JPH0727430A - Compression type heat pump - Google Patents

Compression type heat pump

Info

Publication number
JPH0727430A
JPH0727430A JP16828793A JP16828793A JPH0727430A JP H0727430 A JPH0727430 A JP H0727430A JP 16828793 A JP16828793 A JP 16828793A JP 16828793 A JP16828793 A JP 16828793A JP H0727430 A JPH0727430 A JP H0727430A
Authority
JP
Japan
Prior art keywords
liquid refrigerant
heat exchanger
compressor
switching
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16828793A
Other languages
Japanese (ja)
Inventor
Akira Morikawa
朗 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP16828793A priority Critical patent/JPH0727430A/en
Publication of JPH0727430A publication Critical patent/JPH0727430A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To effectively prevent suction of recovery liquid refrigerant of a compressor by providing pressure introducing means for switching a discharge side positive pressure of the compressor to a positive pressure applied state for applying it to a liquid refrigerant tank or to a negative pressure applied state for applying a suction side negative pressure of the compressor to the tank. CONSTITUTION:Pressure introducing means X operable to switch a liquid refrigerant tank T to a positive pressure applied state for applying a discharge side positive pressure of a compressor Co to the tank T or a negative pressure applied state for applying a suction side negative pressure of the compressor Co to the tank T is provided. That is, a pressure regulating valve vp is so opened to the positive pressure applied state as to introduce a positive pressure to overcome an applied negative pressure through a capillary tube ct from a low pressure side pressure guide passage p2 from a high pressure side pressure guide passage p1. The vale vp is closed to set it to a negative pressure applied state by an applied negative pressure from the passage p2 through the tube ct. Thus, danger of suction of recovery liquid refrigerant by the compressor Co can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は圧縮式ヒートポンプに関
し、詳しくは、対象熱交換器を他の熱交換器に連通する
液冷媒路と圧縮機のガス冷媒吐出路との間に介在させて
凝縮器作用させる凝縮用切り換え状態と、前記対象熱交
換器を前記液冷媒路と前記圧縮機のガス冷媒吸入路との
間に介在させて蒸発器作用させる蒸発用切り換え状態と
に、冷媒回路を切り換え可能に構成した圧縮式ヒートポ
ンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compression heat pump, and more specifically, it is provided with a target heat exchanger interposed between a liquid refrigerant passage communicating with another heat exchanger and a gas refrigerant discharge passage of the compressor for condensation. The refrigerant circuit is switched between a condensation switching state in which the target heat exchanger is operated and an evaporation switching state in which the target heat exchanger is interposed between the liquid refrigerant path and the gas refrigerant suction path of the compressor to operate as an evaporator. The present invention relates to a compressible heat pump configured as possible.

【0002】[0002]

【従来の技術】従来、上記の如き圧縮式ヒートポンプに
おいて、例えば除霜運転の開始や、冷暖房の切り換え等
のために、対象熱交換器を凝縮器作用させる凝縮用切り
換え状態から、対象熱交換器を蒸発器作用させる蒸発用
切り換え状態へ冷媒回路を切り換えるには、圧縮機Co
を一旦停止させた状態で図18から図19に示すよう
に、、弁操作により対象熱交換器NAを圧縮機Coのガ
ス冷媒吐出路Goに対する接続状態からガス冷媒吸入路
Gsに対する接続状態に切り換え、これにより、それま
で凝縮器作用していた対象熱交換器NAや、その近傍接
続路に残存する液冷媒(図中、ハッチングを施した太線
で示す)を、圧縮機吸入側と圧縮機吐出側との間の残存
差圧によりガス冷媒吸入路Gsを介して圧縮機吸入側に
装備のアキュムレータAcに回収貯留させていた。
2. Description of the Related Art Conventionally, in a compression heat pump as described above, a target heat exchanger is switched from a condensation switching state in which the target heat exchanger acts as a condenser, for example, for starting a defrosting operation or switching between heating and cooling. In order to switch the refrigerant circuit to the evaporation switching state in which the
18 to FIG. 19, the target heat exchanger NA is switched from the connection state of the compressor Co to the gas refrigerant discharge path Go to the connection state of the gas refrigerant suction path Gs with the valve being stopped as shown in FIGS. 18 to 19. As a result, the target heat exchanger NA that has been acting as a condenser and the liquid refrigerant (indicated by the thick line with hatching in the figure) remaining in the connection passage in the vicinity of the target heat exchanger NA are discharged to the compressor suction side and the compressor discharge side. Due to the residual pressure difference between the side of the compressor and the side of the compressor, the accumulator Ac installed on the suction side of the compressor collects and stores the gas via the gas refrigerant suction path Gs.

【0003】そして、これに続き、圧縮機Coの運転を
再開することで、アキュムレータAcに貯留の多量回収
液冷媒Rを圧縮機仕事により徐々に蒸発気化させながら
ガス冷媒吐出路Goへ送出して冷媒回路中へ戻すように
するとともに、蒸発器作用させる対象熱交換器NAへは
他の凝縮器作用する熱交換器NBからの液冷媒を液冷媒
路L及び膨張弁exAを介して供給し、また、その対象
熱交換器NAで蒸発した低圧ガス冷媒(図中、白抜きの
太線で示す)はガス冷媒吸入路Gsを介して圧縮機Co
の吸入側に戻すようにし、これをもって、蒸発用切り換
え状態への移行を完了していた。
Following this, by restarting the operation of the compressor Co, the large amount of recovered liquid refrigerant R stored in the accumulator Ac is gradually evaporated and vaporized by the work of the compressor and is sent to the gas refrigerant discharge passage Go. While returning to the refrigerant circuit, the liquid refrigerant from the heat exchanger NB that acts as another condenser is supplied to the target heat exchanger NA that acts as an evaporator through the liquid refrigerant path L and the expansion valve exA, Further, the low-pressure gas refrigerant (shown by a white thick line in the figure) evaporated in the target heat exchanger NA is compressed by the compressor Co via the gas refrigerant suction passage Gs.
Was returned to the suction side, and with this, the transition to the evaporation switching state was completed.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述の如き従
来の切り換え形態では、下記(a),(b),(c)の
欠点、つまり、 (a)残存液冷媒をアキュムレータAcへ回収する過程
において圧縮機Coの液冷媒吸入を回避するため圧縮機
Coの運転を一旦停止する必要があり、このため、冷暖
房や物品の加熱・冷却等といったヒートポンプの本来運
転を中断する時間が長くなるとともに、圧縮機Coの発
停回数の増加により圧縮機Coの耐用年数が低下する。
However, in the conventional switching mode as described above, the following drawbacks (a), (b) and (c), that is, (a) a process of recovering the residual liquid refrigerant to the accumulator Ac. In order to avoid sucking the liquid refrigerant of the compressor Co, it is necessary to temporarily stop the operation of the compressor Co, and therefore, the time for interrupting the original operation of the heat pump such as cooling and heating and heating / cooling of articles becomes long, The service life of the compressor Co decreases as the number of times the compressor Co starts and stops increases.

【0005】(b)何らかの原因で残存液冷媒量が大量
となって、それに対しアキュムレータ容量が不足となっ
た場合、圧縮機Coの運転再開時に圧縮機Coの液冷媒
吸入が生じて、いわゆる液圧縮状態を招き、これにより
圧縮機Coの破損を招く危険性がある。
(B) If the amount of residual liquid refrigerant becomes large for some reason and the accumulator capacity becomes insufficient, the liquid refrigerant suction of the compressor Co occurs when the operation of the compressor Co is restarted, and so-called liquid There is a risk of causing a compressed state, which may damage the compressor Co.

【0006】(c)アキュムレータAcに回収した液冷
媒Rを圧縮機仕事により蒸発気化させて冷媒回路中へ戻
すため、ヒートポンプ本来の運転から見てその圧縮機仕
事がエネルギ損失となり、このため全体としてのエネル
ギ効率が低いものとなる。
(C) Since the liquid refrigerant R collected in the accumulator Ac is vaporized by the work of the compressor and returned to the refrigerant circuit, the work of the compressor causes energy loss from the original operation of the heat pump. Energy efficiency is low.

【0007】本発明の目的は、合理的な液冷媒回収構成
により上記問題の効果的な解消を図る点にある。
An object of the present invention is to effectively solve the above problems by a rational liquid refrigerant recovery structure.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

〔第1特徴構成〕本発明による圧縮式ヒートポンプの第
1特徴構成は、対象熱交換器を他の熱交換器に連通する
液冷媒路と圧縮機のガス冷媒吐出路との間に介在させて
凝縮器作用させる凝縮用切り換え状態と、前記対象熱交
換器を前記液冷媒路と前記圧縮機のガス冷媒吸入路との
間に介在させて蒸発器作用させる蒸発用切り換え状態と
に、冷媒回路を切り換え可能に構成するのに対し、前記
液冷媒路において、前記対象熱交換器に対する膨張弁よ
りも前記の他の熱交換器の側に液冷媒タンクを接続する
とともに、その液冷媒タンクの接続箇所と前記膨張弁と
の間に液冷媒路開閉弁を介装し、前記圧縮機の吐出側正
圧を前記液冷媒タンクに印加する正圧印加状態と、前記
圧縮機の吸入側負圧を前記液冷媒タンクに印加する負圧
印加状態とに切り換え操作可能な導圧手段を設けたこと
にある。
[First characteristic configuration] A first characteristic configuration of a compression heat pump according to the present invention is that a target heat exchanger is interposed between a liquid refrigerant passage communicating with another heat exchanger and a gas refrigerant discharge passage of a compressor. The refrigerant circuit is switched between a condensation switching state in which the condenser operates and an evaporation switching state in which the target heat exchanger is interposed between the liquid refrigerant passage and the gas refrigerant suction passage of the compressor to cause the evaporator to operate. In contrast to the switchable configuration, in the liquid refrigerant path, while connecting the liquid refrigerant tank to the side of the other heat exchanger than the expansion valve for the target heat exchanger, the connection point of the liquid refrigerant tank A liquid refrigerant passage opening / closing valve between the expansion valve and the expansion valve, and a positive pressure application state in which a positive pressure on the discharge side of the compressor is applied to the liquid refrigerant tank, and a negative pressure on the suction side of the compressor Switch to the state of applying negative pressure to the liquid refrigerant tank. For example lies in the provision of the operation can be Shirube圧 means.

【0009】〔第2特徴構成〕本発明による圧縮式ヒー
トポンプの第2特徴構成は、上記の第1特徴構成の実施
において好適な構成を特定するものであり、前記の凝縮
用切り換え状態から前記の蒸発用切り換え状態への冷媒
回路切り換えにおいて、次の(イ)から(ニ)の操作、
つまり、(イ)前記導圧手段を負圧印加状態に切り換え
る、(ロ)前記液冷媒路開閉弁を閉じる、(ハ)前記対
象熱交換器を前記ガス冷媒吐出路に対する接続状態から
前記ガス冷媒吸入路に対する接続状態に切り換える、
(ニ)前記液冷媒路開閉弁を開くとともに、前記導圧手
段を正圧印加状態に切り換える、をその順に自動的に行
う切り換え制御手段を設けることにある。
[Second Characteristic Configuration] A second characteristic configuration of the compression heat pump according to the present invention is to identify a preferable configuration in the implementation of the first characteristic configuration described above. In switching the refrigerant circuit to the switching state for evaporation, the following operations (a) to (d),
That is, (a) the pressure guiding means is switched to a negative pressure application state, (b) the liquid refrigerant passage opening / closing valve is closed, and (c) the target heat exchanger is connected to the gas refrigerant discharge passage from the gas refrigerant. Switch to the connection state for the suction path,
(D) A switching control means is provided for automatically opening the liquid refrigerant passage opening / closing valve and switching the pressure guiding means to a positive pressure application state in that order.

【0010】[0010]

【作用】[Action]

〔第1特徴構成の作用〕すなわち、第1特徴構成におい
ては、凝縮用切り換え状態から蒸発用切り換え状態への
切り換えにあたり、先ず、導圧手段を負圧印加状態に切
り換え、これにより、凝縮器作用する対象熱交換器で生
じる液冷媒を液冷媒路に接続の液冷媒タンクに吸引回収
して、液冷媒を液冷媒路における膨張弁ないし液冷媒路
開閉弁よりも液冷媒タンク側へ引退させる。
[Operation of First Characteristic Configuration] That is, in the first characteristic structure, when switching from the condensation switching state to the evaporation switching state, first, the pressure guiding means is switched to the negative pressure application state, whereby the condenser operation is performed. The liquid refrigerant generated in the target heat exchanger is sucked and collected in the liquid refrigerant tank connected to the liquid refrigerant path, and the liquid refrigerant is retracted toward the liquid refrigerant tank side from the expansion valve or the liquid refrigerant path opening / closing valve in the liquid refrigerant path.

【0011】続いて、この液冷媒引退状態で液冷媒路開
閉弁を閉じ、その上で、対象熱交換器を圧縮機のガス冷
媒吐出路に対する接続状態から圧縮機のガス冷媒吸入路
に対する接続状態に切り換える。
Then, in this liquid refrigerant withdrawal state, the liquid refrigerant passage opening / closing valve is closed, and then the target heat exchanger is connected from the gas refrigerant discharge passage of the compressor to the gas refrigerant suction passage of the compressor. Switch to.

【0012】この切り換えにより対象熱交換器にはガス
冷媒吸入路を介して圧縮機の吸入作用が及ぶこととな
り、これにより、対象熱交換器等に少量残存する液冷媒
が蒸発して湿り度の高い低圧ガス冷媒の状態でガス冷媒
吸入路を介し圧縮機吸入側に吸入されるが、前記の回収
液冷媒が圧縮機の吸入作用を受けて対象熱交換器及びガ
ス冷媒吸入路を介し圧縮機の吸入側に吸入されるといっ
たことは、閉じ状態にある液冷媒路開閉弁により阻止さ
れる。
By this switching, the suction action of the compressor is exerted on the target heat exchanger via the gas refrigerant suction passage, whereby the liquid refrigerant remaining in a small amount in the target heat exchanger and the like evaporates and the wetness of the liquid is reduced. The high-pressure low-pressure gas refrigerant is sucked into the compressor suction side through the gas refrigerant suction passage, but the recovered liquid refrigerant is subjected to the suction action of the compressor, and then the compressor through the target heat exchanger and the gas refrigerant suction passage. The liquid refrigerant passage open / close valve in the closed state prevents the liquid refrigerant from being sucked into the suction side.

【0013】その後、少量残存液冷媒の排除が進んで圧
縮機が湿り度の低い低圧ガス冷媒を吸入するようになる
と、液冷媒路開閉弁を開いて液冷媒路から膨張弁を介し
対象熱交換器へ液冷媒を供給し、これにより対象熱交換
器を蒸発器作用させる。
After that, when a small amount of residual liquid refrigerant is removed and the compressor sucks low-pressure low-pressure gas refrigerant, the liquid refrigerant passage opening / closing valve is opened and the target heat exchange is performed from the liquid refrigerant passage through the expansion valve. The liquid refrigerant is supplied to the heat exchanger, which causes the target heat exchanger to act as an evaporator.

【0014】また、液冷媒路開閉弁の開弁とともに導圧
手段を正圧印加状態に切り換えて液冷媒タンクの貯留液
冷媒を液冷媒路へ吐出させ、そして、この吐出液冷媒を
蒸発器作用する対象熱交換器や、あるいは、液冷媒路に
連通して蒸発器作用する他の熱交換器で蒸発させる。
Further, when the liquid refrigerant passage opening / closing valve is opened, the pressure guiding means is switched to a positive pressure application state to discharge the stored liquid refrigerant in the liquid refrigerant tank to the liquid refrigerant passage, and the discharged liquid refrigerant acts as an evaporator. The target heat exchanger to be operated or another heat exchanger which is in communication with the liquid refrigerant passage and acts as an evaporator is evaporated.

【0015】〔第2特徴構成の作用〕第2特徴構成にお
いては、導圧手段、液冷媒路開閉弁、ガス冷媒吐出路、
ガス冷媒吸入路の夫々を上記の如き所定の手順で切り換
え操作して行う、凝縮用切り換え状態から蒸発用切り換
え状態への切り換えを、切り換え制御手段により自動的
に行う。
[Operation of Second Characteristic Configuration] In the second characteristic configuration, the pressure guiding means, the liquid refrigerant passage opening / closing valve, the gas refrigerant discharge passage,
The switching control means automatically performs switching from the condensation switching state to the evaporation switching state, which is performed by switching each of the gas refrigerant suction paths in the above-described predetermined procedure.

【0016】[0016]

【発明の効果】【The invention's effect】

〔第1特徴構成の効果〕つまり、本発明の第1特徴構成
によれば、対象熱交換器で凝縮した液冷媒を圧縮機の吸
入側へは回収せず、対象熱交換器に対して圧縮機の吸入
側とは反対側となる液冷媒路側へ回収するから、圧縮機
が回収液冷媒を吸入してしまうといった事態を先述の従
来回収形態に比べ確実に防止できる。
[Effects of First Characteristic Configuration] That is, according to the first characteristic structure of the present invention, the liquid refrigerant condensed in the target heat exchanger is not recovered to the suction side of the compressor, but compressed against the target heat exchanger. Since the liquid refrigerant is recovered to the side of the liquid refrigerant path that is opposite to the suction side of the machine, it is possible to reliably prevent the situation where the compressor sucks the recovered liquid refrigerant as compared with the conventional recovery mode described above.

【0017】そして、このことにより、凝縮用切り換え
状態から蒸発用切り換え状態への切り換えに際しての圧
縮機運転の一旦停止を不要にできて、ヒートポンプ本来
運転の中断時間を短縮できるとともに、圧縮機発停回数
の増加による耐用年数低下を回避できる。
As a result, it is possible to eliminate the need to temporarily stop the compressor operation when switching from the condensation switching state to the evaporation switching state, and to shorten the interruption time of the heat pump original operation and start / stop the compressor. It is possible to avoid a decrease in service life due to an increase in the number of times.

【0018】また、何らかの原因で対象熱交換器での冷
媒凝縮量が大量となり、このため、仮に液冷媒の全量を
液冷媒タンク側に回収できなかったとしても、圧縮機の
吸入側に吸入される液冷媒量は液冷媒タンク側での液冷
媒回収をもって少量に制限されるから、このような冷媒
凝縮量の変化に対しても圧縮機での液圧縮の発生をより
確実に防止でき、液圧縮による圧縮機破損の危険性を低
減できる。
Further, due to some reason, the amount of refrigerant condensed in the target heat exchanger becomes large, so that even if the entire amount of liquid refrigerant could not be recovered to the liquid refrigerant tank side, it is sucked into the suction side of the compressor. Since the amount of liquid refrigerant to be used is limited to a small amount by recovering the liquid refrigerant on the liquid refrigerant tank side, it is possible to more reliably prevent the occurrence of liquid compression in the compressor even with such changes in the refrigerant condensation amount. The risk of compressor damage due to compression can be reduced.

【0019】しかも、液冷媒タンク側、すなわち、液冷
媒路側に回収した液冷媒は、液冷媒路に連通して蒸発器
作用する熱交換器で外部からの吸熱により蒸発させた上
で低圧ガス冷媒として圧縮機に戻すこととなるから、先
述の従来回収形態の如く多量の回収液冷媒を圧縮機仕事
により蒸発気化させるに比べ、全体としてのエネルギ効
率をも向上し得る。
Moreover, the liquid refrigerant collected on the liquid refrigerant tank side, that is, on the liquid refrigerant path side is evaporated by heat absorption from the outside in the heat exchanger which communicates with the liquid refrigerant path and acts as an evaporator, and then the low pressure gas refrigerant. Since it is returned to the compressor as described above, the energy efficiency as a whole can be improved as compared with the case where a large amount of the recovered liquid refrigerant is evaporated and vaporized by the work of the compressor as in the conventional recovery mode described above.

【0020】〔第2特徴構成の効果〕本発明の第2特徴
構成によれば、切り換え制御手段による自動切り換えに
より、凝縮用切り換え状態から蒸発用切り換え状態への
切り換えを人為操作を伴うことなく簡便に行える。
[Effects of Second Characteristic Configuration] According to the second characteristic structure of the present invention, the automatic switching by the switching control means simplifies the switching from the condensation switching state to the evaporation switching state without human operation. You can do it.

【0021】[0021]

【実施例】【Example】

〔第1実施例〕図1は圧縮式ヒートポンプを用いたセパ
レート型空調装置を示し、U1は室外機、U2,U3
は、夫々、渡り冷媒配管rを介して室外機U1に接続し
た第1及び第2の室内機である。
[First Embodiment] FIG. 1 shows a separate type air conditioner using a compression heat pump, where U1 is an outdoor unit, U2 and U3.
Are first and second indoor units respectively connected to the outdoor unit U1 via the transition refrigerant pipe r.

【0022】室外機U1には、外気OAを吸放熱対象と
する第1熱交換器N1、その第1熱交換器N1に外気O
Aを通風する第1ファンF1、圧縮機Co、アキュムレ
ータAc、液冷媒タンクT、並びに、電子式の第1膨張
弁ex1を装備してある。
The outdoor unit U1 has a first heat exchanger N1 for absorbing and radiating the outside air OA, and the outside air O is supplied to the first heat exchanger N1.
A first fan F1 that ventilates A, a compressor Co, an accumulator Ac, a liquid refrigerant tank T, and an electronic first expansion valve ex1 are provided.

【0023】第1室内機U2には、空気の冷却・加熱を
行う第2熱交換器N2、空気流れ方向で第2熱交換器N
2の下流に位置する再熱用としての第3熱交換器N3、
それら第2及び第3熱交換器N2,N3により調整した
空気SA1を対応の空調対象域へ送出する第2ファンF
2、並びに、電子式の第2及び第3の膨張弁ex2,e
x3を装備してある。
The first indoor unit U2 has a second heat exchanger N2 for cooling and heating air, and a second heat exchanger N in the air flow direction.
A third heat exchanger N3 for reheat located downstream of 2,
A second fan F for sending out the air SA1 adjusted by the second and third heat exchangers N2, N3 to the corresponding air conditioning target area.
2 and electronic second and third expansion valves ex2, e
It is equipped with x3.

【0024】第1室内機U2と同様、第2室内機U3に
は、空気の冷却・加熱を行う第4熱交換器N4、空気流
れ方向で第4熱交換器N4の下流に位置する再熱用とし
ての第5熱交換器N5、それら第4及び第5熱交換器N
4,N5により調整した空気SA2を対応の空調対象域
へ送出する第3ファンF3、並びに、電子式の第4及び
第5の膨張弁ex4,ex5を装備してある。
Similar to the first indoor unit U2, the second indoor unit U3 has a fourth heat exchanger N4 for cooling and heating air and a reheat located downstream of the fourth heat exchanger N4 in the air flow direction. Fifth heat exchanger N5 for use, and fourth and fifth heat exchanger N thereof
It is equipped with a third fan F3 that sends out air SA2 adjusted by 4, N5 to the corresponding air-conditioning target area, and electronic fourth and fifth expansion valves ex4, ex5.

【0025】なお、第1ないし第5の膨張弁ex1〜e
x5は、夫々、膨張弁として機能させる状態と流量調整
弁として機能させる状態とに切り換え使用できる構成と
してある。また、図中v1〜v9は、夫々、流路切り換
え用の電磁弁である。
Incidentally, the first to fifth expansion valves ex1 to e
Each x5 has a configuration that can be switched between a state in which it functions as an expansion valve and a state in which it functions as a flow rate adjusting valve. Further, v1 to v9 in the figure are electromagnetic valves for switching the flow paths, respectively.

【0026】液冷媒タンクTは、冷媒回路のうち各熱交
換器N1〜N5に対して圧縮機Coとは反対側で、それ
ら熱交換器N1〜N5どうしを接続する液冷媒路Lにお
いて、各熱交換器N1〜N5に対する膨張弁ex1〜e
x5どうしの間の部分(すなわち、常に液冷媒が存在す
る部分)に接続してあり、液冷媒路Lに対する接続路s
のタンク内開口は、貯留液冷媒R中に位置させるように
タンク内底部に配置してある。
The liquid refrigerant tank T is located on the opposite side of the heat exchangers N1 to N5 from the compressor Co in the refrigerant circuit, and in the liquid refrigerant passage L connecting the heat exchangers N1 to N5. Expansion valves ex1 to e for the heat exchangers N1 to N5
The connection path s for the liquid refrigerant path L is connected to the part between the x5 parts (that is, the part where the liquid refrigerant always exists).
The in-tank opening of is placed at the bottom of the tank so as to be positioned in the stored liquid refrigerant R.

【0027】また、液冷媒タンクTに対しては、圧縮機
Coの吐出側正圧を液冷媒タンクTに印加する正圧印加
状態と、圧縮機Coの吸入側負圧を液冷媒タンクTに印
加する負圧印加状態とに切り換え操作可能な導圧手段X
を装備してあり、その具体的構造としては、圧縮機Co
のガス冷媒吐出路Go(いわゆる圧縮式ヒートポンプの
高圧ガス路)と液冷媒タンクTとを接続する高圧側導圧
路p1、及び、圧縮機Coのガス冷媒吸入路Gs(いわ
ゆる圧縮式ヒートポンプの低圧ガス路)と液冷媒タンク
Tとを接続する低圧側導圧路p2を設け、そして、高圧
側導圧路p1を開閉する圧力調整弁vpを設けるととも
に、低圧側導圧路p2にキャピラリチューブctを介装
してある。
With respect to the liquid refrigerant tank T, a positive pressure application state in which a positive pressure on the discharge side of the compressor Co is applied to the liquid refrigerant tank T and a negative pressure on the suction side of the compressor Co are applied to the liquid refrigerant tank T. A pressure guiding means X operable to switch to a negative pressure applying state.
Is equipped with a concrete structure of a compressor Co
Gas refrigerant discharge passage Go (so-called high-pressure gas passage of compression heat pump) and high-pressure side pressure passage p1 connecting liquid refrigerant tank T, and gas refrigerant suction passage Gs of compressor Co (so-called low pressure of compression heat pump). The low pressure side pressure guiding path p2 that connects the gas passage) to the liquid refrigerant tank T is provided, and the pressure adjusting valve vp that opens and closes the high pressure side pressure guiding path p1 is provided, and the capillary tube ct is provided in the low pressure side pressure guiding path p2. Is installed.

【0028】すなわち、低圧側導圧路p2からのキャピ
ラリチューブctを介しての印加負圧に対し打ち勝つ正
圧が高圧側導圧路p1から導かれるように、圧力調整弁
vpを開き操作することで正圧印加状態とし、また逆
に、圧力調整弁vpを閉じ操作することで、低圧側導圧
路p2からのキャピラリチューブctを介しての印加負
圧により負圧印加状態とする。
That is, the pressure adjusting valve vp is opened and operated so that the positive pressure that overcomes the negative pressure applied from the low pressure side pressure guiding path p2 via the capillary tube ct is introduced from the high pressure side pressure guiding path p1. A positive pressure is applied to the negative pressure applying state, and conversely, the pressure adjusting valve vp is closed to apply a negative pressure due to the negative pressure applied from the low pressure side pressure guiding path p2 via the capillary tube ct.

【0029】同図1は暖房モードにおける冷媒流れ状態
を示し、その冷媒流れとして、圧縮機Coから吐出され
る高圧ガス冷媒(図中、黒塗りの太線で示す)は、ガス
冷媒吐出路Goを介し第2及び第4熱交換器N2,N4
に供給されて第2及び第4熱交換器N2,N4で凝縮
し、それら第2及び第4熱交換器N2,N4から送出さ
れる凝縮後の液冷媒(図中、ハッチングを施した太線で
示す)は、第2及び第4膨張弁ex2,ex4が流量調
整弁として機能し、また、第1膨張弁ex1が膨張弁と
して機能する液冷媒路Lを介して第1熱交換器N1に供
給され第1熱交換器N1で蒸発し、第1熱交換器N1か
ら送出される低圧ガス冷媒(図中、白抜きの太線で示
す)はガス冷媒吸入路Gs及びアキュムレータAcを介
して圧縮機Coの吸入側に戻る(なお、図中黒塗りの弁
は閉じ状態を示す)。
FIG. 1 shows a refrigerant flow state in the heating mode. As the refrigerant flow, a high pressure gas refrigerant (shown by a thick black line in the figure) discharged from the compressor Co flows through the gas refrigerant discharge passage Go. Through the second and fourth heat exchangers N2, N4
And condensed in the second and fourth heat exchangers N2 and N4, and the condensed liquid refrigerant sent from the second and fourth heat exchangers N2 and N4 (indicated by a thick line with hatching in the figure). (Indicated) is supplied to the first heat exchanger N1 via the liquid refrigerant passage L in which the second and fourth expansion valves ex2 and ex4 function as flow rate adjusting valves, and the first expansion valve ex1 functions as an expansion valve. The low-pressure gas refrigerant (shown by a white thick line in the figure) that has been vaporized in the first heat exchanger N1 and is sent out from the first heat exchanger N1 passes through the gas refrigerant suction passage Gs and the accumulator Ac to the compressor Co. Return to the suction side (the black valve in the figure shows the closed state).

【0030】また、この冷媒流れ状態においては、冷媒
回路内を循環させる冷媒量が圧縮機運転上で適切な冷媒
量となるように、圧力調整弁vpをその中間開度域で開
度調整して液冷媒タンクTの液冷媒貯留量を調整する。
Further, in this refrigerant flow state, the opening of the pressure adjusting valve vp is adjusted in the intermediate opening range so that the amount of the refrigerant circulated in the refrigerant circuit becomes an appropriate amount of refrigerant in the compressor operation. The liquid refrigerant storage amount of the liquid refrigerant tank T is adjusted.

【0031】Yは運転制御を司る制御装置であり、この
制御装置Yは運転制御の一例として、第2及び第4熱交
換器N2,N4の夫々を凝縮器作用させて空調対象域へ
の供給空気SA1,SA2を加熱温調し、かつ、第1熱
交換器N1を蒸発器作用させて外気OAから吸熱する上
記の暖房モード(図1参照)と、その暖房モードでの運
転において第1熱交換器N1に着霜が生じたとき、第2
及び第4熱交換器N2,N4の夫々を蒸発器作用させて
空調対象域側から吸熱し、かつ、第1熱交換器N1を凝
縮器作用させて凝縮熱により融霜する除霜モード(図5
参照)との切り換えを行う。
Y is a control device for controlling the operation. As an example of the operation control, the control device Y causes each of the second and fourth heat exchangers N2 and N4 to act as a condenser to supply the air conditioning target area. The above heating mode (see FIG. 1) in which the heating temperatures of the air SA1 and SA2 are controlled and the heat of the first heat exchanger N1 is made to act as an evaporator to absorb heat from the outside air OA, and the first heat is used in the operation in the heating mode. When frost is formed on the exchanger N1, the second
A defrosting mode in which each of the fourth heat exchangers N2 and N4 acts as an evaporator to absorb heat from the air conditioning target area side, and the first heat exchanger N1 acts as a condenser to frost by condensation heat (Fig. 5
(See) and switch.

【0032】この暖房モードから除霜モードへの切り換
えは、第2及び第4熱交換器N2,N4を対象熱交換器
NAとして、その対象熱交換器NAについて見た場合、
対象熱交換器NA(N2,N4)を他の熱交換器NB
(第1熱交換器N1)に連通する液冷媒路Lと圧縮機C
oのガス冷媒吐出路Goとの間に介在させて凝縮器作用
させる凝縮用切り換え状態から、対象熱交換器NA(N
2,N4)を液冷媒路Lと圧縮機Coのガス冷媒吸入路
Gsとの間に介在させて蒸発器作用させる蒸発用切り換
え状態への切り換えであり、制御装置Yは、この対象熱
交換器NA(N2,N4)についての凝縮用切り換え状
態から蒸発用切り換え状態への切り換えを自動的に行う
切り換え制御手段として機能する。
The switching from the heating mode to the defrosting mode is carried out when the second and fourth heat exchangers N2 and N4 are used as the target heat exchanger NA and the target heat exchanger NA is viewed.
The target heat exchanger NA (N2, N4) is replaced with another heat exchanger NB
Liquid refrigerant path L communicating with (first heat exchanger N1) and compressor C
From the switching state for condensation in which the condenser action is performed by interposing it between the gas refrigerant discharge passage Go of No. o and the target heat exchanger NA (N
2, N4) is interposed between the liquid refrigerant passage L and the gas refrigerant suction passage Gs of the compressor Co to make the evaporator act as an evaporator, and the controller Y controls the target heat exchanger. It functions as a switching control unit that automatically switches the condensation switching state for NA (N2, N4) from the evaporation switching state.

【0033】そして、この切り換え制御手段としての制
御装置Yは、暖房モードから除霜モードへの切り換え、
つまり、第2及び第4熱交換器N2,N4を対象熱交換
器NAとした場合の凝縮用切り換え状態から蒸発用切り
換え状態への切り換えにあたり、具体的制御動作とし
て、種々の運転状態検出情報に基づき下記(イ)〜
(ニ)の操作をその順で自動的に行う構成としてある。
The control device Y as the switching control means switches from the heating mode to the defrosting mode,
That is, when switching from the condensation switching state to the evaporation switching state when the second and fourth heat exchangers N2 and N4 are used as the target heat exchanger NA, various operating state detection information is used as a specific control operation. Based on (a) below
The operation of (d) is automatically performed in that order.

【0034】以下、本第1実施例において暖房モードか
ら除霜モードへの切り換えについては、第2及び第4熱
交換器N2,N4を対象熱交換器NAと称し、第1熱交
換器N1を他の熱交換器NBと称し、また、第2及び第
4熱交換器N2,N4に対する第2及び第4膨張弁ex
2,ex4を対象熱交換器NAに対する膨張弁exAと
称する。
For switching from the heating mode to the defrosting mode in the first embodiment, the second and fourth heat exchangers N2 and N4 will be referred to as the target heat exchanger NA, and the first heat exchanger N1 will be referred to below. The second and fourth expansion valves ex for the second and fourth heat exchangers N2 and N4 are also called other heat exchangers NB.
2, ex4 are referred to as expansion valves exA for the target heat exchanger NA.

【0035】(イ)暖房モードにおける冷媒流れ状態が
図1に示す如き状態であるのに対し、図2に示すよう
に、圧力調整弁vpを閉じて前記の導圧手段Xを負圧印
加状態に切り換え、また、流量調整弁として機能させて
いた対象熱交換器NAに対する膨張弁exAを全開と
し、これにより、凝縮器作用する対象熱交換器NAで生
じる液冷媒(ハッチングを施した太線)を液冷媒タンク
Tに吸引回収し、液冷媒路Lにおいて液冷媒を対象熱交
換器NAに対する膨張弁exAよりも液冷媒タンクTの
側へ引退させる。
(A) While the refrigerant flow state in the heating mode is as shown in FIG. 1, as shown in FIG. 2, the pressure regulating valve vp is closed to apply the negative pressure to the pressure guiding means X. And the expansion valve exA for the target heat exchanger NA that was functioning as a flow rate control valve is fully opened, so that the liquid refrigerant (thick line with hatching) generated in the target heat exchanger NA acting as the condenser is removed. The liquid refrigerant is sucked and collected in the liquid refrigerant tank T, and the liquid refrigerant is retreated in the liquid refrigerant path L toward the liquid refrigerant tank T side with respect to the expansion valve exA for the target heat exchanger NA.

【0036】(ロ)次に図3に示すように、対象熱交換
器NAに対する膨張弁exAを液冷媒路開閉弁vAとし
て用い、対象熱交換器NAに対する膨張弁exAを閉じ
ることで液冷媒路Lを対象熱交換器NAに対し閉塞す
る。
(B) Next, as shown in FIG. 3, the expansion valve exA for the target heat exchanger NA is used as the liquid refrigerant passage opening / closing valve vA, and the expansion valve exA for the target heat exchanger NA is closed to close the liquid refrigerant passage. L is closed to the target heat exchanger NA.

【0037】(ハ)そして、電磁弁v1〜v9のうち再
熱用である第4及び第7電磁弁v4,v7を除くもの切
り換え操作して、同図3に示すように、対象熱交換器N
Aをガス冷媒吐出路Goに対する接続状態からガス冷媒
吸入路Gsに対する接続状態に切り換え、また、他の熱
交換器NBをガス冷媒吸入路Gsに対する接続状態から
ガス冷媒吐出路Goに対する接続状態に切り換える。
(C) Then, among the solenoid valves v1 to v9, excluding the fourth and seventh solenoid valves v4 and v7 for reheating, the switching operation is carried out, and as shown in FIG. N
A is switched from the connected state to the gas refrigerant discharge path Go to the connected state to the gas refrigerant suction path Gs, and the other heat exchanger NB is switched from the connected state to the gas refrigerant suction path Gs to the connected state to the gas refrigerant discharge path Go. .

【0038】この切り換え操作により対象熱交換器NA
にはガス冷媒吸入路Gsを介して圧縮機Coの吸入作用
が及ぶこととなり、これにより、対象熱交換器NAやそ
の近傍冷媒路に少量残存する液冷媒が蒸発して湿り度の
高い低圧ガス冷媒(白抜きの太線)の状態でガス冷媒吸
入路Gsを介し圧縮機吸入側に吸入され、これに伴い、
アキュムレータAcの液冷媒貯留量が多少増加するが、
液冷媒タンクT側へ回収・引退させた前記の液冷媒(ハ
ッチングを施した太線)は、閉じ状態にある液冷媒路開
閉弁vAとしての膨張弁exAにより圧縮機吸入側への
移動が阻止される。
By this switching operation, the target heat exchanger NA
The suction action of the compressor Co is exerted via the gas refrigerant suction passage Gs, whereby a small amount of the liquid refrigerant remaining in the target heat exchanger NA and the refrigerant passage in the vicinity thereof evaporates and the low-pressure gas having a high degree of wetness is obtained. In the state of the refrigerant (white thick line), it is sucked into the compressor suction side through the gas refrigerant suction passage Gs, and accordingly,
Although the amount of liquid refrigerant stored in the accumulator Ac increases slightly,
The liquid refrigerant (thick line with hatching) collected and withdrawn to the liquid refrigerant tank T side is prevented from moving to the compressor suction side by the expansion valve exA as the liquid refrigerant passage opening / closing valve vA in the closed state. It

【0039】(ニ)その後、図4に示すように、対象熱
交換器NAに対する少量残存液冷媒の排除が進んで圧縮
機Coが湿り度の低い低圧ガス冷媒を吸入するようにな
る(すなわち、アキュムレータAcの液冷媒貯留量が減
少する)と、図5に示すように、液冷媒路開閉弁vAと
しての膨張弁exAを開くとともに対象熱交換器NAに
対し本来の膨張弁として機能させ、これにより、液冷媒
路Lから膨張弁exAを介し対象熱交換器NAへ液冷媒
(ハッチングを施した太線)を供給して対象熱交換器N
Aを蒸発器作用させる。
(D) Thereafter, as shown in FIG. 4, the removal of a small amount of residual liquid refrigerant from the target heat exchanger NA progresses, and the compressor Co comes to draw in a low-pressure gas refrigerant having a low degree of wetness (that is, (The amount of liquid refrigerant stored in the accumulator Ac decreases), and as shown in FIG. 5, the expansion valve exA as the liquid refrigerant passage opening / closing valve vA is opened and the target heat exchanger NA is caused to function as an original expansion valve. Thus, the liquid refrigerant (thick line with hatching) is supplied from the liquid refrigerant passage L to the target heat exchanger NA through the expansion valve exA to supply the target heat exchanger N.
Let A act as an evaporator.

【0040】また、液冷媒路開閉弁vAとしての膨張弁
exAの開弁とともに、圧力調整弁vpを開いて導圧手
段Xを正圧印加状態に切り換え、これにより、液冷媒タ
ンクTの貯留液冷媒Rを液冷媒路Lへ吐出させ、その吐
出液冷媒を、凝縮器作用する他の熱交換器NBから流量
調整弁としての第1膨張弁ex1を介し液冷媒路Lに送
出される液冷媒とともに対象熱交換器NAへ送って対象
熱交換器NAで蒸発させるようにし、もって、暖房モー
ドから除霜モードへの切り換えを完了する。
In addition to opening the expansion valve exA as the liquid refrigerant passage opening / closing valve vA, the pressure regulating valve vp is opened to switch the pressure guiding means X to the positive pressure application state, whereby the stored liquid in the liquid refrigerant tank T is stored. The refrigerant R is discharged to the liquid refrigerant path L, and the discharged liquid refrigerant is sent to the liquid refrigerant path L from another heat exchanger NB acting as a condenser via the first expansion valve ex1 as a flow rate adjusting valve. At the same time, it is sent to the target heat exchanger NA to be vaporized in the target heat exchanger NA, and the switching from the heating mode to the defrosting mode is completed.

【0041】一方、除霜モードから暖房モードへの復帰
は、第1熱交換器N1を対象熱交換器NAとして、その
対象熱交換器NAについて見た場合、先の暖房モードか
ら除霜モードヘの切り換えと同様、対象熱交換器NA
(N1)を他の熱交換器NB(第2及び第4熱交換器N
2,N4)に連通する液冷媒路Lと圧縮機Coのガス冷
媒吐出路Goとの間に介在させて凝縮器作用させる凝縮
用切り換え状態から、対象熱交換器NA(N1)を液冷
媒路Lと圧縮機Coのガス冷媒吸入路Gsとの間に介在
させて蒸発器作用させる蒸発用切り換え状態への切り換
えであり、制御装置Yは、この除霜モードから暖房モー
ドへの復帰の場合も同様に、対象熱交換器NA(N1)
についての凝縮用切り換え状態から蒸発用切り換え状態
への切り換えを自動的に行う切り換え制御手段として機
能する。
On the other hand, when returning from the defrosting mode to the heating mode, when the first heat exchanger N1 is used as the target heat exchanger NA and the target heat exchanger NA is viewed, the heating mode is changed from the previous heating mode to the defrosting mode. Similar to switching, target heat exchanger NA
(N1) to another heat exchanger NB (second and fourth heat exchangers N
2, N4) and the target heat exchanger NA (N1) from the condensation switching state in which the condenser action is effected by being interposed between the liquid refrigerant passage L communicating with the gas refrigerant discharge passage Go of the compressor Co. It is a switch to an evaporation switching state in which the evaporator action is effected by being interposed between L and the gas refrigerant suction path Gs of the compressor Co, and the control device Y also returns from the defrosting mode to the heating mode. Similarly, the target heat exchanger NA (N1)
Functioning as switching control means for automatically switching from the condensation switching state to the evaporation switching state.

【0042】そして、制御装置Yは、除霜モードから暖
房モードへの復帰、つまり、第1熱交換器N1を対象熱
交換器NAとする場合の凝縮用切り換え状態から蒸発用
切り換え状態への切り換えにあたり、具体的制御動作と
して、種々の運転状態検出情報に基づき、前記の(イ)
〜(ニ)の操作と同形態の下記(イ’)〜(ニ’)の操
作をその順で自動的に行う構成としてある。
Then, the control device Y returns from the defrosting mode to the heating mode, that is, switches from the condensation switching state to the evaporation switching state when the first heat exchanger N1 is the target heat exchanger NA. In this regard, as a specific control operation, based on various operating state detection information, the above (a)
The following operations (a ') to (d') having the same form as the operations (d) to (d) are automatically performed in that order.

【0043】以下、本第1実施例において除霜モードか
ら暖房モードへの復帰については、第1熱交換器N1を
対象熱交換器NAと称し、第2及び第4熱交換器N2,
N4を他の熱交換器NBと称し、また、第1熱交換器N
1に対する第1膨張弁ex1を対象熱交換器NAに対す
る膨張弁exAと称する。
Hereinafter, in returning from the defrosting mode to the heating mode in the first embodiment, the first heat exchanger N1 will be referred to as the target heat exchanger NA, and the second and fourth heat exchangers N2 and N2.
N4 is referred to as another heat exchanger NB, and the first heat exchanger N
The first expansion valve ex1 for 1 is referred to as an expansion valve exA for the target heat exchanger NA.

【0044】(イ’)除霜モードにおける冷媒流れ状態
が前記の図5に示す如き状態であるのに対し、図6に示
すように、圧力調整弁vpを閉じて導圧手段Xを負圧印
加状態に切り換え、また、流量調整弁として機能させて
いた対象熱交換器NAに対する膨張弁exAを全開と
し、これにより、凝縮器作用する対象熱交換器NAで生
じる液冷媒(ハッチングを施した太線)を液冷媒タンク
Tに吸引回収し、液冷媒路Lにおいて液冷媒を対象熱交
換器NAに対する膨張弁exAよりも液冷媒タンクTの
側へ引退させる。
(A) While the refrigerant flow state in the defrosting mode is the state shown in FIG. 5, the pressure regulating valve vp is closed and the pressure guiding means X is set to a negative pressure as shown in FIG. The expansion valve exA for the target heat exchanger NA, which was switched to the applied state and functioned as the flow rate adjusting valve, was fully opened, whereby the liquid refrigerant generated in the target heat exchanger NA acting as the condenser (hatched thick line). ) Is sucked and collected in the liquid refrigerant tank T, and the liquid refrigerant is retracted to the liquid refrigerant tank T side of the expansion valve exA for the target heat exchanger NA in the liquid refrigerant passage L.

【0045】(ロ’)次に図7に示すように、対象熱交
換器NAに対する膨張弁exAを液冷媒路開閉弁vAと
して用い、対象熱交換器NAに対する膨張弁exAを閉
じることで液冷媒路Lを対象熱交換器NAに対し閉塞す
る。
(B ') Next, as shown in FIG. 7, the expansion valve exA for the target heat exchanger NA is used as the liquid refrigerant passage opening / closing valve vA, and the expansion valve exA for the target heat exchanger NA is closed to close the liquid refrigerant. The path L is closed to the target heat exchanger NA.

【0046】(ハ’)そして、電磁弁v1〜v9のうち
再熱用である第4及び第7電磁弁v4,v7を除くもの
切り換え操作して、同図7に示すように、対象熱交換器
NAをガス冷媒吐出路Goに対する接続状態からガス冷
媒吸入路Gsに対する接続状態に切り換え、また、他の
熱交換器NBをガス冷媒吸入路Gsに対する接続状態か
らガス冷媒吐出路Goに対する接続状態に切り換える。
(C ') Then, among the solenoid valves v1 to v9, excluding the fourth and seventh solenoid valves v4 and v7 for reheating, the switching operation is carried out, and as shown in FIG. The reactor NA is switched from the connection state for the gas refrigerant discharge path Go to the connection state for the gas refrigerant suction path Gs, and the other heat exchanger NB is changed from the connection state for the gas refrigerant suction path Gs to the connection state for the gas refrigerant discharge path Go. Switch.

【0047】(ニ’)その後、図8に示すように、対象
熱交換器NAに対する少量残存液冷媒の排除が進んで圧
縮機Coが湿り度の低い低圧ガス冷媒を吸入するように
なる(すなわち、アキュムレータAcの液冷媒貯留量が
減少する)と、図9に示す如く(図9と図1とは同じ冷
媒流れ状態を示す)、液冷媒路開閉弁vAとしての膨張
弁exAを開くとともに対象熱交換器NAに対し本来の
膨張弁として機能させ、これにより、液冷媒路Lから膨
張弁exAを介し対象熱交換器NAへ液冷媒(ハッチン
グを施した太線)を供給して対象熱交換器NAを蒸発器
作用させる。
(D ') After that, as shown in FIG. 8, the removal of the small amount of residual liquid refrigerant to the target heat exchanger NA proceeds, and the compressor Co comes to draw in the low-pressure gas refrigerant having low wetness (that is, , The amount of liquid refrigerant stored in the accumulator Ac decreases), and as shown in FIG. 9 (the same refrigerant flow state as in FIGS. 9 and 1), the expansion valve exA as the liquid refrigerant passage opening / closing valve vA is opened and The heat exchanger NA is caused to function as an original expansion valve, whereby the liquid refrigerant (thick line with hatching) is supplied from the liquid refrigerant path L to the target heat exchanger NA via the expansion valve exA to thereby perform the target heat exchanger. Let NA act as an evaporator.

【0048】また、液冷媒路開閉弁vAとしての膨張弁
exAの開弁とともに、圧力調整弁vpを開いて導圧手
段Xを正圧印加状態(すなわち、冷媒回路内を循環させ
る冷媒量が圧縮機運転上で適切な冷媒量となるように、
圧力調整弁vpをその中間開度域で開度調整して液冷媒
タンクTの液冷媒貯留量を調整する状態)に切り換え、
これにより、液冷媒タンクTの貯留液冷媒Rを液冷媒路
Lへ吐出させ、その吐出液冷媒を、凝縮器作用する他の
熱交換器NBから流量調整弁としての第2及び第4膨張
弁ex2,ex4を介し液冷媒路Lに送出される液冷媒
とともに対象熱交換器NAへ送って対象熱交換器NAで
蒸発させるようにし、もって、除霜モードから暖房モー
ドへの復帰を完了する。
Further, with the opening of the expansion valve exA serving as the liquid refrigerant passage opening / closing valve vA, the pressure regulating valve vp is opened to apply the positive pressure to the pressure guiding means X (that is, the amount of refrigerant circulating in the refrigerant circuit is compressed). In order to obtain an appropriate amount of refrigerant for machine operation,
The pressure adjusting valve vp is adjusted in the intermediate opening range to adjust the liquid refrigerant storage amount in the liquid refrigerant tank T),
As a result, the stored liquid refrigerant R in the liquid refrigerant tank T is discharged to the liquid refrigerant passage L, and the discharged liquid refrigerant is supplied from the other heat exchanger NB acting as a condenser to the second and fourth expansion valves as flow rate adjusting valves. The liquid refrigerant sent to the liquid refrigerant path L via ex2 and ex4 is sent to the target heat exchanger NA to be evaporated in the target heat exchanger NA, thereby completing the return from the defrost mode to the heating mode.

【0049】〔第2実施例〕前述の第1実施例で示した
空調装置において、制御手段Yは運転制御の他の一例と
して、図10に示す如き冷媒流れ状態で、第2及び第4
熱交換器N2,N4の夫々を凝縮器作用させて空調対象
域への供給空気SA1,SA2を加熱温調し、かつ、第
1熱交換器N1を蒸発器作用させて外気OAから吸熱す
る前述の暖房モード(図10と図9と図1とは夫々、同
じ冷媒流れ状態を示す)と、図14に示す冷媒流れ状態
で、第2熱交換器N2を蒸発器作用させて対応空調対象
域への供給空気SA1を冷却温調するとともに、第4熱
交換器N4を凝縮器作用させて対応空調対象域への供給
空気SA2を加熱温調し、かつ、第1熱交換器N1を蒸
発器作用させて外気OAから吸熱する暖房主体の冷暖房
並行モードとの切り換えを行う。
[Second Embodiment] In the air conditioner shown in the first embodiment, the control means Y is a second example of another operation control in the refrigerant flow state as shown in FIG.
Each of the heat exchangers N2 and N4 acts as a condenser to heat and control the temperature of the supply air SA1 and SA2 to the air-conditioned area, and the first heat exchanger N1 acts as an evaporator to absorb heat from the outside air OA. In the heating mode (FIGS. 10, 9 and 1 show the same refrigerant flow state, respectively) and the refrigerant flow state shown in FIG. 14, the second heat exchanger N2 is caused to act as an evaporator and the corresponding air conditioning target area is set. The temperature of the supply air SA1 to the corresponding air-conditioning target area by controlling the cooling temperature of the supply air SA1 to the fourth heat exchanger N4, and the first heat exchanger N1 to the evaporator. The mode is switched to the heating / cooling parallel mode in which the heating is performed and heat is absorbed from the outside air OA.

【0050】暖房モードから上記の冷暖房並行モードへ
の切り換えは、第2熱交換器N2を対象熱交換器NAと
して、その対象熱交換器NAについて見た場合、対象熱
交換器NA(N2)を他の熱交換器NB(第1及び第4
熱交換器N1,N4)に連通する液冷媒路Lと圧縮機C
oのガス冷媒吐出路Goとの間に介在させて凝縮器作用
させる凝縮用切り換え状態から、対象熱交換器NA(N
2)を液冷媒路Lと圧縮機Coのガス冷媒吸入路Gsと
の間に介在させて蒸発器作用させる蒸発用切り換え状態
への切り換えであり、制御装置Yは、この暖房モードか
ら冷暖房並行モードへの切り換えにおいて上記の対象熱
交換器NA(N1)についての凝縮用切り換え状態から
蒸発用切り換え状態への切り換えを自動的に行う切り換
え制御手段として機能する。
When switching from the heating mode to the above-mentioned cooling / heating parallel mode, when the second heat exchanger N2 is used as the target heat exchanger NA and the target heat exchanger NA is viewed, the target heat exchanger NA (N2) is switched. Other heat exchangers NB (first and fourth
Liquid refrigerant path L and compressor C communicating with heat exchangers N1, N4)
From the switching state for condensation in which the condenser action is performed by interposing it between the gas refrigerant discharge passage Go of No. o and the target heat exchanger NA (N
2) is the switching state for evaporation in which the liquid refrigerant passage L and the gas refrigerant suction passage Gs of the compressor Co are interposed to act as an evaporator, and the control device Y switches from this heating mode to the cooling / heating parallel mode. It functions as a switching control unit that automatically switches the target heat exchanger NA (N1) from the condensation switching state to the evaporation switching state.

【0051】そして、制御装置Yは、暖房モードから上
記の冷暖房並行モードへの切り換え、つまり、第2熱交
換器N2を対象熱交換器NAとする場合の凝縮用切り換
え状態から蒸発用切り換え状態への切り換えにあたり、
具体的制御動作として、種々の運転状態検出情報に基づ
き、前述の第1実施例における(イ)〜(ニ)の操作と
同形態の下記(イ”)〜(ニ”)の操作をその順で自動
的に行う構成としてある。
Then, the control device Y switches from the heating mode to the above-mentioned cooling / heating parallel mode, that is, from the condensing switching state when the second heat exchanger N2 is the target heat exchanger NA to the evaporation switching state. When switching between
As a specific control operation, the following operations (a "to (d") of the same form as the operations (a) to (d) in the first embodiment described above are performed in that order based on various operation state detection information. It is configured to be automatically performed by.

【0052】以下、暖房モードから冷暖房並行モードへ
の切り換えについて示す本第2実施例においては、第2
熱交換器N2を対象熱交換器NAと称し、第1及び第4
熱交換器N1,N4を他の熱交換器NBと称し、また、
第2熱交換器N2に対する第2膨張弁ex2を対象熱交
換器NAに対する膨張弁exAと称する。
Hereinafter, in the second embodiment showing the switching from the heating mode to the cooling / heating parallel mode, the second mode will be described.
The heat exchanger N2 is referred to as a target heat exchanger NA, and the first and the fourth
The heat exchangers N1 and N4 are referred to as other heat exchangers NB, and
The second expansion valve ex2 for the second heat exchanger N2 is referred to as an expansion valve exA for the target heat exchanger NA.

【0053】(イ”)暖房モードにおける冷媒流れ状態
が図10に示す如き状態であるのに対し、図11に示す
ように、圧力調整弁vpを閉じて導圧手段Xを負圧印加
状態に切り換え、また、流量調整弁として機能させてい
た対象熱交換器NAに対する膨張弁exAを全開とし、
これにより、凝縮器作用する対象熱交換器NAで生じる
液冷媒(ハッチングを施した太線)を液冷媒タンクTに
吸引回収し、液冷媒路Lにおいて液冷媒を対象熱交換器
NAに対する膨張弁exAよりも液冷媒タンクTの側へ
引退させる。
(A) While the refrigerant flow state in the heating mode is as shown in FIG. 10, as shown in FIG. 11, the pressure regulating valve vp is closed to put the pressure guiding means X in the negative pressure applying state. Switching, and fully open the expansion valve exA for the target heat exchanger NA that was functioning as a flow rate adjusting valve,
As a result, the liquid refrigerant (thick line with hatching) generated in the target heat exchanger NA acting as the condenser is sucked and recovered in the liquid refrigerant tank T, and the liquid refrigerant is expanded in the liquid refrigerant passage L to the expansion valve exA for the target heat exchanger NA. Than the liquid refrigerant tank T side.

【0054】(ロ”)次に図12に示すように、対象熱
交換器NAに対する膨張弁exAを液冷媒路開閉弁vA
として用い、対象熱交換器NAに対する膨張弁exAを
閉じることで液冷媒路Lを対象熱交換器NAに対し閉塞
する。
(B) Next, as shown in FIG. 12, the expansion valve exA for the target heat exchanger NA is replaced with the liquid refrigerant passage opening / closing valve vA.
The liquid refrigerant passage L is closed to the target heat exchanger NA by closing the expansion valve exA for the target heat exchanger NA.

【0055】(ハ”)そして、第1及び第2電磁弁v
1,v2を切り換え操作して、同図12に示すように、
対象熱交換器NAをガス冷媒吐出路Goに対する接続状
態からガス冷媒吸入路Gsに対する接続状態に切り換え
る。
(C) Then, the first and second solenoid valves v
By switching between 1 and v2, as shown in FIG.
The target heat exchanger NA is switched from the connected state to the gas refrigerant discharge path Go to the connected state to the gas refrigerant suction path Gs.

【0056】(ニ”)その後、図13に示すように、対
象熱交換器NAにおける少量残存液冷媒の排除が進んで
圧縮機Coが湿り度の低い低圧ガス冷媒を吸入するよう
になる(すなわち、アキュムレータAcの液冷媒貯留量
が減少する)と、図14に示すように、液冷媒路開閉弁
vAとしての膨張弁exAを開くとともに対象熱交換器
NAに対し本来の膨張弁として機能させ、これにより、
液冷媒路Lから膨張弁exAを介し対象熱交換器NAへ
液冷媒(ハッチングを施した太線)を供給して対象熱交
換器NAを蒸発器作用させる。
(D) After that, as shown in FIG. 13, the removal of a small amount of residual liquid refrigerant in the target heat exchanger NA progresses, and the compressor Co comes to draw in a low-pressure gas refrigerant having a low degree of wetness (ie, , The amount of liquid refrigerant stored in the accumulator Ac decreases), and as shown in FIG. 14, the expansion valve exA serving as the liquid refrigerant passage opening / closing valve vA is opened and the target heat exchanger NA functions as the original expansion valve. This allows
The liquid refrigerant (thick line with hatching) is supplied from the liquid refrigerant path L to the target heat exchanger NA through the expansion valve exA to cause the target heat exchanger NA to act as an evaporator.

【0057】また、液冷媒路開閉弁vAとしての膨張弁
exAの開弁とともに、圧力調整弁vpを開いて導圧手
段Xを正圧印加状態に切り換え、これにより、液冷媒タ
ンクTの貯留液冷媒Rを液冷媒路Lへ吐出させ、その吐
出液冷媒を、他の熱交換器NBのうち凝縮器作用する第
4熱交換器N4から流量調整弁としての第4膨張弁ex
4を介し液冷媒路Lに送出される液冷媒とともに、他の
熱交換器NBのうち蒸発器作用する第1熱交換器N1
(ないしは蒸発器作用する対象熱交換器NA)へ送って
蒸発させるようにし、もって、暖房モードから冷暖房並
行モードへの切り換えを完了する。
Further, the expansion valve exA serving as the liquid refrigerant passage opening / closing valve vA is opened, and the pressure regulating valve vp is opened to switch the pressure guiding means X to the positive pressure application state. The refrigerant R is discharged to the liquid refrigerant path L, and the discharged liquid refrigerant is discharged from the fourth heat exchanger N4 acting as a condenser among the other heat exchangers NB to a fourth expansion valve ex serving as a flow rate adjusting valve.
The first heat exchanger N1 that acts as an evaporator of the other heat exchangers NB together with the liquid refrigerant that is sent to the liquid refrigerant path L via
(Or, it is sent to the target heat exchanger NA that acts as an evaporator) to be evaporated, and thus the switching from the heating mode to the cooling / heating parallel mode is completed.

【0058】〔第3実施例〕前述の第1実施例ないし第
2実施例において、対象熱交換器NAについての凝縮用
切り換え状態から蒸発用切り換え状態への切り換えを自
動的に行う切り換え制御手段として前記の制御装置Yを
機能させるに加え、図15に示す如き冷媒流れ状態の除
湿モードから、図17に示す如き冷媒流れ状態の冷房モ
ードへの切り換えを制御装置Yに行わせる。
[Third Embodiment] In the first and second embodiments described above, as a switching control means for automatically switching the condensation switching state of the target heat exchanger NA from the evaporation switching state. In addition to functioning the control device Y, the control device Y is caused to switch from the dehumidifying mode of the refrigerant flow state shown in FIG. 15 to the cooling mode of the refrigerant flow state shown in FIG.

【0059】なお、除湿モードでは(図15参照)、第
2及び第4熱交換器N2,N4を蒸発器作用させて空調
対象域への供給空気SA1,SA2を先ず冷却除湿する
とともに、第3及び第5熱交換器N3,N5を凝縮器作
用させて第2及び第4熱交換器N2,N4による冷却除
湿空気SA1,SA2を再熱温調し、かつ、第1熱交換
器N1を凝縮器作用させて外気OAへ放熱し、一方、冷
房モードでは(図17参照)、再熱用の第3及び第5熱
交換器N3,N5に対する冷媒供給を停止した状態で、
第2及び第4熱交換器N2,N4を蒸発器作用させて空
調対象域への供給空気SA1,SA2を冷却温調し、か
つ、第1熱交換器N1を凝縮器作用させて外気OAへ放
熱する。
In the dehumidification mode (see FIG. 15), the second and fourth heat exchangers N2 and N4 act as evaporators to cool and dehumidify the supply air SA1 and SA2 to the air-conditioning target area first, and the third And the fifth heat exchangers N3, N5 act as a condenser to reheat the cooling and dehumidifying air SA1, SA2 by the second and fourth heat exchangers N2, N4, and condense the first heat exchanger N1. In the cooling mode (see FIG. 17), while the refrigerant supply to the third and fifth heat exchangers N3 and N5 for reheating is stopped,
The second and fourth heat exchangers N2, N4 act as evaporators to control the cooling temperatures of the supply air SA1, SA2 to the air conditioning target area, and the first heat exchanger N1 acts as a condenser to the outside air OA. Dissipate heat.

【0060】また、除湿モード及び冷房モードの夫々に
おいては、前述の暖房モードや冷暖房並行モードの場合
と同様、冷媒回路内を循環させる冷媒量が圧縮機運転上
で適切な冷媒量となるように、圧力調整弁vpをその中
間開度域で開度調整して液冷媒タンクTの液冷媒貯留量
を調整する。
Further, in each of the dehumidifying mode and the cooling mode, the amount of the refrigerant circulated in the refrigerant circuit is set to be an appropriate amount for operating the compressor, as in the heating mode and the cooling / heating parallel mode. By adjusting the opening of the pressure adjusting valve vp in the intermediate opening range, the amount of liquid refrigerant stored in the liquid refrigerant tank T is adjusted.

【0061】そして、制御装置Yは、上記の除湿モード
から冷房モードへの切り換えにあたり、具体的制御動作
として下記(ホ)〜(へ)の操作をその順で自動的に行
う構成としてある。
Then, the control device Y is configured to automatically perform the following operations (e) to (e) as specific control operations in that order when switching from the dehumidifying mode to the cooling mode.

【0062】(ホ)除湿モードにおける冷媒流れ状態が
図15に示す如き状態であるのに対し、図16に示すよ
うに、圧力調整弁vpを閉じて導圧手段Xを負圧印加状
態に切り換え、また、流量調整弁として機能させていた
第3及び第5膨張弁ex3,ex5を全開とし、これに
より、凝縮器作用する第3及び第5熱交換器N3,N5
で生じる液冷媒(ハッチングを施した太線)を液冷媒タ
ンクTに吸引回収し、液冷媒路Lにおいて液冷媒を第3
及び第5膨張弁ex3,ex5よりも液冷媒タンクTの
側へ引退させる。
(E) While the refrigerant flow state in the dehumidifying mode is as shown in FIG. 15, the pressure regulating valve vp is closed and the pressure guiding means X is switched to the negative pressure applying state as shown in FIG. Also, the third and fifth expansion valves ex3, ex5, which have been functioning as flow rate adjusting valves, are fully opened, whereby the third and fifth heat exchangers N3, N5 that act as a condenser.
The liquid refrigerant (thick line with hatching) generated in 1 is sucked and collected in the liquid refrigerant tank T, and the liquid refrigerant is passed through the liquid refrigerant path L to the third position.
And the liquid refrigerant tank T side of the fifth expansion valves ex3 and ex5.

【0063】(ヘ)次に図17に示すように、再熱用で
ある第4及び第7電磁弁v4,v7を閉じ操作して第4
及び第7熱交換器N4,N7への冷媒供給を断ち、その
後、圧力調整弁vpを開いて導圧手段Xを正圧印加状態
(すなわち、冷媒回路内を循環させる冷媒量が圧縮機運
転上で適切な冷媒量となるように、圧力調整弁vpをそ
の中間開度域で開度調整して液冷媒タンクTの液冷媒貯
留量を調整する状態)に切り換え、もって、除湿モード
から冷房モードへの切り換えを完了する。
(F) Next, as shown in FIG. 17, the fourth and seventh solenoid valves v4 and v7 for reheating are closed to make the fourth.
And, the refrigerant supply to the seventh heat exchangers N4, N7 is cut off, and then the pressure regulating valve vp is opened to apply the positive pressure to the pressure guiding means X (that is, the amount of the refrigerant circulating in the refrigerant circuit depends on the compressor operation). In order to obtain an appropriate amount of refrigerant, the pressure adjusting valve vp is switched to a state in which the opening degree of the pressure adjusting valve vp is adjusted in the intermediate opening range to adjust the amount of liquid refrigerant stored in the liquid refrigerant tank T). Complete the switch to.

【0064】つまり、この(ホ)〜(ヘ)の操作では、
前述の第1ないし第2実施例で示した凝縮用切り換え状
態から蒸発用切り換え状態への切り換えに用いる液冷媒
タンクT及び導圧手段Xを利用して、除湿モードから冷
房モードへの切り換えの際の再熱用熱交換器N3,N5
への冷媒残留を防止する。
That is, in the operations of (e) to (f),
At the time of switching from the dehumidifying mode to the cooling mode by using the liquid refrigerant tank T and the pressure guiding means X used for switching from the condensation switching state to the evaporation switching state shown in the first and second embodiments. Heat exchangers N3, N5 for reheating
To prevent residual refrigerant from flowing into.

【0065】なお、前記の(ヘ)の操作において、第4
及び第7電磁弁v4,v7を閉じ操作とともに、第3及
び第5膨張弁ex3,ex5を液冷媒路遮断弁として閉
じ操作するのが好ましい。
In the above operation (f), the fourth
It is preferable to close the third and fifth expansion valves ex3 and ex5 as liquid refrigerant passage shutoff valves together with the closing operation of the seventh and seventh solenoid valves v4 and v7.

【0066】〔別実施例〕次に別実施例を列記する。[Other Embodiments] Next, other embodiments will be listed.

【0067】(1)前述の各実施例においては、対象熱
交換器NAに対する膨張弁exAを液冷媒路開閉弁vA
として兼用使用する形態を示したが、対象熱交換器NA
に対する膨張弁exAと液冷媒路開閉弁vAとを各別の
弁で構成してもよい。
(1) In each of the above embodiments, the expansion valve exA for the target heat exchanger NA is replaced by the liquid refrigerant passage opening / closing valve vA.
The heat exchanger NA is also used as a heat exchanger.
The expansion valve exA and the liquid refrigerant passage opening / closing valve vA may be configured by different valves.

【0068】(2)圧縮機Coの吐出側正圧を液冷媒タ
ンクTに印加する正圧印加状態と、圧縮機Coの吸入側
負圧を液冷媒タンクTに印加する負圧印加状態とに切り
換え操作可能とする導圧手段Xの具体的構成は種々の構
成変更が可能であり、例えば、前述の各実施例の如く圧
縮機Coが吐出する高圧ガス冷媒の一部を高圧側導圧路
p1を介して液冷媒タンクTに導入したり、液冷媒タン
クT内のガス冷媒を低圧側導圧路p2を介して圧縮機C
oの吸入側に吸入させたりするに代え、圧縮機側と液冷
媒タンクTとの間において、冷媒そのものの流通は断っ
た状態で圧力のみを伝播させる形態を採用してもよい。
(2) A positive pressure application state in which the discharge side positive pressure of the compressor Co is applied to the liquid refrigerant tank T, and a negative pressure application state in which the suction side negative pressure of the compressor Co is applied to the liquid refrigerant tank T. The specific structure of the pressure guiding means X that can be switched can be changed in various ways. For example, a part of the high pressure gas refrigerant discharged from the compressor Co as in each of the above-described embodiments can be used for the high pressure side pressure guiding path. It is introduced into the liquid refrigerant tank T via p1 or the gas refrigerant in the liquid refrigerant tank T is passed through the low pressure side pressure guiding path p2 to the compressor C.
Instead of sucking into the suction side of o, between the compressor side and the liquid refrigerant tank T, a mode in which only the pressure is propagated while the circulation of the refrigerant itself is cut off may be adopted.

【0069】(3)対象熱交換器NAについて、その用
途や、凝縮用切り換え状態と蒸発用切り換え状態との切
り換え目的はどのようなものであってもよく、本発明に
よる圧縮式ヒートポンプは各種分野における種々の用途
に使用できる。
(3) The target heat exchanger NA may have any purpose and may be switched between the condensation switching state and the evaporation switching state. The compression heat pump according to the present invention has various fields. Can be used for various purposes.

【0070】尚、特許請求の範囲の項に図面との対照を
便利にするため符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】暖房モードの冷媒流れ図FIG. 1 Refrigerant flow chart for heating mode

【図2】除霜モードへの切り換え操作の初期段階を示す
冷媒流れ図
FIG. 2 is a refrigerant flow chart showing an initial stage of a switching operation to a defrost mode.

【図3】除霜モードへの切り換え操作の中期段階を示す
冷媒流れ図
FIG. 3 is a refrigerant flow chart showing a middle stage of a defrosting mode switching operation.

【図4】除霜モードへの切り換え操作の後期段階を示す
冷媒流れ図
FIG. 4 is a refrigerant flow chart showing a latter stage of a switching operation to a defrost mode.

【図5】除霜モードへの切り換え操作の完了状態を示す
冷媒流れ図
FIG. 5 is a refrigerant flow chart showing a completion state of a switching operation to a defrost mode.

【図6】暖房モードへの復帰操作の初期段階を示す冷媒
流れ図
FIG. 6 is a refrigerant flow chart showing an initial stage of a return operation to a heating mode.

【図7】暖房モードへの復帰操作の中期段階を示す冷媒
流れ図
FIG. 7 is a refrigerant flow chart showing the middle stage of the operation for returning to the heating mode.

【図8】暖房モードへの復帰操作の後期段階を示す冷媒
流れ図
FIG. 8 is a refrigerant flow chart showing the latter stage of the operation for returning to the heating mode.

【図9】暖房モードへの復帰操作の完了状態を示す冷媒
流れ図
FIG. 9 is a refrigerant flow chart showing a completion state of a return operation to the heating mode.

【図10】暖房モードの冷媒流れ図FIG. 10: Flow chart of refrigerant in heating mode

【図11】冷暖房並行モードへの切り換え操作の初期段
階を示す冷媒流れ図
FIG. 11 is a refrigerant flow chart showing an initial stage of a switching operation to the heating / cooling parallel mode.

【図12】冷暖房並行モードへの切り換え操作の中期段
階を示す冷媒流れ図
FIG. 12 is a refrigerant flow chart showing the middle stage of the switching operation to the heating / cooling parallel mode.

【図13】冷暖房並行モードへの切り換え操作の後期段
階を示す冷媒流れ図
FIG. 13 is a refrigerant flow chart showing the latter stage of the switching operation to the cooling / heating parallel mode.

【図14】冷暖房並行モードへの切り換え操作の完了状
態を示す冷媒流れ図
FIG. 14 is a refrigerant flow chart showing the completion state of the switching operation to the cooling / heating parallel mode.

【図15】除湿モードの冷媒流れ図FIG. 15 is a refrigerant flow chart in dehumidification mode.

【図16】冷房モードへの切り換え操作の途中段階を示
す冷媒流れ図
FIG. 16 is a refrigerant flow chart showing an intermediate stage of a switching operation to a cooling mode.

【図17】冷房モードへの切り換え操作の完了状態を示
す冷媒流れ図
FIG. 17 is a refrigerant flow chart showing a completed state of a switching operation to the cooling mode.

【図18】従来例における凝縮用切り換え状態を示す冷
媒流れ図
FIG. 18 is a refrigerant flow chart showing a switching state for condensation in a conventional example.

【図19】従来例における蒸発用切り換え状態への切り
換わり過程を示す冷媒流れ図
FIG. 19 is a refrigerant flow chart showing a process of switching to a switching state for evaporation in a conventional example.

【符号の説明】[Explanation of symbols]

Co 圧縮機 Go ガス冷媒吐出路 Gs ガス冷媒吸入路 L 液冷媒路 NA 対象熱交換器 NB 他の熱交換器 T 液冷媒タンク X 導圧手段 exA 膨張弁 vA 液冷媒路開閉弁 Co Compressor Go Gas refrigerant discharge path Gs Gas refrigerant suction path L Liquid refrigerant path NA Target heat exchanger NB Other heat exchanger T Liquid refrigerant tank X Pressure guiding means exA Expansion valve vA Liquid refrigerant path opening / closing valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 対象熱交換器(NA)を他の熱交換器
(NB)に連通する液冷媒路(L)と圧縮機(Co)の
ガス冷媒吐出路(Go)との間に介在させて凝縮器作用
させる凝縮用切り換え状態と、 前記対象熱交換器(NA)を前記液冷媒路(L)と前記
圧縮機(Co)のガス冷媒吸入路(Gs)との間に介在
させて蒸発器作用させる蒸発用切り換え状態とに、冷媒
回路を切り換え可能に構成した圧縮式ヒートポンプであ
って、 前記液冷媒路(L)において、前記対象熱交換器(N
A)に対する膨張弁(exA)よりも前記の他の熱交換
器(NB)の側に液冷媒タンク(T)を接続するととも
に、その液冷媒タンク(T)の接続箇所と前記膨張弁
(exA)との間に液冷媒路開閉弁(vA)を介装し、 前記圧縮機(Co)の吐出側正圧を前記液冷媒タンク
(T)に印加する正圧印加状態と、前記圧縮機(Co)
の吸入側負圧を前記液冷媒タンク(T)に印加する負圧
印加状態とに切り換え操作可能な導圧手段(X)を設け
た圧縮式ヒートポンプ。
1. A target heat exchanger (NA) is interposed between a liquid refrigerant passage (L) communicating with another heat exchanger (NB) and a gas refrigerant discharge passage (Go) of a compressor (Co). And a state in which the target heat exchanger (NA) is interposed between the liquid refrigerant passage (L) and the gas refrigerant suction passage (Gs) of the compressor (Co) to evaporate. A compression heat pump configured to switch a refrigerant circuit to a vaporization switching state in which the target heat exchanger (N) is connected in the liquid refrigerant path (L).
The liquid refrigerant tank (T) is connected to the other heat exchanger (NB) side of the expansion valve (exA) with respect to A), and the connection point of the liquid refrigerant tank (T) and the expansion valve (exA). ) With a liquid refrigerant passage opening / closing valve (vA) interposed therebetween, and a positive pressure application state in which a positive pressure on the discharge side of the compressor (Co) is applied to the liquid refrigerant tank (T); Co)
A compression heat pump provided with a pressure guiding means (X) that can be switched to a negative pressure application state in which the suction side negative pressure is applied to the liquid refrigerant tank (T).
【請求項2】 前記の凝縮用切り換え状態から前記の蒸
発用切り換え状態への冷媒回路切り換えにおいて、次の
(イ)から(ニ)の操作、つまり、 (イ)前記導圧手段(X)を負圧印加状態に切り換え
る、 (ロ)前記液冷媒路開閉弁(vA)を閉じる、 (ハ)前記対象熱交換器(NA)を前記ガス冷媒吐出路
(Go)に対する接続状態から前記ガス冷媒吸入路(G
s)に対する接続状態に切り換える、 (ニ)前記液冷媒路開閉弁(vA)を開くとともに、前
記導圧手段(X)を正圧印加状態に切り換える、をその
順に自動的に行う切り換え制御手段(Y)を設けた請求
項1記載の圧縮式ヒートポンプ。
2. In the refrigerant circuit switching from the condensation switching state to the evaporation switching state, the following operations (a) to (d), that is, (a) the pressure guiding means (X) is performed. Switching to a negative pressure application state, (b) closing the liquid refrigerant passage opening / closing valve (vA), (c) injecting the gas refrigerant from the connected state of the target heat exchanger (NA) to the gas refrigerant discharge passage (Go) Road (G
switching control means for automatically switching in that order (d) opening the liquid refrigerant passage opening / closing valve (vA) and switching the pressure guiding means (X) to the positive pressure application state. The compression heat pump according to claim 1, wherein Y) is provided.
JP16828793A 1993-07-08 1993-07-08 Compression type heat pump Pending JPH0727430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16828793A JPH0727430A (en) 1993-07-08 1993-07-08 Compression type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16828793A JPH0727430A (en) 1993-07-08 1993-07-08 Compression type heat pump

Publications (1)

Publication Number Publication Date
JPH0727430A true JPH0727430A (en) 1995-01-27

Family

ID=15865229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16828793A Pending JPH0727430A (en) 1993-07-08 1993-07-08 Compression type heat pump

Country Status (1)

Country Link
JP (1) JPH0727430A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6994268B2 (en) 2002-08-05 2006-02-07 Denso Corporation Heat accumulator for vehicle use
JP2007155145A (en) * 2005-11-30 2007-06-21 Daikin Ind Ltd Refrigerating device
US7284674B2 (en) * 2002-11-06 2007-10-23 Tiger Corporation Double-layer vacuum container
US7735691B1 (en) * 2001-08-16 2010-06-15 Food Equipment Technologies Company, Inc. Beverage dispenser with reinforced metal double-walled housing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7735691B1 (en) * 2001-08-16 2010-06-15 Food Equipment Technologies Company, Inc. Beverage dispenser with reinforced metal double-walled housing
US6994268B2 (en) 2002-08-05 2006-02-07 Denso Corporation Heat accumulator for vehicle use
US7284674B2 (en) * 2002-11-06 2007-10-23 Tiger Corporation Double-layer vacuum container
US7797807B2 (en) 2002-11-06 2010-09-21 Tiger Corporation Double-layer vacuum container
JP2007155145A (en) * 2005-11-30 2007-06-21 Daikin Ind Ltd Refrigerating device

Similar Documents

Publication Publication Date Title
JP6827550B2 (en) Outside air conditioning system and control method
JP2008082589A (en) Air conditioner
EP3680578A1 (en) Heat pump system and air conditioner
JP2012167860A (en) Heat pump type air conditioner and defrosting method of the same
JP2008241127A (en) Air conditioner
JP2010139215A (en) Air conditioning device
JPH0727430A (en) Compression type heat pump
WO2024079874A1 (en) Air conditioner
JP2000146319A (en) Heat pump type air conditioner
JP2889762B2 (en) Air conditioner
JP2536172B2 (en) Heat pump system
WO2018163422A1 (en) Refrigeration cycle device
JPH11325637A (en) Air conditioner
JPH10148428A (en) Heat pump system
US20240053075A1 (en) Refrigeration cycle system and refrigerant recovery apparatus
KR100543606B1 (en) driving mode conversion method for dehumidification air conditioner
JPH0225101Y2 (en)
JPH03164668A (en) Heat pump device
JPH0510191Y2 (en)
JP3213992B2 (en) Air conditioner
JP2003176959A (en) Air conditioner, and outdoor heat exchanger switching control method for air conditioner
JP2000121104A (en) Air-conditioning device
JPH0431505Y2 (en)
JPH07294054A (en) Air conditioner and operation controlling method therefor
JPS60162161A (en) Heat pump type air conditioner