JPH07272155A - Differential type heat sensor - Google Patents

Differential type heat sensor

Info

Publication number
JPH07272155A
JPH07272155A JP5785594A JP5785594A JPH07272155A JP H07272155 A JPH07272155 A JP H07272155A JP 5785594 A JP5785594 A JP 5785594A JP 5785594 A JP5785594 A JP 5785594A JP H07272155 A JPH07272155 A JP H07272155A
Authority
JP
Japan
Prior art keywords
temperature
outside air
switching means
temperature measurement
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5785594A
Other languages
Japanese (ja)
Other versions
JP2990569B2 (en
Inventor
Masafumi Fukuda
雅史 福田
Shigeki Shimomura
茂樹 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP6057855A priority Critical patent/JP2990569B2/en
Publication of JPH07272155A publication Critical patent/JPH07272155A/en
Application granted granted Critical
Publication of JP2990569B2 publication Critical patent/JP2990569B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

PURPOSE:To reduce power consumed by a microcomputer and reduce the memory capacity in a differential type heat sensor provided with a temperature detection part composed of the microcomputer and an A/D converter so as to obtain linear temperature data in a wide temperature measuring area. CONSTITUTION:A control means MC judges whether an outside air temperature belongs to the side of an area T1 lower than the middle area of the temperature measuring areas, to the side of an area T3 higher than it, or to the side of a middle area T2 by means of a resistance voltage dividing output obtained by closing a switching means SW2 in charge of almost a middle area among plural temperature measuring areas divided in advance. From this judged result, the control means MC reapeats an operation for obtaining a resistance voltage dividing output by closing the switching means SW2 in charge of almost the middle area of temperature measuring areas including the temperature measuring area to which the outside air temperature belongs to retrieve a divided temperature measuring area to which the outside air temperature belongs while successively narrowing the temperature measuring area which the outside air temperature belongs to, and finally, the control means MC A/D-converts a resistance voltage dividing output obtained by closing switching means SW1 to SW3 in charge of a divided temperature measuring area to which the outside air temperature belongs and thereafter, corrects the data to be linear to obtain temperature data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、差動式熱感知器の改良
に関し、更に詳しくは、マイコンとA/Dコンバータを
用いることによって、広い温度測定領域においてもリニ
アに補正され、連続して変化する温度データを得ること
の出来る温度検知部を備えた差動式熱感知器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a differential thermal sensor, and more specifically, by using a microcomputer and an A / D converter, it is linearly corrected even in a wide temperature measurement range and continuously. The present invention relates to a differential heat sensor including a temperature detection unit that can obtain changing temperature data.

【0002】[0002]

【従来の技術】サーミスタを温度検知素子とする差動式
熱感知器では広い温度範囲(例えば−10〜80℃)で
外気温度と温度データとの関係が直線性を有することが
要求されるが、従来のものでは、このような要求は充分
に充されていない。そこで、本出願人は特願平4ー32
0177号において、マイコンとA/Dコンバータを用
いて、測定温度領域を高、中、低の3つの領域に予め分
割し、それぞれの分割領域において、リニアな温度特性
出力を持つ抵抗分圧回路がスイッチング手段の切替えに
よって形成されるようにした温度検知部を備えた差動式
熱感知器を提案した。
2. Description of the Related Art In a differential type heat detector using a thermistor as a temperature detecting element, it is required that the relationship between the outside air temperature and the temperature data is linear in a wide temperature range (for example, -10 to 80 ° C.). However, in the conventional one, such a requirement is not sufficiently satisfied. Therefore, the present applicant has filed Japanese Patent Application No.
In No. 0177, using a microcomputer and an A / D converter, the measurement temperature region is divided into three regions of high, middle, and low in advance, and a resistance voltage divider circuit having a linear temperature characteristic output is provided in each divided region. A differential thermal sensor provided with a temperature detecting part formed by switching the switching means has been proposed.

【0003】すなわち、この熱感知器の温度検知部は、
図6に示したように、定電圧電源VIN対して、1個のサ
ーミスタRTHと、予め温度測定領域を分担するために
準備した抵抗値の異なる3つの抵抗素子R1,R2,R
3をスイッチング手段SW1,SW2,SW3によって
選択的に切替え接続して抵抗分圧回路を形成できるよう
になっており、形成された抵抗分圧回路から出力される
抵抗分圧出力をA/DコンバータCVに入力してデジタ
ル信号に変換した後、マイコンMCによってリニア補正
された温度データが得られるようになっている。
That is, the temperature detector of this heat detector is
As shown in FIG. 6, for the constant voltage power supply VIN, one thermistor RTH and three resistance elements R1, R2, R having different resistance values prepared in advance for sharing the temperature measurement region.
3 can be selectively connected by switching means SW1, SW2, SW3 to form a resistance voltage dividing circuit, and the resistance voltage dividing output from the resistance voltage dividing circuit thus formed is converted into an A / D converter. After input to the CV and converted into a digital signal, temperature data linearly corrected by the microcomputer MC can be obtained.

【0004】しかしながら、このような構成の温度検知
部では、スイッチング手段SW1〜SW3の選択的な切
替操作によって得られた抵抗分圧出力をA/D変換する
必要があり、一般にはこのA/D変換に多くの電流を消
費する。また、このような温度検知部では、スイッチン
グ手段SW1,SW2,SW3を順次切替えて抵抗分圧
出力をA/D変換してから、リニア補正する必要がある
が、以下のような手順で行われている。
However, in the temperature detecting section having such a configuration, it is necessary to A / D convert the resistance voltage division output obtained by the selective switching operation of the switching means SW1 to SW3, and this A / D is generally used. It consumes a lot of current for conversion. Further, in such a temperature detection unit, it is necessary to sequentially switch the switching means SW1, SW2, SW3 to A / D convert the resistance voltage division output, and then perform linear correction, but the procedure is as follows. ing.

