JP2929974B2 - Y-based high-temperature superconducting film structure - Google Patents

Y-based high-temperature superconducting film structure

Info

Publication number
JP2929974B2
JP2929974B2 JP7178795A JP17879595A JP2929974B2 JP 2929974 B2 JP2929974 B2 JP 2929974B2 JP 7178795 A JP7178795 A JP 7178795A JP 17879595 A JP17879595 A JP 17879595A JP 2929974 B2 JP2929974 B2 JP 2929974B2
Authority
JP
Japan
Prior art keywords
film
hts
thickness
surface resistance
based high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7178795A
Other languages
Japanese (ja)
Other versions
JPH0936448A (en
Inventor
博紀 星崎
正信 鈴木
昌廣 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IDOTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK
Original Assignee
IDOTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDOTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK filed Critical IDOTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK
Priority to JP7178795A priority Critical patent/JP2929974B2/en
Publication of JPH0936448A publication Critical patent/JPH0936448A/en
Application granted granted Critical
Publication of JP2929974B2 publication Critical patent/JP2929974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波帯の通
信用フィルタ等を形成するためのY系高温超伝導膜構造
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Y-based high-temperature superconducting film structure for forming a microwave communication filter or the like.

【0002】[0002]

【従来の技術】高温超伝導(HTS:High Temperature
Superconductors)薄膜をマイクロ波帯の通信用フィル
タ等に応用するに際しては、挿入損失を低減することが
必要である。本発明者等は、このようなフィルタとして
図1に示すものを作成した。図1はフィルタの模式的な
断面図である。この図1において、基板1上に、HTS
膜2をフィルタパターンに形成し、HTS膜2上に金属
(例えばAu)膜3を積層形成する。ここで、フィルタ
の電極部4における金属膜3は、コネクタ7の中心電極
7aとワイヤ6aで接続される。また、基板1の裏面に
もHTS膜5が形成されており、このHTS膜5はワイ
ヤ6bによりコネクタ7とアース接続される。なお、電
極部4以外のHTS膜2上の金属膜3は保護膜として機
能している。
2. Description of the Related Art High temperature superconductivity (HTS)
Superconductors) When a thin film is applied to a microwave communication filter or the like, it is necessary to reduce insertion loss. The present inventors have created such a filter as shown in FIG. FIG. 1 is a schematic sectional view of the filter. In FIG. 1, an HTS
The film 2 is formed in a filter pattern, and a metal (for example, Au) film 3 is formed on the HTS film 2. Here, the metal film 3 in the electrode portion 4 of the filter is connected to the center electrode 7a of the connector 7 by a wire 6a. An HTS film 5 is also formed on the back surface of the substrate 1, and this HTS film 5 is grounded to the connector 7 by a wire 6b. The metal film 3 on the HTS film 2 other than the electrode part 4 functions as a protective film.

【0003】この図1に示すフィルタパターンの平面構
成を図2に示す。この図1、図2に示すフィルタは分布
定数型のフィルタを構成している。このようなフィルタ
において、その通過特性についてシュミレーションした
ところ、図3〜図5に示す結果を得た。図3、図4、図
5は、それぞれ高周波表面抵抗(Rs)が1mΩ、10
mΩ、100mΩの場合の通過特性を示す。これらの図
から明らかなように、表面抵抗(Rs)が大きくなるに
つれて通過特性が悪化しており、表面抵抗(Rs)が1
mΩの場合には、損失がほとんど0になる。従って、表
面抵抗(Rs)が1mΩであれば損失の極めて少ないフ
ィルタを構成することができる。そのためには、高品質
のHTS膜2を形成する必要がある。
FIG. 2 shows a plan configuration of the filter pattern shown in FIG. The filters shown in FIGS. 1 and 2 constitute a distributed constant type filter. In such a filter, when the pass characteristics were simulated, the results shown in FIGS. 3 to 5 were obtained. 3, 4, and 5 show that the high-frequency surface resistance (Rs) is 1 mΩ,
The transmission characteristics at mΩ and 100 mΩ are shown. As is clear from these figures, as the surface resistance (Rs) increases, the transmission characteristics deteriorate, and the surface resistance (Rs) becomes 1
In the case of mΩ, the loss is almost zero. Therefore, if the surface resistance (Rs) is 1 mΩ, a filter with extremely small loss can be formed. For that purpose, it is necessary to form a high-quality HTS film 2.

