JPH0727897B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH0727897B2
JPH0727897B2 JP61148777A JP14877786A JPH0727897B2 JP H0727897 B2 JPH0727897 B2 JP H0727897B2 JP 61148777 A JP61148777 A JP 61148777A JP 14877786 A JP14877786 A JP 14877786A JP H0727897 B2 JPH0727897 B2 JP H0727897B2
Authority
JP
Japan
Prior art keywords
heat treatment
oxide film
gas
semiconductor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61148777A
Other languages
Japanese (ja)
Other versions
JPS635534A (en
Inventor
和彦 椿
英明 名倉
真覩 横沢
Original Assignee
松下電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電子工業株式会社 filed Critical 松下電子工業株式会社
Priority to JP61148777A priority Critical patent/JPH0727897B2/en
Publication of JPS635534A publication Critical patent/JPS635534A/en
Publication of JPH0727897B2 publication Critical patent/JPH0727897B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置特にハロゲン元素を含む酸化膜を
形成する半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a method for manufacturing a semiconductor device in which an oxide film containing a halogen element is formed.

従来の技術 従来からシリコン基板を酸化性雰囲気中で熱処理するこ
とによって得た酸化膜は、拡散のマスクやPn接合を保護
するためのパッシベーション膜に用いられている。しか
しながら、これら酸化膜中には、可動イオンが含まれ、
しばしば、半導体装置の信頼性を欠いていた。その対策
として、塩素系ガスや臭素系ガス等のハロゲン元素ガ
ス、たとえば、塩素ガス、臭素ガス、塩化水素、臭化水
素、トリクロルエチレン、テトラクロルエチレンなどを
含む雰囲気中で、得られた酸化膜中の可動イオンは、塩
素や臭素系ガスを含まない雰囲気中で得られた酸化膜中
の可動イオンよりも著しく少なく、半導体装置の安定性
を良化させることが知られている(たとえば、ジェイ
エレクトロケミ ソサエティ(J.Electorochem. Soc.)
121.No6 P839,1974のハロゲン添加による耐圧分布の向
上等)。
2. Description of the Related Art Conventionally, an oxide film obtained by heat-treating a silicon substrate in an oxidizing atmosphere has been used as a diffusion mask or a passivation film for protecting a Pn junction. However, mobile ions are contained in these oxide films,
Often, semiconductor devices lacked reliability. As a countermeasure, an oxide film obtained in an atmosphere containing a halogen element gas such as chlorine gas or bromine gas, for example, chlorine gas, bromine gas, hydrogen chloride, hydrogen bromide, trichloroethylene, tetrachloroethylene, etc. It is known that the number of mobile ions in the semiconductor is significantly less than the number of mobile ions in an oxide film obtained in an atmosphere containing no chlorine or brominated gas, which improves the stability of a semiconductor device (for example, J
Electro Chemistry (J. Electorochem. Soc.)
121.No6 P839,1974 improvement of breakdown voltage distribution by adding halogen).

すなわち、酸化膜中の可動イオンたとえばナトリウムや
カリウム等のアルカリ金属は、塩素を含む雰囲気中で熱
処理することによって、捕獲され、酸化膜中で動きにく
くなることが知られている。この熱処理によって半導体
装置の電圧や温度に対する安定性は、極めて高くなって
いる。
That is, it is known that mobile ions in the oxide film, for example, alkali metals such as sodium and potassium are captured by the heat treatment in an atmosphere containing chlorine and become hard to move in the oxide film. Due to this heat treatment, the stability of the semiconductor device against voltage and temperature is extremely high.

発明が解決しようとする問題点 しかしながら従来方法では、臭素ガスや塩素ガスは、特
に酸素や水蒸気の存在下においては、高温でシリコンと
反応し、シリコン表面を著しく腐食させる。シリコン表
面の腐食は、ホトエッチング工程での微細加工を阻害し
たり、P−n接合深さをばらつかせ、特性のばらつき発
生や製造歩留を低下させる原因となる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in the conventional method, bromine gas or chlorine gas reacts with silicon at a high temperature, particularly in the presence of oxygen or water vapor, and significantly corrodes the silicon surface. Corrosion of the silicon surface hinders fine processing in the photoetching process and causes the P-n junction depth to fluctuate, causing variations in characteristics and a reduction in manufacturing yield.

