JPH07277869A - Apparatus and process for producing single crystal - Google Patents

Apparatus and process for producing single crystal

Info

Publication number
JPH07277869A
JPH07277869A JP10151694A JP10151694A JPH07277869A JP H07277869 A JPH07277869 A JP H07277869A JP 10151694 A JP10151694 A JP 10151694A JP 10151694 A JP10151694 A JP 10151694A JP H07277869 A JPH07277869 A JP H07277869A
Authority
JP
Japan
Prior art keywords
heat insulating
single crystal
temperature
crucible
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10151694A
Other languages
Japanese (ja)
Other versions
JP2985040B2 (en
Inventor
Yukio Kaneko
由基夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP6101516A priority Critical patent/JP2985040B2/en
Publication of JPH07277869A publication Critical patent/JPH07277869A/en
Application granted granted Critical
Publication of JP2985040B2 publication Critical patent/JP2985040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To improve a single crystallization rate and to enable growth of a non- dislocation crystal by installing a heat insulating section of a prescribed length between the high-temp. sections and low-temp. section of a heating mechanism. CONSTITUTION:A seed crystal 1 is housed in the bottom of a crucible 5 having a bore 80mm of the apparatus for producing the single crystal by a perpendicular Bridgman method and a GaAs melt doped with about 2000g Si is housed as a raw material 3 in the upper part thereof. The heat insulating part 7 is formed to a bore 100m, outside diameter 200mm, thickness 50mm, length 100m (above 1/3 the diameter of the crucible 5 and below 3 times this diameter) and the spacing <=20mm from the crucible 5 and is composed of a molding of ceramic wool or carbon felt. The heating mechanisms 81, 82 are formed as high-temp. sections and 83 is formed as a low-temp. section. A furnace body 11 is composed of these sections and a heat insulating material 10. The descending speed (crystal growth speed) of the crucible 5 is set at 5mm/H and the temps. of the heating mechanisms 81, 82, 83 are regulated in such a manner that the temp. of the crucible is higher than the temp. of the grown crystal 2 measured at temp. measuring hole 9 existing on the high-temp. side of the heat insulating section 7, by which the single crystal of the non-dislocation crystal of the grown crystal 2 is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、垂直ブリッジマン法
(以下、VB法という)を用いた単結晶製造装置及び製
造方法に関するものであり、特に化合物半導体単結晶、
酸化物単結晶製造に適したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal manufacturing apparatus and method using a vertical Bridgman method (hereinafter referred to as VB method), and more particularly to a compound semiconductor single crystal,
It is suitable for the production of oxide single crystals.

【0002】[0002]

【従来の技術】従来のVB法を用いた単結晶製造装置
は、図2(特開平1−212291号公報に示される第
2図)に示すように、底部に種結晶1を収容した坩堝5
をカーボンの坩堝ホルダー6で覆い、該坩堝ホルダー6
の表面に5段ヒータ81 〜85 で温度分布を与えて高温
部、低温部に区分し、その境界部付近が融点になり、坩
堝ホルダー6中の温度を熱電対91 〜95 で5箇所測定
し、測定温度から計算機で融液内温度分布を推定し、固
液界面12形状が上に凸になるように各ヒータ81〜85
への印加電力を調整している。しかしながら、ヒータ
ー81 〜85 の径が坩堝ホルダー6の径よりも大きいの
で、坩堝ホルダー6外側を通過する輻射による熱流量が
固液界面12を通過する熱流量に匹敵するか、若しくは
それより大きくなり、結果として固液界面12を通過す
る熱流量を充分には制御できていないため、固液界面1
2の形状を図2に示すように上に凸にするのは極めて困
難である。尚、図中2は結晶、3は融液、4は液体封止
剤である。
2. Description of the Related Art As shown in FIG. 2 (FIG. 2 of Japanese Patent Application Laid-Open No. 1-212291), a conventional single crystal manufacturing apparatus using the VB method has a crucible 5 containing a seed crystal 1 at the bottom thereof.
Is covered with a carbon crucible holder 6, and the crucible holder 6
A temperature distribution is given to the surface of the 5 heaters 8 1 to 8 5 to divide it into a high temperature portion and a low temperature portion, the melting point is near the boundary portion, and the temperature in the crucible holder 6 is controlled by the thermocouples 9 1 to 9 5 . Measure the temperature at 5 points, estimate the temperature distribution in the melt from the measured temperature with a computer, and make each heater 8 1 to 8 5 so that the shape of the solid-liquid interface 12 is convex upward.
The power applied to is adjusted. However, since the diameters of the heaters 8 1 to 8 5 are larger than the diameter of the crucible holder 6, the heat flow rate due to the radiation passing outside the crucible holder 6 is equal to the heat flow rate passing through the solid-liquid interface 12, or more than that. As a result, the heat flow rate passing through the solid-liquid interface 12 cannot be sufficiently controlled.
It is extremely difficult to make the shape of 2 convex as shown in FIG. In the figure, 2 is a crystal, 3 is a melt, and 4 is a liquid sealant.