【0004】また、耐電力性能面からは、給電のため
に、電極部4でHTS膜2と金属膜3との接触抵抗(R
c)が十分低くなければならない。
[0004] From the standpoint of power handling capability, the contact resistance (R) between the HTS film 2 and the metal film 3 at the electrode portion 4 is increased for power supply.
c) must be sufficiently low.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記問題点に
鑑みてなされたもので、表面抵抗値と電極部での接触抵
抗値を共に低下させ、フィルタ特性を良好なものとする
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to reduce both the surface resistance and the contact resistance at an electrode portion to improve the filter characteristics. And

【0006】[0006]

【発明の概要】本発明者等は、表面抵抗値と接触抵抗値
に影響する膜の主要因として結晶平均粒径と空隙割合に
着目し、結晶平均粒径と空隙割合の異なる試料を作製し
て、表面抵抗値と接触抵抗値を共に低くする構造を明ら
かにした。このような検討を基になされた本発明の第1
の特徴は、Y1 Ba2 Cu3 y組成のHTS膜を基板
上にフィルタパターンに形成し、その膜上の少なくとも
電極部に金属膜を積層形成したものにおいて、超伝導薄
膜は、空隙(2b)を含み、かつY 1 Ba 2 Cu 3 y
の板状結晶が基板上で2次元的に連なった構造を有し、
1 Ba2 Cu3 y の板状結晶の結晶平均粒径dが、 1≦d≦3 (μm) の関係を満足するとともに、基板上の2次元面内での空
隙の割合Pが、 3≦P≦10 (%) の関係を満足することを特徴としている。
SUMMARY OF THE INVENTION The present inventors have focused on the crystal average grain size and the void ratio as the main factors of the film which affect the surface resistance value and the contact resistance value, and prepared samples having different crystal average grain sizes and void ratios. Then, a structure in which both the surface resistance value and the contact resistance value were reduced was clarified. The first aspect of the present invention based on such studies
Features, in which the HTS film of Y 1 Ba 2 Cu 3 O y composition was formed in the filter pattern on the substrate, and a metal film is laminated on at least the electrode portion on the film, the superconducting thin
The film contains voids (2b) and Y 1 Ba 2 Cu 3 O y
Has a structure in which plate-like crystals are two-dimensionally connected on a substrate,
The average crystal grain size d of the plate crystal of Y 1 Ba 2 Cu 3 O y satisfies the relationship of 1 ≦ d ≦ 3 (μm), and the ratio P of the voids in the two-dimensional plane on the substrate is It is characterized by satisfying the relationship of 3 ≦ P ≦ 10 (%).

【0007】結晶平均粒径は主として膜の表面抵抗値に
影響を与え、膜の空隙割合が主として膜と金属との接触
抵抗値に影響を与える。結晶平均粒径が小さすぎると、
粒界密度が非常に高く表面抵抗が増大する。また、結晶
平均粒径が大きすぎると、結晶粒の配向性が悪く表面平
坦度が劣化し表面抵抗が増大する。結晶平均粒径を1μ
m以上3μm以下とすることにより、表面抵抗値を1m
Ω以下にすることができた。
The average crystal grain size mainly affects the surface resistance of the film, and the void ratio of the film mainly affects the contact resistance between the film and the metal. If the average crystal grain size is too small,
The grain boundary density is very high and the surface resistance increases. On the other hand, if the average crystal grain size is too large, the orientation of the crystal grains is poor, the surface flatness is deteriorated, and the surface resistance is increased. 1μ average crystal grain size
m to 3 μm or less, the surface resistance is 1 m
Ω or less.