問題点を解決するための手段 前記問題点を解決するために本発明は、半導体基板又は
半導体素子を熱処理炉中のハロゲン元素ガスを含み酸素
を含まない雰囲気内で所定の時間熱処理する第1の工程
とと、酸素を含まないガスを所定の時間前記熱処理炉中
に流し、前記熱処理炉中の前記ハロゲン元素ガスを除去
する第2の工程と、前記半導体基板又は半導体素子上に
酸化性雰囲気中で所定時間熱処理を行って酸化膜を形成
する第3の工程とを含む事を特徴とする半導体装置の製
造方法を提供する。
Means for Solving the Problems In order to solve the above problems, the present invention provides a first heat treatment of a semiconductor substrate or a semiconductor element in a heat treatment furnace in an atmosphere containing a halogen element gas and not containing oxygen for a predetermined time. A second step of flowing a gas containing no oxygen into the heat treatment furnace for a predetermined time to remove the halogen element gas in the heat treatment furnace; and an oxidizing atmosphere on the semiconductor substrate or semiconductor element. And a third step of performing heat treatment for a predetermined time to form an oxide film.

作用 本発明を構成する第1の工程は、シリコン基板中にハロ
ゲン元素を拡散させることにあり、これにより、第3の
工程で酸化膜を形成した際、酸化膜中にハロゲン元素が
含有されることになる。また第2の工程は、第1の工程
から第3の工程に移行する際に石英管壁等に含まれてい
るハロゲン元素が石英管内の雰囲気中に発生して、シリ
コン基板を腐食する事を防止するため、非酸化性ガスを
流すことによって、残存するハロゲン元素を石英管壁等
より追い出すためである。
Action The first step constituting the present invention is to diffuse the halogen element in the silicon substrate, so that when the oxide film is formed in the third step, the halogen element is contained in the oxide film. It will be. In the second step, the halogen element contained in the quartz tube wall or the like is generated in the atmosphere inside the quartz tube when the first step to the third step is performed, and the silicon substrate is corroded. This is because a non-oxidizing gas is flown in order to prevent residual halogen elements from the quartz tube wall or the like.

実施例 第1の実施例を第1図(a)を参照して説明する。第1
工程として熱処理炉1の熱処理管2内に直径100mmのシ
リコン基板4を100枚配置したのち、0.1%の塩化水素を
含む窒素ガスを毎分3流して、1100℃、120分加熱し
た。その後、第2工程として、20/分の流量で5分間
窒素ガスを流し塩化水素ガスを除去したのち、第3工程
として温度60℃の水中で酸素ガスを発泡させて得た水蒸
気を含む酸素ガスを5/分の流量で流し、1100℃で10
0分間熱処理した。この熱処理によって、0.6μmの酸化
膜が得られた。
First Embodiment A first embodiment will be described with reference to FIG. First
As a step, 100 silicon substrates 4 having a diameter of 100 mm were arranged in the heat treatment tube 2 of the heat treatment furnace 1, and then nitrogen gas containing 0.1% hydrogen chloride was flowed at 3 minutes per minute and heated at 1100 ° C. for 120 minutes. Then, in the second step, nitrogen gas is flown for 5 minutes at a flow rate of 20 / min to remove hydrogen chloride gas, and then in the third step, oxygen gas containing water vapor obtained by bubbling oxygen gas in water at a temperature of 60 ° C. At a flow rate of 5 / min for 10 minutes at 1100 ° C.
Heat treatment was performed for 0 minutes. By this heat treatment, a 0.6 μm oxide film was obtained.

