JPH07283445A - Superconductive connecting wire - Google Patents

Superconductive connecting wire

Info

Publication number
JPH07283445A
JPH07283445A JP7460594A JP7460594A JPH07283445A JP H07283445 A JPH07283445 A JP H07283445A JP 7460594 A JP7460594 A JP 7460594A JP 7460594 A JP7460594 A JP 7460594A JP H07283445 A JPH07283445 A JP H07283445A
Authority
JP
Japan
Prior art keywords
superconducting
wire
oxide
superconductive
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7460594A
Other languages
Japanese (ja)
Inventor
Tokumi Fukazawa
徳海 深沢
Yoshinobu Taruya
良信 樽谷
Takanori Kabasawa
宇紀 樺沢
Masahiko Hiratani
正彦 平谷
Shoichi Akamatsu
正一 赤松
Kazushige Imagawa
一重 今川
Akira Tsukamoto
塚本  晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7460594A priority Critical patent/JPH07283445A/en
Publication of JPH07283445A publication Critical patent/JPH07283445A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/45198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01056Barium [Ba]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To connect the outer wiring of superconductive circuit chip used for superconductive electronics in the superconductive state by burying fine wires comprising superconductive fine particles of oxides. CONSTITUTION:Through holes in diameter of 0.2mm are made in Au wires in diameter of 5mm in almost the same intervals. Next, these through holes are filled up with previously formed Y-Ba-Cu oxide particles. Next, such a compound materials are wire-drawn to squeeze the diameter of the compound lines. By repeating the wire-drawing step to reduce the wire diameter down to 0.5mm. Furthermore, these compound lines are repeatedly rolled until the sectional area is reduced down to 1/10 and the thickness not exceeding 30 micron. Through these procedures, the wire 1 comprising fine particles of Y-Ba- Cu oxide are buried in the space between the Au base material to manufacture the title superconductive wire comprising super conductive fine wire in thickness and the intervals between the fine lines not exceeding 1 micron. In the title superconductive wire, the superconductive current running therein in the connecting step can be hardly reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微小磁場の計測、電圧標
準、マイクロ波あるいはミリ波検出回路や高速デジタル
回路、アナログデータ処理回路等、超電導性を用いるこ
とにより特有の性能を発揮する超電導エレクトロニクス
の分野、さらには広く半導体素子を用いたパッケージあ
るいは基板等実装の分野にかかわり、これらデバイスを
構成するチップ間、あるいはチップと超電導コイル等超
電導線間の超電導接続用ワイヤに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to superconducting electronics that exhibits unique performance by using superconductivity such as measurement of minute magnetic field, voltage standard, microwave or millimeter wave detection circuit, high-speed digital circuit, analog data processing circuit. The present invention relates to a superconducting connection wire between chips that form these devices, or between a chip and a superconducting wire such as a superconducting coil.

【0002】[0002]

【従来の技術】従来の超電導エレクトロニクスに用いら
れる超電導回路チップの外部配線、すなわち超電導回路
チップと超電導回路チップ間、あるいは超電導回路チッ
プとチップパッケージあるいは基板間、または超電導回
路チップと半導体回路チップ間の配線接続は以下に述べ
る方法が用いられていた。すなわち、超電導回路チップ
や半導体回路チップはチップパッケージあるいは基板に
装着され、回路チップとパッケージあるいは基板間はA
lあるいはAuのワイヤにより接続される。超電導回路
チップや半導体回路チップとチップパッケージあるいは
基板間では、AlあるいはAu等の金属細線を超音波に
よりボンデイングすることにより、電気的な接続が得ら
れていた。さらに、微小磁場の計測に用いられるスクイ
ド素子と磁場検出コイル間の接続に関しては、Pb合金
等の金属系超電導材料を磁場検出コイルに用いることに
より超電導接続がなされていた。
External wiring of superconducting circuit chips used in conventional superconducting electronics, that is, between superconducting circuit chips and superconducting circuit chips, or between superconducting circuit chips and chip packages or substrates, or between superconducting circuit chips and semiconductor circuit chips. The method described below was used for wiring connection. That is, the superconducting circuit chip or the semiconductor circuit chip is mounted on the chip package or the substrate, and the circuit chip and the package or the substrate are separated by A
It is connected by a wire of 1 or Au. Between the superconducting circuit chip or the semiconductor circuit chip and the chip package or the substrate, an electrical connection has been obtained by ultrasonically bonding a metal thin wire such as Al or Au. Further, regarding the connection between the SQUID element and the magnetic field detection coil used for measuring the minute magnetic field, the superconducting connection was made by using a metal-based superconducting material such as Pb alloy for the magnetic field detection coil.

【0003】[0003]

【発明が解決しようとする課題】上記従来の超電導回路
チップの接続技術は以下のような問題点を有している。
ジョセフソン接合素子等の超電導素子、および超電導配
線等に構成され、データ処理等の機能を有する超電導回
路はギガヘルツ以上の極めて高速の演算性能を有する。
しかしながら従来の配線接続技術においては回路チップ
が超電導回路であり、チップ内で高速で無歪に近い信号
が伝搬されているにもかかわらず、信号がチップより外
部に取りだされると同時に、信号は伝搬損失特性を有す
る常伝導のワイヤを伝わるために、信号波形は減衰し、
波形が歪む。信号波形の減衰や歪は、とくに信号周波数
が高くなるほど著しくなる。
The conventional connection technology for the superconducting circuit chip has the following problems.
A superconducting circuit having a superconducting element such as a Josephson junction element and a superconducting wire and having a function of data processing has an extremely high-speed arithmetic performance of gigahertz or higher.
However, in the conventional wiring connection technology, the circuit chip is a superconducting circuit, and although the signal is propagated in the chip at a high speed and with almost no distortion, the signal is taken out from the chip at the same time as the signal. Is transmitted through a normal conducting wire having a propagation loss characteristic, the signal waveform is attenuated,
The waveform is distorted. Attenuation and distortion of the signal waveform become more remarkable as the signal frequency becomes higher.