【0003】その他にも、Suzuki,Okano,
Hosikawa,FukudaJ.Crystal
Growth vol.128 P435−438(1
993)が固液界面を制御する手段を提案している。こ
の提案では、図3に示すように同上の炉で坩堝5を2重
のカーボン製の坩堝ホルダー6a,6bで覆い、外側の
坩堝ホルダー6b内側近傍に熱電対9を6対埋め込み、
軸方向の温度分布を監視している。外側の坩堝ホルダー
6bは、炉の高温部と低温部の温度差を自由に設定する
ために間に断熱材7部分を設けている。この断熱材7は
ヒーター部8に温度差を与えるためのもので、熱流を制
御する為のものではない。これは内側にさらに坩堝ホル
ダー6aを入れていることでも明らかである。この構造
では断熱材7にカーボンフェルトを使用して、ヒータ部
8の温度勾配を75℃/cmと大きくしても、結晶内の
温度勾配は計算値においても約25℃/cmで、上に凸
の固液界面形状が得られておらず、実際に上に凸の固液
界面形状の結晶が得られたという報告はされていない。
Besides, Suzuki, Okano,
Hoshikawa, Fukuda J. Crystal
Growth vol. 128 P435-438 (1
993) proposes a means for controlling the solid-liquid interface. In this proposal, as shown in FIG. 3, in the same furnace, the crucible 5 is covered with double carbon crucible holders 6a and 6b, and 6 pairs of thermocouples 9 are embedded near the inside of the outer crucible holder 6b.
The temperature distribution in the axial direction is monitored. The outer crucible holder 6b is provided with a heat insulating material 7 portion between the crucible holder 6b in order to freely set the temperature difference between the high temperature portion and the low temperature portion of the furnace. This heat insulating material 7 is for giving a temperature difference to the heater portion 8 and is not for controlling the heat flow. This is also apparent from the fact that the crucible holder 6a is further provided inside. In this structure, when carbon felt is used for the heat insulating material 7 and the temperature gradient of the heater portion 8 is increased to 75 ° C./cm, the calculated temperature gradient in the crystal is about 25 ° C./cm. No convex solid-liquid interface shape has been obtained, and there is no report that an upwardly convex solid-liquid interface shape crystal was actually obtained.

【0004】[0004]

【発明が解決しようとする課題】固液界面形状が上に凹
になっていると次の二つの問題点が生じる。 (1)周辺部よりの多結晶化;前記のように従来技術で
は熱流制御及び温度制御が充分になされていなかったの
で固液界面形状は上に凹になる。固液界面が上に凹にな
っているということは、結晶成長は周辺部のほうが中心
部より先行していることを示しており、さらには坩堝壁
の方が温度が低くなっていることを示している。したが
って、坩堝壁から結晶成長する確率が生じ、そこに成長
する結晶の方位には種子結晶とは無関係なものもできる
ため、多結晶化するという問題点があった。 (2)転位発生;固液界面が上に凹になっているという
ことは、固体内においても等温面が固液界面からある程
度の区間、上に凹になっていることを示しており、それ
は結晶の断面内にも温度分布が存在し、周辺が低温部
で、中心が高温であることを示している。このような温
度分布の場合、周辺からの圧縮応力が掛かり転位が発生
する。また、一度入った転位は、固液界面が内向きのた
め、外周部に抜け難い。このような、従来技術では単結
晶化率が高くなく、低転位結晶を作るのが難しかった。
When the solid-liquid interface shape is concave upward, the following two problems occur. (1) Polycrystallization from the peripheral portion: Since the heat flow control and the temperature control were not sufficiently performed in the conventional technique as described above, the solid-liquid interface shape becomes concave upward. The fact that the solid-liquid interface is concave upward means that the peripheral part of the crystal growth precedes the central part, and further that the temperature of the crucible wall is lower. Shows. Therefore, there is a probability that crystals will grow from the crucible wall, and the orientation of the crystals growing there may be unrelated to the seed crystal, resulting in the problem of polycrystallization. (2) Dislocation generation: The fact that the solid-liquid interface is concave upward indicates that the isothermal surface is concave upward in the solid to some extent from the solid-liquid interface. There is also a temperature distribution in the cross section of the crystal, indicating that the periphery is the low temperature part and the center is the high temperature. In the case of such a temperature distribution, compressive stress is applied from the periphery to generate dislocations. Further, dislocations that have entered once are difficult to come out to the outer peripheral portion because the solid-liquid interface faces inward. In such a conventional technique, the single crystallization rate is not high, and it is difficult to form a low dislocation crystal.

【0005】[0005]

【課題を解決するための手段】本発明は上記に鑑み提案
されたもので、単結晶成長用の坩堝内の底部に種結晶を
収容し、さらにその上部に原料を収容し、該坩堝の外側
から加熱機構により、前記種結晶収容部分の温度が低
く、前記原料収容部分の温度が高くなるような温度勾配
に加熱し、且つ前記原料が融液となるように昇温し、前
記温度勾配をそのまま上方へ移動するように前記坩堝、
又は、前記加熱機構を相対的に移動させることにより単
結晶成長操作を行うVB法による単結晶製造装置におい
て、加熱機構の高温部と低温部との間に所定の長さの断
熱部を設置したことを特徴とする単結晶製造装置に関す
るものである。
The present invention has been proposed in view of the above, and a seed crystal is contained in the bottom of a crucible for growing a single crystal, and a raw material is contained in the upper part of the crucible. From the heating mechanism, the temperature of the seed crystal accommodating portion is low, the temperature of the raw material accommodating portion is heated to a temperature gradient such that the temperature rises, and the raw material is heated to become a melt, the temperature gradient The crucible, so that it moves upward as it is,
Alternatively, in the single crystal manufacturing apparatus by the VB method in which the single crystal growth operation is performed by moving the heating mechanism relatively, a heat insulating part having a predetermined length is provided between the high temperature part and the low temperature part of the heating mechanism. The present invention relates to a single crystal production apparatus characterized by the above.

【0006】即ち、VB法による単結晶製造装置におい
て、加熱機構の高温部と低温部との間に所定の長さの断
熱部を設置することにより、加熱機構の高温部から低温
部への熱流が主として原料内を流れ、原料が高温部では
熱の吸い込み口、低温部では熱の吐き出し口となるよう
に熱流を制御する。この時、等温度面は断熱部中央より
上では上に凸、断熱部中央より下では上に凹になる。即
ち、加熱温度を下げて固液界面を断熱部中央より上にす
れば固液界面は上に凸になり、加熱温度を上げて固液界
面を断熱部中央より下にすれば固液界面は上に凹にな
る。したがって、固液界面の位置を前記の断熱部各部の
温度と温度勾配から推測し、加熱温度を調節して固液界
面を断熱部中央より上に位置させると、固液界面を上に
凸にして単結晶を成長させることができる。
That is, in the single crystal production apparatus by the VB method, by installing a heat insulating part of a predetermined length between the high temperature part and the low temperature part of the heating mechanism, the heat flow from the high temperature part to the low temperature part of the heating mechanism. Mainly flows in the raw material, and the heat flow is controlled so that the raw material serves as a heat inlet in a high temperature portion and serves as a heat outlet in a low temperature portion. At this time, the isothermal surface is convex above the center of the heat insulating part and is concave above the center of the heat insulating part. That is, if the heating temperature is lowered to bring the solid-liquid interface above the center of the heat insulating section, the solid-liquid interface becomes convex, and if the heating temperature is raised to bring the solid-liquid interface below the center of the heat insulating section, the solid-liquid interface becomes It becomes concave upwards. Therefore, if the position of the solid-liquid interface is estimated from the temperature and temperature gradient of each part of the heat insulating part and the heating temperature is adjusted so that the solid-liquid interface is located above the center of the heat insulating part, the solid-liquid interface becomes convex upward. Can grow a single crystal.

【0007】また、本発明における断熱部は、坩堝外側
での高温部から低温部へ熱流量を極力減少させることが
目的であるから、坩堝外側における輻射の漏れが少なく
なるように、断熱部の内径と坩堝外径との隙間を20m
m以下とし、極力少なくすることが望ましい。
Further, since the heat insulating portion of the present invention is intended to reduce the heat flow rate from the high temperature portion to the low temperature portion outside the crucible as much as possible, the heat insulating portion of the heat insulating portion is reduced so as to reduce the leakage of radiation outside the crucible. 20m clearance between inner diameter and outer diameter of crucible
It is desirable that the number be m or less and as small as possible.

【0008】さらに、断熱部に長さをあたえると、断熱
部領域内では原料の等温度面は平面に近付き、径方向で
は均熱に近くなる。軸方向の温度勾配が残るが、軸方向
の温度勾配は高温部と低温部の温度差を断熱部長さで割
った値で決まる。そこで断熱部を長くして、結晶内の温
度勾配を小さくし、温度分布に基づく応力が転位発生臨
界応力以下となる長さにすることにより、無転位結晶を
成長させることができる。このような断熱部の長さは、
結晶材料の熱伝導率、及び転位発生臨界応力値にもよる
が、一般的に坩堝直径の3分の1以上を必要とし、成長
速度を実用的な値にする為には坩堝直径の3倍以内とす
る必要がある。
Further, when the length of the heat insulating portion is given, the isothermal surface of the raw material approaches a flat surface in the heat insulating portion region, and becomes nearly uniform in the radial direction. Although the temperature gradient in the axial direction remains, the temperature gradient in the axial direction is determined by the temperature difference between the high temperature portion and the low temperature portion divided by the length of the heat insulating portion. Therefore, the dislocation-free crystal can be grown by lengthening the heat insulating portion to reduce the temperature gradient in the crystal so that the stress based on the temperature distribution is equal to or lower than the critical stress for dislocation generation. The length of such a heat insulating part is
Although it depends on the thermal conductivity of the crystal material and the critical stress value for dislocation generation, generally one third or more of the crucible diameter is required, and three times the crucible diameter is required to achieve a practical growth rate. Must be within.

【0009】上記の断熱部は、アルミナウール(熱伝導
率0.3W/(m・K))、シリカウール(熱伝導率
0.27W/(m・K))等のセラミックスウールまた
はカーボンフェルト(熱伝導率0.09W/(m・
K))或いはその成形体のように熱伝導率が0.5W/
(m・K)以下の断熱材で構成する。また、タンタル、
モリブデン等の高融点金属の薄板を多数枚同心円状に重
ねたヒートシールドで作ることもできる。さらには直径
を互いにずらした上記構成のヒートシールドを二つ作製
し、互いに入り組む形のスライド構造にして断熱部長さ
を可変にすることもできる。
The heat insulating portion is made of ceramic wool such as alumina wool (thermal conductivity 0.3 W / (m · K)), silica wool (thermal conductivity 0.27 W / (m · K)) or carbon felt ( Thermal conductivity 0.09W / (m ・
K)) or its molded product has a thermal conductivity of 0.5 W /
It is composed of heat insulating material of (m · K) or less. Also tantalum,
It is also possible to make a heat shield by stacking a number of thin plates of refractory metal such as molybdenum concentrically. Further, two heat shields having the above-described configurations having different diameters may be produced, and the heat insulating portion length may be made variable by forming a slide structure in which the heat shields are intricately engaged with each other.

【0010】また、断熱部に設ける温度側定点は断熱部
での温度勾配も測れるように、複数個設けることが好ま
しい。化合物半導体結晶成長の場合、結晶容器を石英ア
ンプルに封入しており、温度測定は固液界面を推測する
ことが目的であるから、結晶容器表面を放射温度計で測
定する。石英が曇って放射温度計での測定が不正確な場
合は熱電対でアンプル外側を測定する。何れにしても坩
堝によって測定温度は結晶温度とズレているので、測定
温度と固液界面位置の較正を行っておく必要がある。
Further, it is preferable to provide a plurality of temperature side fixed points provided in the heat insulating portion so that the temperature gradient in the heat insulating portion can be measured. In the case of compound semiconductor crystal growth, the crystal container is enclosed in a quartz ampoule, and the purpose of temperature measurement is to estimate the solid-liquid interface, so the surface of the crystal container is measured with a radiation thermometer. If the quartz is cloudy and the radiation thermometer measurement is inaccurate, measure outside the ampoule with a thermocouple. In any case, since the measurement temperature is different from the crystal temperature by the crucible, it is necessary to calibrate the measurement temperature and the solid-liquid interface position.

【0011】[0011]

【作用】上記構成の本発明によれば、固液界面を上に凸
にして成長させることができ、これにより高い単結晶収
率を得ることができる。また、断熱材部の長さを、温度
勾配に基づく結晶内部応力が転位発生の臨界値以下にな
る長さに設定し、これにより無転位結晶を成長させるこ
とができる。
According to the present invention having the above structure, it is possible to grow the solid-liquid interface so as to be convex upward, whereby a high single crystal yield can be obtained. Further, the length of the heat insulating material portion is set to a length at which the crystal internal stress based on the temperature gradient is equal to or less than the critical value for generating dislocations, whereby a dislocation-free crystal can be grown.

【0012】[0012]

【実施例】図1は本発明の要旨を示す概念図である。同
図において91 ,92 ,93 は本発明に係わる断熱部7
における坩堝5外周の複数箇所の温度を検出するための
3箇所の放射温度計のための測温孔を各々示す。尚、熱
電対を用いて測温することもできるが、熱電対の場合に
は坩堝を収納する石英アンプル外側の温度を測定するこ
とになるので、原料表面温度とのズレが大きくなる。
1 is a conceptual diagram showing the gist of the present invention. In the figure, 9 1 , 9 2 and 9 3 are heat insulating parts 7 according to the present invention.
3 shows temperature measuring holes for radiation thermometers at three locations for detecting temperatures at a plurality of locations on the outer circumference of the crucible 5 in FIG. The temperature can be measured using a thermocouple, but in the case of a thermocouple, since the temperature outside the quartz ampoule that houses the crucible is measured, there is a large deviation from the raw material surface temperature.

【0013】[実施例1]図1は本発明の一実施例によ
る結晶育成炉を示す模式図であり、内径80mmのpB
N製坩堝5の底部に種結晶1を収容するとともにその上
部に原料3として約2000gのSiをドープしたGa
As融液を収容した。液体封止材4には約200gのB
23 を用いた。pBN製坩堝5は外形90mmの透明
石英アンプル6中に保持した。断熱部7は内径100m
m、外径200mm、厚さ50mm、長さ100mmと
した。断熱部7はカーボンフェルトの成形体(密度0.
16g/cm3 、熱伝導率0.09W/(m・K)at
1000℃)で構成し、ヒーター81 ,82 ,83 はグ
ラファイトで作成し、81 ,82 を高温部、83 を低温
部とし、さらに断熱材10とで炉体11を構成している
(尚、この炉体における坩堝5、石英アンプル6、及び
断熱部7の径を図4に示した。)。pBN製坩堝5の降
下速度(=結晶成長速度)は5mm/Hで一定とした。
測温孔91 での放射温度計によるpBN製坩堝5の表面
温度測定値が1238℃となるようにヒータ81 ,8
2 ,83 の温度を調整したところ、固液界面位置は測温
孔91 の約6mm上方となった。これはpBN製坩堝5
の軸方向熱伝導率が30W/(m・K)とGaAsの1
5W/(m・K)より高いため、測温孔91 付近では成
長結晶2よりもpBN製坩堝5の方が高温となっている
ためである。得られたGaAs単結晶の成長縞をエッチ
ング観察して調べたところ、固液界面形状は上に凸にな
っており、成長結晶2の直胴部全域にわたって無転位結
晶が得られた。
[Embodiment 1] FIG. 1 is a schematic view showing a crystal growth furnace according to an embodiment of the present invention, in which pB having an inner diameter of 80 mm is used.
Ga in which the seed crystal 1 was housed in the bottom of the N crucible 5 and about 2000 g of Si was doped as the raw material 3 in the upper part thereof
The As melt was housed. About 200 g of B is included in the liquid sealing material 4.
2 O 3 was used. The pBN crucible 5 was held in a transparent quartz ampoule 6 having an outer diameter of 90 mm. Thermal insulation 7 is 100m inside diameter
m, outer diameter 200 mm, thickness 50 mm, and length 100 mm. The heat insulating portion 7 is a carbon felt molded body (density: 0.
16 g / cm 3 , thermal conductivity 0.09 W / (m · K) at
1000 ° C.), the heaters 8 1 , 8 2 and 8 3 are made of graphite, 8 1 and 8 2 are the high temperature part, 8 3 is the low temperature part, and the furnace body 11 is composed of the heat insulating material 10. (Note that the diameters of the crucible 5, the quartz ampoule 6 and the heat insulating portion 7 in this furnace body are shown in FIG. 4). The descent rate (= crystal growth rate) of the pBN crucible 5 was constant at 5 mm / H.
The heaters 8 1 and 8 were adjusted so that the surface temperature of the pBN crucible 5 measured by the radiation thermometer at the temperature measuring hole 9 1 was 1238 ° C.
When the temperatures of 2 and 8 3 were adjusted, the solid-liquid interface position was about 6 mm above the temperature measuring hole 9 1 . This is a pBN crucible 5
Axial thermal conductivity of 30W / (mK) and GaAs of 1
Higher than 5W / (m · K), in the vicinity of measuring Yutakaana 9 1 because the direction of pBN crucible 5 than the growing crystal 2 it becomes hot. When the growth fringes of the obtained GaAs single crystal were observed by etching, the solid-liquid interface shape was convex upward, and dislocation-free crystals were obtained over the entire straight body portion of the growth crystal 2.

【0014】[実施例2]図5に示すような厚さ0.2
mmタンタル薄板71,72で8重円筒(各筒の直径は
8mm間隔で大きくなる)のヒートシールドを2組作成
し、各組の直径を4mmずらして、非接触状に互いに入
り組む構造の断熱部7を作製した。ヒートシールドの長
さは2組共90mmとし、組み合わせて8重円筒構造と
した。上部には長さ10mmのカーボンフェルト成形体
13をおき、放射温度計用の測温孔91 を設置した。こ
の8重円筒構造の断熱部7では、長さを可変にすること
もでき、熱伝導率0.09W/(m・K)at1000
℃の断熱性能が得られた。この装置を使用して実施例1
と同様の条件でGaAs単結晶を成長させた。得られた
単結晶は、固液界面形状が上に凸になっており、直胴部
は全域にわたって無転位であった。
[Embodiment 2] A thickness of 0.2 as shown in FIG.
Insulation with a structure in which two sets of heat shields of 8-fold cylinders (the diameter of each cylinder increases at intervals of 8 mm) are made with mm thin tantalum plates 71 and 72, and the diameters of each set are offset by 4 mm, and interlock with each other in a non-contact manner. Part 7 was prepared. The length of the two heat shields was 90 mm for each of the two sets, and they were combined to form an 8-fold cylindrical structure. A carbon felt molded body 13 having a length of 10 mm was placed on the upper portion, and a temperature measuring hole 9 1 for a radiation thermometer was installed. In the heat insulating portion 7 having the eight-fold cylindrical structure, the length can be made variable, and the thermal conductivity is 0.09 W / (m · K) at1000.
Adiabatic performance of ℃ was obtained. Example 1 using this device
A GaAs single crystal was grown under the same conditions as above. The obtained single crystal had a solid-liquid interface shape that was convex upward, and the straight body portion was dislocation-free over the entire region.

【0015】以上本発明を実施例に基づいて説明した
が、本発明は前記した実施例に限定されるものではな
く、特許請求の範囲に記載した構成を変更しない限りど
のようにでも実施することができる。
Although the present invention has been described above based on the embodiments, the present invention is not limited to the above-mentioned embodiments, and may be carried out in any manner as long as the configuration described in the claims is not changed. You can

【0016】[0016]

【発明の効果】以上説明したように、本発明の単結晶製
造装置及び製造方法は、加熱機構の高温部と低温部との
間に所定の長さの断熱部を設置して加熱機構の高温部か
ら低温部への熱流が主として原料内を流れるように制御
するので、上記断熱部の温度から固液界面の位置を推測
し、この固液界面が断熱部中央より上に位置するように
温度を調節することによって固液界面の形状を上に凸に
して成長させることができ、これにより高い単結晶収率
を得ることができる。
As described above, according to the apparatus and method for producing a single crystal of the present invention, a heat insulating unit having a predetermined length is installed between the high temperature portion and the low temperature portion of the heating mechanism to increase the temperature of the heating mechanism. Since the heat flow from the part to the low temperature part is controlled so as to mainly flow in the raw material, the position of the solid-liquid interface is estimated from the temperature of the heat insulating part, and the temperature is adjusted so that this solid-liquid interface is located above the center of the heat insulating part. Can be grown so that the solid-liquid interface has a convex shape, and a high single crystal yield can be obtained.

【0017】また、上記断熱部の長さを坩堝直径の3分
の1以上、且つ3倍以内とすると、温度勾配に基づく結
晶内部応力が転位発生の臨界値以下になる長さに設定す
るこになるので、転位を発生することなく無転位結晶を
成長させることができる。
Further, if the length of the heat insulating portion is not less than one-third and not more than three times the crucible diameter, the crystal internal stress due to the temperature gradient is set to a length not more than the critical value for dislocation generation. Therefore, a dislocation-free crystal can be grown without generating dislocations.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の装置の構成を示す概念図である。FIG. 1 is a conceptual diagram showing the configuration of an apparatus of the present invention.

【図2】従来のVB法の装置の一例を示す図である。FIG. 2 is a diagram showing an example of a conventional VB method apparatus.

【図3】従来のVB法の装置の他の一例を示す図であ
る。
FIG. 3 is a diagram showing another example of a conventional VB method apparatus.

【図4】実施例1の坩堝、石英アンプル、及び断熱部の
径を示す拡大断面図である。
FIG. 4 is an enlarged cross-sectional view showing the diameters of a crucible, a quartz ampoule, and a heat insulating portion of Example 1.

【図5】実施例2の断熱部を示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing a heat insulating portion of the second embodiment.

