outlet port PY, and the like. Also, for the member indicated by the symbol MFM, check whether the flow rate indicated by the mass flow controller MFC is correct! /
[0096] 次に、この立体集積型ガスパネル装置 1の物理的な構成について、図 11、図 13を 参照しながら説明する。 Next, the physical configuration of the three-dimensionally integrated gas panel device 1 will be described with reference to FIGS. 11 and 13.
[0097] この立体集積型ガスパネル装置 1は、一の枝流路 R1が内部に形成された長尺平 板パネル状をなす枝流路用ブロック体 3と、主流路 R2や中間流路 R3が形成された 正多角柱状 (ここでは正八角柱状)をなす中心ブロック体 4と、前記枝流路用ブロック 体 3に取り付けられた前記ガス制御機器 V、 MFCと、さらにインレットポート PIなどの 付属配管具とを備えている。ここで一の枝流路 R1とは、複数ある枝流路のうちの 1つ という意味である。 [0097] This three-dimensionally integrated gas panel device 1 includes a branch channel block body 3 having a long flat panel shape in which one branch channel R1 is formed, and a main channel R2 and an intermediate channel R3. A center block body 4 having a regular polygonal column shape (in this case, a regular octagonal column shape) formed with the gas control devices V and MFC attached to the branch channel block body 3 and an inlet port PI, etc. And plumbing fixtures. Here, one branch channel R1 means one of a plurality of branch channels.
[0098] 枝流路用ブロック体 3は、ここでは扁平な方形平板状をなすブロック体要素 31を複 数直列させて構成している。このブロック体要素 31には、バルブ搭載用のものやマス フローコントローラ搭載用のものなど、内部配管の異なるものが若干種ある。もちろん 、この枝流路用ブロック体 3を分割せず、一枚ものの構成にしても構わない。  The branch channel block body 3 is constituted by a plurality of series-connected block body elements 31 each having a flat rectangular plate shape. There are several types of block body elements 31 with different internal piping, such as those for valves and those for mass flow controllers. Of course, the branch channel block body 3 may not be divided and may be configured as a single sheet.
[0099] 中心ブロック体 4は、上述したように、軸線を中心とした回転対称形である正八角柱 状をなすものであり、保持面であるその各側周面 41に、各枝流路用ブロック体 3の取 付面である底面 3aをそれぞれ対向させて保持している。 [0099] As described above, the central block body 4 is a regular octagonal prism having a rotationally symmetric shape about the axis. The bottom surface 3a, which is the mounting surface of each branch channel block body 3, is held facing each side peripheral surface 41, which is a holding surface, respectively.
[0100] この中心ブロック体 4の一方の端部には、その軸線 C上に沿って主流路 R2が設け られている。この主流路 R2の先端(前記端部側の一端)には、外部配管との接続の ための出口ポート Pが取り付けられて中心ブロック体 4の端面 4aから突出している。ま た、この主流路 R2の基端(前記端部と反対側の一端)には、合流部位 CNが設定さ れていて、この合流部位 CNから前記軸線 Cと垂直に、かつ中心ブロック体 4の各側 周面 41に向かって放射状に中間流路 R3が延伸されている。これら中間流路 R3は、 互いに等しい長さを有する。  [0100] A main channel R2 is provided along the axis C at one end of the central block body 4. An outlet port P for connection with an external pipe is attached to the front end (one end on the end side) of the main flow path R2, and protrudes from the end face 4a of the central block body 4. In addition, a merging portion CN is set at the base end (one end opposite to the end) of the main flow path R2, and the central block body 4 is perpendicular to the axis C from the merging portion CN. The intermediate flow path R3 is extended radially toward each side peripheral surface 41 of the. These intermediate flow paths R3 have the same length.
[0101] このようなものであれば、各枝流路 R1から主流路 R2への流路長(中間流路 R3の 長さ)が等しぐし力、も主流路 R2の一箇所に設けた合流部位 CNで中間流路 R3の全 てが合流するため、各枝流路 R2から最終出口ポート Pまでの距離が等しくなる。この ことにより各ガスの到達時間の同時性を格段に向上させることができる。  [0101] If this is the case, the flow path length from each branch flow path R1 to the main flow path R2 (the length of the intermediate flow path R3) is equal, and is also provided at one location of the main flow path R2. Since all of the intermediate flow path R3 merges at the merging site CN, the distance from each branch flow path R2 to the final outlet port P becomes equal. As a result, the simultaneity of the arrival times of the gases can be significantly improved.
[0102] また、主流路 R2が、出口ポート Pの近傍である中心ブロック体 4の端部に位置して その距離が非常に短いことから、応答性に非常に優れたものとなる。これは、立体的 な構造特性を活力、した効果であるとレ、える  [0102] Further, since the main flow path R2 is located at the end of the central block body 4 in the vicinity of the outlet port P and the distance thereof is very short, the responsiveness is very excellent. This is an effect that made use of three-dimensional structural characteristics.
[0103] さらに従来平面状に展開していた種々の部材を立体的に配置しているので、コン パクト化も可能である。  [0103] Furthermore, since various members that have been developed in a planar shape are arranged three-dimensionally, compaction is also possible.
[0104] なお、本実施形態を変形させることはもちろん可能である。  [0104] Note that, of course, the present embodiment can be modified.
[0105] 例えば、同時性をさらに向上させるには、ガス流量に応じて中間流路の径や、枝流 路における特にマスフローコントローラ以降の流路径を異ならせる(ガス流量の小さい ものほど径を小さくする)ようにすればよい。その他に、中間流路の長さをガス流量に 応じて異ならせる(ガス流量の小さ!/、ものほど長さを短くする)ことも可能である。この 場合は、例えば、中間ブロック体を回転対称形のままにしておいて、合流部位を中間 ブロック体の軸線から偏位させるようにしたり、あるいは、中間ブロック体自身が異形 状をなすものにしたりして、中間流路の長さを異ならせるようにすればよい。  [0105] For example, in order to further improve the simultaneity, the diameter of the intermediate flow path and the flow path diameter in the branch flow path, particularly after the mass flow controller, are varied according to the gas flow rate (the smaller the gas flow rate, the smaller the diameter). Do it). In addition, it is possible to vary the length of the intermediate flow path according to the gas flow rate (the gas flow rate is small! /, The shorter the length is). In this case, for example, the intermediate block body is left in a rotationally symmetric shape, and the merging portion is deviated from the axis of the intermediate block body, or the intermediate block body itself has an irregular shape. Thus, the length of the intermediate flow path may be varied.
[0106] さらにこの中心ブロック体について言えば、単一構造のものに限られず、複数のブ ロック体要素を組み合わせて構成できるようにしてもよい。また、形状で言えば正多角 柱に限られず、要は、各保持面 41によって、軸線を中心とした複数回転対称形が構 成されるものであればよい。例えば図 14に示すものが挙げられる。 [0106] Further, the center block body is not limited to a single structure, and may be configured by combining a plurality of block body elements. In terms of shape, regular polygons The main point is not limited to the column, but it is only necessary that each holding surface 41 forms a plurality of rotationally symmetric shapes about the axis. An example is shown in FIG.
[0107] また、製造都合や形状的な制限などから、合流箇所を一箇所にせず、応答性の影 響が実質的に問題にならない範囲において、主流路上で若干ずらした複数個所に 設けてもよい。 [0107] In addition, due to manufacturing convenience and shape limitations, there is no need for a single confluence, and it may be provided at a plurality of locations slightly shifted on the main flow path as long as the effect of responsiveness does not substantially become a problem. Good.
[0108] その他本発明は、以上の各実施形態で述べた構成の一部を適宜組み合わせても 構わないし、その趣旨を逸脱しない範囲で種々変形が可能である。  Others [0108] The present invention may appropriately combine a part of the configurations described in the above embodiments, and various modifications can be made without departing from the spirit of the present invention.