【0005】すなわち、 [手順1]まず、スイッチング手段SW1のみを閉じ、
サーミスタRTHと抵抗R1とで形成される抵抗分圧回
路の分圧値である抵抗分圧出力をマイコンMC内のA/
DコンバータCVでA/D変換し、A/D変換された値
を温度データDx1’としてマイコンMC内のメモリ
(RAM)に格納する。 [手順2]ついで、スイッチング手段SW2のみを閉
じ、サーミスタRTHと抵抗R2とで形成される抵抗分
圧回路の分圧値である抵抗分圧出力をマイコンMC内の
A/DコンバータCVでA/D変換し、A/D変換され
た値を更に温度データDx2’としてマイコンMC内の
メモリ(RAM)に格納する。 [手順3]更に、スイッチング手段SW3のみを閉じ、
サーミスタRTHと抵抗RCとで形成される抵抗分圧回
路の分圧値である抵抗分圧出力をマイコンMC内のA/
DコンバータCVでA/D変換し、A/D変換された値
を温度データDx3’としてマイコンMC内のメモリ
(RAM)に格納する。 [手順4]以上のようにしてマイコンMCのメモリ(R
AM)に格納された3つの温度データDx1’,Dx
2’,Dx3’の中域を分担する温度データDx2’を
取り出し、その温度テーブルを参照して、現在の温度が
−10〜20℃(低域)、20〜50℃(中域)、50
〜80℃(高域)のいずれの温度測定領域にあるかを判
定する。
[Procedure 1] First, only the switching means SW1 is closed,
The resistance voltage division output, which is the voltage division value of the resistance voltage division circuit formed by the thermistor RTH and the resistance R1, is A / in the microcomputer MC.
A / D conversion is performed by the D converter CV, and the A / D converted value is stored in the memory (RAM) in the microcomputer MC as temperature data Dx1 ′. [Procedure 2] Next, only the switching means SW2 is closed, and the resistance division output which is the division value of the resistance division circuit formed by the thermistor RTH and the resistance R2 is A / D by the A / D converter CV in the microcomputer MC. The D-converted and A / D-converted value is further stored in the memory (RAM) in the microcomputer MC as temperature data Dx2 ′. [Procedure 3] Further, only the switching means SW3 is closed,
The resistance voltage division output, which is the voltage division value of the resistance voltage division circuit formed by the thermistor RTH and the resistance RC, is A / in the microcomputer MC.
A / D conversion is performed by the D converter CV, and the A / D converted value is stored in the memory (RAM) in the microcomputer MC as temperature data Dx3 ′. [Procedure 4] As described above, the memory (R
AM) stored in three temperature data Dx1 ', Dx
The temperature data Dx2 ′ sharing the mid range of 2 ′ and Dx3 ′ is taken out, and the current temperature is referred to, and the current temperature is −10 to 20 ° C. (low range), 20 to 50 ° C. (medium range), 50.
Which temperature measurement region of -80 ° C (high range) is determined.

【0006】この場合の判定基準は、Dx2’<72な
らば、温度測定領域は低域T1、つまり、−10〜20
℃ 72≦Dx2’<152ならば、温度測定領域は中域T
2、つまり、20〜50℃ 152<Dx2ならば、温度測定領域は高域T3、つま
り、50〜80℃と判断する。[手順5]以上のように
して得られた3つの温度データDx1’,Dx2’,D
x3’に対して演算を行い、下式に従ってリニア補正さ
れた温度データDxつまり、Dx1,Dx2,Dx3を
算出し、これをRAMに格納する。
If Dx2 '<72, the criterion in this case is that the temperature measurement region is the low region T1, that is, -10 to 20.
If ℃ 72 ≦ Dx2 ′ <152, the temperature measurement area is the middle area T
2, that is, 20 to 50 ° C. 152 <Dx2, it is determined that the temperature measurement region is the high region T3, that is, 50 to 80 ° C. [Procedure 5] Three temperature data Dx1 ', Dx2', D obtained as described above
The temperature data Dx linearly corrected according to the following equation, that is, Dx1, Dx2, Dx3 is calculated according to the following equation, and stored in the RAM.

【0007】例えば、−10〜20℃の温度領域では次
式によってDx1を求める。 すなわち、Dx1=Dx1’x3/4−17 10〜50℃の温度領域ではDx2を求める。 すなわち、Dx2=Dx2’x7/8+40 50〜80℃の温度領域ではDx3を求める。
For example, in the temperature range of -10 to 20 ° C, Dx1 is calculated by the following equation. That is, Dx2 is calculated in the temperature range of Dx1 = Dx1′x3 / 4/7 10 to 50 ° C. That is, Dx3 is obtained in the temperature range of Dx2 = Dx2′x7 / 8 + 40 50 to 80 ° C.

【0008】すなわち、Dx3=Dx3’+97 以上の手順の詳細を図7のステップ200〜213に示
す。ところが、従来のこのような方法では、マイコンM
C内ではA/D変換を3回行う必要があり、またA/D
変換された温度データDx1’、Dx2’ Dx3’と、リニア補正された温度データDx、つま
り、Dx1、Dx2、Dx3を格納するためにRAMの
容量は、4×8ビット必要とされていた。
That is, Dx3 = Dx3 '+ 97 Details of the above procedure are shown in steps 200 to 213 of FIG. However, in such a conventional method, the microcomputer M
It is necessary to perform A / D conversion 3 times in C.
The RAM capacity required to store the converted temperature data Dx1 ′, Dx2 ′ Dx3 ′ and the linearly corrected temperature data Dx, that is, Dx1, Dx2, Dx3, was 4 × 8 bits.

【0009】しかし、マイコンではA/D変換時に大電
流が流れるためA/D変換を行う回数はできるだけ少な
い方が良く、またマイコンのRAMの容量にも限界があ
るため使用するRAM容量はできるだけ少ないことが望
まれる。
However, since a large current flows during A / D conversion in a microcomputer, it is preferable that the number of times A / D conversion is performed be as small as possible, and the RAM capacity of the microcomputer is also limited, so the RAM capacity used is as small as possible. Is desired.