【符号の説明】[Explanation of symbols]

1 種結晶 3 原料(融液) 5 坩堝 7 断熱部 81 ,82 ,83 加熱機構1 seed crystal 3 raw material (melt) 5 crucible 7 adiabatic part 8 1 , 8 2 , 8 3 heating mechanism

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 単結晶成長用の坩堝内の底部に種結晶を
収容し、さらにその上部に原料を収容し、上記坩堝の外
側から加熱機構により、前記種結晶収容部分の温度が低
く、前記原料収容部分の温度が高くなるような温度勾配
に加熱し、且つ前記原料が融液となるように昇温し、前
記温度勾配をそのまま上方へ移動するように前記坩堝、
又は、前記加熱機構を相対的に移動させることにより単
結晶成長操作を行う垂直ブリッジマン法による単結晶製
造装置において、加熱機構の高温部と低温部との間に所
定の長さの断熱部を設置したことを特徴とする単結晶製
造装置。
1. A seed crystal is contained in a bottom portion of a crucible for growing a single crystal, and a raw material is contained in an upper portion of the crucible. A heating mechanism is provided from the outside of the crucible so that a temperature of the seed crystal accommodating portion is low, Heating to a temperature gradient such that the temperature of the raw material containing portion becomes high, and raising the temperature so that the raw material becomes a melt, the crucible so as to move the temperature gradient upward as it is,
Alternatively, in a single crystal manufacturing apparatus by the vertical Bridgman method for performing a single crystal growth operation by relatively moving the heating mechanism, a heat insulating unit having a predetermined length is provided between a high temperature portion and a low temperature portion of the heating mechanism. A single crystal manufacturing device characterized by being installed.
【請求項2】 断熱部の長さを坩堝直径の3分の1以
上、且つ3倍以内としたことを特徴とする請求項1に記
載の単結晶製造装置。
2. The apparatus for producing a single crystal according to claim 1, wherein the length of the heat insulating portion is not less than ⅓ and not more than three times the diameter of the crucible.
【請求項3】 断熱部と坩堝との隙間を20mm以下と
したことを特徴とする請求項1又は2に単結晶製造装
置。
3. The apparatus for producing a single crystal according to claim 1, wherein the gap between the heat insulating portion and the crucible is 20 mm or less.
【請求項4】 断熱部は、アルミナ、シリカ等のセラミ
ックスウール又はカーボンフェルト或いはその成形体で
作製されたものであることを特徴とする請求項1又は2
又は3に記載の単結晶製造装置。
4. The heat insulating part is made of ceramics wool such as alumina or silica, carbon felt, or a molded body thereof, and is characterized in that:
Or the single crystal manufacturing apparatus according to 3.
【請求項5】 断熱部の高温側に温度測定点を設けたこ
とを特徴とする請求項1又は2又は3又は4記載の単結
晶製造装置。
5. The single crystal production apparatus according to claim 1, wherein a temperature measuring point is provided on the high temperature side of the heat insulating section.
【請求項6】 断熱部は、タンタル又はモリブデンの薄
板を直径を互いにずらし、多数枚同心円状に重ねて互い
に入り組む形のスライド構造にしたことを特徴とする請
求項1又は2又は3又は4又は5に記載の単結晶製造装
置。
6. The heat insulating portion has a slide structure in which thin plates of tantalum or molybdenum are displaced in diameter from each other, and a large number of concentric circles are superposed on each other so as to interlock with each other. Or the single crystal manufacturing apparatus according to 5.
【請求項7】 垂直ブリッジマン法による単結晶製造方
法において、加熱機構の高温部と低温部との間に所定長
さの断熱部を設置し、該断熱部の温度から固液界面の位
置を推測し、この固液界面が断熱部中央より上に位置す
るように温度を調節し、固液界面の形状を上に凸にして
単結晶を成長させることを特徴とする単結晶製造方法。
7. A method for producing a single crystal by the vertical Bridgman method, wherein a heat insulating part having a predetermined length is installed between a high temperature part and a low temperature part of a heating mechanism, and the position of the solid-liquid interface is determined from the temperature of the heat insulating part. A method for producing a single crystal, which is characterized by adjusting the temperature so that the solid-liquid interface is located above the center of the heat insulating portion, and making the shape of the solid-liquid interface convex upward to grow a single crystal.
JP6101516A 1994-04-15 1994-04-15 Single crystal manufacturing apparatus and manufacturing method Expired - Fee Related JP2985040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6101516A JP2985040B2 (en) 1994-04-15 1994-04-15 Single crystal manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6101516A JP2985040B2 (en) 1994-04-15 1994-04-15 Single crystal manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JPH07277869A true JPH07277869A (en) 1995-10-24
JP2985040B2 JP2985040B2 (en) 1999-11-29