Claims

請求の範囲 The scope of the claims
[1] バルブやマスフローコントローラ等のガス制御機器が途上に設けられて内部を流れ るガスを制御できるように構成された複数の枝流路と、それら枝流路からのガスが流 れ込んで合流する 1本の主流路と、複数のブロック体を組み立てることにより前記枝 流路及び主流路が内部に形成されるように構成したマ二ホールド型パネル体と、を 備えた集積型ガスパネル装置にお!/、て、  [1] Gas control devices such as valves and mass flow controllers are provided along the way to control the gas flowing in the interior, and multiple branch flow paths and gas from these branch flow paths flow in. An integrated gas panel device comprising: one main flow path to be merged; and a manifold type panel body configured such that the branch flow path and the main flow path are formed inside by assembling a plurality of block bodies. Ni! /
前記パネル体が、前記主流路を形成する主流路用ブロック体と、その主流路用ブ ロック体を中心として対向するように配置された、前記枝流路を形成する枝流路用ブ ロック体と、を備えたものであることを特徴とする集積型ガスパネル装置。  The branch channel block body forming the branch channel is arranged such that the panel body is opposed to the main channel block body forming the main channel and the main channel block body as a center. And an integrated gas panel device.
[2] 前記主流路をはさんで対向する一の枝流路と他の枝流路との主流路に対する各合 流部位が、当該主流路の延伸方向においてほぼ同じ場所に設定されている請求項[2] In the present invention, each joining portion of the one branch channel and the other branch channel facing each other across the main channel with respect to the main channel is set at substantially the same place in the extending direction of the main channel. Term
1記載の集積型ガスパネル装置。 The integrated gas panel apparatus according to 1.
[3] 前記合流部位において、枝流路の出口配管が主流路の内側面よりもさらに内方に 所定長さ突出するように構成している請求項 1記載の集積型ガスパネル装置。 [3] The integrated gas panel apparatus according to [1], wherein an outlet pipe of the branch channel protrudes inward from the inner side surface of the main channel by a predetermined length at the merging portion.
[4] 前記ガスが半導体製造プロセスに用いられるものである請求項 1記載の集積型ガス パネル装置。 4. The integrated gas panel apparatus according to claim 1, wherein the gas is used in a semiconductor manufacturing process.
[5] バルブやマスフローコントローラ等のガス制御機器が途上に設けられて内部を流れ るガスを制御できるように構成された複数の枝流路と、それら枝流路からのガスが流 れ込む主流路と、複数のブロック体を組み立てることにより前記枝流路及び主流路が 内部に形成されるように構成したパネル体と、を備えた集積型ガスパネル装置におい て、  [5] Gas flow control devices such as valves and mass flow controllers are provided along the way to control the gas flowing inside, and the main flow into which the gas from these branch flow channels flows. In an integrated gas panel device comprising: a path; and a panel body configured such that the branch channel and the main channel are formed inside by assembling a plurality of block bodies,
前記ブロック体のうち、前記主流路を内部に有した主流路用ブロック体に、その内 部の主流路に連通する揷入孔を形成するとともに、前記枝流路の出口部分を内部に 有した枝流路用ブロック体に、その枝流路を外側に突出させた突出配管を設けてお さ、  Of the block bodies, the main flow path block body having the main flow path therein has a penetration hole communicating with the main flow path therein, and the branch flow path has an outlet portion therein. Providing a projecting pipe with the branch channel projecting outwards on the branch channel block body,
前記突出配管を前記揷入孔に揷入して当該主流路用ブロック体と枝流路用ブロッ ク体とを組み立てた状態において、前記突出配管の先端が前記主流路の内側面か らさらに内方に突出するように構成していることを特徴とする集積型ガスパネル装置。 In a state where the main flow path block body and the branch flow path block body are assembled by inserting the protruding pipe into the insertion hole, the tip of the protruding pipe further extends from the inner surface of the main flow path. An integrated gas panel device, characterized in that it projects outward.
[6] 前記突出配管の先端が、横断面でみて主流路の中央近傍にまで突出するようにし てレ、る請求項 5記載の集積型ガスパネル装置。 6. The integrated gas panel device according to claim 5, wherein the tip of the protruding pipe protrudes to the vicinity of the center of the main flow path when viewed in cross section.