【0010】[0010]

【発明が解決しようとする課題】本発明は、このような
事情に鑑みてなされたもので、マイコンとA/D変換を
用いて、広い温度領域において温度データを得るように
した温度検知部を有した差動式熱感知器において、消費
電流を少なくし、かつ使用するマイコンのメモリ容量を
少なくすることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a temperature detecting section for obtaining temperature data in a wide temperature range by using a microcomputer and A / D conversion. In the provided differential heat sensor, the current consumption is reduced and the memory capacity of the microcomputer used is reduced.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に提案される本発明は、差動感知器のうち、特に温度検
知部と、その温度検知部から検知した温度データを処理
する方法に特徴を有している。すなわち、請求項1に記
載された本発明は、定電圧電源に対して、1つのサーミ
スタに、予め分割された温度測定領域を分担する抵抗素
子をスイッチング手段によって切替え選択可能に接続
し、スイッチング手段の切替えによって形成される抵抗
分圧出力をA/Dコンバータでデジタル信号に変換した
後、CPUを含む制御手段によって、リニアに補正して
外気の温度データを得るようにした差動式熱感知器に関
し、特に上記スイッチング手段の切替えによって、上記
サーミスタに選択的に接続される抵抗素子は、分担する
温度測定領域毎にリニアに変化する温度データが得られ
るものが予め選択されており、上記制御手段は、予め分
割された複数の温度測定領域のうち、ほぼ中域を分担す
るスイッチング手段を閉じて得られた抵抗分圧出力によ
って、外気温度が温度測定領域の中域より低い側か高い
側か、あるいは中域側に属するかを判別する。そして、
この判別の結果、外気温度の含まれた温度測定領域のほ
ぼ中域を分担するスイッチング手段を閉じて抵抗分圧出
力を得る動作を繰り返し行って、外気温度の含まれた温
度測定領域を順次縮小させながら、外気温度の属する温
度測定領域を検索し、最後に外気温度の属する温度測定
領域を分担するスイッチング手段を閉じて得られた抵抗
分圧出力を、A/D変換した後、リニアに補正して温度
データを得るようになっている。
SUMMARY OF THE INVENTION The present invention, which is proposed to achieve the above object, provides a differential sensor, in particular, a temperature detecting section and a method for processing temperature data detected by the temperature detecting section. It has features. That is, according to the present invention described in claim 1, in the constant voltage power supply, one thermistor is connected to a resistance element which divides a temperature measurement region divided in advance so as to be switchably selectable by the switching means, and the switching means. A differential thermal sensor for converting the resistance voltage divided output formed by switching the above into a digital signal by an A / D converter, and then linearly correcting it by control means including a CPU to obtain temperature data of the outside air. With regard to the above, particularly, the resistance element selectively connected to the thermistor by switching the switching means is selected in advance so that temperature data that linearly changes for each temperature measurement region to be shared is obtained. Is a resistance voltage division output obtained by closing the switching means that shares almost the middle region of the plurality of temperature measurement regions divided in advance. Therefore, to determine the outside air temperature is higher or side or side lower than the midrange of the temperature measurement area, or belonging to the middle band side. And
As a result of this determination, the operation for obtaining the resistance voltage-divided output is repeated by closing the switching means that shares almost the middle region of the temperature measurement region including the outside air temperature, and the temperature measurement region including the outside air temperature is gradually reduced. While retrieving, the temperature measurement region to which the outside air temperature belongs is searched, and finally, the resistance partial pressure output obtained by closing the switching means that shares the temperature measurement region to which the outside air temperature belongs is A / D converted and then linearly corrected. Then, temperature data is obtained.

【0012】請求項2に記載された差動式熱感知器は、
上記1つのサーミスタには、高域、中域、低域の温度測
定領域を分担する3種類の抵抗素子が、対応したスイチ
ング手段によって切替え可能に接続された構成となって
おり、請求項3では、上記抵抗素子の各々は、1つのサ
ーミスタに対し、対応して設けたスイッチング手段の切
替え操作によって温度測定領域を分担する抵抗分圧回路
を形成する構成となっており、請求項4では、上記抵抗
素子は、1つのサーミスタに対して、予め直列に接続さ
れており、対応して設けたスイッチング手段の切替え操
作によって、抵抗分圧回路の出力を加算的に変化させる
構成となっている。
The differential thermal sensor according to claim 2 is
The one thermistor is configured such that three types of resistance elements, which share temperature measurement regions of high band, middle band, and low band, are switchably connected by corresponding switching means. Each of the resistance elements is configured to form a resistance voltage dividing circuit that shares a temperature measurement region with a switching operation of switching means provided corresponding to one thermistor. The resistance element is connected in series to one thermistor in advance, and the output of the resistance voltage dividing circuit is additively changed by the switching operation of the corresponding switching means.

【0013】[0013]

【実施例】以下に本発明の一実施例を説明する。図2
(a)は、本発明の差動式熱感知器の要部である温度検
知部を示した図であり、図2(b)はスイッチング手段
SW1〜SW3を切替えてA/D変換する手順を表とし
て示したものである(請求項2,3)。図に見るよう
に、電池による定電圧電源VINが印加されるようにした
1つのサーミスタRTHに対して、3種類の抵抗素子R
1,R2,R3をスイッチング手段SW1,SW2,S
W3によって切替え可能に接続し、各々の抵抗R1,R
2,R3の入力端をA/Dコンバータに入力しており、
スイッチング手段SW1,SW2,SW3の他端は電池
VINの負極端子に接続されている。
EXAMPLE An example of the present invention will be described below. Figure 2
FIG. 2A is a diagram showing a temperature detection unit which is a main part of the differential heat sensor of the present invention, and FIG. 2B shows a procedure of switching the switching means SW1 to SW3 to perform A / D conversion. It is shown as a table (claims 2 and 3). As shown in the figure, for one thermistor RTH to which a constant voltage power supply VIN by a battery is applied, three types of resistance elements R
1, R2, R3 are switching means SW1, SW2, S
Connected switchably by W3, each resistor R1, R
The input terminals of 2, R3 are input to the A / D converter,
The other ends of the switching means SW1, SW2 and SW3 are connected to the negative terminal of the battery VIN.

【0014】ここに、抵抗素子R1,R2,R3は、こ
れに対応して設けたスイッチング手段SW1,SW2,
SW3を選択的に閉じることによって、抵抗分圧回路が
形成され、この抵抗分圧回路は、差動式熱感知器によっ
て測定可能な温度測定領域(−10〜80℃)のうち予
め分割された温度測定領域の低域T1(−10〜20
℃)、中域T2(20〜50℃)、高域T3(50〜8
0℃)を分担するようになっており、それぞれの抵抗分
圧回路からの抵抗分圧出力は、低域T1(−10〜20
℃)、中域T2(20〜50℃)、高域T3(50〜8
0℃)の温度領域においては、外気温度と温度データと
はリニアに補正された温度データが得られるようになっ
ている。
Here, the resistance elements R1, R2 and R3 are the switching means SW1, SW2 provided corresponding to them.
By selectively closing SW3, a resistance voltage dividing circuit is formed, and this resistance voltage dividing circuit is pre-divided in the temperature measurement range (-10 to 80 ° C) that can be measured by the differential thermal sensor. Low temperature range T1 (-10 to 20
C), middle range T2 (20 to 50 C), high range T3 (50 to 8)
0 ° C.), and the resistance voltage division output from each resistance voltage division circuit is in the low range T1 (−10 to 20).
C), middle range T2 (20 to 50 C), high range T3 (50 to 8)
In the temperature range of 0 ° C., the outside air temperature and the temperature data are linearly corrected temperature data.

【0015】ついで、本発明による温度データの算出手
順を説明する。本発明によれば、次のような手順で外気
温度が検知され、A/D変換された後、マイコンによっ
てリニアに補正された温度データが算出される。 [手順1]SW2のみを閉じて、サーミスタRTHと抵
抗R2との分圧値をマイコンMC内のA/Dコンバータ
CVでA/D変換し、A/D変換された値を温度データ
Dx2’としてマイコンMCのRAMに格納する。 [手順2]手順1によって取り込んだ温度データDx
2’によって、現在の外気温度が−10〜20℃(低
域)、20〜50℃(中域)、50〜80℃(高域)の
温度測定領域のうちどの温度測定領域かを判定する。
Next, a procedure for calculating temperature data according to the present invention will be described. According to the present invention, the outside air temperature is detected and A / D converted in the following procedure, and then the temperature data linearly corrected by the microcomputer is calculated. [Procedure 1] Only SW2 is closed, the divided voltage value of the thermistor RTH and the resistor R2 is A / D converted by the A / D converter CV in the microcomputer MC, and the A / D converted value is set as the temperature data Dx2 ′. It is stored in the RAM of the microcomputer MC. [Procedure 2] Temperature data Dx acquired by procedure 1
2'determines which temperature measurement area the current outside air temperature is from -10 to 20 ° C (low range), 20 to 50 ° C (medium range), and 50 to 80 ° C (high range). .

【0016】この場合の判定基準は、Dx2’<72な
らば、温度測定領域は低域T1、つまり、−10〜20
℃ 72≦Dx2’<152ならば、温度測定領域は中域T
2、つまり、20〜50℃ 152<Dx2ならば、温度測定領域は高域T3、つま
り、50〜80℃と判断する。 [手順3]温度データDx2’によって判別された温度
測定領域によって、次の3つの方法が選択され、実行さ
れる。 <手順3−1>温度データDx2’によって、温度測定
領域が20〜50℃と判別されたならば、手順1で取り
込んだ温度データDx2’をそのまま演算してリニアに
補正された温度データDx2を求め、マイコンMCのR
AMに格納する(Dx2’に上書きする)。
The determination criterion in this case is that if Dx2 '<72, the temperature measurement region is the low region T1, that is, -10 to 20.
If ℃ 72 ≦ Dx2 ′ <152, the temperature measurement area is the middle area T
2, that is, 20 to 50 ° C. 152 <Dx2, it is determined that the temperature measurement region is the high region T3, that is, 50 to 80 ° C. [Procedure 3] The following three methods are selected and executed according to the temperature measurement region determined by the temperature data Dx2 '. <Procedure 3-1> When the temperature measurement region is determined to be 20 to 50 ° C. by the temperature data Dx2 ′, the temperature data Dx2 ′ acquired in the procedure 1 is directly calculated to obtain the linearly corrected temperature data Dx2. Find, R of microcomputer MC
Store in AM (overwrite Dx2 ').

【0017】このとき、Dx2は、Dx2=Dx2’x
7/8+40として算出する。 <手順3−2>温度データDx2’によって、温度測定
領域が−10〜20℃と判別されたならば、スイッチン
グ手段SW1のみを閉じサーミスタRTHと抵抗R1と
の分圧値をマイコンMCのA/DコンバータCVでA/
D変換し,A/D変換された値を温度データDx1’と
してマイコンMCのRAMに格納する(Dx2’に上書
きする)。
At this time, Dx2 is Dx2 = Dx2'x
Calculated as 7/8 + 40. <Procedure 3-2> If the temperature measurement region is determined to be −10 to 20 ° C. based on the temperature data Dx2 ′, only the switching means SW1 is closed and the partial pressure value between the thermistor RTH and the resistor R1 is A / of the microcomputer MC. A / with D converter CV
The D-converted and A / D-converted value is stored in the RAM of the microcomputer MC as the temperature data Dx1 ′ (overwritten on Dx2 ′).

【0018】更に、温度データDx1’に対し演算を行
い、リニア補正された温度データDx1を求め、マイコ
ンMCのRAMに格納する(Dx1’に上書きする)。
このとき、Dx1は、Dx1=Dx1’x3/4−17
として算出する。 <手順3−3>温度データDx2’によって、温度測定
領域が50〜80℃と判別されたならば、SW3のみを
閉じ、サーミスタRTHと抵抗R3との分圧値をマイコ
ンMCのA/DコンバータCVでA/D変換し、A/D
変換された値を温度データDx3’としてマイコンMC
のRAMに格納する(Dx2’に上書きする)。
Further, the temperature data Dx1 'is calculated to obtain the linearly corrected temperature data Dx1 and stored in the RAM of the microcomputer MC (overwriting Dx1').
At this time, Dx1 is Dx1 = Dx1′x3 / 4 / 4-17
Calculate as <Procedure 3-3> If the temperature measurement region is determined to be 50 to 80 ° C. by the temperature data Dx2 ′, only SW3 is closed and the partial pressure values of the thermistor RTH and the resistor R3 are converted into the A / D converter of the microcomputer MC. A / D conversion by CV, A / D
The converted value is used as the temperature data Dx3 ', and the microcomputer MC
Stored in the RAM (overwriting Dx2 ′).

【0019】更に温度データDx3に対し演算を行い、
リニア補正された温度データDx3を求めマイコンMC
のRAMに格納する(Dx3’に上書きする)。このと
き、Dx3は、Dx3=Dx3’+97として算出す
る。以上の手順を図1のステップ100〜113に示
す。本発明では、上記手順で処理を行うことにより、温
度測定領域20〜50℃ではA/D変換はDx2’を求
める際の1回のみでよく、又温度測定領域−10〜20
℃、50〜80℃ではA/D変換はDx2’、Dx
1’、Dx3’を算出する際の2回でよい。
Further, calculation is performed on the temperature data Dx3,
Microcomputer MC for obtaining linearly corrected temperature data Dx3
Stored in the RAM (overwriting Dx3 ′). At this time, Dx3 is calculated as Dx3 = Dx3 ′ + 97. The above procedure is shown in steps 100 to 113 of FIG. In the present invention, by performing the treatment in the above procedure, the A / D conversion in the temperature measurement region of 20 to 50 ° C. may be performed only once when obtaining Dx2 ′, and the temperature measurement region of −10 to 20.
A / D conversion is Dx2 ', Dx at 50 ℃ to 80 ℃
Two times are required when calculating 1 ′ and Dx3 ′.

【0020】図3は、1つのサーミスタに対して、5つ
の抵抗素子R1〜R5をスイッチング手段SW1〜SW
5によって切替え接続して5つの分圧抵抗回路を形成で
きるようにした温度検知部を示したもので、同図(a)
は温度検知部の回路図、同図(b)は本発明を適用した
場合における5つのスイッチングSW1〜SW5の切替
え接続の順序を示している(請求項1,3)。5つのス
イッチングSW1〜SW5の切替え接続によって形成さ
れる抵抗分圧回路は、差動式熱感知器によって測定可能
な温度測定領域を5つに予め分割した温度測定領域を分
担するようになっており、SW3の閉成によって形成さ
れる抵抗分圧回路は、測定可能な温度測定領域の中域を
分担し、SW1,SW2,SW3,SW4,SW5の順
に高い温度測定領域を分担するようになっている。
In FIG. 3, five resistance elements R1 to R5 are connected to one thermistor and switching means SW1 to SW.
5 shows a temperature detecting section which is switchably connected by 5 to form five voltage dividing resistor circuits.
Shows a circuit diagram of the temperature detection unit, and FIG. 7B shows the order of switching connection of the five switching switches SW1 to SW5 when the present invention is applied (claims 1 and 3). The resistance voltage dividing circuit formed by the switching connection of the five switching switches SW1 to SW5 shares the temperature measurement region obtained by dividing the temperature measurement region that can be measured by the differential heat sensor into five in advance. , SW3 is formed by the resistance voltage divider circuit that shares the middle region of the measurable temperature measurement region and the higher temperature measurement region in the order of SW1, SW2, SW3, SW4, and SW5. There is.

【0021】このような構成では、スイッチング手段S
W1〜SW5を閉じ、A/D変換する回数は、最高3回
で済ますことが出来る。図4は、1つのサーミスタに対
して、6つの抵抗素子R1〜R6をスイッチング手段S
W1〜SW6によって切替えて6つの分圧抵抗回路を形
成するようにした温度検知部を示したもので、同図
(a)は温度検知部の回路図、同図(b)は本発明を適
用した場合における6つのスイッチングSW1〜SW6
の切替え接続の順序を示している(請求項1,3)。
In such a configuration, the switching means S
You can close W1-SW5 and perform A / D conversion up to 3 times. In FIG. 4, six resistance elements R1 to R6 are connected to the switching means S for one thermistor.
This figure shows a temperature detection part that is switched by W1 to SW6 to form six voltage dividing resistance circuits. FIG. 7A is a circuit diagram of the temperature detection part, and FIG. 6 switchings SW1 to SW6
The order of the switching connection is shown (claims 1 and 3).

【0022】SW3あるいはSW4は、差動式熱感知器
によって測定可能な温度測定領域の中域を分担し、スイ
ッチング手段SW1,SW2,SW3,SW4,SW
5、SW6の切替えによって形成される抵抗分圧回路の
順に高い温度測定領域を分担するようになっている。差
動式熱感知器によって測定される温度測定領域は、偶数
となる6つの抵抗分圧回路によって分担しているので、
温度測定領域の中域としては、SW3、SW4を選択で
き、図4(b)では、SW3を最初に切替え接続して抵
抗分圧回路を形成している。次に切替え接続するスイッ
チング手段はSW2かSW5が選択され、このような構
成でも、A/D変換は最高3回で済む。
SW3 or SW4 shares the middle region of the temperature measuring region that can be measured by the differential heat sensor, and the switching means SW1, SW2, SW3, SW4, SW.
5, the resistance voltage dividing circuit formed by switching SW6 is shared in order of the higher temperature measurement region. The temperature measurement area measured by the differential heat sensor is shared by the even number of six resistor voltage divider circuits.
SW3 and SW4 can be selected as the middle region of the temperature measurement region. In FIG. 4B, SW3 is first switched and connected to form a resistance voltage dividing circuit. Next, SW2 or SW5 is selected as the switching means to be switched and connected, and even with such a configuration, A / D conversion can be performed up to three times.