【0004】このような信号波形の減衰や歪を防止する
ために、超電導回路チップ間あるいは超電導回路チップ
と半導体回路チップ間にはパッケージや基板を介して、
超電導性のワイヤで接続することが望まれる。とくに液
体窒素中での動作が可能な酸化物の超電導ワイヤがとく
に望ましい。
In order to prevent such signal waveform attenuation and distortion, a package or substrate is provided between the superconducting circuit chips or between the superconducting circuit chips and the semiconductor circuit chip.
It is desirable to connect with superconducting wires. In particular, an oxide superconducting wire capable of operating in liquid nitrogen is particularly desirable.

【0005】一方、微小磁場の計測に用いられるスクイ
ド素子と磁場検出コイル間の接続に関しては、磁場検出
コイルとスクイド素子につながる入力コイルを超電導ル
ープで閉じる必要がある。超電導ループに対するマイス
ナー効果により、磁場検出コイルで検出された磁場信号
が入力コイルに伝えられる。従来はPb合金等の金属系
超電導材料を磁場検出コイルに用いることにより、入力
コイルとの超電導接続がなされていた。しかしながら、
液体窒素中での動作が可能な酸化物系コイルの超電導接
続は従来技術では不可能であり、入力コイルをスクイド
素子と同一基板上に配置することはできなかった。入力
コイルと磁場検出コイル系はスクイド素子の基板とは別
に形成されており、このような構造では入力コイルとス
クイド素子との磁場カップリング効率が低いので、磁場
検出感度が低下した。
On the other hand, regarding the connection between the SQUID element and the magnetic field detection coil used for measuring a minute magnetic field, it is necessary to close the input coil connected to the magnetic field detection coil and the SQUID element with a superconducting loop. Due to the Meissner effect on the superconducting loop, the magnetic field signal detected by the magnetic field detection coil is transmitted to the input coil. Conventionally, a superconducting connection with the input coil has been made by using a metallic superconducting material such as Pb alloy for the magnetic field detecting coil. However,
The superconducting connection of an oxide coil capable of operating in liquid nitrogen is impossible with the conventional technique, and the input coil cannot be arranged on the same substrate as the SQUID element. The input coil and the magnetic field detection coil system are formed separately from the substrate of the SQUID element. In such a structure, the magnetic field coupling efficiency between the input coil and the SQUID element is low, so the magnetic field detection sensitivity is lowered.

【0006】本発明の目的は、超電導エレクトロニクス
に用いられる超電導回路チップの外部配線、すなわち超
電導回路チップと超電導回路チップ間、あるいは超電導
回路チップとチップパッケージあるいは基板間、または
超電導回路チップと半導体回路チップ間の配線接続等に
用いられる超電導接続用ワイヤの構造と製造方法を与え
ることにある。
An object of the present invention is to provide external wiring of a superconducting circuit chip used in superconducting electronics, that is, between a superconducting circuit chip and a superconducting circuit chip, between a superconducting circuit chip and a chip package or a substrate, or between a superconducting circuit chip and a semiconductor circuit chip. It is to provide a structure and a manufacturing method of a wire for superconducting connection used for wiring connection between the like.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の超電導接続用ワイヤは複数個の酸化物の超
電導微粒子からなる細線が金属中に埋め込まれた構造と
する。
In order to achieve the above object, the superconducting connecting wire of the present invention has a structure in which fine wires made of a plurality of oxide superconducting fine particles are embedded in a metal.

【0008】このような超電導接続用ワイヤにおいて、
超電導ワイヤを構成する酸化物微粒子からなる細線間の
平均的な間隔を1ミクロン以下とする。
In such a superconducting connecting wire,
The average distance between the fine wires made of oxide fine particles constituting the superconducting wire is 1 micron or less.

【0009】超電導接続用ワイヤの製造方法としては、
酸化物粉末を複数個の穴を形成した金属シース中に埋め
込み、このような複合体を圧延あるいは引き延ばして細
線化し、熱処理を施すとともに、ワイヤの長手方向への
切断工程を施すことによりさらに細線化して、形成す
る。
As a method of manufacturing a wire for superconducting connection,
The oxide powder is embedded in a metal sheath having a plurality of holes, and such a composite is rolled or stretched to be thinned, and heat-treated, and further cut by performing a cutting process in the longitudinal direction of the wire. To form.

【0010】あるいは超電導接続用ワイヤは超電導回路
チップ、半導体回路チップと、これらを積載するパッケ
ージ、基板、あるいは超電導コイル等超電導線の間を相
互に電気的に接続するための超電導性を有する平角の超
電導ワイヤとし、かつ酸化物の超電導層が金属層を介し
て層状に構成され、層の幅が層全体の厚みより大きい構
造とする。
Alternatively, the superconducting connection wire is a flat rectangular wire having superconductivity for electrically connecting the superconducting circuit chip, the semiconductor circuit chip, and a package, a substrate, or a superconducting wire such as a superconducting coil to each other. The superconducting wire has a structure in which the oxide superconducting layer is layered with the metal layer interposed therebetween, and the width of the layer is larger than the thickness of the entire layer.