第2の実施例を第1図(a)を参照して説明する。第1
工程として熱処理炉1の熱処理管2内に直径100mmのシ
リコン基板を100枚配置したのち、温度35℃のテトラク
ロルエチレン中を窒素に発泡させて形成したテトラクロ
ルエチレンを含む窒素ガスを毎分5流し、1100℃、12
0分加熱した。その後、第2工程として20/分の流量
で5分間窒素ガスを流したのち、温度60℃の水中で酸素
ガスを発泡させて得た水蒸気を含む酸素ガスを5/分
の速度で流し、1100℃で80分間熱処理し、この熱処理に
よって、0.9μmの酸化膜を得た。
A second embodiment will be described with reference to FIG. First
As a process, 100 silicon substrates with a diameter of 100 mm were placed in the heat treatment tube 2 of the heat treatment furnace 1, and then nitrogen gas containing tetrachlorethylene formed by bubbling nitrogen in tetrachloroethylene at a temperature of 35 ° C. was added at a rate of 5 minutes per minute. Sink, 1100 ℃, 12
Heated for 0 minutes. Then, as a second step, after flowing nitrogen gas at a flow rate of 20 / min for 5 minutes, oxygen gas containing water vapor obtained by bubbling oxygen gas in water at a temperature of 60 ° C. is flowed at a rate of 5 / min. A heat treatment was carried out at 80 ° C. for 80 minutes, and a 0.9 μm oxide film was obtained by this heat treatment.

第1図(b)には、典型的な本発明の温度プログラムを
示した。
FIG. 1 (b) shows a typical temperature program of the present invention.

本発明は、上述のように、表面の腐食を防止し、微細加
工を阻害することなく、酸化膜中の可動イオンを酸化膜
中で捕獲するハロゲン元素を含む雰囲気中での熱処理方
法である。したがって、本発明は、最初に酸化膜を形成
する熱処理工程はもちろんのこと、既に不純物を拡散さ
せてあるシリコン基板の熱処理にも適用できる。
As described above, the present invention is a heat treatment method in an atmosphere containing a halogen element that prevents corrosion of the surface and traps mobile ions in the oxide film in the oxide film without inhibiting fine processing. Therefore, the present invention can be applied not only to the heat treatment step of first forming an oxide film, but also to the heat treatment of a silicon substrate in which impurities have already been diffused.

第3図は、n型で比抵抗が10Ωcmのシリコン基板に各種
酸化法で厚み0.6μmの酸化膜を形成し、その後、選択
的にボロンを拡散させて得たプレーナ型ダイオードの高
温耐圧試験(HTRB)結果を示す。第3図中従来法1は、
酸素中で形成した酸化膜、従来法2は、0.1%の塩化水
素を含む酸素ガス中で形成した酸化膜である。従来方法
によって形成した酸化膜をパッシベーション膜として用
いたプレーナ型ダイオードの安定性は、時間の経過とと
もに劣化するが本発明法で得た酸化膜では、全く劣化し
ていない。また第2図には、PNP型プレーナトランジス
タを製造する際のエミッタ拡散工程に本発明法を適用し
た場合と従来法の場合とを比較した効果例をhFEの劣化
とばらつきで示したものである。PNP型トランジスタ
は、P+型の半導体基板上に形成されたP型のエピタキシ
ャルウェハーに選択的に順次リン、ボロンを拡散させて
得たものである。第2図は、特性の一例として直流電流
増幅率(hFE)の高温電圧試験の前後値を比較して示し
た。第2図からわかるように、従来法1では、試験後h
FEは著しく低下し、安定性に欠ける。また、従来法2で
は、試験前後の変化は少ないが、hFEのばらつきが大き
い。それに対し、本発明法は、hFEのばらつきは少な
く、また、試験前後のhFE変動も少ない。以上のよう
に、本発明法によって得られた酸化膜を半導体装置に用
いれば、従来法に比べて特性のばらつきが少なくかつ信
頼性の高い半導体装置が得られる。
Fig. 3 shows a high temperature withstand voltage test of a planar diode obtained by forming an oxide film of 0.6 μm in thickness by various oxidation methods on an n-type silicon substrate with a specific resistance of 10 Ωcm, and then selectively diffusing boron ( HTRB) shows the results. The conventional method 1 in FIG.
An oxide film formed in oxygen, Conventional Method 2 is an oxide film formed in oxygen gas containing 0.1% hydrogen chloride. The stability of the planar diode using the oxide film formed by the conventional method as the passivation film deteriorates with the passage of time, but the oxide film obtained by the method of the present invention does not deteriorate at all. Further, FIG. 2 shows an example of the effect of comparing the case of applying the method of the present invention with the case of the conventional method in the emitter diffusion step in manufacturing a PNP type planar transistor by the deterioration and variation of h FE. is there. The PNP transistor is obtained by selectively sequentially diffusing phosphorus and boron into a P type epitaxial wafer formed on a P + type semiconductor substrate. FIG. 2 shows, as an example of the characteristics, a comparison between the values before and after the high temperature voltage test of the direct current amplification factor (h FE ). As can be seen from FIG. 2, in the conventional method 1, after the test, h
FE is significantly reduced and lacks stability. Further, in the conventional method 2, the change before and after the test is small, but the variation of h FE is large. On the other hand, in the method of the present invention, variations in h FE are small, and variations in h FE before and after the test are also small. As described above, when the oxide film obtained by the method of the present invention is used for a semiconductor device, a semiconductor device having less variation in characteristics and higher reliability than the conventional method can be obtained.

