JPS63318013A - Superconductive wiring material - Google Patents

Superconductive wiring material

Info

Publication number
JPS63318013A
JPS63318013A JP62151192A JP15119287A JPS63318013A JP S63318013 A JPS63318013 A JP S63318013A JP 62151192 A JP62151192 A JP 62151192A JP 15119287 A JP15119287 A JP 15119287A JP S63318013 A JPS63318013 A JP S63318013A
Authority
JP
Japan
Prior art keywords
crystal
base plate
wiring
mono
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62151192A
Other languages
Japanese (ja)
Inventor
Takao Imagawa
尊雄 今川
Yuzo Kozono
小園 裕三
Matahiro Komuro
又洋 小室
Masaaki Sano
雅章 佐野
Koichi Nishioka
浩一 西岡
Shinji Narushige
成重 真治
Masanobu Hanazono
雅信 華園
Takashi Onishi
隆 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62151192A priority Critical patent/JPS63318013A/en
Publication of JPS63318013A publication Critical patent/JPS63318013A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide a wiring material with high density and without wiring resistance by forming a superconductor of oxide type on a mono-crystal base plate with mono-crystals, and inclining the crystal surface to the base plate surface. CONSTITUTION:The superconductor of oxide type is oxide of rare earth and Co such as Ba2CuO4, and the crystal indicates perovskite structure. When a mono-crystal film having (011) surface of Ba2CuO4 is formed on, e.g., a sapphire surface base plate 1, a set of (001) surfaces parallel with each other and without electrical contact will be formed, in which a direction 4 as superconductive condition and a direction 5 to become an electrically insulating body coexist on the same base plate surface. On this surface terminals 6-8 are formed with Cu etc., by means of evaporation. Thereby the terminals 6, 7 lying on the same surface (001) are given electrical continuity without any electric resis tance, while those 7, 8 are put in insulated state, and consideration on arrange ment of these terminals should enable mounting of elements in high density.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子計算機等に用いられる高密度配線材料及び
基板であって、特に発熱が無く高密度な素子の実装に適
する超電導配線材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to high-density wiring materials and substrates used in electronic computers and the like, and particularly to superconducting wiring materials that do not generate heat and are suitable for mounting high-density elements.

〔従来の技術〕[Conventional technology]

従来、素子を高密度に配線する方法には、特公昭60−
35825に記載の如<Cu又はAQ等の金属を、ホト
レジスト、PIQ等の樹脂あるいはA Q 203. 
S i 02等酸化物によって形成したギャップ内に埋
め込み、この金属によって素子間の電気的導通を得る方
法がある。ところが、この配線法では集積度が増すにつ
れ素子間の配線金属抵抗が累積して増大し、信号伝達速
度低下、及び発熱等の問題が発生する。
Conventionally, the method of wiring elements in high density was
As described in 35825, a metal such as Cu or AQ is combined with a photoresist, a resin such as PIQ, or a metal such as AQ 203.
There is a method of embedding the metal in a gap formed by an oxide such as S i 02 and obtaining electrical continuity between elements using this metal. However, with this wiring method, as the degree of integration increases, the wiring metal resistance between elements increases cumulatively, causing problems such as a reduction in signal transmission speed and heat generation.

電気抵抗のない材料としては、従来よりNbaSnを始
めとする金属又は化合物超電導体が公知である。しかし
、これら材料は摂氏−250℃以下という極低温でのみ
超電導となるもので、この様な温度では半導体が動作し
ない。
As materials without electrical resistance, metals such as NbaSn or compound superconductors are conventionally known. However, these materials become superconducting only at extremely low temperatures of -250 degrees Celsius or lower, and semiconductors do not operate at such temperatures.

一方、近年になって、ある種の酸化物が超電導を示し、
超電導転移点も従来の金属・化合物超電導体に比べはる
かに高いことが明ろかとなった。
On the other hand, in recent years, certain oxides have shown superconductivity,
It has become clear that the superconducting transition point is also much higher than that of conventional metal/compound superconductors.

これら酸化物は、希土類金属をMとした時、M2Cu0
4と表わされるペロブスカイト構造を有するのが特徴で
ある。ペロブスカイト単位胞内の(001)面にCu及
びOより成る面が形成され、この面内で超電導が起こる
ものである。本材料はスパッタリング法により容易に多
結晶の薄膜が形成でき、これを前述した配線材のCu及
びAflの代りに用いることにより配線抵抗による発熱
のない配線材料が容易に得られる。しかしながら、実 
・装密度を上げるため配線幅を狭くすると、配線幅と結
晶粒径がほぼ同程度となり、結晶粒間で」二記超電導層
の接触のない部分ができ、配線材として機能しない欠点
があった。
These oxides, when the rare earth metal is M, are M2Cu0
It is characterized by having a perovskite structure represented by 4. A plane made of Cu and O is formed on the (001) plane within the perovskite unit cell, and superconductivity occurs within this plane. A polycrystalline thin film can be easily formed using this material by sputtering, and by using this material in place of the aforementioned wiring materials Cu and Afl, a wiring material that does not generate heat due to wiring resistance can be easily obtained. However, the actual
・When the wiring width is narrowed to increase the packing density, the wiring width and the crystal grain size become almost the same, and there is a part where the superconducting layer mentioned above does not contact between the crystal grains, which has the disadvantage that it does not function as a wiring material. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、配線抵抗の低下について考慮されてお
らず、また酸化物超電導体を用いた配線材料も配線の微
細化に対応できない難点があった。
The above-mentioned conventional technology does not take into account the reduction in wiring resistance, and wiring materials using oxide superconductors also have the disadvantage that they cannot respond to miniaturization of wiring.