【0008】一方、空隙割合が小さすぎると、空隙を介
しHTS膜に流れる込む電流が少ないため、接触抵抗が
増大する。逆に、空隙割合が大きすぎると、表面抵抗値
が大きくなったり結晶粒の配向性が悪くなったりして接
触抵抗が増大する。空隙割合を3%以上10%以下にす
ることにより、接触抵抗値を非常に小さくすることがで
きた。
On the other hand, if the void ratio is too small, the current flowing into the HTS film via the void is small, and the contact resistance increases. On the other hand, if the void ratio is too large, the contact resistance increases due to an increase in the surface resistance value or poor orientation of the crystal grains. By setting the void ratio to 3% or more and 10% or less, the contact resistance value could be extremely reduced.

【0009】本発明の第2の特徴は、HTS膜の膜厚t
1 を、0.5≦t1 ≦1.5(μm)とした点にある。
高周波電流は基本的に膜の表面近くを流れる傾向にある
ため、膜厚を0.5μmより小さくすると表面抵抗値が
高くなり、逆に膜厚を1.5より大きくすると膜の表面
平坦度が劣化し表面抵抗値が劣化する。従って、HTS
膜の膜厚を0.5μm以上1.5μmとすることによ
り、表面抵抗値の増大を抑制することができる。
A second feature of the present invention is that the thickness t of the HTS film is
1 satisfies 0.5 ≦ t1 ≦ 1.5 (μm).
Since the high-frequency current basically tends to flow near the surface of the film, if the film thickness is smaller than 0.5 μm, the surface resistance increases, and if the film thickness is larger than 1.5, the surface flatness of the film increases. It deteriorates and the surface resistance value deteriorates. Therefore, HTS
By setting the thickness of the film to 0.5 μm or more and 1.5 μm, an increase in surface resistance can be suppressed.

【0010】本発明の第3の特徴は、HTS膜の膜厚t
1 と金属膜の膜厚t2 の関係を、t1 +0.2≦t2
(μm)にすることにある。HTS膜の膜厚t1 に対し
て金属膜の膜厚t2 が小さすぎると、積層した金属が膜
中の空隙の奥まで十分入り込まないため接触抵抗が高く
なる。従って、上記のような膜厚関係とすることによ
り、空隙の奥まで十分金属が入り込み、飽和した小さい
接触抵抗値を得ることができる。
The third feature of the present invention is that the thickness t of the HTS film is
The relationship between 1 and the thickness t2 of the metal film is expressed as t1 + 0.2 ≦ t2
(Μm). If the thickness t2 of the metal film is too small with respect to the thickness t1 of the HTS film, the contact resistance increases because the laminated metal does not sufficiently enter the gaps in the film. Therefore, by setting the film thickness as described above, the metal can sufficiently penetrate deep into the gap, and a saturated small contact resistance value can be obtained.

【0011】[0011]

【発明の実施の形態】基板上にHTS膜をスパッタ成膜
した。基板温度、ガス分圧、ターゲット印加電力の3つ
をパラメータとしてスパッタ成膜し、結晶平均粒径と空
隙割合の異なる試料を作製した。以下に、具体的なスパ
ッタ成膜条件を示す。 このようにして形成されたHTS膜を平面的に拡大した
ものを図6に示し、そのA−A’断面を図7に示す。な
お、図7はHTS膜上に、金属膜としてAu膜3を積層
した状態を示している。図に示すように、HTS膜は、
HTS結晶粒子2aの間に空隙2bを含み、HTS膜の
柱状結晶が基板1上で2次元的に連なった構造を有して
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An HTS film was formed on a substrate by sputtering. Sputter deposition was performed using three parameters of the substrate temperature, the gas partial pressure, and the target applied power as parameters to prepare samples having different crystal average grain sizes and void ratios. Hereinafter, specific sputtering film forming conditions will be described. FIG. 6 shows an enlarged plan view of the HTS film thus formed, and FIG. 7 shows an AA ′ section thereof. FIG. 7 shows a state in which an Au film 3 is laminated as a metal film on the HTS film. As shown in FIG, HTS film,
It includes a gap 2b between the HTS crystal grains 2a, the HTS film
It has a structure in which columnar crystals are two-dimensionally connected on the substrate 1.

【0012】上記した成膜条件における3つの成膜パラ
メータの中で、基板温度が高くなるほど、またガス分圧
が高くなるほど、またターゲット印加電力が小さくなる
ほど、結晶平均粒径が小さな膜構造とすることができ
た。また、基板温度が高くなるほど、ガス分圧が高くな
るほど、ターゲット印加電力が大きくなるほど、空隙割
合が小さな膜構造とすることができた。
Among the three film forming parameters under the above film forming conditions, a film structure having a smaller crystal average grain size as the substrate temperature increases, the gas partial pressure increases, and the power applied to the target decreases. I was able to. In addition, as the substrate temperature increased, the gas partial pressure increased, and the target applied power increased, a film structure having a smaller void ratio could be obtained.

【0013】なお、空隙割合とは、空隙が生じている面
積の割合をいう。上記の成膜条件に従って得られた膜の
表面抵抗値は、誘電体共振器法により測定評価した。ま
た、HTS膜と金属の接触抵抗値は、0.6μmのHT
S膜上に1.5mm角で厚さ1μmのAuパッドを形成
して測定評価した。このようにして得られた膜構造と膜
特性を分類整理した結果、表面抵抗に影響を与える要因
としては、結晶平均粒径が主要因となっていることがわ
かった。図8に代表的な実験結果を示す。
Note that the void ratio refers to the ratio of the area where voids are formed. The surface resistance value of the film obtained under the above film forming conditions was measured and evaluated by the dielectric resonator method. The contact resistance between the HTS film and the metal is 0.6 μm HT.
A 1.5 mm square Au pad having a thickness of 1 μm was formed on the S film and measured and evaluated. As a result of classifying and organizing the film structure and film characteristics obtained in this way, it was found that the main factor affecting the surface resistance was the average crystal grain size. FIG. 8 shows representative experimental results.

【0014】図8より、空隙割合には無関係に、結晶平
均粒径が0.5μm以下の場合及び結晶平均粒径が3.
4μm以上で、表面抵抗値が1mΩより大きく劣化して
いることがわかる。結晶平均粒径が0.5μm以下の膜
は粒界密度が非常に高く、これが原因で表面抵抗が増大
したと考えられる。一方、結晶平均粒径が3.4μm以
上の膜は結晶粒の配向性が悪く表面平坦度が劣化してお
り、これが原因で表面抵抗が増大したと考えられる。
FIG. 8 shows that the average crystal grain size is 0.5 μm or less and that the average crystal grain size is 3.
It can be seen that at 4 μm or more, the surface resistance value has deteriorated more than 1 mΩ. It is considered that a film having an average crystal grain size of 0.5 μm or less has a very high grain boundary density, and this has caused an increase in surface resistance. On the other hand, a film having an average crystal grain size of 3.4 μm or more has poor orientation of crystal grains and deteriorates the surface flatness, and it is considered that this causes an increase in surface resistance.

【0015】従って、結晶平均粒径を1μm以上3μm
以下にすれば、表面抵抗値を1mΩ以下にすることがで
きる。次に、得られた膜構造と膜特性を分類整理した結
果、接触抵抗に影響を与える要因としては空隙割合が主
要因となっていることがわかった。図9に代表的な実験
結果を示す。
Therefore, the average grain size of the crystal is 1 μm to 3 μm.
If it does below, the surface resistance value can be made 1 mΩ or less. Next, the obtained film structure and film characteristics were classified and arranged. As a result, it was found that the void ratio was the main factor affecting the contact resistance. FIG. 9 shows representative experimental results.