【0023】このように本発明では、予め分割された複
数の温度測定領域のうち、ほぼ中域を分担するスイッチ
ング手段を閉じて得られた抵抗分圧出力によって、外気
温度が温度測定領域の中域より低い側か高い側か、ある
いは中域側に属するかを判別し、この判別の結果、外気
温度の含まれた温度測定領域のほぼ中域を分担するスイ
ッチング手段を閉じて抵抗分圧出力を得る動作を繰り返
し、外気温度の含まれた温度測定領域を順次縮小させな
がら、外気温度の属する温度測定領域を検索し、最後に
外気温度の属する分割された温度測定領域を分担するス
イッチング手段を閉じて得られた抵抗分圧出力を、A/
D変換した後、リニアに補正して温度データを得る方法
を採用しているので、マイコンMCのA/D変換時の大
電流が流れる回数を少なくすることができ、熱感知器の
消費電流を少なくすることができる。 図5では1つの
サーミスタRTHに対して、抵抗素子RA〜RCを予め
直列に接続し、各々の抵抗素子RA,RB,RCの接続
部にスイッチング手段SW1、SW2,SW3を設けて
温度検知部を構成しており、スイッチング手段SW1,
SW2,SW3の切替え操作によって、抵抗分圧回路の
出力を順次加算的に変化させる構成となっている(請求
項4)。
As described above, according to the present invention, the outside air temperature in the temperature measurement region is determined by the resistance partial pressure output obtained by closing the switching means for sharing the substantially middle region among the plurality of temperature measurement regions divided in advance. It is determined whether it is on the lower side, the higher side, or the middle range side than the range, and as a result of this determination, the switching means that shares almost the middle range of the temperature measurement area including the outside air temperature is closed and the resistance partial pressure output The operation of obtaining the temperature is repeated, the temperature measurement area including the outside air temperature is sequentially reduced, the temperature measurement area to which the outside air temperature belongs is searched, and finally, the switching means that shares the divided temperature measurement area to which the outside air temperature belongs is allocated. The resistance partial pressure output obtained by closing is
Since the method of obtaining temperature data by linearly correcting after D conversion is adopted, the number of times a large current flows during A / D conversion of the microcomputer MC can be reduced, and the current consumption of the heat sensor can be reduced. Can be reduced. In FIG. 5, the resistance elements RA to RC are connected in series to one thermistor RTH in advance, and switching means SW1, SW2 and SW3 are provided at the connection parts of the respective resistance elements RA, RB and RC to provide a temperature detection part. The switching means SW1,
The output of the resistance voltage dividing circuit is sequentially and additively changed by the switching operation of SW2 and SW3 (claim 4).

【0024】このような構成では、スイッチング手段S
W1のみを閉じたときには、サーミスタRTHに抵抗R
Aの接続された抵抗分圧回路が形成され、その抵抗分圧
出力がA/DコンバータCVに入力され、スイッチング
手段SW2のみを閉じたときには、サーミスタRTHに
抵抗RAとRBの接続された抵抗分圧回路が形成され、
その抵抗分圧出力がA/DコンバータCVに入力され、
スイッチング手段SW3のみを閉じたときには、サーミ
スタRTHに抵抗RAとRBとRCの接続された抵抗分
圧回路が形成され、その抵抗分圧出力がA/Dコンバー
タCVに入力される。したがって、この場合において図
2(a)との関係は、 R1=RA R2=RA+RB R3=RA+RB+RCとなり、 スイッチング手段SW1,SW2,SW3の切替えによ
って形成される抵抗分圧回路は、差動式熱感知器によっ
て測定される温度測定領域の低域、中域、高域を分担さ
せればよい。
In such a configuration, the switching means S
When only W1 is closed, the thermistor RTH has a resistor R
When a resistance voltage dividing circuit to which A is connected is formed, the resistance voltage dividing output is input to the A / D converter CV, and only the switching means SW2 is closed, the resistance voltage dividing resistor RA and RB are connected to the thermistor RTH. A pressure circuit is formed,
The divided resistance output is input to the A / D converter CV,
When only the switching means SW3 is closed, a resistance voltage dividing circuit in which resistors RA, RB and RC are connected is formed in the thermistor RTH, and the resistance voltage dividing output is input to the A / D converter CV. Therefore, in this case, the relationship with FIG. 2A is R1 = RA R2 = RA + RB R3 = RA + RB + RC, and the resistance voltage dividing circuit formed by switching the switching means SW1, SW2, SW3 is a differential thermal sensing circuit. It suffices to share the low, middle and high regions of the temperature measurement region measured by the instrument.

【0025】従って、このような方法では、マイコンM
CのA/D変換時の大電流が流れる回数を少なくするこ
とができ、熱感知器の消費電流を少なくすることができ
る。また、使用するRAM容量も全て上書きでき、従来
の方法に比べ少ないRAM容量で良く、RAM容量にも
充分な余裕ができる。このような本発明では、差動式熱
感知器に必要な広い温度測定領域(−10〜80℃)を
複数の温度測定領域に分割し、サーミスタ温度特性を線
形化する場合、最初には、温度測定領域のほぼ中域を分
担する抵抗分圧回路を用いてA/D変換し、外気温度を
判定してから、A/D変換をしているので、A/D変換
の回数が少なくなり、使用するRAM容量も少なくでき
る。
Therefore, in such a method, the microcomputer M
The number of times a large current flows at the time of A / D conversion of C can be reduced, and the current consumption of the heat sensor can be reduced. Further, the RAM capacity to be used can be entirely overwritten, and the RAM capacity can be reduced as compared with the conventional method, and the RAM capacity can be sufficiently spared. In the present invention as described above, when a wide temperature measurement region (−10 to 80 ° C.) required for the differential thermal sensor is divided into a plurality of temperature measurement regions and the thermistor temperature characteristic is linearized, first, Since the A / D conversion is performed using the resistance voltage divider circuit that shares almost the middle region of the temperature measurement region, and the A / D conversion is performed after determining the outside air temperature, the number of A / D conversions is reduced. The RAM capacity used can also be reduced.

【0026】[0026]

【発明の効果】請求項1〜4において提案された本発明
の差動式熱感知器によれば、前述の通り、A/D変換す
る回数を従来の手順に比べて少なくすることができ、そ
のためA/D変換に伴う熱感知器の消費容量を少なくす
ることが可能となる。また、A/D変換する回数が少な
くなるので、使用するRAM容量も少なくでき、そのた
めRAM容量に余裕を持つことができ、少なくなった使
用RAM容量を他の用途に使用することができる。
As described above, according to the differential thermal sensor of the present invention proposed in claims 1 to 4, the number of A / D conversions can be reduced as compared with the conventional procedure. Therefore, it is possible to reduce the consumption capacity of the heat sensor associated with A / D conversion. Further, since the number of times of A / D conversion is reduced, the RAM capacity to be used can be reduced, so that the RAM capacity can have a margin, and the reduced RAM capacity used can be used for other purposes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の差動式熱感知器における温度測定の基
本動作手順を示したフローチャートである。
FIG. 1 is a flowchart showing a basic operation procedure of temperature measurement in a differential heat sensor of the present invention.

【図2】(a)は本発明の差動式熱感知器の熱検知部
(温度測定領域を3つに分割構成した例)の基本構成を
示したブロック図、(b)はA/D変換の順序を示す説
明図である。
FIG. 2 (a) is a block diagram showing a basic configuration of a heat detector (an example in which a temperature measurement region is divided into three parts) of a differential heat detector of the present invention, and FIG. 2 (b) is an A / D. It is explanatory drawing which shows the order of conversion.

【図3】(a)は本発明の差動式熱感知器の熱検知部
(温度測定領域を5つに分割構成した例)の基本構成を
示したブロック図、(b)はA/D変換の順序を示す説
明図である。
FIG. 3 (a) is a block diagram showing a basic configuration of a heat detector (an example in which a temperature measurement region is divided into five parts) of a differential heat detector of the present invention, and FIG. 3 (b) is an A / D. It is explanatory drawing which shows the order of conversion.

【図4】(a)は本発明の差動式熱感知器の熱検知部
(温度測定領域を6つに分割構成した例)の基本構成を
示したブロック図、(b)はA/D変換の順序を示す説
明図である。
FIG. 4A is a block diagram showing a basic configuration of a heat detector (an example in which a temperature measurement region is divided into six parts) of a differential heat detector of the present invention, and FIG. 4B is an A / D. It is explanatory drawing which shows the order of conversion.

【図5】本発明の差動式熱感知器の熱検知部の基本構成
(請求項4)を示したブロック図である。
FIG. 5 is a block diagram showing a basic configuration (Claim 4) of the heat detecting portion of the differential heat sensor of the present invention.

【図6】差動式熱感知器の熱検知部の基本構成を示した
ブロック図である。
FIG. 6 is a block diagram showing a basic configuration of a heat detector of the differential heat detector.

【図7】差動式熱感知器における温度測定の従来の基本
動作手順を示したフローチャートである。
FIG. 7 is a flowchart showing a conventional basic operation procedure of temperature measurement in the differential heat sensor.

【符号の説明】[Explanation of symbols]

VIN ・・・定電圧源 RTH・・・サーミスタ R1,R2,R3,R4,R5,R6・・・抵抗素子 MC・・・マイコン CV・・・A/Dコンバータ T1,T2,T3・・・分割された温度測定領域 VIN ・ ・ ・ Constant voltage source RTH ・ ・ ・ Thermistor R1, R2, R3, R4, R5, R6 ・ ・ ・ Resistor element MC ・ ・ ・ Microcomputer CV ・ ・ ・ A / D converter T1, T2, T3 ・ ・ ・ Split Temperature measurement area

【手続補正書】[Procedure amendment]

【提出日】平成6年8月30日[Submission date] August 30, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】[0026]

【発明の効果】請求項1〜4において提案された本発明
の差動式熱感知器によれば、前述の通り、A/D変換す
る回数を従来の手順に比べて少なくすることができ、そ
のためA/D変換に伴う熱感知器の消費電流を少なくす
ることが可能となる。また、A/D変換する回数が少な
くなるので、使用するRAM容量も少なくでき、そのた
めRAM容量に余裕を持つことができ、少なくなった使
用RAM容量を他の用途に使用することができる。
As described above, according to the differential thermal sensor of the present invention proposed in claims 1 to 4, the number of A / D conversions can be reduced as compared with the conventional procedure. Therefore, it is possible to reduce the current consumption of the heat sensor due to A / D conversion. Further, since the number of times of A / D conversion is reduced, the RAM capacity to be used can be reduced, so that the RAM capacity can have a margin, and the reduced RAM capacity used can be used for other purposes.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】定電圧電源に対して、1つのサーミスタ
に、予め分割された温度測定領域を分担する抵抗素子を
スイッチング手段によって切替え選択可能に接続し、ス
イッチング手段の切替えによって形成される抵抗分圧出
力をA/Dコンバータでデジタル信号に変換した後、C
PUを含む制御手段によって、リニアに補正して外気の
温度データを得るようにした差動式熱感知器において、 上記スイッチング手段の切替えによって、上記サーミス
タに選択的に接続される抵抗素子は、分担する温度測定
領域毎にリニアに変化する温度データが得られるものが
予め選択されており、 上記制御手段は、予め分割された複数の温度測定領域の
うち、ほぼ中域を分担するスイッチング手段を閉じて得
られた抵抗分圧出力によって、外気温度が温度測定領域
の中域より低い側か高い側か、あるいは中域側に属する
かを判別し、 この判別の結果、外気温度の含まれた温度測定領域のほ
ぼ中域を分担するスイッチング手段を閉じて抵抗分圧出
力を得る動作を繰り返し、外気温度の含まれた温度測定
領域を順次縮小させながら、外気温度の属する温度測定
領域を検索し、最後に外気温度の属する分割された温度
測定領域を分担するスイッチング手段を閉じて得られた
抵抗分圧出力を、A/D変換した後、リニアに補正して
温度データを得るようにした差動式熱感知器。
1. A constant voltage power supply, wherein a resistance element formed by switching the switching means is connected to one thermistor so as to be switchably selectable by a resistance element which divides a temperature measurement region divided in advance. After converting the pressure output into a digital signal with an A / D converter, C
In a differential thermal sensor in which temperature data of outside air is linearly corrected by control means including PU, the resistive element selectively connected to the thermistor is shared by switching the switching means. The temperature data that changes linearly for each temperature measurement region is selected in advance, and the control unit closes the switching unit that shares almost the middle region of the plurality of temperature measurement regions divided in advance. Based on the resistance partial pressure output obtained as a result, it is determined whether the outside air temperature is lower, higher, or belongs to the middle range of the temperature measurement area.As a result of this determination, the temperature that includes the outside air temperature is determined. The operation to obtain the resistance partial pressure output is repeated by closing the switching means that shares almost the middle region of the measurement area, and the temperature measurement area that includes the outside air temperature is gradually reduced while the outside air temperature is reduced. Of the temperature measurement region to which the outside air temperature belongs is searched, and finally, the resistance partial pressure output obtained by closing the switching means for sharing the divided temperature measurement region to which the outside air temperature belongs is A / D converted and then linearly corrected. A differential type heat sensor designed to obtain temperature data.
【請求項2】請求項1に記載の差動式熱感知器におい
て、 上記1つのサーミスタには、高域、中域、低域の温度測
定領域を分担する3種類の抵抗素子が、対応した3つの
スイチング手段によって切替え可能に接続された構成と
した差動式熱感知器。
2. The differential thermal sensor according to claim 1, wherein the one thermistor corresponds to three types of resistance elements that share temperature measurement regions of a high band, a middle band and a low band. A differential heat sensor configured to be switchably connected by three switching means.
【請求項3】上記抵抗素子の各々は、1つのサーミスタ
に対し、対応して設けたスイッチング手段の切替え操作
によって温度測定領域を分担する抵抗分圧回路を形成す
る構成とした請求項1または2に記載の差動式熱感知
器。
3. Each of the resistance elements is configured to form a resistance voltage dividing circuit that shares a temperature measurement region with one thermistor by switching operation of corresponding switching means. The differential thermal sensor described in.
【請求項4】上記抵抗素子は、1つのサーミスタに対し
て、予め直列に接続されており、対応して設けたスイッ
チング手段の切替え操作によって、抵抗分圧回路の出力
を加算的に変化させる構成とした請求項1または2に記
載の差動式熱感知器。
4. A structure in which the resistance element is connected in series to one thermistor in advance, and the output of the resistance voltage dividing circuit is additively changed by switching operation of corresponding switching means. The differential thermal sensor according to claim 1 or 2.
JP6057855A 1994-03-28 1994-03-28 Differential heat detector Expired - Lifetime JP2990569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6057855A JP2990569B2 (en) 1994-03-28 1994-03-28 Differential heat detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6057855A JP2990569B2 (en) 1994-03-28 1994-03-28 Differential heat detector