Family

ID=14302698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6101516A Expired - Fee Related JP2985040B2 (en) 1994-04-15 1994-04-15 Single crystal manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP2985040B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050481A1 (en) * 1998-03-31 1999-10-07 Japan Energy Corporation Method of manufacturing compound semiconductor single crystal
JP2005213114A (en) * 2004-01-30 2005-08-11 Kyocera Kinseki Corp Apparatus for growing oxide single crystal
JP2010150136A (en) * 2010-03-05 2010-07-08 Nippon Mining & Metals Co Ltd Apparatus for producing compound semiconductor single crystal and method for production thereof
US20110056430A1 (en) * 2009-09-08 2011-03-10 Keigo Hoshikawa Equipment for growing sapphire single crystal
CN102695822A (en) * 2010-01-05 2012-09-26 Lg矽得荣株式会社 Insulation device of single crystal growth device and single crystal growth device including the same
KR101429142B1 (en) * 2013-03-06 2014-08-12 (주)삼현엔지니어링 Heat shield unit fot grower of sapphire ingot

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104088009B (en) * 2014-07-04 2016-04-20 江苏阳帆机电设备制造有限公司 The long brilliant stove of lower open type

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050481A1 (en) * 1998-03-31 1999-10-07 Japan Energy Corporation Method of manufacturing compound semiconductor single crystal
US6334897B1 (en) 1998-03-31 2002-01-01 Japan Energy Corporation Method of manufacturing compound semiconductor single crystal
JP2005213114A (en) * 2004-01-30 2005-08-11 Kyocera Kinseki Corp Apparatus for growing oxide single crystal
CN102011173B (en) * 2009-09-08 2015-07-08 国立大学法人信州大学 Equipment for growing sapphire single crystal
US20110056430A1 (en) * 2009-09-08 2011-03-10 Keigo Hoshikawa Equipment for growing sapphire single crystal
JP2011057482A (en) * 2009-09-08 2011-03-24 Shinshu Univ Equipment for producing sapphire single crystal
CN102011173A (en) * 2009-09-08 2011-04-13 国立大学法人信州大学 Equipment for growing sapphire single crystal
JP2013516384A (en) * 2010-01-05 2013-05-13 エルジー シルトロン インコーポレイテッド Thermal insulation apparatus for single crystal growth apparatus and single crystal growth apparatus including the same
EP2521805A1 (en) * 2010-01-05 2012-11-14 LG Siltron Inc. Insulation device of single crystal growth device and single crystal growth device including the same
CN102695822A (en) * 2010-01-05 2012-09-26 Lg矽得荣株式会社 Insulation device of single crystal growth device and single crystal growth device including the same
EP2521805A4 (en) * 2010-01-05 2013-09-04 Lg Siltron Inc Insulation device of single crystal growth device and single crystal growth device including the same
JP2010150136A (en) * 2010-03-05 2010-07-08 Nippon Mining & Metals Co Ltd Apparatus for producing compound semiconductor single crystal and method for production thereof
KR101429142B1 (en) * 2013-03-06 2014-08-12 (주)삼현엔지니어링 Heat shield unit fot grower of sapphire ingot

Also Published As

Publication number Publication date
JP2985040B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
EP0068021A1 (en) The method and apparatus for forming and growing a single crystal of a semiconductor compound.
EP3396029A1 (en) Sic single crystal production method and production apparatus
US4597949A (en) Apparatus for growing crystals
CN110408988A (en) The growing method of SiC single crystal grower and SiC single crystal
KR20040018426A (en) Method and apparatus for growing semiconductor crystals with a rigid support with carbon doping and resistivity control and thermal gradient control
JPH07277869A (en) Apparatus and process for producing single crystal
JPH10158088A (en) Production of solid material and device therefor
EP0144512B1 (en) Semiconductor boule pulling rod
JP3907727B2 (en) Single crystal pulling device
CN2559657Y (en) Double controlling temperature crystal grower furnace
US4046617A (en) Method of crystallization
JP2823257B2 (en) Semiconductor single crystal manufacturing equipment
JP2704032B2 (en) Method for manufacturing compound semiconductor single crystal
JPH09169590A (en) Crystallization hearth
RU2320791C1 (en) Crystal growing method and apparatus for performing the same
KR20210001300A (en) Manufacturing apparatus for siliconcarbide single crystal
JP2543449B2 (en) Crystal growth method and apparatus
JP3042097B2 (en) Apparatus and method for growing single crystal
JP2017193469A (en) After-heater and sapphire single crystal production apparatus
JP3797643B2 (en) Crystal production equipment
JP2013256424A (en) Apparatus for growing sapphire single crystal
JP2014156373A (en) Manufacturing apparatus for sapphire single crystal
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
US20230110306A1 (en) Heater for retrograde solvothermal crystal growth, method of making, and method of use
JP2000063196A (en) Production of oxide single crystal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees