JPH07278639A - Method for refining extra-low sulfur steel - Google Patents

Method for refining extra-low sulfur steel

Info

Publication number
JPH07278639A
JPH07278639A JP6716594A JP6716594A JPH07278639A JP H07278639 A JPH07278639 A JP H07278639A JP 6716594 A JP6716594 A JP 6716594A JP 6716594 A JP6716594 A JP 6716594A JP H07278639 A JPH07278639 A JP H07278639A
Authority
JP
Japan
Prior art keywords
molten steel
ladle
gas
steel
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6716594A
Other languages
Japanese (ja)
Other versions
JP2897639B2 (en
Inventor
Yoshihiko Higuchi
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6716594A priority Critical patent/JP2897639B2/en
Publication of JPH07278639A publication Critical patent/JPH07278639A/en
Application granted granted Critical
Publication of JP2897639B2 publication Critical patent/JP2897639B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an extra-low sulfur steel while combining vacuum heat-raising and desulfurizing treatment, by supplying oxidizing gas while adding Al, at the time of refining molten steel by dipping a single leg type immersion tube into the molten steel in a ladle and evacuating the immersion tube to suck up the molten steel. CONSTITUTION:The single leg type immersion tube 30 is dipped into the molten steel 12 in the ladle 10 and the inner part of the tube is evacuated. At the same time, an inert gas is blown through a blowing lance 22 or a porous plug 24 from the lower part of the ladle 10 under the plane of projection of the immersion tube 30 to execute the stirring treatment. At that time, the ratio of the inner diameter D1 of the immersion tube/the inner diameter D2 of the ladle is made to be 0.5-0.8. Successively, the Al is added into the molten steel 12 in the immersion tube 30 under vacuum collectively or in division or continuously. Together with this addition, the oxygen or the gas containing the oxygen is supplied from a top blowing tuyere 16 to execute the heat- raising and the desulfurizing refining to the molten steel 12. Thereafter, the pressure in the immersion tube 30 is returned back to the atmospheric pressure and the dipping depth D3 of the immersion tube 30 is kept within 0.5m and the gas stirring treatment with the inert gas is continued.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、清浄性に優れた極低硫
鋼の精錬方法、特に真空昇熱処理と組合わせた真空脱硫
処理による極低硫鋼の精錬方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for refining extremely low sulfur steel having excellent cleanliness, and more particularly to a method for refining extremely low sulfur steel by vacuum desulfurization treatment in combination with vacuum heat treatment.

【0002】[0002]

【従来の技術】極低硫鋼の溶製には、通常、大気圧下で
取鍋内溶鋼の上に脱硫フラックスを置いた状態でガス攪
拌する方法、あるいはガス攪拌しながら脱硫用粉体を溶
鋼中にインジェクションする方法が行われている。この
場合、大気中の空気との接触による溶鋼の空気酸化ある
いは窒素濃度の上昇を避けるために、取鍋蓋を使用する
こともある。
2. Description of the Related Art In the production of ultra-low-sulfur steel, a gas is usually stirred under atmospheric pressure with a desulfurization flux placed on the molten steel in a ladle, or powder for desulfurization is carried out while stirring the gas. The method of injecting into molten steel is performed. In this case, a ladle lid may be used to avoid air oxidation of molten steel or increase in nitrogen concentration due to contact with air in the atmosphere.

【0003】これらの脱硫処理によれば、大気圧下でガ
ス攪拌あるいは粉体吹込みを行うため、攪拌力が十分で
なく、したがって脱硫速度をあまり速くすることができ
ない。そのため、溶鋼中の硫黄濃度を例えば10ppm 以下
というように極低硫領域まで下げようとする場合には、
その処理時間が長く、その間に溶鋼温度が低下してしま
う。すると、今度は溶鋼温度が低いためさらに反応速度
が遅くなってしまい、その繰り返しで、結局、目的とす
る程度までの脱硫が達成されないことになる。
According to these desulfurization treatments, the gas is agitated or the powder is blown under the atmospheric pressure, so that the agitation force is not sufficient, and therefore the desulfurization rate cannot be increased so much. Therefore, when trying to reduce the sulfur concentration in molten steel to an extremely low sulfur range, such as 10 ppm or less,
The processing time is long, and the molten steel temperature drops during that time. Then, since the molten steel temperature is low this time, the reaction rate is further slowed down, and by repeating this, desulfurization cannot be achieved to a desired degree.

【0004】このように、上記の従来の脱硫方法では、
脱硫時の温度降下が大きいために、極低硫化とするには
脱硫処理に先立って出鋼温度を高める必要がある。しか
しながら、出鋼温度を余り高めると転炉耐火物の溶損が
大きくなり、転炉炉寿命の低下をきたしてしまう。ま
た、出鋼温度を高めるためには転炉において冷材である
スクラップの添加量を減らしたり、転炉吹錬において吹
き下げ操業を行う必要がある。これらはそれぞれ溶銑率
の上昇や鉄分歩留の低下などにつながり、生産性の低下
やコストアップをもたらしてしまう。そこで、転炉出鋼
温度を過度に高めないためには、取鍋精錬にて溶鋼昇熱
をする必要がある。
Thus, in the above conventional desulfurization method,
Since the temperature drop during desulfurization is large, it is necessary to raise the tapping temperature prior to desulfurization to achieve extremely low sulfurization. However, if the tapping temperature is raised too much, the melting loss of the refractory material of the converter will increase, and the life of the converter furnace will be shortened. Further, in order to raise the tapping temperature, it is necessary to reduce the addition amount of scrap, which is a cold material, in the converter, and to perform the blow-down operation in the blowing of the converter. Each of these causes an increase in the hot metal ratio and a decrease in the iron yield, leading to a decrease in productivity and an increase in cost. Therefore, in order not to raise the converter tapping temperature excessively, it is necessary to heat molten steel in ladle refining.

【0005】ところで、大気圧下での溶鋼昇熱方法とし
て、取鍋底部から不活性ガスを吹き込んで溶鋼を攪拌し
つつ溶鋼に浸漬した浸漬管内に酸化反応剤を添加しつつ
酸素ガスを吹き付けて溶鋼を加熱する方法が提案されて
いる。また、真空下での溶鋼昇熱法として、真空槽溶鋼
内へ酸素ガスを導入するとともに真空槽底部から不活性
ガスを吹き込んで攪拌する方法が提案されている。
By the way, as a method for heating molten steel under atmospheric pressure, an inert gas is blown from the bottom of a ladle to stir the molten steel, and while the molten steel is immersed in the dipping pipe, an oxidizing reactant is added and oxygen gas is blown. A method of heating molten steel has been proposed. Further, as a molten steel heating method under vacuum, a method has been proposed in which oxygen gas is introduced into molten steel in a vacuum tank and an inert gas is blown from the bottom of the vacuum tank to stir.

