JPH072732A - Production of isophthalic acid of high purity - Google Patents

Production of isophthalic acid of high purity

Info

Publication number
JPH072732A
JPH072732A JP14634493A JP14634493A JPH072732A JP H072732 A JPH072732 A JP H072732A JP 14634493 A JP14634493 A JP 14634493A JP 14634493 A JP14634493 A JP 14634493A JP H072732 A JPH072732 A JP H072732A
Authority
JP
Japan
Prior art keywords
isophthalic acid
crystals
slurry
tower
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14634493A
Other languages
Japanese (ja)
Other versions
JP3269508B2 (en
Inventor
Toru Tanaka
徹 田中
Fumio Ogoshi
二三夫 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP14634493A priority Critical patent/JP3269508B2/en
Publication of JPH072732A publication Critical patent/JPH072732A/en
Application granted granted Critical
Publication of JP3269508B2 publication Critical patent/JP3269508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce isophthalic acid of high purity from the reaction mixture after catalytic hydrogenation of crude isophthalic acid with industrial advantage. CONSTITUTION:Isophthalic acid of high purity is obtained by catalytic hydrogenation treatment of crude isophthalic acid obtained in liquid-phase oxidation wherein the reaction mixture is separated from the catalyst, reduced in pressure and cooled down, then the isophthalic acid slurry comprising the crystals and the mother liquor is introduced into the solvent-replacing column at 180 to 120 deg.C and brought into contact with ascending stream of hot water introduced from the column bottom. A part of the mother liquor and fine crystals of isophthalic acid is taken out of the column top together with the ascending stream, while most parts of the crystals are pulled out of the bottom of the column as a slurry together with the hot water. Then, isophthalic acid crystals of high purity is separated from the bottom slurry.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、m−ジアルキルベンゼ
ン類の液相酸化によって製造された粗イソフタル酸から
高純度イソフタル酸を製造する方法に関する。高純度イ
ソフタル酸は、不飽和ポリエステル樹脂、アルキッド樹
脂、改質ポリエステル繊維、耐熱性ポリアミド等のポリ
マーの中間原料として有用である。
FIELD OF THE INVENTION The present invention relates to a method for producing high-purity isophthalic acid from crude isophthalic acid produced by liquid phase oxidation of m-dialkylbenzenes. High-purity isophthalic acid is useful as an intermediate raw material for polymers such as unsaturated polyester resins, alkyd resins, modified polyester fibers and heat resistant polyamides.

【従来の技術】[Prior art]

【0002】芳香族カルボン酸の製造法として、脂肪族
置換基を有する芳香族炭化水素を酢酸などの脂肪族カル
ボン酸の溶媒中で重金属と臭素からなる触媒の存在下に
分子状酸素により液相酸化する方法が知られており、m
−ジアルキルベンゼン類を液相酸化することによりイソ
フタル酸が製造される。
As a method for producing an aromatic carboxylic acid, an aromatic hydrocarbon having an aliphatic substituent is used as a liquid phase by molecular oxygen in the presence of a catalyst composed of a heavy metal and bromine in a solvent of an aliphatic carboxylic acid such as acetic acid. Methods of oxidation are known, m
Isophthalic acid is produced by liquid phase oxidation of dialkylbenzenes.

【0003】すなわち特公昭60ー48497にはメタ
キシレンを酢酸溶媒中、コバルト、マンガンならびに臭
素からなる触媒の存在下でm−ジアルキルベンゼン類を
空気により酸化する具体的方法が記載され、広く工業的
に実施されている。この方法で得られるイソフタル酸は
結晶の白色度が劣っており、かつ3ーカルボキシベンズ
アルデヒド(3CBA)をはじめ多量の不純物が含まれ
ており、これをそのまま原料としてポリマーにしても色
相は優れず、かつ高機能用途には適さない。特に近年産
業技術の進歩と共に高機能性材料としてのポリエステル
製品に対する品質要求が益々きびしくなり、ポリエステ
ル原料としては高純度で、かつ白色度に優れたイソフタ
ル酸が望まれている。
That is, Japanese Patent Publication No. 60-48497 describes a specific method for oxidizing m-dialkylbenzenes with air in the presence of a catalyst consisting of cobalt, manganese and bromine in metaxylene in an acetic acid solvent, which is widely used industrially. Have been implemented in. The isophthalic acid obtained by this method is inferior in whiteness of crystals and contains a large amount of impurities such as 3-carboxybenzaldehyde (3CBA). Even if it is used as a raw material as a polymer, the hue is not excellent, And it is not suitable for high-performance applications. Particularly in recent years, with the progress of industrial technology, quality requirements for polyester products as highly functional materials have become more and more severe, and isophthalic acid having high purity and excellent whiteness is desired as a polyester raw material.

【0004】液相酸化で得られた芳香族カルボン酸の精
製法としては、粗芳香族カルボン酸の水溶液を高温でパ
ラジウム触媒の存在下で接触水素化処理する方法が、特
公昭41ー16860号、特公昭47ー49049号、
特公昭51ー32618号および51ー38698号な
どに記載されている。この接触水素化処理法は主として
テレフタル酸の精製に用いられるが、イソフタル酸にも
適用することができ、特開平4−21653号には水と
酢酸の混合溶媒を用いて粗イソフタル酸を接触水素化処
理する方法が記載されている。
As a method for purifying an aromatic carboxylic acid obtained by liquid phase oxidation, a method of catalytic hydrogenation treatment of an aqueous solution of a crude aromatic carboxylic acid at high temperature in the presence of a palladium catalyst is disclosed in JP-B-41-16860. , Japanese Patent Publication No. 47-49049,
It is described in JP-B-51-326618 and 51-38698. This catalytic hydrotreating method is mainly used for the purification of terephthalic acid, but it can also be applied to isophthalic acid. In Japanese Patent Laid-Open No. 4-21653, crude isophthalic acid is subjected to catalytic hydrogenation by using a mixed solvent of water and acetic acid. The method of chemical treatment is described.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の接
触水素化処理法による反応液を晶析して得られるイソフ
タル酸の純度は、後に示す如くテレフタル酸の場合と異
なり必ずしも満足される製品が得られず、着色および3
CBA濃度の点から更に精製が必要である。即ち発明者
等が、結晶の白色度を表す指標としてOD340 を用い
て、粗イソフタル酸と接触水素化処理による反応液から
の高純度イソフタル酸を比較した結果では、OD340
反応率は約60%程度であり、更に精製が必要であっ
た。
However, the purity of isophthalic acid obtained by crystallization of the reaction solution by the above-mentioned catalytic hydrotreating method is different from that of terephthalic acid, as will be shown later, and a product which is not always satisfactory is obtained. No, coloring and 3
Further purification is required in terms of CBA concentration. That inventors, using the OD 340 as an index representing the whiteness of crystals, the results of comparing the high purity isophthalic acid from the reaction solution by the catalytic hydrotreatment a crude isophthalic acid, the reaction rate of the OD 340 is about It was about 60% and required further purification.