【0016】図9より、結晶平均粒径には無関係に、空
隙割合が1%以下の場合及び空隙割合が15%以上の場
合、接触抵抗値が10-2〜10-3Ω・cm2 台に劣化し
ていることがわかる。c軸配向したHTS膜では、膜に
垂直なc軸方向(図7の上下方向)よりも、a,b軸方
向(図7の左右方向)のほうが一桁以上導電性が良い。
ここで、Au積層時にAuは膜の空隙の中に入り込むた
め、Auが埋め込まれた元の空隙を介し、膜のa,b軸
に沿って電流を供給する効果(以下、アンカー効果とい
う)を生じさせる。
FIG. 9 shows that, regardless of the average crystal grain size, when the void ratio is 1% or less and when the void ratio is 15% or more, the contact resistance value is in the order of 10 −2 to 10 −3 Ω · cm 2 . It can be seen that it has deteriorated. In the c-axis oriented HTS film, the conductivity is better by one digit or more in the a and b axis directions (left and right directions in FIG. 7) than in the c axis direction perpendicular to the film (vertical direction in FIG. 7).
Here, since Au enters the gap of the film at the time of Au lamination, an effect of supplying a current along the a and b axes of the film through the original gap in which Au is embedded (hereinafter, referred to as an anchor effect). Cause.

【0017】このため、空隙割合が1%以下の膜は、A
u積層後のアンカー効果が弱く、これが原因で接触抵抗
が増大したと考えられる。一方、空隙割合が15%以上
の膜はHTS膜の導電経路が狭まっており、また配向性
が悪く表面平坦度も劣化しているため、これが原因で接
触抵抗と表面抵抗が増大したと考えられる。
For this reason, a film having a void ratio of 1% or less is
It is considered that the anchor effect after u-lamination was weak, and the contact resistance increased due to this. On the other hand, in a film having a void ratio of 15% or more, the conductive path of the HTS film is narrow, the orientation is poor, and the surface flatness is also deteriorated. .

【0018】従って、空隙割合を3%以上10%以下に
すれば、表面抵抗を小さくするとともに10-4Ω・cm
2 以下の非常に低い接触抵抗値とすることができる。こ
のように、接触抵抗値を10-4Ω・cm2 以下にすれ
ば、フィルタ特性を十分良好なものとすることができ
る。次に、上記のようにして得られた結晶平均粒径と空
隙割合の膜に対して、HTS膜の膜厚について検討し
た。図10に、代表的な実験結果を示す。
Therefore, if the void ratio is set to 3% or more and 10% or less, the surface resistance is reduced and the density is reduced to 10 -4 Ω · cm.
Very low contact resistance values of 2 or less can be achieved. As described above, when the contact resistance value is set to 10 −4 Ω · cm 2 or less, the filter characteristics can be sufficiently improved. Next, the thickness of the HTS film was examined with respect to the film having the average crystal grain size and the void ratio obtained as described above. FIG. 10 shows representative experimental results.

【0019】図10より、結晶平均粒径と空隙割合には
無関係に、HTS膜厚が0.2μm以下の場合及びHT
S膜厚が2.0μm以上で、表面抵抗値が1mΩより大
きく劣化していることがわかる。HTS膜厚が0.2μ
m以下の膜は、高周波電流の表皮効果が原因で、膜表面
に高周波電流が集中しすぎるため、表面抵抗が増大した
と考えられる。一方、HTS膜厚が2.0μm以上の膜
は結晶粒の配向性が悪く表面平坦度が劣化しており、こ
れが原因で表面抵抗が増大したと考えられる。
FIG. 10 shows that the HTS film thickness is less than 0.2 μm and the HT
It can be seen that when the S film thickness is 2.0 μm or more, the surface resistance value has deteriorated more than 1 mΩ. HTS film thickness 0.2μ
It is considered that the surface resistance of a film having a thickness of m or less is increased because the high-frequency current is excessively concentrated on the film surface due to the skin effect of the high-frequency current. On the other hand, a film having an HTS film thickness of 2.0 μm or more has poor orientation of crystal grains and deteriorates surface flatness, and it is considered that this causes an increase in surface resistance.