【0006】例えば、特開昭63−266017号公報では、
「取鍋内溶鋼に大型浸漬管を浸漬させて、発熱剤と酸素
ガスとを供給することにより溶鋼昇熱させ、この昇熱の
前後に、造滓剤を投入しパウダーインジェクションを行
い取鍋内溶鋼の昇熱精錬を行う方法」が提案されてい
る。
[0006] For example, in JP-A-63-266017,
"By immersing a large dip pipe in the ladle in the ladle and supplying the exothermic agent and oxygen gas to raise the temperature of the molten steel, before and after this temperature rise, the slag-making agent is added and powder injection is performed to perform the powder injection. A method for performing heat-up refining of molten steel "has been proposed.

【0007】特開平4−253213号公報では、「一本足浸
漬管を取鍋内溶鋼に浸漬し、浸漬管内を真空排気して攪
拌ガスを吹込みつつ酸素ガスを供給することを特徴とす
る取鍋内溶鋼の加熱方法」が提案されている。
In Japanese Patent Laid-Open No. 4-253213, "One-legged dip pipe is immersed in molten steel in a ladle, the dip pipe is evacuated and a stirring gas is blown to supply oxygen gas. A method for heating molten steel in a ladle has been proposed.

【0008】一方、取鍋における脱硫法としては、例え
ば、特開平1−100216号公報が、「取鍋内溶鋼に浸漬管
を浸漬せしめて、該浸漬管内に発熱剤を添加しつつ、上
方より吹酸昇熱するとともに、該浸漬管投影下面域で、
かつ前記吹酸に伴う火点形成域より下方に脱硫剤を吹き
込むことを特徴とする溶鋼の取鍋精錬法」を提案してい
る。これは、溶鋼昇熱と脱硫を同時に行うもので、総処
理時間を短くできるという利点がある。
On the other hand, as a desulfurization method in a ladle, for example, Japanese Unexamined Patent Publication (Kokai) No. 1-100216 discloses that "a dipping pipe is immersed in molten steel in a ladle, and an exothermic agent is added to the dipping pipe from above. With the heating of the propellant acid, in the lower surface area of the dip tube projection,
In addition, there is proposed a ladle refining method for molten steel, characterized in that a desulfurizing agent is blown below the hot spot formation region associated with the blowing acid. This is because the heating of molten steel and desulfurization are performed at the same time, and there is an advantage that the total processing time can be shortened.

【0009】特開平1−92314 号公報では、「一本足浸
漬管を取鍋内溶鋼に浸漬し、浸漬管内を真空排気して攪
拌ガスを吹き込みつつ脱硫する方法」が提案されてい
る。また、溶鋼を収容した取鍋全体を真空槽内に取り込
み、真空槽内を排気減圧した状態で、ガス攪拌あるいは
ガス攪拌とともに脱硫剤インジェクションによって極低
硫鋼を精錬する方法も提案されている。
Japanese Unexamined Patent Publication (Kokai) No. 1-92314 proposes "a method of immersing a one-legged dip tube in molten steel in a ladle, evacuating the dip tube to desulfurize while blowing a stirring gas". In addition, a method has also been proposed in which the entire ladle containing molten steel is taken into a vacuum chamber, and the interior of the vacuum chamber is evacuated and decompressed, and the ultra-low sulfur steel is refined by gas agitation or gas agitation and desulfurization agent injection.

【0010】[0010]

【発明が解決しようとする課題】しかし、前述した従来
方法では以下の問題点がある。特開昭63−266017号で
は、その実施例に示されるように大気圧下で酸素ガス供
給による溶鋼昇熱を行うため、低級酸化物が多量に生成
し、脱硫に不利な条件となってしまう。
However, the above-mentioned conventional method has the following problems. In JP-A-63-266017, as shown in the example, the molten steel is heated by supplying oxygen gas under atmospheric pressure, so that a large amount of lower oxide is produced, which is a disadvantageous condition for desulfurization. .

【0011】特開平4−253213号では、真空下での溶鋼
昇熱が開示されており、発熱反応剤の利用効率が極めて
高く低級酸化物の生成が抑制されているが、これは単に
溶鋼の加熱を目的としたもので、清浄性が改善されるこ
とは開示されているが、極低硫鋼を溶製する点に関して
は何の言及もされていない。
Japanese Patent Laid-Open No. 4-253213 discloses heating of molten steel under vacuum, which has extremely high utilization efficiency of an exothermic reaction agent and suppresses formation of lower oxides. Although it is disclosed that the purpose is heating and the cleanliness is improved, nothing is said about the point of producing extra low sulfur steel.

【0012】一方、特開平1−100216号では、吹酸昇熱
する火点形成域より下方に脱硫剤を吹き込むため、脱硫
剤が溶鋼中を上昇する過程で一時的なトランジトリーの
脱硫反応が生じるものの、この脱硫剤は溶鋼表面の火点
形成域に到達した後、過酸化状態である火点で復硫して
しまい、総合的な脱硫効率が極めて低下するという極低
硫鋼溶製に対して大きな問題が生じる。
On the other hand, in Japanese Patent Laid-Open No. 1-100216, a desulfurizing agent is blown below the hot spot forming area where the temperature of the propellant acid is raised, so that a transient desulfurization reaction of the transient tree occurs during the process in which the desulfurizing agent rises in molten steel. Although it occurs, this desulfurizing agent reaches the hot spot formation area on the surface of molten steel and then undergoes re-sulfurization at the hot spot, which is in a peroxide state, resulting in extremely low overall desulfurization efficiency. On the other hand, a big problem arises.

【0013】特開平1−92314 号では、大気圧下で同様
な処理をする場合よりも脱硫率が向上するとしている
が、例えば硫黄重量濃度5ppm 以下の極低硫鋼を溶製す
る場合は、このように脱硫効率が高い処理においても、
処理時間が延びてしまい、処理中の温度降下が大きくな
ってしまう。温度補償をする場合に、転炉出鋼温度上昇
や大気圧下での酸素ガス吹込みによる取鍋溶鋼加熱では
すでに述べた問題点が同じように生じてしまう。
Japanese Patent Laid-Open No. 1-92314 discloses that the desulfurization rate is improved as compared with the case where the same treatment is performed under atmospheric pressure. For example, in the case of melting ultra-low sulfur steel having a sulfur concentration of 5 ppm or less, Even in the treatment with high desulfurization efficiency,
The processing time is extended and the temperature drop during the processing becomes large. In the case of temperature compensation, the above-mentioned problems similarly occur in heating the molten steel ladle by raising the temperature of the steel output from the converter or by blowing oxygen gas under atmospheric pressure.