[7] 前記ガスが半導体製造プロセスに用いられるものである請求項 5記載の集積型ガス パネル装置。 7. The integrated gas panel apparatus according to claim 5, wherein the gas is used in a semiconductor manufacturing process.
[8] バルブやマスフローコントローラ等のガス制御機器が途上に設けられて内部を流れ るガスを制御できるように構成された複数の枝流路と、  [8] Gas control devices such as valves and mass flow controllers are provided along the way, and a plurality of branch channels configured to control the gas flowing inside,
それら枝流路からのガスが流れ込んで合流する 1本の主流路と、  One main flow channel where the gas from these branch flow channels flows in and merges,
一の枝流路が内部に形成された、底面を取付面とする長尺パネル状をなす枝流路 用ブロック体と、  A branch channel block body having a long panel shape with a bottom surface as a mounting surface, with one branch channel formed therein;
側周面に形成した保持面で複数の枝流路用ブロック体をそれらの長手方向が互い に平行となるように保持する中心ブロック体と、を備え、  A central block body that holds a plurality of branch flow path block bodies so that their longitudinal directions are parallel to each other on a holding surface formed on a side peripheral surface,
前記中心ブロック体に前記主流路を形成するとともに、その主流路に設定した合流 部位から、当該中心ブロック体の側周面に取り付けた枝流路用ブロック体の枝流路 に向かってそれぞれ延びる中間流路を形成するようにしている立体集積型ガスパネ ル装置。  The main flow path is formed in the central block body, and the intermediate flow path extends from the junction portion set in the main flow path toward the branch flow path of the branch flow block body attached to the side peripheral surface of the central block body. A three-dimensionally integrated gas panel device that forms a flow path.
[9] 前記合流部位が主流路の一箇所に設定されて!/、る請求項 8記載の立体集積型ガ スパネル装置。  9. The three-dimensionally integrated gas panel device according to claim 8, wherein the confluence portion is set at one place of the main flow path!
[10] 前記各保持面によって中央ブロック体の軸線を中心とした回転対称形が構成され るとともに、前記合流部位が前記軸線上に設けられて各中間流路が互いに等しい長 さに設定されている請求項 9記載の立体集積型ガスパネル装置。  [10] Each of the holding surfaces forms a rotationally symmetric shape with respect to the axis of the central block body, the merging portion is provided on the axis, and the intermediate flow paths are set to have the same length. The three-dimensionally integrated gas panel device according to claim 9.
[11] 前記主流路が、前記軸線上に沿って設けられている請求項 8記載の立体集積型ガ スパネル装置。  11. The three-dimensionally integrated gas panel device according to claim 8, wherein the main flow path is provided along the axis.
[12] 前記中心ブロック体が正多角柱状をなすものである請求項 8記載の立体集積型ガ スパネル装置。  12. The three-dimensionally integrated gas panel device according to claim 8, wherein the central block body has a regular polygonal column shape.
[13] 前記ガスが半導体製造プロセスに用いられるものである請求項 8記載の立体集積 型ガスパネル装置。  13. The three-dimensionally integrated gas panel device according to claim 8, wherein the gas is used in a semiconductor manufacturing process.
PCT/JP2007/066211 2006-08-23 2007-08-21 Integrated gas panel apparatus WO2008023711A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/438,348 US8196609B2 (en) 2006-08-23 2007-08-21 Integrated gas panel apparatus
JP2008530925A JP5037510B2 (en) 2006-08-23 2007-08-21 Integrated gas panel device
CN2007800311579A CN101506561B (en) 2006-08-23 2007-08-21 Integrated gas panel apparatus
US13/479,016 US8820360B2 (en) 2006-08-23 2012-05-23 Integrated gas panel apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-227224 2006-08-23
JP2006-226970 2006-08-23
JP2006226970 2006-08-23
JP2006227224 2006-08-23
JP2006226874 2006-08-23
JP2006-226874 2006-08-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/438,348 A-371-Of-International US8196609B2 (en) 2006-08-23 2007-08-21 Integrated gas panel apparatus
US13/479,016 Continuation US8820360B2 (en) 2006-08-23 2012-05-23 Integrated gas panel apparatus