【0011】このような超電導接続用ワイヤにおいて、
超電導ワイヤを構成する酸化物超電導層間の平均的な間
隔を1ミクロン以下とする。
In such a superconducting connection wire,
The average distance between the oxide superconducting layers forming the superconducting wire is 1 micron or less.

【0012】あるいは超電導接続用ワイヤの製造方法と
して、平面状金属板上に、酸化物超電導層および金属層
を堆積し、これら酸化物超電導と金属層を交互に堆積す
ることにより形成し、製造工程として、該積層膜のワイ
ヤの長手方向への切断工程を含むものとする。
Alternatively, as a method for producing a wire for superconducting connection, an oxide superconducting layer and a metal layer are deposited on a flat metal plate, and the oxide superconducting layer and the metal layer are alternately deposited to form a manufacturing process. As a result, a step of cutting the laminated film in the longitudinal direction of the wire is included.

【0013】これら超電導接続用ワイヤにおいて、超電
導ワイヤを構成する金属をAg、Au、Pt、Re、R
h、Pdあるいはこれらの合金によって構成することと
する。さらに、これら超電導接続用ワイヤにおいて、超
電導微粒子からなる細線を構成する超電導材料をY、B
a、Cuからなる酸化物、Bi、Sr、CaおよびCu
からなる酸化物、Tl、Ba、CaおよびCuからなる
酸化物、あるいはこれらの酸化物と同一系の結晶構造か
ら成る酸化物によって構成する。
In these superconducting connecting wires, the metals forming the superconducting wires are Ag, Au, Pt, Re and R.
h, Pd, or an alloy of these. Furthermore, in these superconducting connecting wires, the superconducting material forming the thin wire made of superconducting fine particles is Y, B
a, an oxide composed of Cu, Bi, Sr, Ca and Cu
And an oxide composed of Tl, Ba, Ca and Cu, or an oxide composed of the same type of crystal structure as these oxides.

【0014】これら超電導接続用ワイヤにおいて、超電
導回路チップ、半導体回路チップあるいは超電導性のパ
ッケージあるいは基板における、該超電導ワイヤの接続
される部位を超電導ワイヤに用いられる構成材料と共通
する材料によって構成する。
In these superconducting connecting wires, in the superconducting circuit chip, the semiconductor circuit chip, the superconducting package or the substrate, the part to which the superconducting wire is connected is made of the same material as the constituent material used for the superconducting wire.

【0015】[0015]

【作用】本発明にかかる超電導接続ワイヤは、酸化物超
電導体と金属間の超電導近接効果と貴金属の溶融性を利
用したものである。すなわち、従来の金属系配線用ワイ
ヤを超電導特性を有する酸化物に置き換えても、線材と
しての耐曲げ性や基板上の配線パッドとの接続性に欠け
ることは明らかである。
The superconducting connecting wire according to the present invention utilizes the superconducting proximity effect between the oxide superconductor and the metal and the melting property of the noble metal. That is, even if the conventional metal wiring wire is replaced with an oxide having superconducting properties, it is clear that the wire material lacks bending resistance and connectivity with wiring pads on the substrate.

【0016】金属と酸化物の超電導材料の複合体により
構成される材料は超電導近接効果により、酸化物だけで
なく、金属層も超電導性を帯びる。金属層中で超電導性
を帯びる距離は金属材料の種類にも依存するが、金属と
酸化物超電導材料との界面から数百ナノメートルの寸法
である。したがって、金属と酸化物超電導材料の複合体
で金属層の厚みをサブミクロンの寸法にすれば、金属層
の酸化物超電導体と接する界面から金属の表面まで超電
導性を保たせることができる。金属層の厚みが1ミクロ
ン以上であれば、近接効果によって金属の表面層まで超
電導電流を流すことはできない。
Due to the superconducting proximity effect, the material constituted by the composite of the metal and the oxide superconducting material has not only the oxide but also the metal layer having the superconducting property. The superconducting distance in the metal layer depends on the type of metal material, but is several hundred nanometers from the interface between the metal and the oxide superconducting material. Therefore, if the metal layer is made of a composite of a metal and an oxide superconducting material so that the thickness of the metal layer is submicron, superconductivity can be maintained from the interface of the metal layer in contact with the oxide superconductor to the surface of the metal. If the thickness of the metal layer is 1 micron or more, the superconducting current cannot flow to the surface layer of the metal due to the proximity effect.

【0017】超電導ワイヤとチップ内配線パッドとの間
で超電導接続がなされる必要がある。後で述べるよう
に、超電導ワイヤとチップ内配線パッドとの間の機械的
な接続は超電導ワイヤ中の貴金属によってなされる。す
なわち、チップ内配線パッドに直接接するのは超電導ワ
イヤ中の貴金属部分である。本発明におけるように、超
電導細線間の間隔を1ミクロン以下とすれば、接続部分
で、ほとんどすべての超電導細線から超電導性、すなわ
ち超電導電流の寄与が生じる。
A superconducting connection needs to be made between the superconducting wire and the in-chip wiring pad. As will be described later, the mechanical connection between the superconducting wire and the in-chip wiring pad is made by the noble metal in the superconducting wire. That is, the noble metal portion in the superconducting wire is in direct contact with the in-chip wiring pad. As in the present invention, if the distance between the superconducting thin wires is 1 micron or less, the superconducting property, that is, the superconducting current contribution, is generated from almost all the superconducting thin wires at the connecting portion.