【0020】従って、HTS膜厚は、0.5μm以上
1.5μm以下とするのがよい。次に、得られたHTS
膜厚の膜に対して、Au積層膜の膜厚についてを検討し
た。図11に、代表的な実験結果を示す。図11より、
HTS膜厚の異なる2種類の試料に対しては、いずれの
場合もHTS膜厚とAu膜厚が等しい場合は著しく表面
抵抗値が高いが、Au膜厚が0.2μm以上大きい場合
には接触抵抗値が小さく飽和していることがわかる。
Therefore, it is preferable that the HTS film thickness be 0.5 μm or more and 1.5 μm or less. Next, the obtained HTS
The thickness of the Au laminated film was examined for the film having the thickness. FIG. 11 shows representative experimental results. From FIG.
Regarding two kinds of samples having different HTS film thicknesses, in any case, when the HTS film thickness is equal to the Au film thickness, the surface resistance is remarkably high, but when the Au film thickness is 0.2 μm or more, contact is made. It can be seen that the resistance value is small and saturated.

【0021】HTS膜厚とAu膜厚が等しい場合には積
層したAuが空隙の奥まで十分入り込まないのに対し
て、HTS膜に対してAu膜厚が0.2μm以上大きい
場合には積層したAuが空隙の奥まで十分入り込むた
め、接触抵抗が飽和したと考えられる。従って、Au膜
厚がHTS膜厚+0.2μm以上にすれば、10-4Ω・
cm2以下に飽和した非常に低い接触抵抗値とすること
ができる。
When the HTS film thickness is equal to the Au film thickness, the laminated Au does not sufficiently penetrate deep into the void, whereas when the Au film thickness is larger than the HTS film by 0.2 μm or more, the laminated Au film is laminated. It is considered that the contact resistance was saturated because Au sufficiently penetrated deep into the void. Therefore, if the Au film thickness is equal to or more than the HTS film thickness + 0.2 μm, 10 −4 Ω ·
A very low contact resistance value saturated to less than cm 2 can be obtained.

【0022】以上の検討を基に、基板1上にY1 Ba2
Cu3 y 組成のHTS膜2およびAu膜3を、Y1
2 Cu3 y の板状結晶の結晶平均粒径dが、1≦d
≦3(μm)、基板1上の2次元面内での空隙の割合P
が、3≦P≦10(%)、HTS膜2の膜厚t1 が、
0.5≦t1 ≦1.5(μm)、膜厚t1 とAu膜3の
膜厚t2 が、t1 +0.2≦t2 (μm)の関係を満足
するように形成し、高周波表面抵抗値(Rs)が1mΩ
以下、HTS膜2とAu膜3との接触抵抗値(Rc)が
10-4Ω・cm2 以下の、フィルタを構成することがで
きた。
Based on the above study, Y 1 Ba 2
The Cu 3 O y HTS film 2 and the Au film 3 of the composition, Y 1 B
a 2 Cu 3 Oy plate-like crystal having an average crystal grain diameter d of 1 ≦ d
.Ltoreq.3 (.mu.m), percentage P of voids in a two-dimensional plane on substrate 1
Is 3 ≦ P ≦ 10 (%), and the thickness t1 of the HTS film 2 is
0.5 ≦ t1 ≦ 1.5 (μm), the thickness t1 and the thickness t2 of the Au film 3 satisfy the relationship of t1 + 0.2 ≦ t2 (μm), and the high-frequency surface resistance ( Rs) is 1 mΩ
Hereinafter, a filter having a contact resistance value (Rc) between the HTS film 2 and the Au film 3 of 10 −4 Ω · cm 2 or less could be formed.

【0023】なお、電極部4の金属膜としては、Au以
外にAg等を用いることができる。また、フィルタとし
ては、分布定数型のフィルタのみならず、集中定数型の
フィルタとすることもできる。
The metal film of the electrode section 4 can be made of Ag or the like in addition to Au. Further, the filter may be not only a distributed constant type filter but also a lumped constant type filter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フィルタの模式的な断面図である。FIG. 1 is a schematic sectional view of a filter.

【図2】フィルタの平面図である。FIG. 2 is a plan view of a filter.

【図3】表面抵抗(Rs)を1mΩとした時の通過特性
を示す特性図である。
FIG. 3 is a characteristic diagram showing transmission characteristics when the surface resistance (Rs) is set to 1 mΩ.

【図4】表面抵抗(Rs)を10mΩとした時の通過特
性を示す特性図である。
FIG. 4 is a characteristic diagram showing transmission characteristics when the surface resistance (Rs) is set to 10 mΩ.

【図5】表面抵抗(Rs)を100mΩとした時の通過
特性を示す特性図である。
FIG. 5 is a characteristic diagram showing transmission characteristics when the surface resistance (Rs) is set to 100 mΩ.

【図6】スパッタ成膜したHTS膜を平面的に拡大した
状態を示す図である。
FIG. 6 is a diagram illustrating a state in which the HTS film formed by sputtering is enlarged in a plane.

【図7】図6のA−A’断面図である。FIG. 7 is a sectional view taken along line A-A 'of FIG.

【図8】表面抵抗と結晶平均粒径の関係を示す図であ
る。
FIG. 8 is a diagram showing the relationship between surface resistance and average crystal grain size.

【図9】接触抵抗と空隙割合の関係を示す図である。FIG. 9 is a diagram showing a relationship between a contact resistance and a void ratio.

【図10】HTS膜厚と表面抵抗の関係を示す図であ
る。
FIG. 10 is a diagram showing the relationship between HTS film thickness and surface resistance.

【図11】HTS膜厚の膜とAu積層膜の膜厚との関係
を示す図である。
FIG. 11 is a diagram showing a relationship between a film having an HTS film thickness and a film thickness of an Au laminated film.

【符号の説明】[Explanation of symbols]

1…基板、2…HTS膜、2a…HTS結晶粒子、2b
…空隙、3…金属膜、4…電極部、5…基板の裏面に形
成されたHTS膜、6a、6b…ワイヤ、7…コネク
タ。
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... HTS film, 2a ... HTS crystal particle, 2b
… Voids, 3… metal films, 4… electrode parts, 5… HTS films formed on the back surface of the substrate, 6a, 6b… wires, 7… connectors.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−208229(JP,A) 特開 平6−37513(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 39/22 - 39/24 H01L 39/00 H01B 12/00 - 12/06 H01B 13/00 561 - 565 H01L 21/28 - 21/288 ZAA H01L 39/40 - 29/43 ZAA H01L 21/3205 ZAA C30B 29/22 501 H01P 1/203 ZAA C01G 1/00 C01G 3/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-208229 (JP, A) JP-A-6-37513 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 39/22-39/24 H01L 39/00 H01B 12/00-12/06 H01B 13/00 561-565 H01L 21/28-21/288 ZAA H01L 39/40-29/43 ZAA H01L 21/3205 ZAA C30B 29/22 501 H01P 1/203 ZAA C01G 1/00 C01G 3/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板(1)上にY1 Ba2 Cu3 y
成の超伝導薄膜(2)をフィルタパターンに形成し、そ
の膜上で少なくとも電極部(4)に金属膜(3)を積層
形成したY系高温超伝導膜構造において、前記超伝導薄膜は、空隙(2b)を含み、かつY 1 Ba
2 Cu 3 y の板状結晶が前記 基板上で2次元的に連な
った構造を有し、前記1 Ba2 Cu3 y の板状結晶の結晶平均粒径d
が、 1≦d≦3 (μm) の関係を満足するとともに、前記基板上の2次元面内で
の空隙の割合Pが、 3≦P≦10 (%) の関係を満足することを特徴とするY系高温超伝導膜構
造。
1. A superconducting thin film (2) of Y 1 Ba 2 Cu 3 O y composition is formed in a filter pattern on a substrate (1), and a metal film (3) is formed on the film at least on an electrode part (4). in the stacked form the Y-based high temperature superconducting film structure, the superconducting thin film comprises voids (2b), and Y 1 Ba
2 Cu 3 O plate crystals of y has a two-dimensionally continuous structure on said substrate, said Y 1 Ba 2 Cu 3 O y crystal average particle size d of the plate-like crystals
But with satisfying the relation of 1 ≦ d ≦ 3 (μm) , and characterized in that the ratio P of the voids in a two-dimensional plane on the substrate, to satisfy the relationship of 3 ≦ P ≦ 10 (%) Y-based high-temperature superconducting film structure.
【請求項2】 前記超伝導薄膜(2)の膜厚t1 が、 0.5≦t1 ≦1.5 (μm) の関係を満足することを特徴とする請求項1に記載のY
系高温超伝導膜構造。
2. The Y according to claim 1, wherein the thickness t1 of the superconducting thin film (2) satisfies the relationship of 0.5 ≦ t1 ≦ 1.5 (μm).
Based high temperature superconducting film structure.
【請求項3】 前記超伝導薄膜(2)の膜厚t1 と前記
金属膜(3)の膜厚t2 が、 t1 +0.2≦t2 (μm) の関係を満足することを特徴とする請求項2に記載のY
系高温超伝導膜構造。
3. The film thickness t1 of the superconducting thin film (2) and the film thickness t2 of the metal film (3) satisfy a relationship of t1 + 0.2 ≦ t2 (μm). Y described in 2
Based high temperature superconducting film structure.
JP7178795A 1995-07-14 1995-07-14 Y-based high-temperature superconducting film structure Expired - Lifetime JP2929974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7178795A JP2929974B2 (en) 1995-07-14 1995-07-14 Y-based high-temperature superconducting film structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7178795A JP2929974B2 (en) 1995-07-14 1995-07-14 Y-based high-temperature superconducting film structure