【0014】このように、従来技術においても極低硫鋼
の取鍋精錬法についてはいくつか提案されているが、極
低硫化と清浄性とを同時に満足したものはなく、またS
≦10ppm かつ清浄度指数1.0 以下の極低硫清浄鋼のより
経済的な精錬法はまだ開発されていない。「清浄度指
数」は、圧延後のサンプルをミクロ検鏡し、大型介在物
の単位面積当たりの個数を指標とした数値である。
As described above, even in the prior art, some ladle refining methods for ultra-low sulfur steel have been proposed, but none of them satisfy both ultra-low sulfurization and cleanliness, and S
A more economical refining method of ultra-low-sulfur clean steel with ≤10ppm and cleanliness index of 1.0 or less has not yet been developed. The “cleanliness index” is a value obtained by microscopically examining a sample after rolling and using the number of large inclusions per unit area as an index.

【0015】ここに、本発明の目的は、清浄性に優れた
極低硫鋼の効率的かつ安価な精錬方法を提供する事であ
る。さらに具体的には、本発明の目的は、真空下での脱
硫処理をより効果的に行うことでさらに効率的で安価に
実施できる清浄度指数1.0 以下かつS≦10ppm の極低硫
鋼の精錬方法を提供することである。
An object of the present invention is to provide an efficient and inexpensive refining method for extra-low sulfur steel excellent in cleanability. More specifically, an object of the present invention is to refine ultra-low sulfur steel having a cleanliness index of 1.0 or less and S ≦ 10 ppm, which can be more efficiently and inexpensively performed by more effectively performing desulfurization treatment under vacuum. Is to provide a method.

【0016】[0016]

【課題を解決するための手段】本発明者らは、かかる課
題を解決すべく、種々検討を重ね、次のような知見を得
て本発明を完成した。 炉経済性を考えると、浸漬管内径と取鍋内径との比D
1/D2 を0.5 〜0.8 とすることが有利であること。 そのような前提で、昇温後に脱硫を行うことが有利で
あること。 溶鋼の昇温と脱硫とを組合わせるに際して、大気圧下
で昇熱を行うとむしろ、脱硫効率が低下するとともに鋼
の清浄性が劣化するが、真空下で昇熱した溶鋼に同じく
真空下で脱硫処理を行うと、予想外にもS≦10ppm 、特
にS≦5ppm を短時間で達成でき、清浄性も確保できる
こと。 脱硫後溶鋼バブリングを継続することでスラグ改質を
図り、復硫を可及的に小とすること。
Means for Solving the Problems The inventors of the present invention have made various studies in order to solve the above problems, and have completed the present invention by obtaining the following knowledge. Considering the economic efficiency of the furnace, the ratio D of the inner diameter of the immersion pipe to the inner diameter of the ladle
It 1 / D 2 to be from 0.5 to 0.8 is advantageous. Under such conditions, it is advantageous to perform desulfurization after heating. When the temperature rise of molten steel and desulfurization are combined, if the temperature is raised under atmospheric pressure, the desulfurization efficiency will decrease and the cleanliness of the steel will deteriorate. When desulfurization treatment is performed, unexpectedly S ≦ 10ppm, especially S ≦ 5ppm can be achieved in a short time and the cleanliness can be secured. Continue slag bubbling after desulfurization to improve slag and minimize re-sulfurization.

【0017】ここに、本発明の要旨とするところは、取
鍋内に収容した溶鋼に1本足からなる筒状浸漬管を浸漬
し、浸漬管内を真空排気して溶鋼を浸漬管内に吸い上げ
た状態で浸漬管の投影面下の取鍋内下部から不活性ガス
を吹き込む極低硫鋼の精錬方法において、前記浸漬管内
径D1 と取鍋内径D2 との比D1 /D2 が0.5 以上0.8
以下の値となるような浸漬管の内径を定め、前記浸漬管
内に吸い上げられた溶鋼にAlを一括あるいは分割もしく
は連続添加するとともに、該溶鋼に酸化性ガスを供給す
ることにより溶鋼を昇熱してから引き続き溶鋼を脱硫精
錬し、その後前記浸漬管内を大気圧に復圧し、浸漬管の
浸漬深さを0.5 m以内にしてガス攪拌処理を行うことを
特徴とする極低硫鋼の精錬方法である。
Here, the gist of the present invention is that a cylindrical dip tube consisting of one leg is dipped in the molten steel contained in a ladle, and the dip tube is evacuated to suck the molten steel into the dip tube. In the refining method of extremely low-sulfur steel in which an inert gas is blown from the lower part of the ladle below the projection surface of the dip tube in the state, the ratio D 1 / D 2 of the inner diameter D 1 of the dip tube and the inner diameter D 2 of the ladle is 0.5. 0.8 or more
Determine the inner diameter of the immersion pipe to be the following value, add Al to the molten steel sucked into the immersion pipe all at once or in divided or continuous manner, and heat the molten steel by supplying an oxidizing gas to the molten steel. The method for refining ultra-low-sulfur steel is characterized in that the molten steel is desulfurized and refined, the inside of the immersion pipe is restored to atmospheric pressure, and the immersion depth of the immersion pipe is within 0.5 m to carry out gas agitation treatment. .

【0018】本発明の好適態様によれば、前記の脱硫精
錬後、浸漬管内を大気圧の状態にまで復圧してから、金
属Ca含有物質を、上吹き、インジェクション、ワイヤー
形状物による添加あるいは溶鋼上部より押込む等の手段
でもって溶鋼に供給するようにしてもよい。
According to a preferred embodiment of the present invention, after the desulfurization refining, the pressure in the dip pipe is restored to atmospheric pressure, and then the metal Ca-containing substance is sprayed, injected, added by wire-shaped material or molten steel. The molten steel may be supplied by means such as pushing from above.

【0019】また、溶鋼への酸化性ガスおよびAlの供給
は、上吹きランスあるいはインジェクションランスある
いは浸漬管内側に設置した浸漬羽口もしくは上吹き羽口
から行えばよく、特に制限はない。
The oxidizing gas and Al may be supplied to the molten steel through an upper blowing lance, an injection lance, a submerged tuyere or an upper blowing tuyere installed inside the submerged pipe, and there is no particular limitation.

【0020】同様に、上記脱硫処理時に脱硫用粉体は、
浸漬管内に設置した上吹きランスあるいはインジェクシ
ョンランスあるいは浸漬管内側の浸漬羽口、もしくは上
吹羽口から添加するようにしてもよく、特に制限はな
い。
Similarly, the desulfurizing powder during the desulfurization treatment is
It may be added from an upper blowing lance or an injection lance installed in the dipping tube, a dipping tuyere inside the dipping tube, or an upper blowing tuyere, and there is no particular limitation.