Publications (1)

Publication Number Publication Date
WO2008023711A1 true WO2008023711A1 (en) 2008-02-28

Family

ID=39106796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066211 WO2008023711A1 (en) 2006-08-23 2007-08-21 Integrated gas panel apparatus

Country Status (6)

Country Link
US (2) US8196609B2 (en)
JP (2) JP5037510B2 (en)
KR (1) KR101466998B1 (en)
CN (1) CN101506561B (en)
TW (1) TWI435991B (en)
WO (1) WO2008023711A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101725752B (en) * 2008-11-03 2012-09-26 喜开理株式会社 Air supply device and lumpy flange
KR20130037187A (en) 2011-10-05 2013-04-15 가부시키가이샤 호리바 에스텍 Fluid mechanism, support member constituting fluid mechanism and fluid control system
WO2014068886A1 (en) * 2012-11-02 2014-05-08 株式会社フジキン Accumulation-type gas supply device
JP2016014483A (en) * 2015-10-29 2016-01-28 株式会社堀場エステック Fluid mechanism, and bearing member constituting said fluid mechanism
WO2016147442A1 (en) * 2015-03-18 2016-09-22 株式会社東芝 Flow path structure, intake/exhaust member, and treatment device
JP2019047035A (en) * 2017-09-05 2019-03-22 株式会社日立ハイテクノロジーズ Plasma processing device
WO2022196386A1 (en) * 2021-03-19 2022-09-22 東京エレクトロン株式会社 Gas supply apparatus and semiconductor manufacturing apparatus