【0018】超電導細線中で酸化物微粒子間に不連続性
が生じた場合も、超電導近接効果により、貴金属を介し
て微粒子間は超電導状態で接続される。このことは超電
導ワイヤの製造工程、とくに圧延引き延ばし工程におけ
る粒子間の不連続性の発生、あるいは超電導ワイヤの基
板への接続時におけるワイヤの過大な曲げによる超電導
細線の切断等の発生に対しても、超電導特性が維持され
ることを補償するものである。
Even when discontinuity occurs between oxide particles in the superconducting thin wire, the particles are connected in a superconducting state via the noble metal due to the superconducting proximity effect. This also applies to the generation of discontinuity between particles in the superconducting wire manufacturing process, especially in the rolling and drawing process, or the cutting of superconducting thin wires due to excessive bending of the wire when connecting the superconducting wire to the substrate. , To ensure that the superconducting characteristics are maintained.

【0019】酸化物の超電導線のみからなる超電導ワイ
ヤでは、線材としての耐曲げ性や基板上の配線パッドと
の接続性に欠ける。これに対して、本発明にかかる超電
導細線が貴金属の内部に複数本埋め込まれた構造の超電
導ワイヤにおいては、貴金属が曲げに対する耐久性や、
基板上の配線パッドとの機械的な接続の役割を受け持
つ。超電導細線が単層ではなく、複数本数であること
は、超電導細線の径を小さくでき、かつ可能な曲げ半径
を小さくするのに有効である。Ag、Au、Pt、R
e、Rh、Pd等はこのような耐曲げ性や、基板上の配
線パッドとの接続性に優れた材料である。
A superconducting wire consisting only of an oxide superconducting wire lacks bending resistance as a wire rod and connectivity with a wiring pad on a substrate. On the other hand, in a superconducting wire having a structure in which a plurality of superconducting thin wires according to the present invention are embedded inside a noble metal, the noble metal has durability against bending,
Responsible for mechanical connection with the wiring pad on the board. It is effective that the diameter of the superconducting thin wire can be made small and the possible bending radius can be made small because the superconducting thin wire is not a single layer but a plurality of superconducting wires. Ag, Au, Pt, R
Materials such as e, Rh, and Pd are excellent in such bending resistance and connectivity with wiring pads on the substrate.

【0020】これらの貴金属材料は超音波振動による加
熱によって、基板上の配線パッドに密着させることがで
きる。基板上の配線パッドの表面層がAg、Au、P
t、Re、Rh、Pd等、超電導ワイヤを構成するのと
同一の材料で被覆されている場合、超音波ボンディング
による密着性はさらに向上する。
These noble metal materials can be brought into close contact with the wiring pads on the substrate by heating with ultrasonic vibration. The surface layer of the wiring pad on the substrate is Ag, Au, P
When coated with the same material as that of the superconducting wire such as t, Re, Rh, Pd, etc., the adhesion by ultrasonic bonding is further improved.

【0021】超電導微粒子からなる細線としてY、Ba
およびCuからなる酸化物を用いた場合、微粒子どうし
が原子レベルで密着していれば、10の4乗アンペア以
上の電流容量は容易に得ることができる。貴金属を介し
て超電導細線とチップ内配線パッドとを接続する場合、
これらを隔てる貴金属の厚みがサブミクロンであれば、
超電導電流の減衰割合を1/100あるいはこれ以下に
抑えることができる。超電導細線内の微粒子に関して
も、互いに密着していなくても、超電導近接効果によっ
て超電導電流を流し得る。
Y, Ba as fine wires made of superconducting fine particles
When an oxide of Cu and Cu is used, a current capacity of 10 4 ampere or more can be easily obtained if the fine particles are in close contact with each other at the atomic level. When connecting the superconducting thin wire and the in-chip wiring pad via a precious metal,
If the thickness of the precious metal separating them is submicron,
The damping ratio of the superconducting current can be suppressed to 1/100 or less. Even with respect to the fine particles in the superconducting thin wires, the superconducting current can flow by the superconducting proximity effect even if they are not in close contact with each other.

【0022】したがって、超電導細線とチップ内配線と
の間で得られる超電導電流の容量はもっぱら、貴金属を
介して基板表面と対向する超電導細線の面積によって決
まる。本発明におけるごとく、超電導ワイヤ中の超電導
細線の本数が複数本であることが対向面積を増大させる
上で有効である。さらに、本発明のごとく、超電導ワイ
ヤの断面形状を平角とし、平たい部分をチップ内配線に
接するようにすれば、接触面積の点でさらに有効であ
る。このような方法により、超電導回路チップの外部デ
バイスとの超電導接続に必要な、1ミリアンペア以上の
電流容量を得ることが可能である。
Therefore, the capacity of the superconducting current obtained between the superconducting thin wire and the in-chip wiring is exclusively determined by the area of the superconducting thin wire facing the substrate surface via the noble metal. As in the present invention, it is effective in increasing the facing area that the number of superconducting thin wires in the superconducting wire is plural. Further, as in the present invention, it is more effective in terms of the contact area if the superconducting wire has a rectangular cross-sectional shape and the flat portion is in contact with the in-chip wiring. With such a method, it is possible to obtain a current capacity of 1 milliamperes or more required for superconducting connection of the superconducting circuit chip to an external device.

【0023】超電導接続用ワイヤにおいて、超電導細線
を構成する超電導材料がY、Ba、Cuからなる酸化
物、Bi、Sr、CaおよびCuからなる酸化物、T
l、Ba、CaおよびCuからなる酸化物、あるいはこ
れらの酸化物と同一系の結晶構造から成る酸化物であれ
ば、当然のことながら液体窒素温度近傍での動作に適
し、有効である。
In the superconducting connecting wire, the superconducting material constituting the superconducting thin wire is an oxide containing Y, Ba and Cu, an oxide containing Bi, Sr, Ca and Cu, and T.
Of course, an oxide composed of 1, Ba, Ca and Cu, or an oxide composed of the same type of crystal structure as those oxides is suitable and effective for operation near the temperature of liquid nitrogen.

【0024】[0024]

【実施例】本発明を以下に述べる実施例にもとづいて説
明する。
EXAMPLES The present invention will be described based on the following examples.

【0025】(実施例1)超電導ワイヤの第1の作製工
程は第1図に示すごとく、まず、Y−Ba−Cu酸化物
超電導微粉末を形成する。Y−Ba−Cu酸化物超電導
微粉末はY酸化物,炭酸BaおよびCu酸化物の粉末を
所定の重量に秤量し、混合する。混合された混合粉末を
酸素1気圧の雰囲気中で、摂氏1050度で1時間の熱
処理を施し、100度あたり30分の速度で徐冷する。
これにより、超電導臨界温度90Kを示すY−Ba−C
u酸化物超電導材料を得る。
(Example 1) As shown in FIG. 1, the first step for producing a superconducting wire is to first form Y-Ba-Cu oxide superconducting fine powder. As the Y-Ba-Cu oxide superconducting fine powder, Y oxide, Ba carbonate and Cu oxide powders are weighed to a predetermined weight and mixed. The mixed powder thus mixed is subjected to heat treatment at 1050 ° C. for 1 hour in an atmosphere of oxygen at 1 atmosphere, and then gradually cooled at a rate of 30 minutes per 100 ° C.
As a result, Y-Ba-C showing a superconducting critical temperature of 90K is obtained.
A u-oxide superconducting material is obtained.

【0026】このY−Ba−Cu酸化物超電導材料をラ
イカイ機で粉砕し、粒径0.5クロンあるいはこれ以下
の微粉末とする。さらにこの酸化物微粉末に再度摂氏8
00度、酸素1気圧中で5時間の熱処理を施し、粉砕時
に生じた応力を緩和し、結晶構造の欠陥を除去するとと
もに、臨界温度および臨界電流密度等の超電導特性を回
復させる。一方、直径5mmのAu線に直径0.2mm
の貫通穴をほぼ等間隔で形成する。この穴に先に形成し
たY−Ba−Cu酸化物粉末を充填し、埋め込む。この
ような複合材にプレス処理を施し、AuとY−Ba−C
u酸化物の密着性を向上させる。Y−Ba−Cu酸化物
の埋め込まれたAu線を線引きし、複合線の直径を絞っ
ていく。このような線引きを繰返し、複合線の線径が
0.5mmになるまで縮小する。この状態で複合線に摂
氏600度、酸素1気圧中で20時間の熱処理を施す。
さらに、この複合線を圧延し、断面積が1/10以下
で、厚みが30ミクロン以下になるまで圧延工程を繰り
返す。つぎに、圧延された複合線を長手方向に切断し、
幅50ミクロンから100ミクロンとする。このような
工程により、第2図に示されるごとく、Y−Ba−Cu
酸化物の微粒子によりなる細線1がAu母材2の間に埋
め込まれ、超電導細線の厚みが1ミクロン以下で、細線
間の間隔も1ミクロン以下である超電導ワイヤを得る。
The Y-Ba-Cu oxide superconducting material is pulverized by a liquor machine to obtain fine powder having a particle size of 0.5 cron or less. Furthermore, this oxide fine powder is added again to 8 degrees Celsius.
A heat treatment is carried out at 00 ° C. in an atmosphere of oxygen for 5 hours for 5 hours to relax the stress generated during the pulverization, remove defects in the crystal structure, and restore the superconducting properties such as the critical temperature and the critical current density. On the other hand, 0.2 mm diameter for Au wire with a diameter of 5 mm
Through holes are formed at substantially equal intervals. The hole is filled with the Y-Ba-Cu oxide powder previously formed and embedded. Such composite material is subjected to a press treatment to obtain Au and Y-Ba-C.
Improves the adhesion of u oxide. The Au wire in which the Y-Ba-Cu oxide is embedded is drawn to reduce the diameter of the composite wire. By repeating such wire drawing, the composite wire is reduced until the wire diameter becomes 0.5 mm. In this state, the composite wire is heat-treated at 600 degrees Celsius and 1 atmosphere of oxygen for 20 hours.
Further, this composite wire is rolled, and the rolling process is repeated until the cross-sectional area is 1/10 or less and the thickness is 30 microns or less. Next, cut the rolled composite wire in the longitudinal direction,
The width is 50 to 100 microns. Through these steps, as shown in FIG. 2, Y-Ba-Cu is obtained.
A fine wire 1 made of fine particles of oxide is embedded between Au base materials 2 to obtain a superconducting wire having a thickness of the superconducting fine wire of 1 micron or less and an interval between the fine wires of 1 micron or less.

【0027】このような製造工程によって得られた超電
導ワイヤは液体窒素温度で2ミリアンペアの超電導電流
を通じることができる。超音波ボンダを用いて超電導ワ
イヤを超電導回路チップとチップパッケージ間で接続す
る。超電導回路チップのパッド部はY−Ba−Cu酸化
物薄膜上にAu薄膜が積層化された構造である。接続工
程で超電導ワイヤの超電導電流はほとんど減じられるこ
とがない。チップパッケージの配線が超電導の場合、パ
ッケージ上に搭載された超電導回路チップ間は超電導状
態で接続される。
The superconducting wire obtained by such a manufacturing process can pass a superconducting current of 2 milliamperes at a liquid nitrogen temperature. An ultrasonic bonder is used to connect the superconducting wire between the superconducting circuit chip and the chip package. The pad portion of the superconducting circuit chip has a structure in which an Au thin film is laminated on a Y-Ba-Cu oxide thin film. The superconducting current of the superconducting wire is hardly reduced in the connecting step. When the wiring of the chip package is superconducting, the superconducting circuit chips mounted on the package are connected in a superconducting state.

【0028】(実施例2)超電導ワイヤの第2の作製工
程は第3図に示すごとく、Y−Ba−Cu酸化物超電導
微粉末を作製する。Y−Ba−Cu酸化物超電導微粉末
はY酸化物,炭酸BaおよびCu酸化物の粉末を所定の
重量に秤量し、混合する。混合された混合粉末を酸素1
気圧の雰囲気中で、摂氏1050度で1時間の熱処理を
施し、100度あたり30分の速度で徐冷する。これに
より、超電導臨界温度90Kを示すY−Ba−Cu酸化
物超電導材料を得る。このY−Ba−Cu酸化物超電導
材料をライカイ機で粉砕し、粒径0.5クロンあるいは
これ以下の微粉末とする。さらにこの酸化物微粉末に再
度摂氏800度、酸素1気圧中で5時間の熱処理を施
し、粉砕時に生じた応力を緩和し、結晶構造の欠陥を除
去するとともに、臨界温度および臨界電流密度等の超電
導特性を回復させる。厚さ0.4mmのAu板に幅およ
び深さが0.2mmの溝を形成する。この溝に先に形成
したY−Ba−Cu酸化物粉末を充填し、埋め込む。さ
らに厚さ0.2mmのAu板を被せる。このような酸化
物とAuの複合材に圧延と、引き延ばしを繰り返す。複
合材の厚みを50ミクロンに減じた時点で、このような
複合材を50層積み重ねる。この状態で複合線に摂氏6
00度、酸素1気圧中で20時間の熱処理を施す。積層
された複合材にさらに圧延と、引き延ばしを繰返し、A
u層の厚みを1ミクロン以下とする。最終工程として、
平板上の複合材を必要とする幅に切断する。このような
工程により、第2図に示されるのと同様の構造を有し、
Y−Ba−Cu酸化物の微粒子によりなる超電導層の厚
みが1ミクロン以下で、超電導層間の間隔も1ミクロン
以下である超電導ワイヤを得る。この超電導ワイヤを用
いて、第4図に示されるごとき、微小磁場検出装置を作
製する。超電導ワイヤ11をあらかじめ用意した直径2
0mmのガラス円筒12に巻きつけ、固定するととも
に、コイルの半ばで周回方向が互いに逆転した微分コイ
ルを作製し、磁場検出コイル13とする。このようなコ
イルを、あらかじめ作製した2個の超電導接合と超電導
ループから成る超電導磁束量子干渉計14等によって構
成される超電導回路チップ15の超電導パッド16に、
超音波ボンダによって2ヵ所接続する。
(Example 2) In the second step of producing a superconducting wire, as shown in Fig. 3, Y-Ba-Cu oxide superconducting fine powder is produced. As the Y-Ba-Cu oxide superconducting fine powder, Y oxide, Ba carbonate and Cu oxide powders are weighed to a predetermined weight and mixed. Mix the mixed powder with oxygen 1
In an atmosphere of atmospheric pressure, heat treatment is performed at 1050 degrees Celsius for 1 hour, and is gradually cooled at a rate of 30 minutes per 100 degrees. Thus, a Y-Ba-Cu oxide superconducting material having a superconducting critical temperature of 90K is obtained. The Y-Ba-Cu oxide superconducting material is pulverized by a liquor machine to obtain fine powder having a particle size of 0.5 cron or less. Further, this oxide fine powder is heat-treated again at 800 ° C. and 1 atm of oxygen for 5 hours to relieve the stress generated at the time of crushing, remove the defects of the crystal structure, and reduce the critical temperature and the critical current density. Restores superconducting properties. A groove having a width and a depth of 0.2 mm is formed on an Au plate having a thickness of 0.4 mm. The groove is filled with the Y-Ba-Cu oxide powder previously formed and embedded. Further, a 0.2 mm thick Au plate is covered. The rolling and stretching of such a composite material of oxide and Au are repeated. When the composite thickness is reduced to 50 microns, 50 layers of such composite are stacked. 6 degrees Celsius on the composite line in this state
Heat treatment is carried out at 00 ° C. in 1 atmosphere of oxygen for 20 hours. Repeated rolling and stretching of the laminated composite material
The thickness of the u layer is 1 micron or less. As the final step,
Cut the flat composite to the required width. By such a process, the structure similar to that shown in FIG. 2 is obtained,
A superconducting wire is obtained in which the thickness of the superconducting layer made of Y-Ba-Cu oxide particles is 1 micron or less and the distance between the superconducting layers is 1 micron or less. Using this superconducting wire, a minute magnetic field detecting device as shown in FIG. 4 is manufactured. Diameter of superconducting wire 11 prepared in advance 2
The magnetic field detecting coil 13 is wound around the 0 mm glass cylinder 12 and fixed, and at the same time, a differential coil whose winding directions are opposite to each other is produced in the middle of the coil. Such a coil is attached to a superconducting pad 16 of a superconducting circuit chip 15 composed of a superconducting flux quantum interferometer 14 and the like, which is composed of two superconducting junctions and a superconducting loop which are prepared in advance,
Connect in two places with an ultrasonic bonder.

【0029】2個の超電導パッドは層間絶縁膜を介して
超電導磁束量子干渉計の上に配される入力コイル17に
つながる。パッド部はY−Ba−Cu酸化物薄膜上にA
u薄膜が積層化された構造である。入力コイルと磁場検
出コイルは超電導でつながり、全体として一体の超電導
ループを構成していることが確かめられた。したがっ
て、磁場検出コイル空間で分布する磁場成分を、マイス
ナー効果によって入力コイルに損失なく入力コイルに伝
達することができる。
The two superconducting pads are connected to an input coil 17 arranged above the superconducting flux quantum interferometer via an interlayer insulating film. The pad part is A on the Y-Ba-Cu oxide thin film.
This is a structure in which u thin films are laminated. It was confirmed that the input coil and the magnetic field detection coil were connected by superconductivity and constituted an integral superconducting loop as a whole. Therefore, the magnetic field component distributed in the magnetic field detection coil space can be transmitted to the input coil without loss due to the Meissner effect.

【0030】本実施例では金属層がAuの場合について
述べたが、金属がAu以外にAg、Pt、Re、Rh、
Pdあるいはこれらの合金によって成る金属でも超電導
ワイヤの金属層として用いられる。さらに超電導層とし
て、Y−Ba−Cu酸化物以外にBi−Sr−Ca−C
u酸化物、Tl−Ba−Ca−Cu酸化物等、他の酸化
物超電導材料を用いても同様の結果が得られる。
In this embodiment, the case where the metal layer is Au has been described. However, in addition to Au as the metal layer, Ag, Pt, Re, Rh,
Even a metal made of Pd or an alloy thereof can be used as the metal layer of the superconducting wire. Further, as a superconducting layer, Bi-Sr-Ca-C other than Y-Ba-Cu oxide
Similar results can be obtained by using other oxide superconducting materials such as u oxide and Tl-Ba-Ca-Cu oxide.

【0031】[0031]

【発明の効果】以上述べたごとく、本発明になる超電導
接続ワイヤにおいては以下の効果を有する。
As described above, the superconducting connecting wire according to the present invention has the following effects.

【0032】(1)超電導回路チップと超電導回路チッ
プ間、あるいは超電導回路チップとチップパッケージあ
るいは基板間、または超電導回路チップと半導体回路チ
ップ間の配線接続等を超電導状態で接続できる。
(1) The superconducting circuit chip and the superconducting circuit chip, the superconducting circuit chip and the chip package or the substrate, or the wiring connection between the superconducting circuit chip and the semiconductor circuit chip can be connected in a superconducting state.

【0033】(2)ギガヘルツ以上の極めて高速の信号
波形でも、無歪で無損失の状態で信号を伝搬させること
ができるので、高速信号処理回路デバイス用のチップ間
信号伝送を可能にする。
(2) Since even a very high-speed signal waveform of gigahertz or more can propagate a signal in a distortion-free and loss-free state, it enables chip-to-chip signal transmission for a high-speed signal processing circuit device.

【0034】(3)微小磁場の計測に用いられる超電導
磁束量子干渉素子につながる入力コイルと磁場検出コイ
ル間を超電導状態で接続できるので、磁場検出コイルで
検出した磁場信号を減衰させることなく入力コイルに伝
達でき、磁場検出感度が向上する。
(3) Since the input coil connected to the superconducting magnetic flux quantum interference device used for measuring a minute magnetic field and the magnetic field detecting coil can be connected in a superconducting state, the magnetic field signal detected by the magnetic field detecting coil is not attenuated. To improve the magnetic field detection sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】超電導ワイヤの作製工程を表わす図である。FIG. 1 is a diagram illustrating a manufacturing process of a superconducting wire.

【図2】超電導ワイヤの断面構造図である。FIG. 2 is a cross-sectional structural diagram of a superconducting wire.

【図3】超電導ワイヤの作製工程を表わす図である。FIG. 3 is a diagram illustrating a manufacturing process of a superconducting wire.

【図4】超電導ワイヤを用いた微小磁場検出装置の構成
図である。
FIG. 4 is a configuration diagram of a minute magnetic field detection device using a superconducting wire.

【符号の説明】[Explanation of symbols]

1…Y−Ba−Cu酸化物細線、2…Au母材、11…
超電導ワイヤ、12…ガラス円筒、13…磁場検出コイ
ル、14…超電導磁束量子干渉計、15…超電導回路チ
ップ、16…超電導パッド、17…入力コイル。
1 ... Y-Ba-Cu oxide fine wire, 2 ... Au base material, 11 ...
Superconducting wire, 12 ... Glass cylinder, 13 ... Magnetic field detecting coil, 14 ... Superconducting flux quantum interferometer, 15 ... Superconducting circuit chip, 16 ... Superconducting pad, 17 ... Input coil.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平谷 正彦 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 赤松 正一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 今川 一重 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 塚本 晃 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masahiko Hiratani 1-280, Higashi Koikeku, Kokubunji, Tokyo (72) Central Research Laboratory, Hitachi, Ltd. (72) Shoichi Akamatsu 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi, Ltd. (72) Inventor, Hitoshi Imagawa, 1-280, Higashi Koigokubo, Kokubunji, Tokyo, Hitachi, Ltd., Central Research Laboratory, Hitachi, Ltd. (72) Akira Tsukamoto, 1-280, Higashi Koikeku, Kokubunji, Tokyo, Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】配線接続に用いられる超電導接続用ワイヤ
において、上記ワイヤは、複数本の酸化物の超電導微粒
子からなる細線が金属中に埋め込まれてなることを特徴
とする超電導接続用ワイヤ。
1. A superconducting connection wire used for wiring connection, wherein the wire comprises a plurality of fine wires made of oxide superconducting fine particles embedded in a metal.
【請求項2】請求項1に記載の超電導接続用ワイヤにお
いて、上記ワイヤは、超電導回路チップ間、半導体回路
チップ間、これらを積載するパッケージ間あるいは基板
間を相互に電気的に接続することを特徴とする超電導接
続用ワイヤ。
2. The superconducting connection wire according to claim 1, wherein the wire electrically connects the superconducting circuit chips, the semiconductor circuit chips, the packages for mounting them, or the substrates. Characteristic superconducting wire.
【請求項3】請求項1に記載の超電導接続用ワイヤにお
いて、上記超電導ワイヤを構成する金属は、Ag、A
u、Pt、Re、Rh、Pdあるいはこれらの合金であ
ることを特徴とする超電導接続用ワイヤ。
3. The superconducting connection wire according to claim 1, wherein the metal forming the superconducting wire is Ag or A.
A wire for superconducting connection, which is u, Pt, Re, Rh, Pd, or an alloy thereof.
【請求項4】請求項1に記載の超電導接続用ワイヤにお
いて、上記超電導微粒子からなる細線を構成する超電導
材料は、Y、Ba、Cuからなる酸化物、Bi、Sr、
CaおよびCuからなる酸化物、Tl、Ba、Caおよ
びCuからなる酸化物、あるいはこれらの酸化物と同一
系の結晶構造から成ることを特徴とする超電導接続用ワ
イヤ。
4. The superconducting connection wire according to claim 1, wherein the superconducting material constituting the fine wire made of the superconducting fine particles is an oxide made of Y, Ba, Cu, Bi, Sr,
A wire for superconducting connection, characterized by comprising an oxide composed of Ca and Cu, an oxide composed of Tl, Ba, Ca and Cu, or a crystal structure of the same system as these oxides.
【請求項5】請求項1に記載の超電導接続用ワイヤにお
いて、上記超電導ワイヤを構成する酸化物微粒子からな
る細線どうしの間隔が1ミクロン以下である箇とを特徴
とする超電導接続用ワイヤ。
5. The superconducting connection wire according to claim 1, wherein the fine wires made of oxide fine particles constituting the superconducting wire have an interval of 1 micron or less.
JP7460594A 1994-04-13 1994-04-13 Superconductive connecting wire Pending JPH07283445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7460594A JPH07283445A (en) 1994-04-13 1994-04-13 Superconductive connecting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7460594A JPH07283445A (en) 1994-04-13 1994-04-13 Superconductive connecting wire

Publications (1)

Publication Number Publication Date
JPH07283445A true JPH07283445A (en) 1995-10-27

Family

ID=13551973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7460594A Pending JPH07283445A (en) 1994-04-13 1994-04-13 Superconductive connecting wire

Country Status (1)

Country Link
JP (1) JPH07283445A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422040A (en) * 1987-07-17 1989-01-25 Fujikura Ltd Connecting method for oxide superconducting circuit
JPH0380146A (en) * 1989-08-22 1991-04-04 Chichibu Cement Co Ltd Production of oxide superconductor
JPH04216673A (en) * 1990-02-28 1992-08-06 Westinghouse Electric Corp <We> Method for formation of ohmic contact between semiconductor and oxide super- conductor
JPH04298913A (en) * 1991-04-01 1992-10-22 Semiconductor Energy Lab Co Ltd Superconducting wire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422040A (en) * 1987-07-17 1989-01-25 Fujikura Ltd Connecting method for oxide superconducting circuit
JPH0380146A (en) * 1989-08-22 1991-04-04 Chichibu Cement Co Ltd Production of oxide superconductor
JPH04216673A (en) * 1990-02-28 1992-08-06 Westinghouse Electric Corp <We> Method for formation of ohmic contact between semiconductor and oxide super- conductor
JPH04298913A (en) * 1991-04-01 1992-10-22 Semiconductor Energy Lab Co Ltd Superconducting wire

Similar Documents

Publication Publication Date Title
US5051397A (en) Joined body of high-temperature oxide superconductor and method of joining oxide superconductors
US5811375A (en) Superconducting multilayer interconnection formed of oxide superconductor material and method for manufacturing the same
US6440904B1 (en) High-temperature superconductor arrangement
JPH07283445A (en) Superconductive connecting wire
JPH01258457A (en) Semiconductor integrated circuit package structure and manufacture thereof
JP2674680B2 (en) Superconducting superlattice crystal device
JPH02134882A (en) Method of forming high-density interconnected body
EP0671764A2 (en) A process for fabricating a superconducting circuit
JP2954562B2 (en) Superconducting planar circuit and manufacturing method thereof
EP0534854B1 (en) Superconducting thin film formed of oxide superconductor material, superconducting current path and superconducting device utilizing the superconducting thin film
JPS63124555A (en) Substrate for semiconductor device
US6479139B1 (en) Superconducting substrate structure and a method of producing such structure
JP4519397B2 (en) Superconducting circuit and manufacturing method thereof
JP2720660B2 (en) Superconducting wiring
JP3831307B2 (en) Low resistance conductor and method of manufacturing the same
JP2757639B2 (en) Superconducting multilayer wiring
JP2768276B2 (en) Oxide superconducting junction element
JP2773506B2 (en) Terminal structure of superconducting wiring and its forming method
Hahn et al. Deposition of noble metal contacts on YBa/sub 2/Cu/sub 3/O/sub 7-x/thin films
JP2829173B2 (en) Superconducting element
JP2929974B2 (en) Y-based high-temperature superconducting film structure
JP5160585B2 (en) Superconducting circuit and method of manufacturing superconducting circuit
JP2862706B2 (en) Superconducting element
JP2848402B2 (en) Superconducting wiring
JPH1126823A (en) Superconductor constant current interval voltage-step element and superconductor device