Publications (2)

Publication Number Publication Date
JPH07272155A true JPH07272155A (en) 1995-10-20
JP2990569B2 JP2990569B2 (en) 1999-12-13

Family

ID=13067613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6057855A Expired - Lifetime JP2990569B2 (en) 1994-03-28 1994-03-28 Differential heat detector

Country Status (1)

Country Link
JP (1) JP2990569B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242865A (en) * 2005-03-04 2006-09-14 Matsushita Electric Works Ltd Temperature measuring device
JP2009053890A (en) * 2007-08-27 2009-03-12 Nohmi Bosai Ltd Heat sensor
JP2014095596A (en) * 2012-11-08 2014-05-22 Honda Motor Co Ltd Temperature detection device
JP2014095659A (en) * 2012-11-12 2014-05-22 Honda Motor Co Ltd Temperature detection circuit
WO2018087991A1 (en) * 2016-11-09 2018-05-17 株式会社デンソー Thermistor drive circuit
CN114072683A (en) * 2019-05-27 2022-02-18 Oppo广东移动通信有限公司 Temperature measuring method and device and storage medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242865A (en) * 2005-03-04 2006-09-14 Matsushita Electric Works Ltd Temperature measuring device
JP4613643B2 (en) * 2005-03-04 2011-01-19 パナソニック電工株式会社 Temperature measuring device
JP2009053890A (en) * 2007-08-27 2009-03-12 Nohmi Bosai Ltd Heat sensor
JP2014095596A (en) * 2012-11-08 2014-05-22 Honda Motor Co Ltd Temperature detection device
JP2014095659A (en) * 2012-11-12 2014-05-22 Honda Motor Co Ltd Temperature detection circuit
WO2018087991A1 (en) * 2016-11-09 2018-05-17 株式会社デンソー Thermistor drive circuit
CN114072683A (en) * 2019-05-27 2022-02-18 Oppo广东移动通信有限公司 Temperature measuring method and device and storage medium
EP3978937A4 (en) * 2019-05-27 2022-06-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Temperature measurement method and apparatus, and storage medium
CN114072683B (en) * 2019-05-27 2024-01-05 Oppo广东移动通信有限公司 Temperature measurement method and device and storage medium

Also Published As

Publication number Publication date
JP2990569B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
TWI438597B (en) Signal monitoring system and method
US5140302A (en) Vehicle driving condition detecting apparatus
JP4383597B2 (en) Battery detection device and temperature detection method
JPH07272155A (en) Differential type heat sensor
KR100384355B1 (en) Method of measuring temperature using negative temperature coefficient sensor and related devices
JP4613643B2 (en) Temperature measuring device
JPH0310132A (en) Apparatus for detecting driving state of vehicle
JP2005274372A (en) Temperature detector
JPH07286913A (en) Differential heat sensor
JPH0545231A (en) Temperature measuring device
JP2530950B2 (en) Thermistor temperature detection device using AD converter
JPH08293330A (en) Battery temperature detecting device
JP4011181B2 (en) Measuring apparatus and measuring method
JP2018105888A (en) Semiconductor device and battery monitoring system
JPS61199103A (en) Temperature control circuit
JP2626100B2 (en) Multi-point measuring device
JPH06168387A (en) Thermal sensor
JPH06204868A (en) Analog/digital converting circuit
JP2569924B2 (en) Temperature sensor sensitivity variable circuit
KR0159236B1 (en) Method and device for sensing room temperature
JP3203367B2 (en) Photometric device
JP2000193532A (en) A/d converting circuit
JPH0844969A (en) Differential thermal sensor
JPH01216224A (en) Multipoint temperature measuring instrument
JPS63125021A (en) Analog-digital converter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 14

EXPY Cancellation because of completion of term