また、実施例では、第1工程、第2工程および第3工程
の順で熱処理方法を示したが、第3工程、第2工程(た
だしこの場合は酸素を除去する)および第1工程の順で
熱処理を行なっても同一の効果が得られたことは言うま
でもない。
Further, in the embodiment, the heat treatment method is shown in the order of the first step, the second step and the third step, but the third step, the second step (however, in this case, oxygen is removed) and the first step are carried out in this order. It is needless to say that the same effect was obtained even if the heat treatment was performed at.

発明の効果 本発明の製造方法によれば、ハロゲン元素ガス雰囲気中
で熱処理したのち、非酸化性ガスを流してハロゲン元素
ガスを除去し、そのあとで酸化性雰囲気中で酸化膜を形
成するため、シリコン表面が腐食されることなく酸化膜
中の可動イオンが捕獲され、半導体装置の諸特性の安定
性を極めて高くすることができる。
According to the manufacturing method of the present invention, after heat treatment in a halogen element gas atmosphere, a non-oxidizing gas is caused to flow to remove the halogen element gas, and then an oxide film is formed in an oxidizing atmosphere. The movable ions in the oxide film are captured without corroding the silicon surface, and the stability of various characteristics of the semiconductor device can be made extremely high.

【図面の簡単な説明】 第1図の(a)は本発明法に用いた熱処理装置の断面
図、第1図の(b)は本発明法の典型的温度プログラム
図、第2図はプレナー型PNPトランジスタに対するHTRB
テストによるhFEの変動特性図、第3図はプレナー型ダ
イオードに対するHTRBテストによる劣化率の比較図であ
る。 1……熱処理炉、2……熱処理管、3……シリコン基板
保持用器具、4……シリコン基板。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) is a sectional view of a heat treatment apparatus used in the method of the present invention, FIG. 1 (b) is a typical temperature program diagram of the method of the present invention, and FIG. 2 is a planer. Type PNP transistor for HTRB
Fig. 3 is a variation characteristic diagram of h FE by the test, and Fig. 3 is a comparison diagram of the deterioration rate by the HTRB test for the planar diode. 1 ... Heat treatment furnace, 2 ... Heat treatment tube, 3 ... Equipment for holding silicon substrate, 4 ... Silicon substrate.

フロントページの続き (56)参考文献 特開 昭60−231351(JP,A) 特開 昭55−166960(JP,A) 特開 昭55−85068(JP,A) 特開 昭53−73072(JP,A) 特開 昭49−78483(JP,A)Continuation of the front page (56) Reference JP-A-60-231351 (JP, A) JP-A-55-166960 (JP, A) JP-A-55-85068 (JP, A) JP-A-53-73072 (JP , A) JP-A-49-78483 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板又は半導体素子を熱処理炉中の
ハロゲン元素ガスを含み酸素を含まない雰囲気内で所定
の時間熱処理する第1の工程と、酸素を含まないガスを
所定の時間前記熱処理炉中に流し、前記熱処理炉中の前
記ハロゲン元素ガスを除去する第2の工程と、前記半導
体基板又は半導体上にハロゲン元素を含まない酸化性雰
囲気中で所定時間熱処理を行って酸化膜を形成する第3
の工程とを含むことを特徴とする半半導体装置の製造方
法。
1. A first step of heat-treating a semiconductor substrate or a semiconductor element in a heat treatment furnace in an atmosphere containing a halogen element gas and not containing oxygen for a predetermined time, and a gas containing no oxygen for a predetermined time. Flowing into the heat treatment furnace to remove the halogen element gas, and heat-treating the semiconductor substrate or the semiconductor on the semiconductor substrate or the semiconductor in an oxidizing atmosphere containing no halogen element for a predetermined time to form an oxide film. Third
The method for manufacturing a semi-semiconductor device, comprising:
JP61148777A 1986-06-25 1986-06-25 Method for manufacturing semiconductor device Expired - Lifetime JPH0727897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61148777A JPH0727897B2 (en) 1986-06-25 1986-06-25 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61148777A JPH0727897B2 (en) 1986-06-25 1986-06-25 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS635534A JPS635534A (en) 1988-01-11
JPH0727897B2 true JPH0727897B2 (en) 1995-03-29

Family

ID=15460432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61148777A Expired - Lifetime JPH0727897B2 (en) 1986-06-25 1986-06-25 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0727897B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473133U (en) * 1990-11-05 1992-06-26
JP3173891B2 (en) * 1992-10-21 2001-06-04 株式会社曙ブレーキ中央技術研究所 Manufacturing method of friction material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978483A (en) * 1972-11-30 1974-07-29
JPS5373072A (en) * 1976-12-13 1978-06-29 Sony Corp Formation of oxidized film
JPS5585068A (en) * 1978-12-21 1980-06-26 Sony Corp Preparation of semiconductor device
JPS55166960A (en) * 1979-06-14 1980-12-26 Fujitsu Ltd Manufacture of field effect semiconductor device
JPS60231351A (en) * 1984-04-27 1985-11-16 Fujitsu Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS635534A (en) 1988-01-11

Similar Documents

Publication Publication Date Title
US4053335A (en) Method of gettering using backside polycrystalline silicon
CA1093217A (en) Use of nitric oxide to clean a semiconductor
US4231809A (en) Method of removing impurity metals from semiconductor devices
US2619414A (en) Surface treatment of germanium circuit elements
EP0363944A1 (en) Method of manufacturing a semiconductor device having a silicon carbide layer
US4057460A (en) Plasma etching process
Ing et al. Gettering of metallic impurities from planar silicon diodes
US3210225A (en) Method of making transistor
JPS61285714A (en) Manufacture of semiconductor construction
JPS5922380B2 (en) Handout Taisoshino Seizouhouhou
JPH0727897B2 (en) Method for manufacturing semiconductor device
US3312577A (en) Process for passivating planar semiconductor devices
JPH1197376A (en) High breakdown strength semiconductor device and fabrication thereof
US3669775A (en) Removal of boron and phosphorous-containing glasses from silicon surfaces
US3718503A (en) Method of forming a diffusion mask barrier on a silicon substrate
JPS5534422A (en) Method of manufacturing mos type semiconductor device
JPH0122731B2 (en)
JPS6112370B2 (en)
US3523819A (en) Method for treating the surface of semiconductor device
JPH08148501A (en) Production of silicon semiconductor device
JPH0712038B2 (en) Semiconductor substrate processing method
JPH03173131A (en) Manufacture of semiconductor device
CN108091554B (en) Shallow PN junction diffusion technology
JPH05144802A (en) Cleaning method for semiconductor manufacturing device
US3387192A (en) Four layer planar semiconductor switch and method of making the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term