【0021】本発明の別の好適態様によれば、溶鋼昇熱
後に浸漬管内を100 Torr以下の条件で真空精錬処理する
ことにより溶鋼中の水素濃度を低減させてもよい。本発
明のさらに別の好適態様によれば、溶鋼脱硫後に浸漬管
内を100 Torr以下の条件で真空精錬処理することにより
溶鋼中の水素濃度を低減させてもよい。本発明のなおさ
らに別の好適態様によれば、溶鋼昇熱前に浸漬管内を大
気圧とし、浸漬管の浸漬深さを0.5 m以内にしてガス攪
拌処理を行ってもよい。
According to another preferred embodiment of the present invention, the hydrogen concentration in the molten steel may be reduced by subjecting the dip tube to vacuum refining treatment under the condition of 100 Torr or less after heating the molten steel. According to still another preferred embodiment of the present invention, the hydrogen concentration in the molten steel may be reduced by subjecting the dip pipe to a vacuum refining treatment under the condition of 100 Torr or less after desulfurizing the molten steel. According to still another preferred embodiment of the present invention, the gas agitation treatment may be performed before heating the molten steel to atmospheric pressure in the dip tube and the dip depth of the dip tube to within 0.5 m.

【0022】[0022]

【作用】次に、本発明の操作を添付図面を参照しながら
簡単に説明し、次いで本発明において上述のように各処
理条件を限定した理由をその作用とともに詳述する。添
付図面の図1は、転炉( 図示せず)から取鍋10に出鋼し
た溶鋼12は、通常1620〜1670℃程度であるが、これに浸
漬管14を浸漬する。この浸漬管14には、図示例では、酸
化性ガス上吹きランス16、合金投入口18、および適宜真
空装置( 図示せず) に接続された排気口20が設けられて
いる。
Next, the operation of the present invention will be briefly described with reference to the accompanying drawings, and the reason why each processing condition is limited in the present invention as described above will be described in detail together with its operation. In FIG. 1 of the accompanying drawings, the molten steel 12 tapped from the converter (not shown) to the ladle 10 is usually about 1620 to 1670 ° C., but the dipping pipe 14 is immersed therein. In the illustrated example, the dipping pipe 14 is provided with an oxidizing gas top blowing lance 16, an alloy charging port 18, and an exhaust port 20 that is appropriately connected to a vacuum device (not shown).

【0023】取鍋内の溶鋼12には吹き込みランス22が浸
漬管14の投影面内に浸漬されており、不活性ガスを溶鋼
内に吹き込んでいる。別法として取鍋底部にポーラスプ
ラグ24を設けてもよい。
A blowing lance 22 is immersed in the molten steel 12 in the ladle within the projected surface of the dip tube 14, and an inert gas is blown into the molten steel. Alternatively, a porous plug 24 may be provided at the bottom of the ladle.

【0024】まず、本発明は、取鍋10内に収容した溶鋼
12に1本足からなる筒状浸漬管14を浸漬し、この浸漬管
14内を真空排気して、浸漬管の投影面下の取鍋内下部か
ら吹込みランス22またはポーラスプラグ24を経て不活性
ガスを吹き込む方法である。Arガスなどのこの不活性ガ
スの吹き込みは、好ましくは取鍋精錬開始から終了時点
まで継続され、本発明における真空処理はいずれもこの
不活性ガスの吹き込みの下で行われる。
First, according to the present invention, the molten steel contained in the ladle 10
A cylindrical dip tube 14 consisting of one leg is dipped in 12 and this dip tube
This is a method in which the inside of 14 is evacuated and an inert gas is blown from the lower part inside the ladle below the projection surface of the dipping tube through the blowing lance 22 or the porous plug 24. Blowing of this inert gas such as Ar gas is preferably continued from the start to the end of ladle refining, and any vacuum treatment in the present invention is carried out under the blowing of this inert gas.

【0025】その際、浸漬管内径D1 と取鍋の内径D2
との比D1 /D2 が0.5 以上0.8 以下の値となるような
浸漬管の内径を定めた理由は、以下の通りである。脱硫
反応が生じる浸漬管内の面積が大きいほど浸漬管内の反
応界面積が増大し、脱硫反応速度は増加する。ただし、
必要以上に浸漬管内径を大きくすると浸漬管の溶損速度
が高まり、耐火物の補修頻度が増加したり浸漬管寿命が
低下するなどの問題も生じる。
At this time, the inner diameter D 1 of the dip tube and the inner diameter D 2 of the ladle
The reason for defining the inner diameter of the dip tube such that the ratio D 1 / D 2 of the above is 0.5 or more and 0.8 or less is as follows. The larger the area in the dip tube in which the desulfurization reaction occurs, the larger the reaction interface area in the dip tube and the higher the desulfurization reaction rate. However,
If the inner diameter of the immersion pipe is increased more than necessary, the melting rate of the immersion pipe is increased, which causes problems such as increasing the frequency of refractory repairs and shortening the life of the immersion pipe.

【0026】浸漬管内径と取鍋内径との比D1 /D2
(A)脱硫速度、 (B)浸漬管補修頻度指数の関係を250 ト
ン取鍋内に収容した溶鋼を用いて調査した。その結果、
この(A)(B)の2つを同時に満足のいくレベルにするため
の最適範囲として浸漬管内径D1 と取鍋の内径D2 との
比D1 /D2 が0.5 以上0.8 以下を選定したのである。
好ましくは 0.6〜0.75である。
The ratio of the inner diameter of the dipping pipe to the inner diameter of the ladle D 1 / D 2
The relationship between (A) desulfurization rate and (B) immersion pipe repair frequency index was investigated using molten steel contained in a 250-ton ladle. as a result,
As an optimum range for making both (A) and (B) at a satisfactory level at the same time, select the ratio D 1 / D 2 of the inner diameter D 1 of the immersion pipe and the inner diameter D 2 of the ladle that is 0.5 or more and 0.8 or less. I did.
It is preferably 0.6 to 0.75.

【0027】次に、まず真空下で溶鋼にAlを一括あるい
は分割もしくは連続的に添加し、同時に酸化性ガス、つ
まり酸素ガスまたは酸素含有ガスを、通常は上吹きラン
スあるいはインジェクションあるいは浸漬管内側に設置
した浸漬羽口または上吹き羽口から、溶鋼に供給するこ
とにより溶鋼を昇熱した後、引き続き真空下で溶鋼を脱
硫精錬する。図示例では酸化性ガス上吹き羽口を設けて
いる。
Next, Al is added to molten steel under vacuum in a batch, divided or continuously, and at the same time, an oxidizing gas, that is, an oxygen gas or an oxygen-containing gas, is usually applied to the top blowing lance or injection or the inside of the dipping pipe. After the molten steel is heated by being supplied to the molten steel from the installed dipping tuyere or upper blowing tuyere, the molten steel is subsequently desulfurized and refined under vacuum. In the illustrated example, an oxidizing gas top blowing tuyere is provided.

【0028】このときのAlおよび酸化性ガスの投入量は
制限されないが、その目的は後続の脱硫時の温度低下を
補償するものであるから、通常は溶鋼温度を1620〜1700
℃程度にまで高めるに必要かつ十分な量だけ投入すれば
よい。なお、Alは好ましくは粉末状で添加される。
The amounts of Al and oxidizing gas introduced at this time are not limited, but the purpose thereof is to compensate for the temperature decrease during the subsequent desulfurization, and therefore, the molten steel temperature is usually 1620 to 1700.
It suffices to add an amount necessary and sufficient to raise the temperature to about 0 ° C. Al is preferably added in powder form.

【0029】本発明では昇熱が真空下で行われるため、
従来の大気圧下での昇熱に比べて低級酸化物(FeO、MnO
等) の生成が抑制されるのである。溶鋼昇熱後に脱硫処
理を行えば、溶鋼昇熱時にAlと酸素との反応によって生
じたアルミナ等である溶鋼中に懸濁する介在物は、脱硫
処理に用いる脱硫剤または脱硫スラグに吸着分離され溶
鋼中から分離除去することが可能である。しかし、先に
脱硫処理を行いその後に溶鋼昇熱をすると、昇熱時に生
じたアルミナ系介在物の一部はスラグに吸着され分離除
去が可能であるが、その大部分は溶鋼中に残留し、鋼の
清浄性を悪化させてしまう。したがって、このように溶
鋼昇熱後に脱硫処理を行うことにしたのである。また、
これにより極低硫鋼溶製時のように脱硫処理時間が非常
に長い場合でも、転炉出鋼温度を高めることなく脱硫処
理をすることが可能となるのである。
In the present invention, since the heating is performed under vacuum,
Compared with conventional heating under atmospheric pressure, lower oxides (FeO, MnO
Etc.) is suppressed. If the desulfurization treatment is performed after heating the molten steel, inclusions suspended in the molten steel such as alumina generated by the reaction between Al and oxygen during the heating of the molten steel are adsorbed and separated by the desulfurizing agent or desulfurization slag used in the desulfurization treatment. It is possible to separate and remove it from the molten steel. However, if desulfurization is performed first and then the molten steel is heated, some of the alumina inclusions generated during the heating are adsorbed by the slag and can be separated and removed, but most of them remain in the molten steel. , Deteriorates the cleanliness of steel. Therefore, it was decided to perform desulfurization treatment after heating the molten steel in this way. Also,
As a result, even when the desulfurization treatment time is very long, such as when melting extremely low-sulfur steel, it is possible to perform desulfurization treatment without raising the converter steel output temperature.

【0030】本発明において使用する脱硫剤はCaO2-CaF
系、CaO-Al2O3 系、CaO-Al2O3-CaF2系等、慣用のものを
使用できる。これにより、本発明ではS≦10ppm までの
脱硫が可能となり、脱硫終了時の溶鋼温度は1590〜1620
℃程度とすることができる。
The desulfurizing agent used in the present invention is CaO 2 -CaF.
A conventional one such as a system, CaO-Al 2 O 3 system, CaO-Al 2 O 3 -CaF 2 system can be used. As a result, in the present invention, desulfurization up to S ≦ 10 ppm is possible, and the molten steel temperature at the end of desulfurization is 1590 to 1620.
It can be set to about ° C.

【0031】なお、真空下で溶鋼昇熱するのは、特開平
4−253213号に示される如く、大気圧下よりも昇熱時の
低級酸化物生成が抑制され、鋼の清浄性が確保できると
ともに、その後の脱硫処理が有利となるためである。
As shown in JP-A-4-253213, the heating of molten steel under a vacuum suppresses the formation of lower oxides during heating than under atmospheric pressure, thus ensuring the cleanliness of the steel. At the same time, the subsequent desulfurization treatment becomes advantageous.

【0032】また、真空下で溶鋼脱硫処理するのは、特
開平1−92314 号に示される如く、特に攪拌動力が増加
する点で大気圧下よりも脱硫効率が向上するためであ
る。脱硫後、浸漬管14の内部を大気圧に復圧し、大気圧
下でしかも浸漬管14の浸漬深さD3 を0.5 m以下の状態
で吹込みランス22またはポーラススラグ24からの不活性
ガス吹込みを継続してガス攪拌処理を行う。この理由は
以下の通りである。
The molten steel desulfurization treatment is performed under vacuum because the desulfurization efficiency is higher than that under atmospheric pressure, particularly in that the stirring power is increased, as shown in JP-A-1-92314. After desulfurization, the inside of the dip pipe 14 is restored to atmospheric pressure, and the inert gas is blown from the blowing lance 22 or the porous slag 24 under the atmospheric pressure and with the dipping depth D 3 of the dipping pipe 14 being 0.5 m or less. The gas stirring process is performed by continuing the mixing. The reason for this is as follows.

【0033】脱硫反応を促進させるためにはスラグメタ
ル界面の酸素ポテンシャルを低減する必要があるが、そ
のためにはスラグ中の低級酸化物を低減する必要があ
る。また、スラグ中の低級酸化物は溶鋼再酸化の原因と
なり、溶鋼の清浄性を低下させるため、これを極力低減
する必要がある。
In order to accelerate the desulfurization reaction, it is necessary to reduce the oxygen potential at the slag metal interface, but for that purpose, it is necessary to reduce the amount of lower oxides in the slag. Further, the low-grade oxide in the slag causes re-oxidation of molten steel and deteriorates the cleanliness of molten steel, so it is necessary to reduce this as much as possible.

【0034】浸漬管内を真空下にした状態で脱硫処理を
行う場合、浸漬管内のスラグの攪拌は良好であるが、浸
漬管外側のスラグの攪拌が不十分となる。また、浸漬管
内を大気圧で処理した場合でも、浸漬管の浸漬深さが大
きいとやはり浸漬管外側のスラグの攪拌は不十分とな
る。
When the desulfurization treatment is performed in a state where the inside of the dip tube is under vacuum, the slag inside the dip tube is well stirred, but the slag outside the dip tube is not sufficiently stirred. Even when the inside of the dip tube is treated at atmospheric pressure, if the dip depth of the dip tube is large, the stirring of the slag outside the dip tube is still insufficient.

【0035】そこで、本発明者らは浸漬管内を大気圧と
し、浸漬管の浸漬深さがスラグ中の低級酸化物濃度に及
ぼす影響を調査した。その結果、浸漬深さが0.5 m超の
場合には浸漬管内外のスラグ中の低級酸化物濃度に差が
あり、0.5 m以内にするとその濃度差は著しく小さくな
った。これは不活性ガス吹き込みにより生じた溶鋼の上
昇流が浸漬管内浴表面で浸漬管内壁に向かう水平流とな
り、浸漬管の浸漬深さが0.5 m超ではその溶鋼流が浸漬
管内壁で完全に下降流へと変化するのに対し、浸漬深さ
が0.5 m以内ではその水平溶鋼流が完全な下降流には変
化せず、浸漬管外側での溶鋼流を形成し、したがってス
ラグの攪拌が可能となるためである。
Therefore, the present inventors investigated the influence of the immersion depth of the immersion pipe on the concentration of lower oxides in the slag by setting the atmospheric pressure inside the immersion pipe. As a result, when the immersion depth was more than 0.5 m, there was a difference in the lower oxide concentration in the slag inside and outside the immersion pipe, and within 0.5 m, the difference in concentration was significantly small. This is because the rising flow of molten steel generated by the blowing of the inert gas becomes a horizontal flow toward the inner wall of the immersion pipe on the surface of the bath in the immersion pipe, and when the immersion depth of the immersion pipe exceeds 0.5 m, the molten steel flow descends completely on the inner wall of the immersion pipe. In contrast, the horizontal molten steel flow does not change to a complete downward flow within the immersion depth of 0.5 m, but forms a molten steel flow outside the immersion pipe, thus allowing slag stirring. This is because

【0036】本発明の好適態様によれば、浸漬管内を復
圧し、ガス攪拌処理しながら、あるいはガス攪拌処理を
してから、溶鋼に例えばCa−Si、Fe−Ca、Fe−Ca−Ni、
Ca−Alなどの金属Ca含有物質を上吹き、インジェクショ
ン、ワイヤー添加あるいは溶鋼上部より押し込むなどの
手段で供給してもよいが、これは同一装置で真空下およ
び大気圧下で処理を行える本発明の本精錬方法の特徴を
生かし、耐HIC 鋼を溶製するためである。
According to a preferred embodiment of the present invention, the pressure in the dip tube is restored and the molten steel is subjected to the gas stirring treatment, or after the gas stirring treatment is performed, the molten steel is, for example, Ca--Si, Fe--Ca, Fe--Ca--Ni,
The metal Ca-containing substance such as Ca-Al may be supplied by means such as top blowing, injection, addition of wire or pushing from the top of the molten steel, which can be processed under the same equipment under vacuum and atmospheric pressure. This is because the HIC resistant steel is smelted by making the most of the features of this refining method.

【0037】これにより、介在物形態制御用の金属Ca添
加を必要とする耐HIC鋼においても単なるRH脱ガス
処理のようにCa歩留を低下させることなく、つまり蒸発
ロスを少なくし、単一プロセスで処理を完了させること
が可能となるのである。
As a result, even in HIC-resistant steel which requires the addition of metallic Ca for controlling the inclusion morphology, Ca yield is not reduced as in RH degassing, that is, evaporation loss is reduced, and The process can be completed.

【0038】真空脱硫処理時に脱硫剤粉体を浸漬管内に
設置した上吹きランスあるいはインジェクションランス
あるいは浸漬管内側の浸漬羽口もしくは上吹き羽口から
添加するのは、脱硫処理時の脱硫速度、脱硫率を向上さ
せるためである。
At the time of vacuum desulfurization treatment, the desulfurizing agent powder is added from the upper blowing lance or the injection lance installed in the dipping pipe, or the submerged tuyere or the upper blowing tuyere inside the dipping pipe. This is to improve the rate.

【0039】脱硫処理時に真空度100 Torr以下で処理す
るのは、真空下でガスを吹き込むため、その浸漬管内の
圧力が高くなるほど (真空度が悪化するほど) 吹き込み
ガスの攪拌力が弱くなり、また平衡水素濃度が上昇する
ため、脱水素速度が著しく低下し、脱水素に不利となる
ためである。したがって、本発明では真空度100 Torr以
下で脱水素処理をするのである。
When the desulfurization process is performed at a vacuum degree of 100 Torr or less, the gas is blown in under a vacuum, so that the higher the pressure inside the dipping pipe (the worse the vacuum degree), the weaker the stirring force of the blown gas becomes. Also, since the equilibrium hydrogen concentration increases, the dehydrogenation rate significantly decreases, which is disadvantageous for dehydrogenation. Therefore, in the present invention, the dehydrogenation process is performed at a vacuum degree of 100 Torr or less.

【0040】脱硫処理後に真空度100 Torr以下で処理す
るのは、真空下での脱硫処理時に同時に生じる脱水素反
応では十分な溶鋼中水素濃度を得ることができない場合
があり、脱硫後に引続き真空下脱水素処理する必要があ
るからである。真空度を100Torr以下としたのは上記と
同様の理由である。
After the desulfurization treatment, the treatment at a vacuum degree of 100 Torr or less is because it may not be possible to obtain a sufficient hydrogen concentration in the molten steel by the dehydrogenation reaction that occurs simultaneously with the desulfurization treatment under vacuum. This is because it is necessary to perform dehydrogenation treatment. The vacuum degree is set to 100 Torr or less for the same reason as above.

【0041】本発明の変更例では、昇熱処理前に浸漬管
内を大気圧でかつ浸漬管の浸漬深さを0.5 m以内にした
状態でガス攪拌処理を行ってもよいが、これは本発明の
処理前のスラグ中の低級酸化物が非常に高い場合は、そ
の後の処理だけでは完全に浸漬管外側取鍋スラグ改質が
十分にできないことがあり、その対策のためである。次
に、実施例によって本発明の具体的作用効果について説
明する。
In a modified example of the present invention, the gas agitation treatment may be carried out before the heat treatment at atmospheric pressure and the immersion depth of the immersion tube is within 0.5 m. This is because if the low-grade oxide in the slag before the treatment is very high, the subsequent treatment alone may not be able to fully perform the reforming of the slag on the outside of the dip tube, which is a countermeasure. Next, specific working effects of the present invention will be described with reference to examples.

【0042】[0042]

【実施例】【Example】

(実施例1)本例では、図1に示す装置を用い、250 ton
取鍋に収容した1620℃の溶鋼中に1本足浸漬管を浸漬
し、浸漬管内を100Torr 以下に真空排気した状態で取鍋
の底吹きポーラスプラグからアルゴンガスを3 Nm3/min
吹き込んで、溶鋼のガス攪拌を行った。このようにして
ガス攪拌を行っている期間中に、真空下で1670℃にまで
溶鋼昇熱処理を行い、引続き100 Torr以下の真空下で脱
硫処理を行った。
Example 1 In this example, the apparatus shown in FIG.
Immerse a one-legged dip tube in molten steel at 1620 ° C stored in a ladle, and evacuate the dip tube to 100 Torr or less, and then evacuate argon gas from the bottom blown porous plug of the ladle to 3 Nm 3 / min.
It was blown in and the molten steel was stirred with gas. While the gas was being stirred in this manner, the molten steel was subjected to a heat treatment to raise the temperature to 1670 ° C. under vacuum, and then desulfurization was performed under a vacuum of 100 Torr or less.

【0043】本例における処理前の溶鋼中硫黄濃度は20
〜50ppm 、処理前溶鋼中水素濃度は5〜15ppm であっ
た。脱硫後、浸漬管の浸漬深さを0.5 m以内にしてガス
攪拌を行った。本例では溶鋼の昇熱は、Al粉末を溶鋼に
合金投入口より添加するとともに、酸化性ガス上吹きラ
ンスからは酸化性ガスとして酸素ガスを溶鋼に供給し
た。
The sulfur concentration in the molten steel before the treatment in this example is 20
The hydrogen concentration in the molten steel before processing was 5 to 15 ppm. After desulfurization, gas agitation was performed with the immersion depth of the immersion tube set to within 0.5 m. In the present example, for the heating of the molten steel, Al powder was added to the molten steel from the alloy charging port, and oxygen gas was supplied to the molten steel from the oxidizing gas top blowing lance as the oxidizing gas.

【0044】溶鋼昇熱前に昇熱量に応じてAlを160 〜80
0 kg添加し、酸素ガス流量は50Nm3/min で各チャージで
酸素ガスを2分から10分供給した結果、昇熱速度は各チ
ャージとも約8 ℃/min であった。
Before heating the molten steel, Al is added in an amount of 160 to 80 depending on the amount of heating.
When 0 kg was added and oxygen gas flow rate was 50 Nm 3 / min and oxygen gas was supplied for 2 to 10 minutes with each charge, the rate of temperature rise was about 8 ° C./min for each charge.

【0045】なお、取鍋内径は4 mで一定とし、浸漬管
内径を1.5 、1.8 、2 、2.5 、3 、3.5 mの各条件で低
水素極低硫鋼を溶製した。また、脱硫フラックスとして
CaO 85重量%、CaF215重量%から成る脱硫剤10kg/Tを
昇熱後に浸漬管の合金投入口から添加した。結果は表1
にまとめて示す。
The inner diameter of the ladle was kept constant at 4 m, and the low hydrogen ultra-low sulfur steel was melted under the conditions of the inner diameter of the dipping pipe being 1.5, 1.8, 2, 2.5, 3, 3.5 m. Also, as desulfurization flux
10 kg / T of a desulfurizing agent consisting of 85% by weight of CaO and 15% by weight of CaF 2 was added after heating, through the alloy charging port of the dipping tube. The results are shown in Table 1.
Are shown together.

【0046】表1に示すように、100 Torr以下の真空下
脱硫時間は13〜15分であり、D1 /D2 が0.5 以上が脱
硫条件として望ましいことがわかる。また、その真空下
脱硫処理時の脱水素挙動を表2に示すが、D1 /D2
0.5以上が脱水素条件として望ましいことがわかる。
As shown in Table 1, the desulfurization time under vacuum at 100 Torr or less is 13 to 15 minutes, and D 1 / D 2 of 0.5 or more is desirable as the desulfurization condition. The dehydrogenation behavior during desulfurization under vacuum is shown in Table 2. D 1 / D 2 is
It can be seen that 0.5 or more is preferable as the dehydrogenation condition.

【0047】浸漬管寿命および浸漬管補修頻度をD1
2 =0.375 の場合を基準にして指数化した値を表3に
表示した。表3からD1 /D2 が0.8 超で浸漬管の寿命
および補修頻度が著しく増加することがわかる。
The immersion pipe life and the immersion pipe repair frequency are D 1 /
Table 3 shows the indexed values based on the case of D 2 = 0.375. From Table 3, it can be seen that when D 1 / D 2 exceeds 0.8, the life of the immersion pipe and the repair frequency remarkably increase.

【0048】(実施例2)実施例1の脱硫終了後のガス攪
拌の後にCa−Siを溶鋼1トン当たり0.8kg 投入し、Ca処
理を行った。その結果、得られた鋼材は次のようなNA
CE条件を満足した。
(Example 2) After the desulfurization in Example 1 and stirring the gas, 0.8 kg of Ca-Si was added per ton of molten steel, and Ca treatment was carried out. As a result, the obtained steel has the following NA
The CE condition was satisfied.

【0049】NACE条件: 溶液:5%NaCl+0.8 %CH3COOH 温度:24±2.8 ℃ pH:max 4.5 時間:96時間 H2S 濃度: H2S飽和 〃 流量: 100〜200 cc/min。 NACE conditions : solution: 5% NaCl + 0.8% CH 3 COOH temperature: 24 ± 2.8 ° C. pH: max 4.5 hours: 96 hours H 2 S concentration: H 2 S saturation 〃 flow rate: 100-200 cc / min.

【0050】(比較例1)本例では表1中No.4とほぼ同じ
1 /D2 =0.625 の条件で実施例1を繰り返したが、
昇熱と脱硫操作を同時に行った。結果を表4にまとめて
示す。
Comparative Example 1 In this example, Example 1 was repeated under the condition of D 1 / D 2 = 0.625, which is almost the same as No. 4 in Table 1, but
The heating and desulfurization operations were performed simultaneously. The results are summarized in Table 4.

【0051】(比較例2)本例では表1中No.4とほぼ同じ
1 /D2 =0.625 の条件で実施例1を繰り返したが、
昇熱を大気圧下で行い、次いで減圧して100 Torr以下の
高真空下で脱硫を行った。結果を同じく表4にまとめて
示す。参考までに真空昇温だけ行った例についてもその
結果を示す。
Comparative Example 2 In this example, Example 1 was repeated under the condition of D 1 / D 2 = 0.625, which is almost the same as No. 4 in Table 1, but
The heating was performed under atmospheric pressure, and then the pressure was reduced to perform desulfurization under a high vacuum of 100 Torr or less. The results are also summarized in Table 4. For reference, the results are also shown for an example in which only the vacuum temperature rise was performed.

【0052】(比較例3)本例でも表1中No.4とほぼ同じ
1 /D2 =0.625 の条件で実施例1を繰り返したが、
脱硫後の大気圧下ガス攪拌を省略した。結果を表4にま
とめて示す。
(Comparative Example 3) Also in this example, Example 1 was repeated under the condition of D 1 / D 2 = 0.625 which is almost the same as No. 4 in Table 1,
The gas stirring under atmospheric pressure after desulfurization was omitted. The results are summarized in Table 4.

【0053】(比較例4)本例でも表1中No.4とほぼ同じ
1 /D2 =0.625 の条件で実施例1を繰り返したが、
昇熱に先立って脱硫を行った。結果は表4にまとめて示
す。
(Comparative Example 4) Also in this example, Example 1 was repeated under the condition of D 1 / D 2 = 0.625, which is almost the same as No. 4 in Table 1, but
Desulfurization was performed prior to heating. The results are summarized in Table 4.