Families Citing this family (324)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5377513B2 (en) * 2007-12-27 2013-12-25 ラム リサーチ コーポレーション Apparatus, method and program storage device for eliminating gas transport delay for short etching recipes
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
CN102326129A (en) * 2009-03-04 2012-01-18 株式会社堀场Stec Gas supply device
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
TWI426197B (en) * 2010-05-13 2014-02-11 Hon Hai Prec Ind Co Ltd Rotary joint and rotary work table using the same
US8950433B2 (en) * 2011-05-02 2015-02-10 Advantage Group International Inc. Manifold system for gas and fluid delivery
US8746284B2 (en) * 2011-05-11 2014-06-10 Intermolecular, Inc. Apparatus and method for multiple symmetrical divisional gas distribution
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
FR2976337B1 (en) * 2011-06-08 2014-08-29 Air Liquide GAS DISTRIBUTION DEVICE FOR INSTALLATION OF CONDITIONING BOTTLES OF GASES
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
WO2013046660A1 (en) * 2011-09-30 2013-04-04 株式会社フジキン Gas supply device
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
GB201201986D0 (en) * 2012-02-03 2012-03-21 Parker Hannifin Mfg Ltd Modular fluid control system
US8985152B2 (en) * 2012-06-15 2015-03-24 Novellus Systems, Inc. Point of use valve manifold for semiconductor fabrication equipment
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
US9454158B2 (en) 2013-03-15 2016-09-27 Bhushan Somani Real time diagnostics for flow controller systems and methods
US9240412B2 (en) 2013-09-27 2016-01-19 Asm Ip Holding B.V. Semiconductor structure and device and methods of forming same using selective epitaxial process
US10683571B2 (en) * 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10128087B2 (en) 2014-04-07 2018-11-13 Lam Research Corporation Configuration independent gas delivery system
CN104975271B (en) * 2014-04-11 2018-01-19 北京北方华创微电子装备有限公司 Inlet duct and semiconductor processing equipment
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US10557197B2 (en) 2014-10-17 2020-02-11 Lam Research Corporation Monolithic gas distribution manifold and various construction techniques and use cases therefor
CN105714271B (en) * 2014-12-22 2020-07-31 株式会社堀场Stec Vaporization system
KR102263121B1 (en) 2014-12-22 2021-06-09 에이에스엠 아이피 홀딩 비.브이. Semiconductor device and manufacuring method thereof
JP2016148403A (en) * 2015-02-12 2016-08-18 株式会社五洋電子 Fluid control unit
US10529542B2 (en) 2015-03-11 2020-01-07 Asm Ip Holdings B.V. Cross-flow reactor and method
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
GB201511463D0 (en) * 2015-06-30 2015-08-12 Ge Healthcare Bio Sciences Ab Improvements in and relating to fluid path networks
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US10083836B2 (en) 2015-07-24 2018-09-25 Asm Ip Holding B.V. Formation of boron-doped titanium metal films with high work function
US10022689B2 (en) 2015-07-24 2018-07-17 Lam Research Corporation Fluid mixing hub for semiconductor processing tool
US10957561B2 (en) * 2015-07-30 2021-03-23 Lam Research Corporation Gas delivery system
US10118263B2 (en) 2015-09-02 2018-11-06 Lam Researech Corporation Monolithic manifold mask and substrate concepts
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10192751B2 (en) 2015-10-15 2019-01-29 Lam Research Corporation Systems and methods for ultrahigh selective nitride etch
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10825659B2 (en) 2016-01-07 2020-11-03 Lam Research Corporation Substrate processing chamber including multiple gas injection points and dual injector
US10215317B2 (en) 2016-01-15 2019-02-26 Lam Research Corporation Additively manufactured gas distribution manifold
US9879795B2 (en) 2016-01-15 2018-01-30 Lam Research Corporation Additively manufactured gas distribution manifold
US10147588B2 (en) 2016-02-12 2018-12-04 Lam Research Corporation System and method for increasing electron density levels in a plasma of a substrate processing system
US10651015B2 (en) 2016-02-12 2020-05-12 Lam Research Corporation Variable depth edge ring for etch uniformity control
US10699878B2 (en) 2016-02-12 2020-06-30 Lam Research Corporation Chamber member of a plasma source and pedestal with radially outward positioned lift pins for translation of a substrate c-ring
US10438833B2 (en) 2016-02-16 2019-10-08 Lam Research Corporation Wafer lift ring system for wafer transfer
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10501866B2 (en) 2016-03-09 2019-12-10 Asm Ip Holding B.V. Gas distribution apparatus for improved film uniformity in an epitaxial system
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US9892913B2 (en) 2016-03-24 2018-02-13 Asm Ip Holding B.V. Radial and thickness control via biased multi-port injection settings
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
KR102592471B1 (en) 2016-05-17 2023-10-20 에이에스엠 아이피 홀딩 비.브이. Method of forming metal interconnection and method of fabricating semiconductor device using the same
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US10662527B2 (en) 2016-06-01 2020-05-26 Asm Ip Holding B.V. Manifolds for uniform vapor deposition
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
KR102354490B1 (en) 2016-07-27 2022-01-21 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10410832B2 (en) 2016-08-19 2019-09-10 Lam Research Corporation Control of on-wafer CD uniformity with movable edge ring and gas injection adjustment
KR101863697B1 (en) * 2016-09-01 2018-06-01 서치수 The flow regulator valve for collecting tubes
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
KR20180068582A (en) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
KR20180070971A (en) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10983537B2 (en) 2017-02-27 2021-04-20 Flow Devices And Systems Inc. Systems and methods for flow sensor back pressure adjustment for mass flow controller
CN110494686A (en) * 2017-03-28 2019-11-22 株式会社富士金 Connector block and the fluid control device for using the connector block
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
KR102457289B1 (en) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10504742B2 (en) 2017-05-31 2019-12-10 Asm Ip Holding B.V. Method of atomic layer etching using hydrogen plasma
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10605530B2 (en) 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US10607895B2 (en) 2017-09-18 2020-03-31 Asm Ip Holdings B.V. Method for forming a semiconductor device structure comprising a gate fill metal
KR102630301B1 (en) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10927459B2 (en) 2017-10-16 2021-02-23 Asm Ip Holding B.V. Systems and methods for atomic layer deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
KR102443047B1 (en) 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
CN111316417B (en) 2017-11-27 2023-12-22 阿斯莫Ip控股公司 Storage device for storing wafer cassettes for use with batch ovens
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TW202325889A (en) 2018-01-19 2023-07-01 荷蘭商Asm 智慧財產控股公司 Deposition method
CN111630203A (en) 2018-01-19 2020-09-04 Asm Ip私人控股有限公司 Method for depositing gap filling layer by plasma auxiliary deposition