【0006】また接触水素化反応液の晶析は一般に多段
法で行われるが、晶析工程でイソフタル酸よりも不純物
の方が溶解したまま残り易く、このため特に中段以降の
晶析器では析出イソフタル酸中の不純物の濃度が高くな
る。このため中段以降の晶析器は高圧分離手段によっ
て、高温下で溶解不純物が析出しない間にイソフタル酸
結晶と母液を分離することが行われるが、この高圧分離
法はメンテナンス操作が煩雑である。本発明の目的は、
粗イソフタル酸を接触水素化処理して得られた反応液を
更に精製し、高純度で、かつ白色度に優れた高純度イソ
フタル酸を工業的に有利に製造することである。
Crystallization of the catalytic hydrogenation reaction solution is generally carried out by a multi-stage method, but impurities are more likely to remain dissolved than isophthalic acid in the crystallization step. Therefore, precipitation is particularly likely to occur in the middle and subsequent crystallizers. The concentration of impurities in isophthalic acid increases. Therefore, in the crystallizer in the middle stage and thereafter, the isophthalic acid crystals and the mother liquor are separated by the high-pressure separating means while the dissolved impurities do not precipitate at high temperature, but this high-pressure separating method requires complicated maintenance operations. The purpose of the present invention is to
The object is to industrially advantageously produce highly pure isophthalic acid having high purity and excellent whiteness by further purifying the reaction solution obtained by catalytic hydrogenation of crude isophthalic acid.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記の如き
課題を有する高純度イソフタル酸の製造法について鋭意
検討した結果、接触水素化処理法により得られた反応液
からイソフタル酸結晶を晶析させたスラリーと高温水と
の溶媒置換を行い、溶媒置換塔の塔頂からイソフタル酸
の微細な結晶の一部を母液と共に抜き出すことにより塔
底から得られるイソフタル酸の品質が飛躍的に向上する
ことを見出し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies as to a method for producing high-purity isophthalic acid having the above-mentioned problems. The quality of isophthalic acid obtained from the bottom of the column is dramatically improved by performing solvent replacement between the precipitated slurry and high-temperature water, and extracting some of the fine crystals of isophthalic acid together with the mother liquor from the top of the solvent replacement column. The present invention has been achieved and has reached the present invention.

【0008】即ち本発明は、液相酸化で得られた粗イソ
フタル酸を接触水素化処理して高純度イソフタル酸を製
造する方法において、接触水素化処理により得られた反
応液から触媒を分離した後、該反応液を落圧・降温して
得られるイソフタル酸結晶の結晶と母液からなるイソフ
タル酸スラリー溶液を180〜120℃の温度で溶媒置
換塔に導入し、溶媒置換塔の下部から導入された高温水
の上昇流と接触させ、母液および微細なイソフタル酸結
晶の一部を高温水の上昇液流れと共にスラリー液として
塔頂より抜き出し、イソフタル酸結晶の大部分を高温水
と共にスラリー液として塔底より抜き出し、塔底よりの
スラリー液からイソフタル酸結晶を分離することを特徴
とする高純度イソフタル酸を製造する方法である。
That is, according to the present invention, in a method for producing high-purity isophthalic acid by subjecting crude isophthalic acid obtained by liquid phase oxidation to catalytic hydrogenation, a catalyst is separated from a reaction solution obtained by catalytic hydrogenation. Thereafter, an isophthalic acid slurry solution consisting of crystals of isophthalic acid crystals obtained by depressurizing and lowering the temperature of the reaction solution and a mother liquor is introduced into the solvent displacement tower at a temperature of 180 to 120 ° C. and introduced from the lower part of the solvent displacement tower. Contact with the rising stream of high temperature water, and a part of the mother liquor and fine isophthalic acid crystals are withdrawn from the top of the tower as a slurry liquid together with the rising stream of high temperature water, and most of the isophthalic acid crystals are collected as a slurry liquid together with the high temperature water in the tower. It is a method for producing high-purity isophthalic acid, which is characterized by extracting from the bottom and separating isophthalic acid crystals from the slurry liquid from the bottom of the column.

【0009】本発明の方法では、溶媒置換塔の出入り物
質量を調整することにより溶媒置換後のスラリー溶液中
のイソフタル酸濃度をアップさせることができ、これに
よって溶媒置換塔に導入される新鮮な高温水の量を節減
できるとともに、次の結晶分離操作での負荷低減を計る
ことができる。
In the method of the present invention, the concentration of isophthalic acid in the slurry solution after the solvent replacement can be increased by adjusting the amount of substances flowing into and out of the solvent replacement column, whereby the fresh solvent introduced into the solvent replacement column can be increased. It is possible to reduce the amount of high-temperature water and reduce the load in the next crystal separation operation.

【0010】本発明は、具体的には次の工程からなって
いる。 (1)接触水素化処理工程 液相酸化で得られた粗イソフタル酸を熱水に溶解し、水
素存在下で180〜260℃において炭素担体上に担持
された第8族貴金属触媒で接触水素化処理し、処理され
た溶液を触媒から分離し、溶液の圧力を下げ、水分の蒸
発によって180〜120℃に降温し、イソフタル酸結
晶を析出させてイソフタル酸スラリー溶液とする。 (2)溶媒置換工程 イソフタル酸スラリー溶液を、180〜120℃の高温
水の上昇液流中に導き、母液およびイソフタル酸結晶の
微細な一部を高温水の上昇液流れと共にスラリー溶液と
して塔頂から抜き出し、イソフタル酸結晶の大部分は高
温水中を沈降させて、高温水の一部と共にスラリー溶液
として塔底から抜き出す。 (3)分離、乾燥工程 塔底から抜き出されたスラリー溶液の圧力を下げ、水の
蒸発によって110〜80℃に降温し、該温度で結晶を
分離後、乾燥する。以下、本発明の内容を詳細に説明す
る。
The present invention specifically comprises the following steps. (1) Catalytic hydrogenation treatment step The crude isophthalic acid obtained by liquid phase oxidation is dissolved in hot water, and catalytic hydrogenation is carried out in the presence of hydrogen at 180 to 260 ° C. with a Group 8 noble metal catalyst supported on a carbon support. The treated and treated solution is separated from the catalyst, the pressure of the solution is lowered, and the temperature is lowered to 180 to 120 ° C. by evaporation of water to precipitate isophthalic acid crystals to obtain an isophthalic acid slurry solution. (2) Solvent Replacement Step The isophthalic acid slurry solution is introduced into an ascending liquid stream of high temperature water at 180 to 120 ° C., and a fine portion of the mother liquor and isophthalic acid crystals is added to the ascending liquid stream of the high temperature water as a slurry solution at the top of the column. Most of the isophthalic acid crystals are allowed to settle in the high temperature water, and are extracted from the bottom of the column as a slurry solution together with a part of the high temperature water. (3) Separation and Drying Step The pressure of the slurry solution extracted from the bottom of the tower is lowered, the temperature is lowered to 110 to 80 ° C. by evaporation of water, and the crystals are separated at the temperature and then dried. Hereinafter, the content of the present invention will be described in detail.

【0011】本発明に用いられる粗イソフタル酸は、m
ージアルキルベンゼン類を公知の液相酸化法により酸化
することにより得られる。液相酸化反応は通常、酢酸溶
媒中コバルトおよびマンガン等の重金属及び臭素化合物
を存在させ、温度150〜240℃、圧力10〜30気
圧で空気により行う方法が用いられる。また酢酸溶媒
中、コバルト触媒存在下、温度100〜150℃、圧力
5〜20気圧で酸素により酸化反応を行う方法や、アセ
トアルデヒド、メチルエチルケトン等の促進剤を用いる
方法により液相酸化反応を用いることもできる。粗イソ
フタル酸の出発原料のmージアルキルベンゼン類として
は通常メタキシレンが使用されるが、置換基はメチル基
に限定されるものではなくエチル、プロピル、iープロ
ピル基でも良く、或いはアルデヒド、アセチル基の如く
カルボキシル基に酸化されるものであればよい。また置
換基の片方がカルボキシル基であってもよい。
The crude isophthalic acid used in the present invention is m
It is obtained by oxidizing dialkylbenzenes by a known liquid-phase oxidation method. The liquid phase oxidation reaction is usually carried out by a method in which a heavy metal such as cobalt and manganese and a bromine compound are present in an acetic acid solvent and air is used at a temperature of 150 to 240 ° C. and a pressure of 10 to 30 atmospheres. In addition, a liquid phase oxidation reaction may be used by a method of performing an oxidation reaction with oxygen in an acetic acid solvent in the presence of a cobalt catalyst at a temperature of 100 to 150 ° C. and a pressure of 5 to 20 atmospheres, or a method using a promoter such as acetaldehyde or methyl ethyl ketone. it can. Meta-xylene is usually used as a starting material for crude isophthalic acid, m-dialkylbenzenes, but the substituent is not limited to a methyl group, and may be an ethyl, propyl or i-propyl group, or an aldehyde or acetyl group. As long as it is oxidized to a carboxyl group as described above. Further, one of the substituents may be a carboxyl group.