本発明の目的は、高密度でかつ配線抵抗のない配線材料
を提供することにある。
An object of the present invention is to provide a wiring material with high density and no wiring resistance.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、酸化物超電導体を単結晶基板上に作製する
ことにより単結晶とし、かつその結晶面の(OO1)面
を基板面に対し傾けることにより膜面内に超電導状態で
ある方向と電流の流れない方向を生ぜしめ、これを配線
材に適用することにより達成される。
The above purpose is to make an oxide superconductor into a single crystal by fabricating it on a single crystal substrate, and by tilting the (OO1) crystal plane with respect to the substrate surface, the direction of the superconducting state and the current flow in the film plane are determined. This is achieved by creating a direction in which no flow occurs and applying this direction to the wiring material.

〔作用〕[Effect]

酸化物超電導体は例えばB a 2 Cu O4の様に
希土類と銅の酸化物である。結晶形はペロブスカイト構
造であり第3図に示すC面内で超電導を示す。
Oxide superconductors are oxides of rare earths and copper, such as Ba 2 Cu O4. The crystal form is a perovskite structure and exhibits superconductivity in the C plane shown in FIG.

そこで例えばサファイア(0001)囲碁板上にBa2
CuOaの(011)面を有する単結晶膜を作製すれば
、第1図に示す如く互いに平行で電気的接触のない(0
01)面の組ができる。これを斜視すると第2図に示す
如く超電導状態である方向4と電気的に絶縁体となる方
向5とが同一基板面内に存在することが分る。この面」
二に、Cu等で端子部6,7.8を図の様な関係に蒸着
、スパッタリングまたはめつきにより形成すると、同一
(001)面上にある6及び7は電気抵抗なしで導通が
あり、6と8及び7と8は絶縁状態となる。
So, for example, on a sapphire (0001) Go board, Ba2
If a single crystal film of CuOa with a (011) plane is fabricated, the (0
01) A set of surfaces is created. If this is viewed from perspective, it can be seen that the superconducting direction 4 and the electrically insulating direction 5 exist within the same substrate plane, as shown in FIG. This side”
Second, if the terminal parts 6, 7, 8 are formed of Cu or the like by vapor deposition, sputtering, or plating in the relationship shown in the figure, 6 and 7 on the same (001) plane are electrically conductive without electrical resistance. 6 and 8 and 7 and 8 are in an insulated state.

これら端子部の配置を考慮すれば、高密度な素子実装が
可能となる。さらにサファイア(0001)面を基板面
から傾けて切り出して使用すればBa2CuOaの(0
11)方位も傾き(001)面も傾くため超電導層間の
距離も変化させることができる。
If the arrangement of these terminal portions is taken into consideration, high-density device mounting becomes possible. Furthermore, if the sapphire (0001) plane is cut out at an angle from the substrate surface, Ba2CuOa's (0
11) Azimuth and inclination Since the (001) plane is also inclined, the distance between superconducting layers can also be changed.

また、さらに複雑な素子間配線が必要とされる場合は、
第1図に示した配線材料上にAQ、zOa等絶縁体単結
晶膜をエピタキシャル成長させ、その上にさらに酸化物
超電導層を形成し、下層とはスルーホール形成後Cu等
により接続する多層配線を用いれば、任意の端子間の接
続が可能となる。
In addition, if more complicated inter-element wiring is required,
An insulating single crystal film such as AQ or zOa is epitaxially grown on the wiring material shown in Fig. 1, and an oxide superconducting layer is further formed on top of it, and a multilayer wiring is connected to the lower layer by Cu or the like after forming through holes. If used, connections between arbitrary terminals can be made.

〔実施例〕〔Example〕

B a 2 Cu O4を直径100w1厚さ5圃の形
状に焼結成形し、これをターゲットとして用いスパッタ
リングした。基板にサファイア基板を用い、高周波投入
電力3ood、Arガス圧2 X I Q−2Torr
B a 2 Cu O 4 was sintered into a shape with a diameter of 100 w and a thickness of 5 fields, and sputtering was performed using this as a target. A sapphire substrate is used as the substrate, high frequency input power is 3 ood, Ar gas pressure is 2 X I Q-2 Torr.
.

o2ガス圧力0 、2 X 10”−2Torr基板は
水冷した。
O2 gas pressure 0, 2 x 10''-2 Torr substrates were water cooled.

基板には高周波バイアスを印加し、平均の直流電位が一
200Vとなるよう調整した。上記条件でサファイア基
板の面方位を次の第1表の様に変えた時、それぞれ特定
面方位のBazCu○4単結晶膜が成長した。厚さは1
μmとした。
A high frequency bias was applied to the substrate, and the average DC potential was adjusted to 1200V. When the plane orientation of the sapphire substrate was changed as shown in Table 1 below under the above conditions, BazCu*4 single crystal films with specific plane orientations were grown. Thickness is 1
It was set as μm.

第  1  表 本実施例によれば、サファイア基板上に単結晶酸化物超
電導体が形成できることが分った。
Table 1 According to this example, it was found that a single crystal oxide superconductor could be formed on a sapphire substrate.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、特定面方位を持った酸化物超電導体を
基板上に形成でき、高密度化可能で配線抵抗のない配線
材料が形成できる効果がある。
According to the present invention, an oxide superconductor having a specific plane orientation can be formed on a substrate, and a wiring material that can be highly densified and has no wiring resistance can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はサファイア基板」二に形成したBa2Cu04
薄膜の面方位関係を示す断面図、第2図は第1図の斜視
図及び第3図はペロブスカイトの結晶面を示す構造図で
ある。 1・・・基板、2・・・酸化物超電導体、3・・・ペロ
ブスカイト(001)面、4・・・超電導方向、5・・
・絶縁体第 1  口 第 2 図
Figure 1 shows Ba2Cu04 formed on a sapphire substrate.
FIG. 2 is a cross-sectional view showing the plane orientation relationship of the thin film, FIG. 2 is a perspective view of FIG. 1, and FIG. 3 is a structural diagram showing the crystal plane of perovskite. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Oxide superconductor, 3... Perovskite (001) plane, 4... Superconducting direction, 5...
・Insulator No. 1 Port No. 2 Diagram

Claims (1)

【特許請求の範囲】[Claims] 1、基板上に形成した導電膜とその上に形成した電極層
とより成るものにおいて、基板に単結晶絶縁体を用い導
体を酸化物超電導体単結晶膜とすることを特徴とする超
電導配線材料。
1. A superconducting wiring material consisting of a conductive film formed on a substrate and an electrode layer formed thereon, characterized in that the substrate is a single crystal insulator and the conductor is an oxide superconductor single crystal film. .
JP62151192A 1987-06-19 1987-06-19 Superconductive wiring material Pending JPS63318013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62151192A JPS63318013A (en) 1987-06-19 1987-06-19 Superconductive wiring material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62151192A JPS63318013A (en) 1987-06-19 1987-06-19 Superconductive wiring material

Publications (1)

Publication Number Publication Date
JPS63318013A true JPS63318013A (en) 1988-12-26

Family

ID=15513276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62151192A Pending JPS63318013A (en) 1987-06-19 1987-06-19 Superconductive wiring material

Country Status (1)

Country Link
JP (1) JPS63318013A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084437A (en) * 1990-02-28 1992-01-28 Westinghouse Electric Corp. Method for making high-current, ohmic contacts between semiconductors and oxide superconductors
KR100515124B1 (en) * 1999-12-14 2005-09-16 일본국 통상산업성 공업기술원 Epitaxial compound structure and device comprising same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084437A (en) * 1990-02-28 1992-01-28 Westinghouse Electric Corp. Method for making high-current, ohmic contacts between semiconductors and oxide superconductors
KR100515124B1 (en) * 1999-12-14 2005-09-16 일본국 통상산업성 공업기술원 Epitaxial compound structure and device comprising same

Similar Documents

Publication Publication Date Title
JP2664491B2 (en) Substrate for thin film of laminated perovskite copper oxide superconductor, superconducting microwave circuit element comprising the substrate, and method of manufacturing the same
US6617283B2 (en) Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom
CN88101032A (en) Superconductive device
EP0545811A2 (en) Superconducting multilayer interconnection formed of oxide superconductor material and method for manufacturing the same
JP2523647B2 (en) Metal oxide superconducting thin film
JPS63318013A (en) Superconductive wiring material
JPH03228384A (en) Superconducting element
EP0534854B1 (en) Superconducting thin film formed of oxide superconductor material, superconducting current path and superconducting device utilizing the superconducting thin film
JP2907831B2 (en) Josephson element
JP3061634B2 (en) Oxide superconducting tape conductor
JP2720660B2 (en) Superconducting wiring
JP2651480B2 (en) Superconducting element
JP3069195B2 (en) Josephson element
CA2084551C (en) Connection of superconducting current paths formed of oxide superconductor material
JP2614939B2 (en) Superconducting element and fabrication method
JP2691065B2 (en) Superconducting element and fabrication method
JPS61220385A (en) Josephson junction element
JP2848402B2 (en) Superconducting wiring
JP2641966B2 (en) Superconducting element and fabrication method
JP2560088B2 (en) How to join superconductors
JPH02244512A (en) Electroconductive wiring
JP2597745B2 (en) Superconducting element and fabrication method
JPH04319207A (en) Oxide superconducting wire rod
JPH04318983A (en) Josephson junction element and manufacture thereof
JPH04206667A (en) Superconducting element