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
US10535516B2 (en) 2018-02-01 2020-01-14 Asm Ip Holdings B.V. Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
CN116732497A (en) 2018-02-14 2023-09-12 Asm Ip私人控股有限公司 Method for depositing ruthenium-containing films on substrates by cyclical deposition processes
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US10510536B2 (en) 2018-03-29 2019-12-17 Asm Ip Holding B.V. Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102501472B1 (en) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. Substrate processing method
TWI811348B (en) 2018-05-08 2023-08-11 荷蘭商Asm 智慧財產控股公司 Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
TW202349473A (en) 2018-05-11 2023-12-16 荷蘭商Asm Ip私人控股有限公司 Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
TW202013553A (en) 2018-06-04 2020-04-01 荷蘭商Asm 智慧財產控股公司 Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
KR20210027265A (en) 2018-06-27 2021-03-10 에이에스엠 아이피 홀딩 비.브이. Periodic deposition method for forming metal-containing material and film and structure comprising metal-containing material
WO2020002995A1 (en) 2018-06-27 2020-01-02 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
KR20200002519A (en) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (en) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (en) 2018-10-01 2020-04-07 Asm Ip控股有限公司 Substrate holding apparatus, system including the same, and method of using the same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US11346505B2 (en) * 2018-10-26 2022-05-31 Fujikin Incorporated Fluid supply system, fluid control device, and semiconductor manufacturing device
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
TW202037745A (en) 2018-12-14 2020-10-16 荷蘭商Asm Ip私人控股有限公司 Method of forming device structure, structure formed by the method and system for performing the method
CN113196444A (en) * 2018-12-20 2021-07-30 应用材料公司 Method and apparatus for supplying improved gas flow to a processing volume of a processing chamber
TWI819180B (en) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200091543A (en) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
US11346460B2 (en) * 2019-02-05 2022-05-31 Swagelok Company Integrated actuator manifold for multiple valve assembly
KR20200102357A (en) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for plug fill deposition in 3-d nand applications
KR102638425B1 (en) 2019-02-20 2024-02-21 에이에스엠 아이피 홀딩 비.브이. Method and apparatus for filling a recess formed within a substrate surface
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
TW202104632A (en) 2019-02-20 2021-02-01 荷蘭商Asm Ip私人控股有限公司 Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
TW202100794A (en) 2019-02-22 2021-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus and method for processing substrate
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
KR20200108243A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
US11492701B2 (en) 2019-03-19 2022-11-08 Asm Ip Holding B.V. Reactor manifolds
KR20200116033A (en) 2019-03-28 2020-10-08 에이에스엠 아이피 홀딩 비.브이. Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
KR20210140779A (en) * 2019-04-15 2021-11-23 램 리써치 코포레이션 Modular component system for gas delivery
KR20200123380A (en) 2019-04-19 2020-10-29 에이에스엠 아이피 홀딩 비.브이. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
WO2020217601A1 (en) * 2019-04-26 2020-10-29 株式会社堀場エステック Channel forming device
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Method of using a gas-phase reactor system including analyzing exhausted gas
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP2021015791A (en) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. Plasma device and substrate processing method using coaxial waveguide
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
TW202121506A (en) 2019-07-19 2021-06-01 荷蘭商Asm Ip私人控股有限公司 Method of forming topology-controlled amorphous carbon polymer film
CN112309843A (en) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 Selective deposition method for achieving high dopant doping
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
KR20210018759A (en) 2019-08-05 2021-02-18 에이에스엠 아이피 홀딩 비.브이. Liquid level sensor for a chemical source vessel
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
TW202129060A (en) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 Substrate processing device, and substrate processing method
TW202115273A (en) 2019-10-10 2021-04-16 荷蘭商Asm Ip私人控股有限公司 Method of forming a photoresist underlayer and structure including same
KR20210045930A (en) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. Method of Topology-Selective Film Formation of Silicon Oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
KR20210048408A (en) 2019-10-22 2021-05-03 에이에스엠 아이피 홀딩 비.브이. Semiconductor deposition reactor manifolds
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP2021090042A (en) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
TW202125596A (en) 2019-12-17 2021-07-01 荷蘭商Asm Ip私人控股有限公司 Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
KR20210095050A (en) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
TW202146882A (en) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
TW202146715A (en) 2020-02-17 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method for growing phosphorous-doped silicon layer and system of the same
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
KR20210132605A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Vertical batch furnace assembly comprising a cooling gas supply
KR20210132576A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Method of forming vanadium nitride-containing layer and structure comprising the same
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
KR20210143653A (en) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
TW202201602A (en) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
KR20220010438A (en) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
KR20220027026A (en) 2020-08-26 2022-03-07 에이에스엠 아이피 홀딩 비.브이. Method and system for forming metal silicon oxide and metal silicon oxynitride
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
TW202217037A (en) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
KR20220076343A (en) 2020-11-30 2022-06-08 에이에스엠 아이피 홀딩 비.브이. an injector configured for arrangement within a reaction chamber of a substrate processing apparatus
CN114639631A (en) 2020-12-16 2022-06-17 Asm Ip私人控股有限公司 Fixing device for measuring jumping and swinging
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
CN112941492B (en) * 2021-01-19 2022-06-03 华中科技大学 Atomic layer deposition apparatus and method
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US20230124246A1 (en) * 2021-10-19 2023-04-20 Applied Materials, Inc. Manifold for equal splitting and common divert architecture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6396375A (en) * 1986-10-07 1988-04-27 トル−バ・エ・コ−バン Manifold
JPH10169881A (en) * 1996-12-03 1998-06-26 Benkan Corp Integrated gas panel and assembly method thereof
JP2000513079A (en) * 1997-03-18 2000-10-03 フェスト アクツィエンゲゼルシャフト ウント コー Table assembly base
JP2002517698A (en) * 1998-06-12 2002-06-18 ジェイ. グレゴリー ホーリングスヘッド, Modular chemical delivery block

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616076U (en) 1984-06-16 1986-01-14 東横化学株式会社 Composite air valve for semiconductor equipment
JPS618127A (en) 1984-06-22 1986-01-14 Oval Eng Co Ltd Gas blending apparatus
JPS6162265U (en) * 1984-09-28 1986-04-26
JPS639785A (en) * 1986-06-30 1988-01-16 Daiwa Handotai Sochi Kk Gas supply control valve device for semiconductor process
US4911201A (en) * 1989-04-12 1990-03-27 Cryoloab, Inc. Valved manifold
US5178191A (en) 1990-09-05 1993-01-12 Newmatic Controls Inc. Modular pneumatic control systems
JP2731080B2 (en) * 1991-05-31 1998-03-25 株式会社本山製作所 Gas control device
US5368062A (en) 1992-01-29 1994-11-29 Kabushiki Kaisha Toshiba Gas supplying system and gas supplying apparatus
JPH061946U (en) * 1992-06-09 1994-01-14 株式会社ベンカン Gas fast switching valve
JPH061946A (en) 1992-06-16 1994-01-11 Yasuhara Chem Kk Polyester hot-melt adhesive
US5605179A (en) * 1995-03-17 1997-02-25 Insync Systems, Inc. Integrated gas panel
JP3546275B2 (en) * 1995-06-30 2004-07-21 忠弘 大見 Fluid control device
US6394138B1 (en) * 1996-10-30 2002-05-28 Unit Instruments, Inc. Manifold system of removable components for distribution of fluids
US5992463A (en) 1996-10-30 1999-11-30 Unit Instruments, Inc. Gas panel
US5836355A (en) * 1996-12-03 1998-11-17 Insync Systems, Inc. Building blocks for integrated gas panel
US6068016A (en) * 1997-09-25 2000-05-30 Applied Materials, Inc Modular fluid flow system with integrated pump-purge
DE69830857T2 (en) 1998-01-02 2006-05-24 Fluid Management Systems, Inc., Waltham Solenoid valve with fluid channels with hard tubes in the valve seat and flexible sealing diaphragm
JP4463896B2 (en) 1999-04-13 2010-05-19 株式会社オムニ研究所 Gas supply device
JP2001033000A (en) 1999-07-21 2001-02-06 Nippon Sanso Corp Gas supply device
EP1710504A2 (en) * 1999-12-15 2006-10-11 Osaka Gas Co., Ltd. Burner Apparatus, Gas Turbine Engine and Cogeneration System
US6283143B1 (en) * 2000-03-31 2001-09-04 Lam Research Corporation System and method for providing an integrated gas stick
JP2002089798A (en) * 2000-09-11 2002-03-27 Ulvac Japan Ltd Fluid control device and gas treatment equipment using it
JP4002060B2 (en) * 2000-09-26 2007-10-31 株式会社島津製作所 Liquid material supply device
DE10063471A1 (en) * 2000-12-19 2002-06-20 Claas Industrietechnik Gmbh Device for making contact between adjusting device and electrical connections for functional support like a hydraulic valve block, makes the adjusting device protrude from the functional support with a magnetic coil.
JP4435999B2 (en) * 2001-02-26 2010-03-24 株式会社堀場エステック Fluid supply mechanism and replacement board using mass flow controller and adapter
JP2002349797A (en) * 2001-05-23 2002-12-04 Fujikin Inc Fluid control device
DE10252592A1 (en) * 2001-11-12 2003-06-18 Otto Herman Seyfarth Electropneumatic installation has integrated pneumatic distribution part in form of single block with several differently oriented internal channels arranged in three dimensions
US6907904B2 (en) * 2003-03-03 2005-06-21 Redwood Microsystems, Inc. Fluid delivery system and mounting panel therefor
JP4319434B2 (en) * 2003-03-11 2009-08-26 東京エレクトロン株式会社 Gate valve and vacuum vessel
CN100460162C (en) * 2003-07-14 2009-02-11 科若达气动株式会社 Conversion valve device
US7146999B2 (en) * 2005-03-08 2006-12-12 Gregory C. Giese Modular fluid handling device
US7726331B1 (en) * 2007-05-23 2010-06-01 Giese Gregory C Modular fluid handling device II
US8307849B2 (en) * 2008-06-03 2012-11-13 Jergens, Inc. Rotary coupler and method of using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6396375A (en) * 1986-10-07 1988-04-27 トル−バ・エ・コ−バン Manifold
JPH10169881A (en) * 1996-12-03 1998-06-26 Benkan Corp Integrated gas panel and assembly method thereof
JP2000513079A (en) * 1997-03-18 2000-10-03 フェスト アクツィエンゲゼルシャフト ウント コー Table assembly base
JP2002517698A (en) * 1998-06-12 2002-06-18 ジェイ. グレゴリー ホーリングスヘッド, Modular chemical delivery block

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101725752B (en) * 2008-11-03 2012-09-26 喜开理株式会社 Air supply device and lumpy flange
US9188990B2 (en) 2011-10-05 2015-11-17 Horiba Stec, Co., Ltd. Fluid mechanism, support member constituting fluid mechanism and fluid control system
KR20130037187A (en) 2011-10-05 2013-04-15 가부시키가이샤 호리바 에스텍 Fluid mechanism, support member constituting fluid mechanism and fluid control system
US9766634B2 (en) 2011-10-05 2017-09-19 Horiba Stec, Co., Ltd. Fluid mechanism, support member constituting fluid mechanism and fluid control system
TWI564502B (en) * 2012-11-02 2017-01-01 富士金股份有限公司 Integrated gas supply device
US9471065B2 (en) 2012-11-02 2016-10-18 Fujikin Incorporated Integrated type gas supplying apparatus
JP2014092929A (en) * 2012-11-02 2014-05-19 Fujikin Inc Accumulation-type gas supply device
WO2014068886A1 (en) * 2012-11-02 2014-05-08 株式会社フジキン Accumulation-type gas supply device
WO2016147442A1 (en) * 2015-03-18 2016-09-22 株式会社東芝 Flow path structure, intake/exhaust member, and treatment device
JP2016178115A (en) * 2015-03-18 2016-10-06 株式会社東芝 Flow passage structure, intake/exhaust member, and processing device
US10312113B2 (en) 2015-03-18 2019-06-04 Kabushiki Kaisha Toshiba Flow passage structure, intake and exhaust member, and processing apparatus
JP2016014483A (en) * 2015-10-29 2016-01-28 株式会社堀場エステック Fluid mechanism, and bearing member constituting said fluid mechanism
JP2019047035A (en) * 2017-09-05 2019-03-22 株式会社日立ハイテクノロジーズ Plasma processing device
WO2022196386A1 (en) * 2021-03-19 2022-09-22 東京エレクトロン株式会社 Gas supply apparatus and semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
KR101466998B1 (en) 2014-12-01
CN101506561B (en) 2012-04-18
KR20090053822A (en) 2009-05-27
US20120227848A1 (en) 2012-09-13
TWI435991B (en) 2014-05-01
US20090320754A1 (en) 2009-12-31
JP2012229807A (en) 2012-11-22
TW200825315A (en) 2008-06-16
JPWO2008023711A1 (en) 2010-01-14
US8820360B2 (en) 2014-09-02
US8196609B2 (en) 2012-06-12
CN101506561A (en) 2009-08-12
JP5579783B2 (en) 2014-08-27
JP5037510B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
WO2008023711A1 (en) Integrated gas panel apparatus
US8291935B1 (en) Flexible gas mixing manifold
KR101940325B1 (en) Fluid mechanism, support member constituting fluid mechanism and fluid control system
JP4554853B2 (en) Gas supply integrated valve
JPH07509041A (en) Injection system with concentric slits and its injection elements
KR101817254B1 (en) Gas distributor and manufacturing method of the same
JPH03168494A (en) Tee-pipe
WO2005005053B1 (en) Nozzle arrangements
CN109488664B (en) Fluid oscillation device
JP2002018257A (en) Micromixer
JPH11265216A (en) Pressure type flow controller
CN1143080C (en) Device for sucking gas and mixing up in fuel flow
US6960077B2 (en) Low noise modular blade burner
JP7457194B1 (en) Vortex fluid mixer
WO2022196386A1 (en) Gas supply apparatus and semiconductor manufacturing apparatus
KR102445304B1 (en) Flow rate ratio control device
JPH08278008A (en) Premixture type gas burner
JP2004070746A (en) Flow rate adjusting device
KR20240033514A (en) Accumulator with pulsation control function
JP2005319419A (en) Fluid mixer and liquid fuel feed system using it
KR970005412A (en) Shower head
JPH06347012A (en) Premixer
CN117255897A (en) Fluid delivery mounting panel and system
JPH10169922A (en) Burner unit for thick/thin combustion
JPH0729035B2 (en) Pressure balancer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780031157.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792810

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008530925

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12438348

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097005386

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792810

Country of ref document: EP

Kind code of ref document: A1