【0012】液相酸化法で得られる粗イソフタル酸には
通常3CBAをはじめ多くの不純物が含まれている。3
CBA含量はポーラログラフ法により測定される。本発
明に用いられる粗イソフタル酸中の3CBA含量に特に
制約はない。しかし粗イソフタル酸の製造においては3
CBA含量が高くなる酸化反応条件を選ぶことにより酸
化反応による酢酸の燃焼損失を抑制できるので、液相酸
化工程で粗イソフタル酸中の3CBA含量が500pp
mあるいはそれ以上となる条件に設定することが工業的
に有利である。白色度の指標であるOD340 は分光光度
計を用いて測定される。本発明に用いられる粗イソフタ
ル酸中のOD340 についても特に制約はない。
The crude isophthalic acid obtained by the liquid phase oxidation method usually contains many impurities such as 3CBA. Three
CBA content is measured by the polarographic method. There is no particular restriction on the 3CBA content in the crude isophthalic acid used in the present invention. However, in the production of crude isophthalic acid, 3
Since the combustion loss of acetic acid due to the oxidation reaction can be suppressed by selecting the oxidation reaction conditions that increase the CBA content, the 3CBA content in the crude isophthalic acid in the liquid phase oxidation step is 500 pp.
It is industrially advantageous to set the condition to be m or more. The whiteness index OD 340 is measured using a spectrophotometer. There is also no particular restriction on OD 340 in the crude isophthalic acid used in the present invention.

【0013】本発明の方法において、前記酸化で得られ
た粗イソフタル酸を一定濃度の水に溶解し、この溶液を
加圧下高温において、水素の存在下、活性炭に担持させ
た周期律表第8族貴金属触媒を用いて接触水素化処理が
行われる。接触水素化処理の触媒として周期律表第8族
に属する貴金属が用いられ、パラジウム、白金、ルテニ
ウム、ロジウムが好ましく、特にパラジウム、白金が好
ましい。これらの金属は必ずしも単独である必要はな
く、複合して使うことができる。触媒金属の単体として
は活性炭のような多孔性物質が適し、活性炭は特に椰子
殻炭が好適である。触媒金属の担体への担持量は微量で
効果を発揮するが、長期使用に活性を維持するには適切
な量が必要であり、通常0.1〜0.5重量%担持され
る。
In the method of the present invention, the crude isophthalic acid obtained by the above-mentioned oxidation is dissolved in water of a constant concentration, and this solution is supported on activated carbon in the presence of hydrogen at high temperature under pressure. Catalytic hydrotreating is carried out using a group noble metal catalyst. A noble metal belonging to Group 8 of the periodic table is used as a catalyst for the catalytic hydrogenation treatment, and palladium, platinum, ruthenium and rhodium are preferable, and palladium and platinum are particularly preferable. These metals do not necessarily have to be used alone and can be used in combination. A porous substance such as activated carbon is suitable as the simple substance of the catalytic metal, and coconut shell coal is particularly suitable as the activated carbon. Although the amount of the catalyst metal supported on the carrier is very small, the effect is exerted, but an appropriate amount is required to maintain the activity for long-term use, and usually 0.1 to 0.5% by weight is supported.

【0014】粗イソフタル酸の接触水素化処理は溶液状
態で行うために高圧下高温で行われる。接触水素化処理
温度は180〜260℃が好ましい。粗イソフタル酸の
濃度は10〜40重量%の範囲が好ましく、採択した温
度に対してイソフタル酸を完全に溶解する濃度とする。
圧力は溶媒の液相を維持するに充分でかつ、接触水素化
反応に適切な水素化分圧を保持できる圧力が好ましく、
通常10〜50気圧の範囲である。粗イソフタル酸の接
触水素化処理において、水素量は少なくとも3CBAに
対して2倍モル以上の供給が必要である。処理時間は実
質的に水素化反応が進行するに充分な時間であり、1〜
60分、好ましくは2〜20分の範囲である。通常、接
触水素化処理は連続式で行われる。
The catalytic hydrotreatment of crude isophthalic acid is carried out in a solution state, so that it is carried out under high pressure and high temperature. The catalytic hydrotreatment temperature is preferably 180 to 260 ° C. The concentration of the crude isophthalic acid is preferably in the range of 10 to 40% by weight, and the concentration is such that the isophthalic acid is completely dissolved at the selected temperature.
The pressure is preferably sufficient to maintain the liquid phase of the solvent, and is preferably a pressure capable of maintaining an appropriate hydrogenation partial pressure for the catalytic hydrogenation reaction,
It is usually in the range of 10 to 50 atm. In the catalytic hydrotreating of crude isophthalic acid, it is necessary to supply hydrogen in an amount of at least twice the molar amount of 3CBA. The treatment time is substantially sufficient for the hydrogenation reaction to proceed,
It is in the range of 60 minutes, preferably 2 to 20 minutes. Usually, the catalytic hydrotreatment is carried out continuously.

【0015】接触水素化処理された反応液は、触媒担体
に使用している活性炭の摩耗による微粉末の流出を防止
するために、焼結チタンやその他の焼結金属あるいは炭
素粒子で作られた濾過器を通される。その後、直列に連
結された1〜5段に至る晶析器へ導入され、あるいはバ
ッチ式結晶化器へ導入され、順次減圧することにより水
分が蒸発してイソフタル酸結晶が晶析し、スラリー溶液
となる。
The catalytically hydrotreated reaction solution is made of sintered titanium or other sintered metal or carbon particles in order to prevent the outflow of fine powder due to wear of the activated carbon used as the catalyst carrier. Pass through a filter. After that, it is introduced into a crystallizer reaching 1 to 5 stages connected in series, or is introduced into a batch-type crystallizer, and by successively depressurizing, water is evaporated to crystallize isophthalic acid crystals, and a slurry solution is obtained. Becomes

【0016】本発明においては、上記の如く接触水素化
処理された反応液から触媒を分離した後、該反応液を落
圧・降温して得られるイソフタル酸結晶の結晶と母液か
らなるイソフタル酸スラリー溶液を溶媒置換塔に導入す
るものであり、180〜120℃に冷却されたイソフタ
ル酸スラリー溶液が溶媒置換塔へ導入される。溶媒置換
塔ではイソフタル酸結晶を新鮮な高温水中に分散させて
沈降させること、イソフタル酸の微細結晶の一部をを母
液と共に系外へ排出する機能が要求される。そのために
は、塔下部から導入した高温水の上昇液流れ中に上記ス
ラリー溶液を導くという方法によって目的が達成され
る。
In the present invention, an isophthalic acid slurry comprising crystals of isophthalic acid crystals and a mother liquor obtained by separating the catalyst from the reaction liquid which has been subjected to catalytic hydrogenation as described above, and then dropping and lowering the temperature of the reaction liquid. The solution is introduced into the solvent substitution tower, and the isophthalic acid slurry solution cooled to 180 to 120 ° C. is introduced into the solvent substitution tower. In the solvent displacement tower, it is required to disperse the isophthalic acid crystals in fresh high temperature water and settle them, and to discharge a part of the fine crystals of isophthalic acid out of the system together with the mother liquor. For that purpose, the object is achieved by a method of introducing the slurry solution into the rising liquid flow of the high temperature water introduced from the lower part of the tower.