Publications (2)

Publication Number Publication Date
JPH0936448A JPH0936448A (en) 1997-02-07
JP2929974B2 true JP2929974B2 (en) 1999-08-03

Family

ID=16054784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7178795A Expired - Lifetime JP2929974B2 (en) 1995-07-14 1995-07-14 Y-based high-temperature superconducting film structure

Country Status (1)

Country Link
JP (1) JP2929974B2 (en)

Also Published As

Publication number Publication date
JPH0936448A (en) 1997-02-07

Similar Documents

Publication Publication Date Title
El Azrak et al. Infrared properties of YBa 2 Cu 3 O 7 and Bi 2 Sr 2 Ca n− 1 Cu n O 2 n+ 4 thin films
JP2664491B2 (en) Substrate for thin film of laminated perovskite copper oxide superconductor, superconducting microwave circuit element comprising the substrate, and method of manufacturing the same
Meiksin et al. A theoretical study of the effect of elastic strain on the electrical resistance of thin metal films
JPH05160449A (en) Josephson junction structure
JP2929974B2 (en) Y-based high-temperature superconducting film structure
US5430013A (en) Superconducting thin film formed of oxide superconductor material, superconducting current path and superconducting device utilizing the superconducting thin film
JP2586248B2 (en) Transmission line
CA2054796C (en) Superconducting wiring lines and process for fabricating the same
EP0406120B1 (en) Method and construction of electrical connection to oxide superconductor
JPH1127015A (en) Superconductive element
Dietderich et al. Nb/sub 3/Sn artificial pinning microstructures
DE4128224C2 (en) Device for connecting a normal conductor piece with a high-temperature superconductor piece
JP2953298B2 (en) Microstrip line and method of manufacturing the same
JP2930036B2 (en) High temperature superconducting element and method of manufacturing the same
JP2848402B2 (en) Superconducting wiring
CA2084551C (en) Connection of superconducting current paths formed of oxide superconductor material
JP2560088B2 (en) How to join superconductors
JP3253297B2 (en) Oxide superconducting thin film
JPH02244512A (en) Electroconductive wiring
JP2774713B2 (en) Superconducting element
JPS59173903A (en) Compound superconductive conductor
JPS5816546A (en) Semiconductor device
JPS63318013A (en) Superconductive wiring material
JP2001127351A (en) Superconductive circuit device and its manufacturing method
JP2920846B2 (en) Superconducting magnetic shield