【0054】[0054]

【表1】 [Table 1]

【0055】[0055]

【表2】 [Table 2]

【0056】[0056]

【表3】 [Table 3]

【0057】[0057]

【表4】 [Table 4]

【0058】[0058]

【発明の効果】以上述べた如く、本発明による極低硫鋼
の精錬方法を用いることにより、真空下での脱硫速度を
高位に安定させ、取鍋スラグ全体の低級酸化物濃度を低
下せしめることにより極低硫鋼で得られる硫黄濃度レベ
ルを低減し、それと同時に耐火物の損耗等をも抑制する
ことができた。また、真空処理時の真空度を制御するこ
とにより同時に低水素鋼も精錬できる。
As described above, by using the refining method for ultra-low sulfur steel according to the present invention, the desulfurization rate under vacuum can be stabilized at a high level and the lower oxide concentration of the entire ladle slag can be reduced. As a result, it was possible to reduce the sulfur concentration level obtained with ultra-low sulfur steel, and at the same time suppress wear of refractory materials. Further, by controlling the degree of vacuum during vacuum processing, low hydrogen steel can be refined at the same time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する取鍋と浸漬管との設置状況の
概略説明図である。
FIG. 1 is a schematic explanatory view of the installation situation of a ladle and a dip tube for carrying out the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 取鍋内に収容した溶鋼に1本足からなる
筒状浸漬管を浸漬し、浸漬管内を真空排気して溶鋼を浸
漬管内に吸い上げた状態で浸漬管の投影面下の取鍋内下
部から不活性ガスを吹き込み、ガス攪拌処理を行いなが
ら行う極低硫鋼の精錬方法において、前記浸漬管内径D
1 と取鍋内径D2 との比D1 /D2 が0.5 以上0.8 以下
の値となるような浸漬管の内径を定め、前記浸漬管内に
吸い上げられた溶鋼にAlを一括あるいは分割もしくは連
続添加するとともに、該溶鋼に酸化性ガスを供給するこ
とにより溶鋼を昇熱し、次いで溶鋼を脱硫精錬し、その
後前記浸漬管内を大気圧に復圧し、浸漬管の浸漬深さを
0.5 m以内にして取鍋内下部からの前記不活性ガスの吹
き込みによるガス攪拌処理を継続することを特徴とする
極低硫鋼の精錬方法。
1. A cylindrical dip tube consisting of one leg is dipped in the molten steel contained in a ladle, and the dip tube is evacuated to suck the molten steel into the dip tube. In the refining method of ultra-low-sulfur steel, which is performed while injecting an inert gas from the lower part of the pot and performing a gas stirring process,
The inner diameter of the immersion pipe is determined so that the ratio D 1 / D 2 of 1 to the ladle inner diameter D 2 is 0.5 or more and 0.8 or less, and Al is added to the molten steel sucked in the immersion pipe all at once or in divided or continuous additions. In addition, the molten steel is heated by supplying an oxidizing gas to the molten steel, then the molten steel is desulfurized and refined, and then the inside of the immersion pipe is restored to atmospheric pressure, and the immersion depth of the immersion pipe is adjusted.
A refining method for ultra-low-sulfur steel, characterized in that the gas agitation treatment is continued by blowing the above-mentioned inert gas into the ladle from the lower part within 0.5 m.
【請求項2】 請求項1記載の脱硫精錬後、浸漬管内を
大気圧の状態に復圧してから、金属Ca含有物質を溶鋼に
供給することを特徴とする極低硫鋼の精錬方法。
2. A refining method for extremely low-sulfur steel, which comprises, after the desulfurization refining according to claim 1, restoring the pressure in the dip pipe to an atmospheric pressure state and then supplying the metal Ca-containing substance to the molten steel.
JP6716594A 1994-04-05 1994-04-05 Refining method for extremely low sulfur steel Expired - Lifetime JP2897639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6716594A JP2897639B2 (en) 1994-04-05 1994-04-05 Refining method for extremely low sulfur steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6716594A JP2897639B2 (en) 1994-04-05 1994-04-05 Refining method for extremely low sulfur steel

Publications (2)

Publication Number Publication Date
JPH07278639A true JPH07278639A (en) 1995-10-24
JP2897639B2 JP2897639B2 (en) 1999-05-31

Family

ID=13337020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6716594A Expired - Lifetime JP2897639B2 (en) 1994-04-05 1994-04-05 Refining method for extremely low sulfur steel

Country Status (1)

Country Link
JP (1) JP2897639B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1154023A1 (en) * 1995-08-01 2001-11-14 Nippon Steel Corporation Vacuum refining method for molten steel
EP1026266A4 (en) * 1998-08-26 2005-05-18 Nippon Steel Corp Simple ladle refining method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1154023A1 (en) * 1995-08-01 2001-11-14 Nippon Steel Corporation Vacuum refining method for molten steel
EP1026266A4 (en) * 1998-08-26 2005-05-18 Nippon Steel Corp Simple ladle refining method

Also Published As

Publication number Publication date
JP2897639B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
JP5614306B2 (en) Method for melting manganese-containing low carbon steel
JP5200380B2 (en) Desulfurization method for molten steel
JP3000864B2 (en) Vacuum desulfurization refining method of molten steel
JP2019119932A (en) Process for melting ultra-low sulfur and low nitrogen steel
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
JP2897639B2 (en) Refining method for extremely low sulfur steel
JPH05239534A (en) Method for melting non-oriented electric steel sheet
JP3241910B2 (en) Manufacturing method of extremely low sulfur steel
JP4534734B2 (en) Melting method of low carbon high manganese steel
JP3548273B2 (en) Melting method of ultra low carbon steel
EP1757706B1 (en) Method for refining molten steel
JPH04318118A (en) Production of steel with extremely low carbon and extremely low sulfur
JP2002030330A (en) Method for heating molten steel in vacuum refining furnace
JP7468567B2 (en) Method for denitrification of molten steel
JP2005015890A (en) Method for producing low-carbon high-manganese steel
JP2897647B2 (en) Melting method of low hydrogen extremely low sulfur steel
JP3390478B2 (en) Melting method of high cleanliness steel
JP2962163B2 (en) Melting method of high clean ultra low carbon steel
JP2009084672A (en) Method of heating molten steel, and method for production of rolled steel material
JPH0941028A (en) Production of high purity ultra-low carbon steel
JPS63266017A (en) Method for refining molten steel while raising temperature in ladle
JPH0633133A (en) Production of ultralow carbon steel
JP4035904B2 (en) Method for producing ultra-low carbon steel with excellent cleanability
JPH05186814A (en) Production of extremely low carbon and extremely low sulfur steel
JPH11217623A (en) Method for refining molten steel in refluxing type vacuum degassing apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 15

EXPY Cancellation because of completion of term