【0017】本発明では、イソフタル酸スラリー溶液を
溶媒置換塔に導入することにより汚染されたイソフタル
酸の微細な結晶と母液が分離され、塔底からのスラリー
液ではイソフタル酸の濃度が上昇すると共に不純物が少
なくなる。前述の如く、晶析工程でイソフタル酸よりも
不純物の方が溶解したまま残り易く、特に中段以降(2
段以降)の晶析器では析出イソフタル酸中の不純物の濃
度が高くなるので、中段晶析器から得られるイソフタル
酸スラリー溶液を溶媒置換塔に導入することにより、高
圧分離手段を用いること無しに高純度のイソフタル酸を
得られる。
In the present invention, by introducing the isophthalic acid slurry solution into the solvent displacement column, the contaminated fine crystals of isophthalic acid and the mother liquor are separated, and the concentration of isophthalic acid increases in the slurry liquid from the bottom of the column. Impurities are reduced. As described above, impurities are more likely to remain dissolved in the crystallization process than isophthalic acid, and especially in the middle stage and thereafter (2
(Since the second and subsequent stages), the concentration of impurities in the precipitated isophthalic acid becomes high, so by introducing the isophthalic acid slurry solution obtained from the middle-stage crystallizer into the solvent displacement column, without using high-pressure separation means. High-purity isophthalic acid can be obtained.

【0018】さらに本発明の溶媒置換工程では、溶媒置
換塔への出入り物質量を巧妙に調整することで、溶媒置
換後のスラリー溶液中のイソフタル酸濃度をアップさせ
る機能を付加される。この機能によって溶媒置換塔に導
入される新鮮な熱水の量を節減できるとともに、次の結
晶分離操作での負荷低減が計れる。即ち本発明は、スラ
リー溶液中の結晶イソフタル酸純度をできるだけ高くし
て、且つ熱水量の低減と結晶分離操作での負荷低減を同
時に実現するという、2つの相反する方向の要求を同時
に満たす極めて巧妙な手法である。
Further, in the solvent replacement step of the present invention, a function of increasing the concentration of isophthalic acid in the slurry solution after solvent replacement is added by skillfully adjusting the amount of substances flowing into and out of the solvent replacement column. With this function, the amount of fresh hot water introduced into the solvent displacement column can be reduced, and the load in the next crystal separation operation can be reduced. That is, the present invention is an extremely sophisticated method that simultaneously satisfies the two contradictory requirements of increasing the purity of crystalline isophthalic acid in the slurry solution as much as possible and simultaneously reducing the amount of hot water and reducing the load in the crystal separation operation. Is a technique.

【0019】熱水量の低減と分離操作での負荷低減は溶
媒置換塔に導入されるイソフタル酸スラリー溶液の濃度
を上昇させることによっても行うことができる。しかし
ながら溶媒置換塔へ供給するスラリー濃度を高く設定す
れば、晶析過程における母液中の不純物濃度がその分だ
け高くなる。これは後述のOD340 成分がイソフタル酸
結晶に取り込まれる共晶現象に基づいて計算することが
でき、また本発明者等の実験結果もそのことを裏付けて
いる。
The reduction of the amount of hot water and the reduction of the load in the separation operation can also be carried out by increasing the concentration of the isophthalic acid slurry solution introduced into the solvent displacement column. However, if the slurry concentration supplied to the solvent displacement tower is set high, the impurity concentration in the mother liquor in the crystallization process will be correspondingly high. This can be calculated based on the eutectic phenomenon in which the OD 340 component described later is incorporated into the isophthalic acid crystal, and the experimental results of the present inventors also support this.

【0020】溶媒置換塔の具体的な運転は次のようにし
て行われる。塔下部から導入された高温水の上昇液流中
に、イソフタル酸スラリー溶液が塔上部から導かれる。
高温水はイソフタル酸スラリー溶液と同じ温度に設定さ
れる。圧力は高温水の温度を維持するに足る圧力であ
り、温度が決まればほぼ自動的に決定される。高温水の
上昇液流の線速度は装置の構造、結晶の大きさなどによ
っても変化するが、0.001〜0.01m/sec程
度が好ましい。線速度が小さすぎると母液と結晶の分離
が不充分となり、イソフタル酸の純度が低下する。反対
に線速度が高すぎると、高温水の使用量が増える欠点が
ある。
The specific operation of the solvent substitution column is performed as follows. The isophthalic acid slurry solution is introduced from the upper part of the tower into the rising liquid flow of the high temperature water introduced from the lower part of the tower.
The hot water is set to the same temperature as the isophthalic acid slurry solution. The pressure is sufficient to maintain the temperature of hot water, and is determined almost automatically when the temperature is determined. The linear velocity of the rising liquid flow of the high-temperature water varies depending on the structure of the apparatus, the size of the crystal, etc., but is preferably about 0.001 to 0.01 m / sec. If the linear velocity is too low, the separation of the mother liquor and the crystals will be insufficient, and the purity of isophthalic acid will decrease. On the contrary, if the linear velocity is too high, there is a drawback that the amount of hot water used increases.

【0021】溶媒置換塔の構造は、高温水の上昇液流が
バックミキシングを伴わずに、ある程度の線速度をもっ
て上昇しなければならないために、搭状のものであるこ
とが好ましい。このような目的を達するためには、塔内
に適宜バッフルを有する塔あるいは多孔板塔等が好適で
ある。塔内に撹拌器は必ずしも必要でないが、結晶が高
温水中に懸濁、沈降する過程において、高温水と結晶の
接触をよくし、結晶中に伴われる母液を結晶から除去す
る目的で撹拌器を設けることは効果的である。このよう
な目的を達成するためにはいわゆるRDC(Rotary Di
sk Contactor)の使用が特に推奨される。
The structure of the solvent displacement column is preferably column-shaped because the rising liquid flow of high-temperature water must rise at a certain linear velocity without backmixing. In order to achieve such an object, a column having a baffle in the column or a perforated plate column is suitable. A stirrer is not necessarily required in the tower, but in the process of suspending and settling the crystals in the hot water, the stirrer is used for the purpose of improving the contact between the hot water and the crystals and removing the mother liquor accompanying the crystals from the crystals. It is effective to provide them. In order to achieve such an objective, so-called RDC (Rotary Di
sk Contactor) is especially recommended.

【0022】溶媒置換塔の塔頂から抜き出された母液
は、当該温度における溶解度に相当するイソフタル酸
と、上昇流に伴って排出されたイソフタル酸の微細結晶
をスラリーとして含有している。このスラリーは直列に
設置された1〜3個の晶析槽を通過することで、できる
だけ低い温度まで冷却され、イソフタル酸結晶が晶析さ
れる。得られたイソフタル酸結晶は、結晶回収器におい
て濾過等の適当な手段で母液から分離・回収され、酸化
反応系へ戻されて有効に利用される。
The mother liquor extracted from the top of the solvent displacement column contains, as a slurry, isophthalic acid corresponding to the solubility at that temperature and fine crystals of isophthalic acid discharged along with the upward flow. This slurry is cooled to a temperature as low as possible by passing through 1 to 3 crystallization tanks installed in series to crystallize isophthalic acid crystals. The obtained isophthalic acid crystals are separated and recovered from the mother liquor by a suitable means such as filtration in a crystal recovery device, and returned to the oxidation reaction system for effective use.

【0023】結晶回収器から出る母液中には、当該温度
における溶解度に相当するイソフタル酸とその他有機成
分をを含んでいるおり、その一部は接触水素化処理用の
水として再利用することができる。残部は排水処理工程
へ送られることになるが、もし必要であれば更にイソフ
タル酸を回収のための工程が設置される。
The mother liquor discharged from the crystal collector contains isophthalic acid and other organic components corresponding to the solubility at that temperature, and part of it can be reused as water for catalytic hydrotreatment. it can. The balance will be sent to the wastewater treatment process, but if necessary, a process for recovering isophthalic acid will be installed.

【0024】溶媒置換塔の塔底から抜き出された液流は
精製されたイソフタル酸結晶を含む高温水のスラリー溶
液であり、直列に設置された1〜3個の晶析槽を通過す
ることで110〜80℃まで冷却され、さらにイソフタ
ル酸を晶析させた後、結晶分離器で結晶を分離して取り
出し、乾燥器を経て高純度イソフタル酸となる。結晶分
離器から排出される母液は、当該温度での溶解度に相当
するイソフタル酸を含んでおるのみであり、その他の有
機不純物および無機不純物は極めて低濃度であり、これ
母液は接触水素化処理工程で再利用される。
The liquid stream withdrawn from the bottom of the solvent displacement column is a slurry solution of high temperature water containing purified isophthalic acid crystals, and must pass through 1 to 3 crystallization tanks installed in series. After cooling to 110 to 80 ° C. and further crystallizing isophthalic acid, the crystal is separated by a crystal separator and taken out, and passed through a drier to become high-purity isophthalic acid. The mother liquor discharged from the crystal separator only contains isophthalic acid corresponding to the solubility at that temperature, other organic impurities and inorganic impurities are extremely low concentration, and this mother liquor is a catalytic hydrotreating process. Will be reused in.

【0025】本発明によるイソフタル酸の精製状況を、
結晶の白色度の指標となるOD340の変化で説明すると
次のようになる。なおOD340 の測定は、試料5gを3
N水酸化ナトリウム水溶液35gに溶解して濾過し、長
さ50ミリメートルのセルを用いた分光光度計により3
40ミリミクロン波長における濾液の吸光度を測定する
ことにより行われる。OD340 の数値はイソフタル酸を
ポリマーにしたときのポリマー色相と密接な関連がある
と言われている。
The purification status of isophthalic acid according to the present invention is
The change in OD 340 , which is an index of the whiteness of crystals, is as follows. The OD 340 was measured using 3 g
Dissolve in 35 g of N sodium hydroxide aqueous solution, filter, and use a spectrophotometer to measure 3 with a 50 mm long cell.
This is done by measuring the absorbance of the filtrate at 40 millimicron wavelength. It is said that the value of OD 340 is closely related to the polymer hue when isophthalic acid is used as a polymer.

【0026】OD340 に影響を与える個々の化合物(以
下、OD340 成分と称する)は完全には同定されていな
いが、主としてフルオレンやフルオレノン構造を有する
数十種類以上にもなる芳香族化合物であると見られる。
これら化合物の水に対する溶解度は小さいと推定される
が、それぞれの含有量は高々数十ppmにも達しない低
濃度であるので、高温度の水中では完全に溶液となって
いると見られる。しかしながら後の比較例2で示す如く
に、接触水素化処理により得られた反応液を90℃で分
離したイソフタル酸結晶中に多くのOD340 成分が含ま
れている。
[0026] Individual compounds that affect OD 340 (hereinafter, referred to as OD 340 component) is not fully identified, an aromatic compound also becomes several tens or more types having primarily fluorene and fluorenone structure Seen as
The solubility of these compounds in water is presumed to be small, but the content of each compound is a low concentration that does not reach several tens of ppm at most, and it is considered that the compounds are completely dissolved in high temperature water. However, as shown in Comparative Example 2 below, many OD 340 components are contained in the isophthalic acid crystals obtained by separating the reaction solution obtained by the catalytic hydrogenation treatment at 90 ° C.

【0027】この現象は物質の溶解度では説明ができな
いが、一般に共晶と呼ばれている現象として捉えること
ができ、イソフタル酸が晶析する過程ではある分配係数
をもってOD340 成分が結晶に取り込まれ、しかもこの
分配係数は温度により指数関数的に変化してくるものす
ると、OD340 の変化をうまく説明できる。つまりOD
340 成分のイソフタル酸結晶への分配係数は高温では小
さいが、低温になるほど加速度的に大きくなると見られ
る。またOD340 成分の含有量は大きな結晶では比較的
低く、微細な結晶となるほど増加する。従ってイソフタ
ル酸の晶析を高温度領域のみで行い、溶媒置換塔により
微細な結晶を排除することが、高純度イソフタル酸の品
質向上に効果があることが分かる。
This phenomenon cannot be explained by the solubility of the substance, but it can be grasped as a phenomenon generally called eutectic, and in the process of crystallization of isophthalic acid, the OD 340 component is incorporated into the crystal with a certain distribution coefficient. Moreover, if the distribution coefficient changes exponentially with temperature, the change in OD 340 can be explained well. That is, OD
The partition coefficient of the 340 component into the isophthalic acid crystal is small at high temperatures, but it seems to increase at lower temperatures at an accelerating rate. Further, the content of the OD 340 component is relatively low in a large crystal and increases as the crystal becomes finer. Therefore, it is found that the crystallization of isophthalic acid only in the high temperature region and the elimination of fine crystals by the solvent displacement column are effective in improving the quality of high-purity isophthalic acid.

【0028】接触水素化処理による精製の効果は後述の
実施例1に用いられた粗イソフタル酸の品質と、これを
接触水素化処理して得られたスラリー液を晶析した結果
(比較例2)を対比することにより明らかである。これ
によると原料の粗イソフタル酸のOD340 吸光度が1.
5であり、3CBA濃度が600ppmであるのに対し
て、得られた精製イソフタル酸のOD340吸光度が0.
67であり、3CBA濃度が22ppmである。なお接
触水素化処理して得られたスラリー液を晶析し結晶を9
0℃で分離した際に得られた母液中のOD340 と3CB
Aを測定し、精製イソフタル酸分析値に加算して接触水
素化反応の反応率を計算した結果では、OD340 の反応
率が60%であり、3CBAの反応率は93%であっ
た。
The effect of refining by catalytic hydrotreatment is the quality of the crude isophthalic acid used in Example 1 described later and the result of crystallization of a slurry liquid obtained by catalytic hydrotreatment (Comparative Example 2). ) Is clear. According to this, the raw material crude isophthalic acid had an OD 340 absorbance of 1.
5, the 3CBA concentration was 600 ppm, while the OD 340 absorbance of the obtained purified isophthalic acid was 0.
67, and the 3CBA concentration is 22 ppm. The slurry liquid obtained by the catalytic hydrogenation treatment was crystallized to give 9 crystals.
OD 340 and 3CB in mother liquor obtained when separated at 0 ° C
As a result of measuring A and adding it to the analysis value of purified isophthalic acid to calculate the reaction rate of the catalytic hydrogenation reaction, the reaction rate of OD 340 was 60% and the reaction rate of 3CBA was 93%.

【0029】テレフタル酸の接触水素化反応の場合に
は、4CBAの反応率が通常99%以上であり、OD
340 の反応率も高い値が得られる。これはテレフタル酸
の熱水に対する溶解度が小さいために接触水素化反応を
260〜290℃の高温で行うことが大きな要因となっ
ているものと見られる。イソフタル酸の熱水に対する溶
解度は、テレフタル酸と比較して約10倍ほど高いの
で、溶解度の制約から反応温度を高める必要が全く無
く、このような高温で接触水素化反応を行うことは、昇
温するために多くのエネルギーを要することから経済上
有利とならない。
In the case of catalytic hydrogenation reaction of terephthalic acid, the reaction rate of 4CBA is usually 99% or more, and OD
A high reaction rate of 340 is obtained. It is considered that this is because the solubility of terephthalic acid in hot water is small, so that the catalytic hydrogenation reaction is performed at a high temperature of 260 to 290 ° C. Since the solubility of isophthalic acid in hot water is about 10 times higher than that of terephthalic acid, it is not necessary to raise the reaction temperature due to the limitation of the solubility, and it is not necessary to carry out the catalytic hydrogenation reaction at such a high temperature. Since it requires a lot of energy to heat, it is not economically advantageous.

【0030】また接触水素化反応の反応率を上げる手段
としては、反応液の空間速度を小さくして、つまり触媒
との接触時間を長くして反応の進行を計る方法もある
が、これは反応器の大型化が必要となり経済的に不利で
ある。
As a means for increasing the reaction rate of the catalytic hydrogenation reaction, there is also a method of decreasing the space velocity of the reaction solution, that is, increasing the contact time with the catalyst to measure the progress of the reaction. It is economically disadvantageous because it requires a larger vessel.

【0031】以上のごとく本発明においては、溶媒置換
塔を用いて粗イソフタル酸水溶液を接触水素化処理した
後のスラリー溶液を高温水の上昇液流中にへ導くという
簡単な手段でイソフタル酸結晶の純度を大幅に改良し、
優れた品質の高純度イソフタル酸を連続的に製造するこ
とができる。
As described above, in the present invention, the isophthalic acid crystal is simply prepared by introducing the slurry solution obtained by catalytically hydrotreating the crude isophthalic acid aqueous solution using the solvent displacement column into the rising liquid stream of high temperature water. Greatly improved the purity of
It is possible to continuously produce high-quality isophthalic acid of excellent quality.

【0032】[0032]

【実施例】次に実施例により本発明を更に具体的に説明
する。但し本発明はこれらの実施例により制限されるも
のではない。
EXAMPLES Next, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples.

【0033】実施例1 原料の粗イソフタル酸には、商業的規模の装置を使って
含水酢酸溶媒中でメタキシレンを空気酸化して製造した
ものを用いた。この液相酸化の触媒には酢酸マンガン、
酢酸コバルトと臭化水素酸を用い、反応温度は205
℃、圧力は16気圧である。この粗イソフタル酸OD
340 吸光度は1.5であり、3CBA濃度は600pp
mであった。
Example 1 The raw material crude isophthalic acid used was one produced by air-oxidizing meta-xylene in a water-containing acetic acid solvent using a commercial-scale apparatus. The catalyst for this liquid-phase oxidation is manganese acetate,
Using cobalt acetate and hydrobromic acid, the reaction temperature is 205
C. and pressure are 16 atm. This crude isophthalic acid OD
340 absorbance is 1.5, 3CBA concentration is 600pp
It was m.

【0034】外部加熱装置を有する内径26mm、長さ
350mmの耐圧ステンレス製反応器にパラジウム0.
5%を活性炭に担持した触媒200mlを充填した。こ
の反応塔を220℃に加熱し、塔頂から220℃に加熱
された粗イソフタル酸の30%水溶液を毎時1200g
供給した。粗イソフタル酸水溶液には水素ガス供給ライ
ンから、水素ガスを毎時0.3ノルマルリッター供給し
た。反応器の底から流出した反応液は、供給速度と抜き
出し速度の差を調整するために設けた緩衝槽を経て常温
まで冷却され、3方バルブとアクチュエーターから成る
間欠抜き出し装置で外部受器中へスラリー溶液として抜
き出した。
A pressure-resistant stainless steel reactor having an inner diameter of 26 mm and a length of 350 mm equipped with an external heating device was charged with palladium.
200 ml of a catalyst having 5% supported on activated carbon was charged. This reaction tower is heated to 220 ° C., and 1200 g / hr of a 30% aqueous solution of crude isophthalic acid heated to 220 ° C. from the top of the tower.
Supplied. Hydrogen gas was supplied to the crude isophthalic acid aqueous solution from the hydrogen gas supply line at 0.3 normal liters per hour. The reaction liquid flowing out from the bottom of the reactor is cooled to room temperature through a buffer tank that is provided to adjust the difference between the supply rate and the withdrawal rate, and is then introduced into an external receiver by an intermittent withdrawal device consisting of a three-way valve and an actuator. It was extracted as a slurry solution.

【0035】溶媒置換には、内径25mm、高さ150
0mmのステンレス製溶媒置換塔を用いた。スラリー溶
液導入口は底面から750mmの位置に、また熱水導入
口は底面から200mmに位置しており、塔頂と塔底の
排出口にはそれぞれ内容積50Lの受器が連結されてい
る。各受器には加熱装置、還流冷却器、撹拌装置、液面
検出器が設置されている。運転に先だってこの溶媒置換
塔を150℃に加熱し、熱水導入口より毎時1740g
の塔と同じ温度に加熱された熱水を導入し、塔が熱水で
満たされたら塔頂及び塔底の排出口より受器へ排出し
た。またスラリー溶液導入口から塔と同じ温度に加熱さ
れた接触水素化処理工程を経たスラリー溶液を毎時24
10g導入し、塔底から毎時1550gのスラリー液を
抜き出した。塔頂からは微細結晶を含んだスラリー溶液
が毎時2600g排出された。
For solvent replacement, an inner diameter of 25 mm and a height of 150
A 0 mm stainless steel solvent displacement tower was used. The slurry solution inlet is located 750 mm from the bottom surface, the hot water inlet is located 200 mm from the bottom surface, and receivers with an internal volume of 50 L are connected to the tower top and tower bottom outlets, respectively. Each receiver is equipped with a heating device, a reflux condenser, a stirring device, and a liquid level detector. Prior to operation, this solvent displacement tower was heated to 150 ° C., and 1740 g / hour from the hot water inlet.
Hot water heated to the same temperature as the tower was introduced, and when the tower was filled with hot water, it was discharged to the receiver through the outlets at the top and bottom of the tower. Further, the slurry solution which has been subjected to the catalytic hydrotreating step heated to the same temperature as the tower from the slurry solution inlet is supplied 24 hours per hour.
10 g of the slurry was introduced, and 1550 g of the slurry liquid was withdrawn from the bottom of the tower every hour. From the top of the tower, 2600 g of a slurry solution containing fine crystals was discharged every hour.

【0036】溶媒置換塔の塔底に連結された受器の温度
を90℃まで下げて、約15分間保持した後、スラリー
溶液を取り出して、充分に加熱されたG3ガラスフィル
ターで素早く濾過した後、結晶を熱水で洗浄して乾燥し
た。この結果、沈降塔へ導入されたスラリー溶液中のイ
ソフタル酸濃度は30%であったが、塔底から抜き出さ
れたスラリー溶液中のイソフタル酸濃度は40%となっ
た。また塔頂からは毎時80gのイソフタル酸(溶液状
態と細かい結晶の合計量)が排出された。これは塔に導
入されたイソフタル酸の12%に相当する。結晶の分析
値を表1に示す。
After lowering the temperature of the receiver connected to the bottom of the solvent displacement tower to 90 ° C. and holding it for about 15 minutes, the slurry solution was taken out and rapidly filtered with a sufficiently heated G3 glass filter. The crystals were washed with hot water and dried. As a result, the concentration of isophthalic acid in the slurry solution introduced into the settling tower was 30%, but the concentration of isophthalic acid in the slurry solution extracted from the bottom of the tower was 40%. Further, 80 g of isophthalic acid (a total amount of solution and fine crystals) was discharged from the top of the column every hour. This corresponds to 12% of the isophthalic acid introduced into the column. The analytical values of the crystals are shown in Table 1.

【0037】実施例2 溶媒置換塔の温度を180℃として実施例1と同様の実
験を行った。このとき塔の上部における結晶沈降速度を
実施例1と同水準に保つために、熱水導入量は毎時15
80gに、スラリー溶液導入量は毎時2850gに、塔
底からのスラリー溶液抜き出し量は毎時1320gに設
定した。この結果、沈降塔へ導入されたスラリー溶液中
のイソフタル酸濃度は30%であったが、塔底から抜き
出されたスラリー溶液中のイソフタル酸濃度は40%と
なった。また塔頂からは毎時314gのイソフタル酸
(溶液状態と細かい結晶の合計量)が排出され、これは
塔に導入されたイソフタル酸の37%に相当する。結晶
の分析値を表1に示す。
Example 2 The same experiment as in Example 1 was conducted with the temperature of the solvent displacement column set to 180 ° C. At this time, in order to keep the crystal settling rate in the upper part of the tower at the same level as in Example 1, the amount of hot water introduced was 15 per hour.
The amount of slurry solution introduced was set to 80 g, the amount of slurry solution introduced was set to 2850 g per hour, and the amount of slurry solution withdrawn from the bottom of the column was set to 1320 g per hour. As a result, the concentration of isophthalic acid in the slurry solution introduced into the settling tower was 30%, but the concentration of isophthalic acid in the slurry solution extracted from the bottom of the tower was 40%. Further, 314 g of isophthalic acid (total amount of solution and fine crystals) was discharged from the top of the column per hour, which corresponds to 37% of isophthalic acid introduced into the column. The analytical values of the crystals are shown in Table 1.

【0038】実施例3 溶媒置換塔の温度を120℃として実施例1と同様の実
験を行った。このとき塔の上部における結晶沈降速度を
実施例1と同水準に保つために、熱水導入量は毎時15
00gに、スラリー溶液導入量は毎時1610gに、塔
底からのスラリー溶液抜き出し量は毎時1120gに設
定した。この結果、沈降塔へ導入されたスラリー溶液中
のイソフタル酸濃度は30%であったが、塔底から抜き
出されたスラリー溶液中のイソフタル酸濃度は40%と
なった。また塔頂からは毎時24gのイソフタル酸(溶
液状態と細かい結晶の合計量)が排出された。これは塔
に導入されたイソフタル酸の5%に相当する。結晶の分
析値を表1に示す。
Example 3 The same experiment as in Example 1 was conducted by setting the temperature of the solvent displacement column to 120 ° C. At this time, in order to keep the crystal settling rate in the upper part of the tower at the same level as in Example 1, the amount of hot water introduced was 15 per hour.
The amount of the introduced slurry solution was set to 00 g, the amount of the slurry solution introduced was 1610 g per hour, and the amount of the slurry solution withdrawn from the bottom of the column was set to 1120 g per hour. As a result, the concentration of isophthalic acid in the slurry solution introduced into the settling tower was 30%, but the concentration of isophthalic acid in the slurry solution extracted from the bottom of the tower was 40%. Further, 24 g of isophthalic acid (a total amount of solution state and fine crystals) was discharged from the top of the column every hour. This corresponds to 5% of the isophthalic acid introduced into the column. The analytical values of the crystals are shown in Table 1.

【0039】比較例1 沈降塔の温度を90℃として実施例1と同様の実験を行
った。このとき塔の上部における結晶沈降速度を実施例
1と同水準に保つために、熱水導入量は毎時1200g
に、スラリー溶液導入量は毎時830gに、塔底からの
スラリー溶液抜き出し量は毎時590gに設定した。こ
の結果、沈降塔へ導入されたスラリー溶液中のイソフタ
ル酸濃度は30%であったが、塔底から抜き出されたス
ラリー溶液中のイソフタル酸濃度は40%となった。ま
た塔頂からは毎時8gのイソフタル酸(溶液状態と細か
い結晶の合計量)が排出された。これは塔に導入された
イソフタル酸の3%に相当する。結晶の分析値を表1に
示す。
Comparative Example 1 The same experiment as in Example 1 was conducted with the temperature of the sedimentation tower at 90 ° C. At this time, in order to keep the crystal settling rate in the upper part of the tower at the same level as in Example 1, the amount of introduced hot water was 1200 g / hr.
In addition, the amount of slurry solution introduced was set to 830 g / hr, and the amount of slurry solution withdrawn from the bottom of the column was set to 590 g / hr. As a result, the concentration of isophthalic acid in the slurry solution introduced into the settling tower was 30%, but the concentration of isophthalic acid in the slurry solution extracted from the bottom of the tower was 40%. Further, 8 g of isophthalic acid (a total amount of solution and fine crystals) was discharged from the top of the column every hour. This corresponds to 3% of the isophthalic acid introduced into the column. The analytical values of the crystals are shown in Table 1.

【0040】比較例2 実施例1で接触水素化処理工程からのスラリー溶液を9
0℃で15分間保持した後、充分に加熱されたG3ガラ
スフィルターで素早く濾過した後、結晶を熱水で洗浄し
て乾燥した。結晶の分析値を表2に示す。
Comparative Example 2 The slurry solution from the catalytic hydrotreating step in Example 1 was
After holding at 0 ° C. for 15 minutes, the crystals were quickly filtered through a sufficiently heated G3 glass filter, and the crystals were washed with hot water and dried. The analytical values of the crystals are shown in Table 2.

【0041】[0041]

【表1】 溶媒置換 塔頂から 精製イソフタル酸分析値 塔の温度 排出された OD340 3CBA ℃ IPA% ppm ─────────────────────────────── 原料粗IPA ー ー 1.5 600 ─────────────────────────────── 実施例 1 150 12 0.21 5 実施例 2 180 37 0.09 3 実施例 3 120 5 0.39 11 ─────────────────────────────── 比較例 1 90 3 0.58 18 比較例 2 ー ー 0.67 22 [Table 1] Solvent replacement Analytical value of purified isophthalic acid from the top of the tower Temperature of the tower OD 340 3CBA ℃ IPA% ppm ──────────────────────── ──────── Raw crude IPA 1.5 600 ─────────────────────────────── Example 1 150 12 0.21 5 Example 2 180 37 0.09 3 Example 3 120 5 0.39 11 ────────────────────────── ────── Comparative Example 1 90 3 0.58 18 Comparative Example 2 − 0.67 22

【0042】表1の実験データから次のことが分かる。 (1)150℃で溶媒置換を行うと、溶媒置換を行わな
かった比較例2に比べて、OD340 が約3分の1に、3
CBAが約4分の1に低下した。 (2)溶媒置換を高温で行うほど品質はよくなるが、一
方で塔頂から排出されるイソフタル酸が多くなり、下流
での結晶回収負荷が大きくなる。 (3)溶媒置換を低温で行うほど品質は悪くなる。90
℃で溶媒置換を行った比較例1では、溶媒置換を行わな
かった比較例2よりわずかに品質が良くなっているにす
ぎない。
The following can be seen from the experimental data in Table 1. (1) When the solvent substitution was performed at 150 ° C., the OD 340 was about one-third that of Comparative Example 2 in which the solvent substitution was not performed.
CBA was reduced by about a quarter. (2) The higher the solvent replacement temperature is, the better the quality is, but on the other hand, the amount of isophthalic acid discharged from the top of the column increases, and the load of crystal recovery in the downstream increases. (3) The quality becomes worse as the solvent replacement is performed at a lower temperature. 90
The quality of Comparative Example 1 in which the solvent replacement was performed at 0 ° C. was slightly better than that of Comparative Example 2 in which the solvent replacement was not performed.

【0043】[0043]

【発明の効果】本発明の方法により、粗イソフタル酸を
接触水素化処理して得られた反応液から、高純度の精製
イソフタル酸が工業的に有利に製造される。例えば接触
水素化処理して得られた反応液の晶析工程の中段以降の
晶析器からのイソフタル酸スラリー溶液を溶媒置換塔に
導入するすることにより、高圧分離手段を用いること無
しに高純度のイソフタル酸を得ることができる。また溶
媒置換塔を用いることによりイソフタル酸スラリー溶液
の濃度を上昇させることができるので、結晶分離操作で
の負荷低減を図ることができる。
Industrial Applicability According to the method of the present invention, highly purified purified isophthalic acid is industrially advantageously produced from a reaction solution obtained by subjecting crude isophthalic acid to catalytic hydrogenation. For example, by introducing the isophthalic acid slurry solution from the crystallizer in the middle and subsequent stages of the crystallization step of the reaction solution obtained by catalytic hydrogenation treatment into the solvent displacement column, a high purity can be obtained without using a high pressure separation means. Isophthalic acid can be obtained. Moreover, since the concentration of the isophthalic acid slurry solution can be increased by using the solvent displacement tower, the load on the crystal separation operation can be reduced.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】液相酸化で得られた粗イソフタル酸を接触
水素化処理して高純度イソフタル酸を製造する方法にお
いて、接触水素化処理により得られた反応液から触媒を
分離した後、該反応液を落圧・降温して得られるイソフ
タル酸結晶の結晶と母液からなるイソフタル酸スラリー
溶液を180〜120℃の温度で溶媒置換塔に導入し、
溶媒置換塔の下部から導入された高温水の上昇流と接触
させ、母液および微細なイソフタル酸結晶の一部を高温
水の上昇液流れと共にスラリー液として塔頂より抜き出
し、イソフタル酸結晶の大部分を高温水と共にスラリー
液として塔底より抜き出し、塔底よりのスラリー液から
イソフタル酸結晶を分離することを特徴とする高純度イ
ソフタル酸を製造する方法
1. A method for producing high-purity isophthalic acid by subjecting crude isophthalic acid obtained by liquid-phase oxidation to catalytic hydrogenation, which comprises separating the catalyst from the reaction solution obtained by catalytic hydrogenation, An isophthalic acid slurry solution consisting of crystals of isophthalic acid crystals obtained by depressurizing and lowering the temperature of the reaction solution and a mother liquor was introduced into a solvent substitution tower at a temperature of 180 to 120 ° C.,
The mother liquor and a part of fine isophthalic acid crystals were withdrawn from the top of the tower as a slurry liquid together with the rising liquid flow of the high temperature water by contacting with the upward flow of high temperature water introduced from the lower part of the solvent displacement tower, and most of the isophthalic acid crystals were A method for producing high-purity isophthalic acid, characterized in that isophthalic acid crystals are extracted from the bottom of the slurry as a slurry liquid with hot water, and the slurry liquid is discharged from the bottom of the tower.
【請求項2】接触水素化処理により得られた反応液の晶
析を多段で行い、中段晶析器から得られるイソフタル酸
スラリー溶液を溶媒置換塔に導入する請求項1の高純度
イソフタル酸を製造する方法
2. The high-purity isophthalic acid according to claim 1, wherein the reaction solution obtained by the catalytic hydrogenation treatment is crystallized in multiple stages, and the isophthalic acid slurry solution obtained from the middle stage crystallizer is introduced into the solvent displacement column. How to manufacture
JP14634493A 1993-06-17 1993-06-17 Method for producing high-purity isophthalic acid Expired - Fee Related JP3269508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14634493A JP3269508B2 (en) 1993-06-17 1993-06-17 Method for producing high-purity isophthalic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14634493A JP3269508B2 (en) 1993-06-17 1993-06-17 Method for producing high-purity isophthalic acid

Publications (2)

Publication Number Publication Date
JPH072732A true JPH072732A (en) 1995-01-06
JP3269508B2 JP3269508B2 (en) 2002-03-25

Family

ID=15405587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14634493A Expired - Fee Related JP3269508B2 (en) 1993-06-17 1993-06-17 Method for producing high-purity isophthalic acid

Country Status (1)

Country Link
JP (1) JP3269508B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029565A (en) * 2003-06-20 2005-02-03 Mitsubishi Gas Chem Co Inc Method for producing high-purity aromatic polycarboxylic acid
JPWO2005032736A1 (en) * 2003-10-03 2006-12-14 三菱瓦斯化学株式会社 Cleaning method for solid particles
WO2008013100A1 (en) * 2006-07-24 2008-01-31 Mitsubishi Gas Chemical Company, Inc. Method of replacing dispersion medium
JP2008290948A (en) * 2007-05-22 2008-12-04 Mitsubishi Gas Chem Co Inc Method for replacing dispersion medium of isophthalic acid stock slurry
JP4729173B2 (en) * 1998-05-06 2011-07-20 ジーティーシー テクノロジー エルピー Purification method of isophthalic acid by crystallization
US9144750B2 (en) 2006-06-12 2015-09-29 Mitsubishi Gas Chemical Company, Ltd. Method of replacing dispersion medium and apparatus therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4729173B2 (en) * 1998-05-06 2011-07-20 ジーティーシー テクノロジー エルピー Purification method of isophthalic acid by crystallization
JP2005029565A (en) * 2003-06-20 2005-02-03 Mitsubishi Gas Chem Co Inc Method for producing high-purity aromatic polycarboxylic acid
JP4720112B2 (en) * 2003-06-20 2011-07-13 三菱瓦斯化学株式会社 Method for producing high purity aromatic polycarboxylic acid
JPWO2005032736A1 (en) * 2003-10-03 2006-12-14 三菱瓦斯化学株式会社 Cleaning method for solid particles
JP4735262B2 (en) * 2003-10-03 2011-07-27 三菱瓦斯化学株式会社 Cleaning method for solid particles
US9144750B2 (en) 2006-06-12 2015-09-29 Mitsubishi Gas Chemical Company, Ltd. Method of replacing dispersion medium and apparatus therefor
WO2008013100A1 (en) * 2006-07-24 2008-01-31 Mitsubishi Gas Chemical Company, Inc. Method of replacing dispersion medium
US8247605B2 (en) 2006-07-24 2012-08-21 Mitsubishi Gas Chemical Company, Inc. Method of replacing dispersion medium
JP5412831B2 (en) * 2006-07-24 2014-02-12 三菱瓦斯化学株式会社 Dispersion medium replacement method
KR101419071B1 (en) * 2006-07-24 2014-07-11 미츠비시 가스 가가쿠 가부시키가이샤 Method of replacing dispersion medium
JP2008290948A (en) * 2007-05-22 2008-12-04 Mitsubishi Gas Chem Co Inc Method for replacing dispersion medium of isophthalic acid stock slurry

Also Published As

Publication number Publication date
JP3269508B2 (en) 2002-03-25

Similar Documents

Publication Publication Date Title
JP3757995B2 (en) Method for producing high purity isophthalic acid
JP3729284B2 (en) Method for producing high purity terephthalic acid
KR100214397B1 (en) Process for the production of terephthalic acid
US20040044246A1 (en) Method of removing iron contaminants from liquid streams during the manufacture and/or purification of aromatic acids
KR19980071358A (en) Method for producing high purity terephthalic acid
JP4055913B2 (en) Method for producing high purity terephthalic acid
JP3939367B2 (en) Method for producing high purity terephthalic acid
US10683253B2 (en) Method for producing high-purity terephthalic acid
JP4837232B2 (en) Crystallization method
JP3269508B2 (en) Method for producing high-purity isophthalic acid
US5189209A (en) Process for producing highly pure isophthalic acid
JPH072731A (en) Production of isophthalic acid of high purity
CA2295650C (en) Improved process for separating pure terephthalic acid
JPH0717900A (en) Production of high-purity isophthalic acid
JPH0648982A (en) Production of high-purity terephthalic acid
KR100527416B1 (en) Method for producing high purity isophthalic acid
JP3201436B2 (en) Production method of high purity isophthalic acid
JPH0454149A (en) Production of high-purity isophthalic acid
JPH0717901A (en) Production of high-purity isophthalic acid
JPH07126212A (en) Production of high-purity isophthalic acid
JPH04145044A (en) Production of high-purity terephthalic acid
JPH08157415A (en) Production of high-purity terephthalic acid
JPH10195016A (en) Production of high-purity terephthalic acid
JPH08143509A (en) Preparation of terephthalic acid aqueous slurry

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080118

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110118

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees