JP4613643B2 - Temperature measuring device - Google Patents

Temperature measuring device Download PDF

Info

Publication number
JP4613643B2
JP4613643B2 JP2005061363A JP2005061363A JP4613643B2 JP 4613643 B2 JP4613643 B2 JP 4613643B2 JP 2005061363 A JP2005061363 A JP 2005061363A JP 2005061363 A JP2005061363 A JP 2005061363A JP 4613643 B2 JP4613643 B2 JP 4613643B2
Authority
JP
Japan
Prior art keywords
measurement
temperature
resistance
value
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005061363A
Other languages
Japanese (ja)
Other versions
JP2006242865A (en
Inventor
徹 麦生田
正人 南北
就俊 星野
英司 安田
邦晶 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2005061363A priority Critical patent/JP4613643B2/en
Publication of JP2006242865A publication Critical patent/JP2006242865A/en
Application granted granted Critical
Publication of JP4613643B2 publication Critical patent/JP4613643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、温度計測装置に関するものである。   The present invention relates to a temperature measuring device.

従来、この種の温度計測装置は、測定対象の温度が線形的に変化するのに対して抵抗値が略指数関数的に変化する測温抵抗体(図2参照)と、測温抵抗体と直列に接続する1つの定抵抗と、略等間隔的な電圧の変化を読み取るADコンバータ(AD変換器)等を含む制御部とを備え、測温抵抗体の両端電圧に基づいて測定温度を算出する。ところが、測温抵抗体の抵抗値が非線形に変化することにより、測温抵抗体の両端電圧において、高分解能領域(細かい変化まで読み取れる領域)と低分解能領域(粗い変化しか読み取れない領域)の差が大きくなって表れてしまうという問題があった。また、定抵抗の両端電圧に基づいて測定温度を算出する温度計測装置の場合も、図7に示すように、定抵抗の両端電圧において、高分解能領域(図7のC1)と低分解能領域(図7のC2,C3)の差が大きくなって表れてしまうという問題があった。例えば、定抵抗の抵抗値を5.15kΩとした場合、低分解能領域における定抵抗の両端電圧の変化率は約0.6mV/℃である。   Conventionally, this type of temperature measuring device includes a resistance temperature detector (see FIG. 2) whose resistance value changes approximately exponentially while the temperature of the object to be measured changes linearly, and a resistance temperature detector, Equipped with one constant resistor connected in series and a control unit including an AD converter (AD converter) that reads changes in voltage at approximately equal intervals, and calculates the measured temperature based on the voltage across the resistance temperature detector To do. However, the resistance value of the resistance temperature detector changes in a non-linear manner, resulting in a difference between the high resolution area (area where fine changes can be read) and the low resolution area (area where only coarse changes can be read). There was a problem that appeared large. Further, in the case of a temperature measuring device that calculates the measured temperature based on the voltage across the constant resistance, as shown in FIG. 7, the high resolution region (C1 in FIG. 7) and the low resolution region ( There is a problem that the difference between C2 and C3) in FIG. For example, when the resistance value of the constant resistance is 5.15 kΩ, the rate of change of the voltage across the constant resistance in the low resolution region is about 0.6 mV / ° C.

上記問題を解決するために、低分解能領域を低減し、全ての温度範囲で一定以上の測定分解能を有する温度計測装置が提供されている。例えば、特許文献1には、制御装置により、現在の温度が、測定分解能の低い高温領域に達したと判断した場合、測温抵抗体と直列に接続する定抵抗(固定抵抗体)の直列回路のうち、抵抗値の低い定抵抗が属する直列回路を選択的に閉止(オン)するように複数のスイッチ手段の開閉状態をそれぞれ制御する温度計測装置が開示されている。これにより、出力電圧の温度特性は、測定分解能を改善し得る急な傾きに変更されるので、温度が線形的に高くなるにつれて抵抗値が略指数関数的に減少する測温抵抗体を用いた場合であっても、高温領域の測定分解能が改善し測定温度を算出することができる。また、特許文献2には、測温抵抗体を用い、換算表を記憶して測定温度を補正する温度計測装置(温度測定装置)が開示されている。
特開平10−239171号公報(第4,5頁及び第1図) 特開平7−151612号公報(第3頁及び第1図)
In order to solve the above-described problem, a temperature measurement device is provided that has a low resolution region and has a measurement resolution of a certain level or more over the entire temperature range. For example, in Patent Document 1, when a control device determines that the current temperature has reached a high temperature region with low measurement resolution, a series circuit of a constant resistor (fixed resistor) connected in series with a resistance temperature detector Among these, there is disclosed a temperature measuring device that controls the open / closed states of a plurality of switch means so as to selectively close (turn on) a series circuit to which a constant resistance having a low resistance value belongs. As a result, the temperature characteristic of the output voltage is changed to a steep slope that can improve the measurement resolution. Therefore, a resistance temperature detector whose resistance value decreases approximately exponentially as the temperature increases linearly is used. Even in such a case, the measurement resolution in the high temperature region can be improved and the measurement temperature can be calculated. Patent Document 2 discloses a temperature measuring device (temperature measuring device) that uses a resistance temperature detector and stores a conversion table to correct the measured temperature.
JP-A-10-239171 (pages 4 and 5 and FIG. 1) Japanese Patent Laid-Open No. 7-151612 (page 3 and FIG. 1)

しかしながら、上記特許文献1の温度計測装置は、低分解能領域である場合に定抵抗を切り替えているが、各定抵抗に対応する測定領域毎に測定分解能の最適化がされていないので、測定分解能が低下する毎に新たな定抵抗を追加しなければならないという問題があった。また、2つの測定領域の間には、滑らかに変化させるために不感帯(温度が変化しても電圧値の変化として読み取ることができない領域)を設けているので、精度が悪くなるという問題もあった。   However, although the temperature measurement device of Patent Document 1 switches the constant resistance when it is in the low resolution region, the measurement resolution is not optimized for each measurement region corresponding to each constant resistance. There was a problem that a new constant resistance had to be added each time the voltage dropped. In addition, since there is a dead zone (a region that cannot be read as a change in voltage value even if the temperature changes) between the two measurement regions, there is a problem that the accuracy deteriorates. It was.

本発明は上記の点に鑑みて為されたものであり、その目的とするところは、不感帯を設けることなく測定分解能を効率よく上げることができる温度計測装置を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a temperature measurement device capable of efficiently increasing measurement resolution without providing a dead zone.

請求項1に記載の発明は、温度が線形的に変化すると抵抗値が略指数関数的に変化する測温抵抗体と、両端温度における前記測温抵抗体の抵抗値が等比級数的になるように、予め決められた温度領域を複数の測定領域に分割し、測定値を入力し、前記測定値に基づいて、測定温度を算出するか、又は前記測定領域を切り替えて前記測定値を再入力するかの判断を行う制御手段と、それぞれ異なる前記測定領域と対応し、対応する測定領域における前記測温抵抗体の最小値と最大値との間の大きさの抵抗値を有する複数の定抵抗と、隣接する測定領域に対応する2つの定抵抗の抵抗値の積の略平方根値を抵抗値とする補助抵抗とを備え、前記制御手段は、前記複数の定抵抗と前記補助抵抗とを選択的に前記測温抵抗体と直列に接続させる機能を有し、前記隣接する測定領域のうち予め決められた範囲の補助測定領域において、前記隣接する測定領域に対応する2つの定抵抗の両端電圧を前記測定値として入力し当該測定値に基づいて前記定抵抗による仮測定温度を算出し、前記補助抵抗の両端電圧を前記測定値として入力し当該測定値に基づいて前記補助抵抗による仮測定温度を算出し、前記定抵抗による仮測定温度と前記補助抵抗による仮測定温度との平均値を前記測定温度とすることを特徴とする。 According to the first aspect of the present invention, the resistance value of the resistance temperature sensor changes approximately exponentially when the temperature changes linearly, and the resistance value of the resistance temperature sensor at both end temperatures becomes a geometric series. As described above, a predetermined temperature region is divided into a plurality of measurement regions, and a measurement value is input, and a measurement temperature is calculated based on the measurement value, or the measurement value is regenerated by switching the measurement region. Control means for determining whether to input, a plurality of constant values corresponding to the different measurement areas , each having a resistance value having a magnitude between the minimum value and the maximum value of the resistance temperature detector in the corresponding measurement area. A resistance , and an auxiliary resistance having a resistance value that is approximately the square root of the product of the resistance values of two constant resistances corresponding to adjacent measurement regions, and the control means includes the plurality of constant resistances and the auxiliary resistance. The function of selectively connecting in series with the resistance temperature detector Then, in the auxiliary measurement region in a predetermined range among the adjacent measurement regions, voltages at both ends of two constant resistances corresponding to the adjacent measurement regions are input as the measurement values, and the constant measurement is performed based on the measurement values. A temporary measurement temperature by resistance is calculated, a voltage across the auxiliary resistor is input as the measurement value, a temporary measurement temperature by the auxiliary resistance is calculated based on the measurement value, and a temporary measurement temperature by the constant resistance and the auxiliary resistance are calculated. The average value with the temporary measurement temperature is used as the measurement temperature .

この構成では、各測定領域において対応する定抵抗の両端電圧の温度変化に対する変化率を大きくすることができるので、不感帯を設けることなく測定分解能を効率よく上げることができる。この構成では、補助測定領域の最も測定分解能の高い部分を測定領域の境界近傍に設定することができるので、測定分解能を上げることができる。また、白色性の読み取り誤差が発生した場合であっても、定抵抗による仮測定温度と、補助抵抗による仮測定温度との平均値により、上記誤差要因を低減することができる。 In this configuration, since the rate of change of the corresponding constant resistance with respect to the temperature change in each measurement region can be increased, the measurement resolution can be increased efficiently without providing a dead zone. In this configuration, the portion with the highest measurement resolution in the auxiliary measurement region can be set near the boundary of the measurement region, so that the measurement resolution can be increased. Even when a white reading error occurs, the error factor can be reduced by an average value of the temporary measurement temperature by the constant resistance and the temporary measurement temperature by the auxiliary resistance.

請求項2に記載の発明は、請求項1に記載の発明において、前記制御手段が、前記予め決められた温度領域を3以上の前記測定領域に分割し、前記複数の定抵抗の抵抗値が、等比級数的になることを特徴とする。この構成では、複数の定抵抗の抵抗値が等比級数的に設定されるので、測定分解能をさらに上げることができる。   According to a second aspect of the present invention, in the first aspect of the present invention, the control unit divides the predetermined temperature region into three or more measurement regions, and the resistance values of the plurality of constant resistances are determined. It is characterized by being a geometric series. In this configuration, the resistance values of the plurality of constant resistances are set in a geometric series, so that the measurement resolution can be further increased.

請求項3に記載の発明は、請求項1又は2に記載の発明において、前記各定抵抗の抵抗値が、前記対応する測定領域の中間温度における前記測温抵抗体の抵抗値と略等しいことを特徴とする。この構成では、各定抵抗の両端電圧の大きさの範囲を略同一にすることができるので、測定分解能をさらに上げることができる。また、各測定領域内の高温側と低温側との測定分解能を等しくすることができる。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the resistance value of each constant resistance is substantially equal to the resistance value of the resistance temperature detector at an intermediate temperature of the corresponding measurement region. It is characterized by. In this configuration, the range of the magnitude of the voltage across each constant resistor can be made substantially the same, so that the measurement resolution can be further increased. Further, the measurement resolution on the high temperature side and the low temperature side in each measurement region can be made equal.

請求項4に記載の発明は、請求項1〜3のいずれかに記載の発明において、前記制御手段が、隣接する測定領域のうち予め決められた範囲の境界領域において、前記隣接する測定領域に対応する2つの定抵抗の両端電圧を前記測定値として入力し、入力された各測定値に基づいて定抵抗による仮測定温度を算出し、算出された2つの定抵抗による仮測定温度に対し、それぞれ他の測定領域側に近づくにつれて小さくなるように設定された重みをつけ、重みをつけられた2つの定抵抗による仮測定温度の平均値を前記測定温度とすることを特徴とする。この構成では、測定領域を越えて温度を計測する場合に、ユーザが測定領域の境界を意識することなく測定温度を算出することができる。また、不感帯を完全に防止するので、境界領域付近でもさらに高精度に測定温度を測定することができる According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects of the present invention, the control means is arranged in the boundary region of a predetermined range among the adjacent measurement regions, in the adjacent measurement region. The voltage across the two corresponding constant resistances is input as the measurement value, and the temporary measurement temperature by the constant resistance is calculated based on each input measurement value. For the calculated temporary measurement temperature by the two constant resistances, A weight set so as to become smaller as it approaches each other measurement region side is given, and an average value of provisional measurement temperatures by two weighted constant resistances is set as the measurement temperature. With this configuration, when the temperature is measured beyond the measurement area, the measurement temperature can be calculated without the user being aware of the boundary of the measurement area. In addition, the you completely prevent dead zone, it is possible to measure the measured temperature with higher accuracy in the vicinity of the boundary region.

請求項に記載の発明は、請求項に記載の発明において、隣接する測定領域の全てに前記補助抵抗を備え、前記制御手段が、前記隣接する測定領域のうち予め決められた範囲の補助測定領域の全てにおいて、前記判断を行うことを特徴とする。この構成では、隣接する測定領域の全てにおいて、補助測定領域の最も測定分解能の高い部分を測定領域の境界近傍に設定することができるので、測定分解能を上げることができる。 According to a fifth aspect of the present invention, in the first aspect of the present invention, the auxiliary resistance is provided in all of the adjacent measurement areas, and the control means assists a predetermined range of the adjacent measurement areas. The determination is performed in all measurement areas. In this configuration, in all the adjacent measurement areas, the portion with the highest measurement resolution of the auxiliary measurement area can be set near the boundary of the measurement area, so that the measurement resolution can be increased.

請求項に記載の発明は、請求項又はに記載の発明において、前記制御手段が、隣接する補助測定領域のうち予め決められた範囲の補助境界領域において、前記隣接する補助測定領域に対応する2つの補助抵抗の両端電圧を前記測定値として入力し、入力された各測定値に基づいて補助抵抗による仮測定温度を算出し、算出された2つの前記補助抵抗による仮測定温度に対し、それぞれ他の補助測定領域側に近づくにつれて小さくなるように設定された重みをつけ、重みをつけられた2つの補助抵抗による仮測定温度の平均値と、前記定抵抗の両端電圧である測定値に基づいて算出される定抵抗による仮測定温度との平均値を前記測定温度とすることを特徴とする。この構成では、補助測定領域の境界温度を越えて温度を計測する場合に、温度変化に対して測定値を滑らかに変化させることができるので、ユーザが補助測定領域の境界を意識することなく測定温度を算出することができる。また、不感帯が存在しないので、補助境界領域付近でも高精度に測定温度を測定することができる。 The invention according to claim 6 is the invention according to claim 1 or 5 , wherein the control means sets the adjacent auxiliary measurement region in the auxiliary boundary region within a predetermined range among the adjacent auxiliary measurement regions. The voltage across the two corresponding auxiliary resistors is input as the measured value, and the temporary measurement temperature by the auxiliary resistor is calculated based on each input measurement value, and the calculated temporary measurement temperature by the two auxiliary resistors is calculated. A weight set so as to become smaller as it approaches the other auxiliary measurement region side, an average value of temporary measurement temperatures by two weighted auxiliary resistances, and a measurement value that is a voltage across the constant resistance An average value with a temporary measurement temperature by a constant resistance calculated based on is used as the measurement temperature. In this configuration, when the temperature is measured beyond the boundary temperature of the auxiliary measurement area, the measurement value can be changed smoothly with respect to the temperature change, so the user can measure without being aware of the boundary of the auxiliary measurement area. The temperature can be calculated. In addition, since there is no dead zone, the measurement temperature can be measured with high accuracy even in the vicinity of the auxiliary boundary region.

請求項に記載の発明は、請求項1〜のいずれかに記載の発明において、前記制御手段は、標準電圧と前記測定値とを切り替えて入力し、前記標準電圧と前記測定値とから前記測定温度を算出することを特徴とする。 The invention according to claim 7 is the invention according to any one of claims 1 to 6 , wherein the control means switches between a standard voltage and the measured value and inputs the standard voltage and the measured value. The measurement temperature is calculated .

本発明によれば、不感帯を設けることなく測定分解能を効率よく上げることができる。   According to the present invention, the measurement resolution can be efficiently increased without providing a dead zone.

基本形態
先ず、基本形態の基本的な構成について図1〜4を用いて説明する。基本形態の温度計測装置は、図1に示すように、測温抵抗体1と、複数の定抵抗2と、制御部3とを備えている。
( Basic form )
First, a basic configuration of the basic form will be described with reference to FIGS. As shown in FIG. 1, the basic form temperature measuring apparatus includes a resistance temperature detector 1, a plurality of constant resistances 2, and a control unit 3.

測温抵抗体1は、例えばNTC(Negative Temperature Coefficient)のサーミスタ等であり、一端側で直流電圧源(図示せず)と接続し、他端側で複数の定抵抗2と接続している。直流電圧源は直流電圧Vccを供給するものである。上記測温抵抗体1は、図2に示すように、測定対象の温度が線形的に高くなるにつれて抵抗値が略指数関数的に減少する特性を有している。基本形態の測温抵抗体1の抵抗値は、0℃のときが1000kΩであり、1℃上昇する毎に0.9倍になり、100℃のときが0.0265kΩとなる。上記測温抵抗体1の温度測定範囲は0〜100℃である。なお、測温抵抗体1の抵抗値及び温度測定範囲は、上記に限定されるものではなく、用途に応じて適宜選択するものである。 The resistance temperature detector 1 is, for example, a NTC (Negative Temperature Coefficient) thermistor or the like, and is connected to a DC voltage source (not shown) at one end and to a plurality of constant resistors 2 at the other end. The DC voltage source supplies a DC voltage Vcc. As shown in FIG. 2, the resistance temperature detector 1 has a characteristic that the resistance value decreases approximately exponentially as the temperature of the measurement target increases linearly. The resistance value of the resistance thermometer 1 of the basic form is 1000 kΩ at 0 ° C., and increases 0.9 times every time the temperature rises by 1 ° C., and 0.0265 kΩ at 100 ° C. The temperature measuring range of the resistance temperature detector 1 is 0 to 100 ° C. The resistance value and the temperature measurement range of the resistance temperature detector 1 are not limited to the above, and are appropriately selected according to the application.

複数の定抵抗2は、図1に示すように、3つの定抵抗20,21,22を備えている。各定抵抗20,21,22は、一端側で測温抵抗体1と直列に接続し、他端側で後述するスイッチ40,41,42と直列に接続している。上記各定抵抗20,21,22は、マイコン8により設定される測定領域に対応し、両端電圧Vaを測定値としてADコンバータ7に出力する。また、各定抵抗20,21,22の抵抗値rA1,rA2,rA3は、対応する測定領域の中間温度における測温抵抗体1の抵抗値と略等しく、順に172.3kΩ、5.15kΩ、0.154kΩ(図3参照)である。すなわち、各測定領域毎における測温抵抗体1の抵抗値の対数的な中心値と同じ値に設定され、例えば、定抵抗20の抵抗値rA1は、図3のRと同じ抵抗値であり、rA1=1000÷((1000÷0.0265)1/3)1/2(kΩ)である。また、定抵抗20,21,22の抵抗値rA1,rA2,rA3は等比級数的であり、定抵抗21の抵抗値rA2は、定抵抗22の抵抗値rA3の約33.4倍であり、定抵抗20の抵抗値rA1は、定抵抗21の抵抗値rA2の約33.5倍である。これにより、各測定領域内で高温領域と低温領域との測定分解能を略等しくすることができる。なお、定抵抗20,21,22の抵抗値rA1,rA2,rA3は、対応する測定領域における測温抵抗体1の最小値と最大値との間の大きさであってもよい。このように設定したとしても、測定分解能を上げることができる。   The plurality of constant resistances 2 include three constant resistances 20, 21, and 22, as shown in FIG. Each constant resistance 20, 21, 22 is connected in series with the resistance temperature detector 1 on one end side, and connected in series with switches 40, 41, 42 described later on the other end side. Each of the constant resistors 20, 21, 22 corresponds to a measurement region set by the microcomputer 8, and outputs the both-end voltage Va as a measurement value to the AD converter 7. The resistance values rA1, rA2, and rA3 of the constant resistances 20, 21, and 22 are substantially equal to the resistance value of the resistance temperature detector 1 at the intermediate temperature in the corresponding measurement region, and are sequentially 172.3 kΩ, 5.15 kΩ, 0 154 kΩ (see FIG. 3). That is, it is set to the same value as the logarithmic central value of the resistance value of the resistance temperature detector 1 in each measurement region. For example, the resistance value rA1 of the constant resistance 20 is the same resistance value as R in FIG. rA1 = 1000 ÷ ((1000 ÷ 0.0265) 1/3) 1/2 (kΩ). The resistance values rA1, rA2, and rA3 of the constant resistors 20, 21, and 22 are geometric series, the resistance value rA2 of the constant resistor 21 is about 33.4 times the resistance value rA3 of the constant resistor 22, The resistance value rA1 of the constant resistance 20 is about 33.5 times the resistance value rA2 of the constant resistance 21. Thereby, the measurement resolution of the high temperature region and the low temperature region can be made substantially equal in each measurement region. The resistance values rA1, rA2, and rA3 of the constant resistances 20, 21, and 22 may be between the minimum value and the maximum value of the resistance temperature detector 1 in the corresponding measurement region. Even with this setting, the measurement resolution can be increased.

制御部3は、図1に示すように、複数のスイッチ4と、リファレンス電圧生成部5と、標準電圧生成部6と、ADコンバータ7と、マイクロコンピュータ(以下「マイコン」という。)8とを備えている。   As shown in FIG. 1, the control unit 3 includes a plurality of switches 4, a reference voltage generation unit 5, a standard voltage generation unit 6, an AD converter 7, and a microcomputer (hereinafter referred to as “microcomputer”) 8. I have.

複数のスイッチ4は、3つのスイッチ40,41,42を備えている。各スイッチ40,41,42は、一端側で定抵抗20,21,22と直列に接続し、他端側で接地し、マイコン8によりオン及びオフの切り替えが行われる。   The plurality of switches 4 includes three switches 40, 41 and 42. Each switch 40, 41, 42 is connected in series with the constant resistances 20, 21, 22 on one end side and grounded on the other end side, and is switched on and off by the microcomputer 8.

リファレンス電圧生成部5は、2つの抵抗50,51を直列に接続し、直流電圧源(図示せず)から供給される直流電圧Vccを分圧し、分圧された直流電圧をリファレンス電圧としてADコンバータ7に出力している。   The reference voltage generation unit 5 connects two resistors 50 and 51 in series, divides a DC voltage Vcc supplied from a DC voltage source (not shown), and uses the divided DC voltage as a reference voltage for an AD converter. 7 is output.

標準電圧生成部6は、2つの抵抗(分圧用抵抗)60,61と、スイッチ62とを備えている。抵抗60,61は、一定の抵抗値を有して直列に接続し、直流電圧源(図示せず)から供給される直流電圧Vccを分圧している。スイッチ62は、一端側で後述するADコンバータ7の入力ポート70と接続し、他端側で抵抗60と抵抗61との間と接続し、マイコン8によりオン及びオフの切り替えが行われる。スイッチ62がオンになると、抵抗60,61で分圧された直流電圧は、標準電圧として入力ポート70に出力される。   The standard voltage generator 6 includes two resistors (voltage dividing resistors) 60 and 61 and a switch 62. The resistors 60 and 61 have a certain resistance value and are connected in series, and divide the DC voltage Vcc supplied from a DC voltage source (not shown). The switch 62 is connected to an input port 70 of an AD converter 7 to be described later on one end side, and connected between the resistor 60 and the resistor 61 on the other end side, and is switched on and off by the microcomputer 8. When the switch 62 is turned on, the DC voltage divided by the resistors 60 and 61 is output to the input port 70 as a standard voltage.

ADコンバータ7は、例えばIC等で形成されるものであり、定抵抗20,21,22の一端側及び標準電圧生成部6と接続している入力ポート70と、マイコン8と接続している出力ポート71と、リファレンス電圧生成部5と接続しているリファレンス電圧入力ポート72とを備えている。ADコンバータ7は、直流電圧Vccが測温抵抗体1及び定抵抗20,21,22で分圧された定抵抗20,21,22の両端電圧Vaを測定値として入力ポート70に入力し、リファレンス電圧を等分割又は等倍することにより、上記両端電圧Vaをアナログ値からデジタル値に変換する。   The AD converter 7 is formed of, for example, an IC or the like, and has an input port 70 connected to one end side of the constant resistors 20, 21, and 22 and the standard voltage generator 6, and an output connected to the microcomputer 8. A port 71 and a reference voltage input port 72 connected to the reference voltage generator 5 are provided. The AD converter 7 inputs the voltage Va across the constant resistances 20, 21, and 22 obtained by dividing the DC voltage Vcc by the resistance temperature detector 1 and the constant resistances 20, 21, and 22 into the input port 70 as a measured value. The voltage Va is converted from an analog value to a digital value by equally dividing or multiplying the voltage.

ところが、リファレンス入力電圧ポート72と接続している内部回路には内部抵抗73が存在する。上記内部抵抗73は、入力ポート70と接続している内部回路の内部抵抗(図示せず)より影響が大きい。つまり、ADコンバータ7を見ると、リファレンス電圧入力ポート72の内部インピーダンスより入力ポート70の内部インピーダンスのほうが大きくなっている。また、ADコンバータ7がICで形成されている場合、内部抵抗73は、抵抗値のバラツキが大きく、温度変化に対する特性も悪い。このため、ADコンバータ7は、リファレンス電圧生成部5から直流電圧をリファレンス電圧として入力すると、内部抵抗73のバラツキが大きいために、リファレンス電圧にバラツキが発生し、測定精度が悪化するという問題があった。   However, an internal resistor 73 exists in the internal circuit connected to the reference input voltage port 72. The internal resistance 73 has a greater influence than an internal resistance (not shown) of an internal circuit connected to the input port 70. That is, when looking at the AD converter 7, the internal impedance of the input port 70 is larger than the internal impedance of the reference voltage input port 72. Further, when the AD converter 7 is formed of an IC, the internal resistor 73 has a large variation in resistance value and a poor characteristic with respect to a temperature change. For this reason, when the DC voltage is input from the reference voltage generator 5 as the reference voltage, the AD converter 7 has a problem in that the variation in the internal resistance 73 causes a variation in the reference voltage and the measurement accuracy deteriorates. It was.

上記問題を解決するために、ADコンバータ7は、標準電圧生成部6から直流電圧を入力ポート70に入力する(読み取る)。入力された直流電圧を標準電圧とすることにより、内部抵抗73の抵抗値のバラツキが大きい場合であっても、上記標準電圧に基づいてリファレンス電圧を計算し、その真のリファレンス電圧を算出している。   In order to solve the above problem, the AD converter 7 inputs (reads) a DC voltage from the standard voltage generator 6 to the input port 70. By using the input DC voltage as a standard voltage, even if the resistance value of the internal resistor 73 varies greatly, the reference voltage is calculated based on the standard voltage, and the true reference voltage is calculated. Yes.

なお、ADコンバータ7は、複数の入力ポートを複数備えてもよい。このような構成にすると、複数の定抵抗2の両端電圧と、標準電圧生成部6の標準電圧とを別の入力ポートから入力することができる。   The AD converter 7 may include a plurality of input ports. With such a configuration, it is possible to input the voltages across the plurality of constant resistors 2 and the standard voltage of the standard voltage generator 6 from different input ports.

マイコン8は、図3に示すように、予め決められた温度領域(図3では0〜100℃)を3つの測定領域A1,A2,A3に分割している。3つの測定領域A1,A2,A3は、各測定領域A1,A2,A3の両端温度における測温抵抗体1の抵抗値が等比級数的(対数的に等しいもの)になるように分割されている。つまり、温度が0℃、T1、T2、100℃であるときの測温抵抗体1の抵抗値が等比級数的になる(図3のa1,a2,a3参照)。上記マイコン8は、図1に示すように、ADコンバータ7と接続し、両端電圧Vaのアナログ値から変換されたデジタル値をADコンバータ7から入力し、上記入力されたデジタル値に基づいて、測定温度を算出するか、又は、各定抵抗20,21,22の切り替えを行って測定領域A1,A2,A3(図3参照)を切り替えて両端電圧Vaを再入力するかの判断を行う制御手段である。   As shown in FIG. 3, the microcomputer 8 divides a predetermined temperature region (0 to 100 ° C. in FIG. 3) into three measurement regions A1, A2, and A3. The three measurement areas A1, A2 and A3 are divided so that the resistance value of the resistance temperature detector 1 at the temperature at both ends of each of the measurement areas A1, A2 and A3 becomes a geometric series (logarithmically equal). Yes. That is, the resistance value of the resistance thermometer 1 when the temperature is 0 ° C., T1, T2, and 100 ° C. becomes a geometric series (see a1, a2, and a3 in FIG. 3). As shown in FIG. 1, the microcomputer 8 is connected to an AD converter 7 and inputs a digital value converted from an analog value of the voltage Va at both ends from the AD converter 7 and measures based on the input digital value. Control means for calculating temperature or switching each of the constant resistances 20, 21, and 22 to switch between the measurement areas A1, A2, and A3 (see FIG. 3) and re-inputting the both-end voltage Va It is.

次に、基本形態の温度計測装置の動作について説明する。先ず、初期設定について説明する。マイコン8により、複数のスイッチ4を切り替え、定抵抗21をオンにし定抵抗20,22をオフにする。ADコンバータ7により、リファレンス電圧をリファレンス電圧入力ポート72に入力し、標準電圧を入力ポート70に入力する。上記標準電圧をアナログ値からデジタル値に変換し、変換されたデジタル値に基づいて内部抵抗73を推定する。上記推定された内部抵抗73に基づいて真のリファレンス電圧を算出する。続いて、初期設定を行った後について説明する。定抵抗21の両端電圧Vaを入力ポート70に入力する。上記両端電圧Vaに対して、リファレンス電圧を等分割又は等倍して比較を行う。上記比較結果に基づいて、両端電圧Vaをアナログ値からデジタル値に変換し、マイコン8に出力する。次に、マイコン8により、デジタル値に変換された両端電圧Vaを測定領域の最小電圧及び最大電圧(図4参照)と比較する。両端電圧Vaが最小電圧以上であり最大電圧以下である場合、上記両端電圧Vaに基づいて測定温度を算出する。一方、両端電圧Vaが最小電圧より小さい場合、複数のスイッチ4を切り替え、現状より抵抗値の大きい定抵抗20に切り替えて測定領域を低温側にし、ADコンバータ7により、両端電圧Vaを再入力する。両端電圧Vaが最大電圧より大きい場合、複数のスイッチ4を切り替え、現状より抵抗値の小さい定抵抗22に切り替えて測定領域を高温側にし、ADコンバータ7により、両端電圧Vaを再入力する。上記ステップを繰り返すことにより、継続して測定温度を算出することができる。 Next, the operation of the basic form temperature measuring apparatus will be described. First, the initial setting will be described. The microcomputer 8 switches the plurality of switches 4 to turn on the constant resistor 21 and turn off the constant resistors 20 and 22. The reference voltage is input to the reference voltage input port 72 and the standard voltage is input to the input port 70 by the AD converter 7. The standard voltage is converted from an analog value to a digital value, and the internal resistance 73 is estimated based on the converted digital value. A true reference voltage is calculated based on the estimated internal resistance 73. Subsequently, a description will be given after the initial setting. The voltage Va across the constant resistor 21 is input to the input port 70. A comparison is made by dividing the reference voltage by equal division or equal magnification with respect to the both-end voltage Va. Based on the comparison result, the both-end voltage Va is converted from an analog value to a digital value and output to the microcomputer 8. Next, the microcomputer 8 compares the both-ends voltage Va converted into a digital value with the minimum voltage and the maximum voltage (see FIG. 4) in the measurement region. When the both-end voltage Va is not less than the minimum voltage and not more than the maximum voltage, the measured temperature is calculated based on the both-end voltage Va. On the other hand, when the both-end voltage Va is smaller than the minimum voltage, the plurality of switches 4 are switched, the constant resistance 20 having a resistance value larger than the current value is switched to the low temperature side, and the AD converter 7 re-inputs the both-end voltage Va. . When the both-end voltage Va is larger than the maximum voltage, the plurality of switches 4 are switched, the constant resistance 22 having a resistance value smaller than the current value is switched to bring the measurement region to the high temperature side, and the AD converter 7 re-inputs the both-end voltage Va. By repeating the above steps, the measured temperature can be calculated continuously.

以上、基本形態によれば、各測定領域A1,A2,A3において対応する定抵抗20,21,22の両端電圧Vaの温度変化に対する変化率を大きくすることができるので、略全ての温度領域において測定分解能を効率よく上げることができる。また、複数の定抵抗20,21,22の抵抗値rA1,rA2,rA3が等比級数的に設定されるので、測定分解能をさらに上げることができる。さらに、各測定領域A1,A2,A3において両端電圧Vaの大きさの範囲を略同一にすることができるので、測定分解能をさらに上げることができるとともに、各測定領域A1,A2,A3内の高温領域と低温領域との測定分解能を等しくすることができる。 As described above, according to the basic form , the rate of change with respect to the temperature change of the voltage Va across the corresponding constant resistance 20, 21, 22 can be increased in each measurement region A1, A2, A3. Measurement resolution can be increased efficiently. Further, since the resistance values rA1, rA2, and rA3 of the plurality of constant resistors 20, 21, and 22 are set in a geometric series, the measurement resolution can be further increased. Further, since the range of the magnitude of the voltage Va at both ends can be made substantially the same in each measurement region A1, A2, A3, the measurement resolution can be further increased and the high temperature in each measurement region A1, A2, A3 can be increased. The measurement resolution of the region and the low temperature region can be made equal.

なお、基本形態の変形例として、測温抵抗体を、例えばPTC(Positive Temperature Coefficient)であり、測定対象の温度が線形的に高くなるにつれて抵抗値が略指数関数的に減少する特性を有するものであってもよい。このような構成にしても、基本形態と同様の効果を得ることができる。 As a modification of the basic form , the resistance temperature detector is a PTC (Positive Temperature Coefficient), for example, and has a characteristic that the resistance value decreases approximately exponentially as the temperature of the measurement target increases linearly. It may be. Even if it is such a structure, the effect similar to a basic form can be acquired.

また、基本形態の他の変形例として、定抵抗の両端電圧をADコンバータに入力することに代わって、測温抵抗体の両端電圧をADコンバータに入力してもよい。このような構成にしても、基本形態と同様の効果を得ることができる。 Further, as another modification of the basic form , instead of inputting the voltage across the constant resistance to the AD converter, the voltage across the resistance temperature detector may be inputted into the AD converter. Even if it is such a structure, the effect similar to a basic form can be acquired.

他の基本形態の温度計測装置は、基本形態の温度計測装置(図1参照)と同様に、測温抵抗体1と、複数の定抵抗2とを備えているが、基本形態の温度計測装置にはない以下に記載の特徴部分がある。 The temperature measuring device of the other basic form, similar to the temperature measuring device of the basic embodiment (see FIG. 1), and the temperature measuring resistor 1, although a plurality of the constant resistance 2, the temperature measuring device of the basic form There are some features that are not described below.

他の基本形態の制御部3(図1参照)において、マイコン8は、図5に示すように、隣接する2つの測定領域(図5のA1,A2参照)の温度測定範囲(図5の温度測定範囲C1、温度測定範囲C2参照)を広げ、上記測定領域のうち予め決められた重複範囲である境界領域(図5のB1参照)を設けている。なお、マイコン8は、隣接する2つの測定領域A2,A3(図4参照)にも同様に、上記測定領域A2,A3のうち予め決められた重複範囲である境界領域を設定している。例えば、測定領域A1と測定領域A2との間に設けられている境界領域B1におけるマイコン8の動作について説明する。先ず、測定領域A2に対応する定抵抗21の両端電圧を入力し、上記両端電圧に基づいて定抵抗21による仮測定温度Ta2を算出する。続いて、測定領域A1に対応する定抵抗20の両端電圧を入力し、上記両端電圧に基づいて定抵抗20による仮測定温度Ta1を算出する。次に、定抵抗21による仮測定温度Ta2に対し、測定領域A1側に近づくにつれて小さくなるように設定された重みP2をつける。上記重みP2は、温度測定範囲C2で測定領域A2を越える部分について境界温度T1から離れるにつれて軽くし、温度測定範囲C2で測定領域A2を越えない部分について境界温度T1から離れるにつれて重くする。つまり、連続的に重みを変化させている。一方、定抵抗20による仮測定温度Ta1に対し、測定領域A2側に近づくにつれて小さくなるように設定された重みP1をつける。上記重みP1は、温度測定範囲C1で測定領域A1を越える部分について境界温度T1から離れるにつれて軽くし、温度測定範囲C1で測定領域A1を越えない部分について境界温度T1から離れるにつれて重くする。つまり、連続的に重みを変化させている。重みをつけられた定抵抗20による仮測定温度Ta1と定抵抗21による仮測定温度Ta2との平均値を測定温度Taとする。なお、他の基本形態の制御部3は、上記以外の点において、基本形態の制御部3と同様である。 In the control unit 3 (see FIG. 1) of another basic form , the microcomputer 8 has a temperature measurement range (temperature in FIG. 5) in two adjacent measurement regions (see A1 and A2 in FIG. 5) as shown in FIG. The measurement range C1 and the temperature measurement range C2) are expanded, and a boundary region (see B1 in FIG. 5) which is a predetermined overlapping range among the measurement regions is provided. Similarly, the microcomputer 8 sets a boundary region that is a predetermined overlapping range of the measurement regions A2 and A3 in the two adjacent measurement regions A2 and A3 (see FIG. 4). For example, the operation of the microcomputer 8 in the boundary region B1 provided between the measurement region A1 and the measurement region A2 will be described. First, the both-ends voltage of the constant resistance 21 corresponding to the measurement region A2 is input, and the temporary measurement temperature Ta2 by the constant resistance 21 is calculated based on the both-ends voltage. Subsequently, the both-ends voltage of the constant resistance 20 corresponding to the measurement region A1 is input, and the temporary measurement temperature Ta1 by the constant resistance 20 is calculated based on the both-ends voltage. Next, a weight P2 set so as to decrease as it approaches the measurement region A1 side is applied to the temporary measurement temperature Ta2 by the constant resistance 21. The weight P2 is lightly increasing distance from the boundary temperature T1 for the portion exceeding the measurement area A2 in a temperature measurement range C2, heavier increasing distance from the boundary temperature T1 for a portion at a temperature measurement range C2 do not exceed the measurement region A2. That is, the weight is continuously changed. On the other hand, a weight P1 set so as to decrease as it approaches the measurement region A2 side is applied to the temporary measurement temperature Ta1 by the constant resistance 20. The weights P1 is lightly increasing distance from the boundary temperature T1 for a portion at a temperature measurement range C1 exceeds the measurement region A1, heavier increasing distance from the boundary temperature T1 for a portion at a temperature measurement range C1 does not exceed the measurement region A1. That is, the weight is continuously changed. The average value of the provisional measurement temperature Ta1 with the weighted constant resistance 20 and the provisional measurement temperature Ta2 with the constant resistance 21 is defined as the measurement temperature Ta. In addition, the control part 3 of another basic form is the same as the control part 3 of a basic form except the above.

これにより、測定領域の境界点では、各定抵抗が許容範囲内の誤差であったとしても温度変化に不連続な点が出てくることを防止し、境界点を滑らかに接続することができるので、ユーザは境界を意識することなく、この温度計測装置を使用することができる。また、不感帯や不連続な点が発生することがないので、測定領域の境界での温度精度を悪化させることはない。   As a result, even if each constant resistance is an error within the allowable range at the boundary point of the measurement region, it is possible to prevent discontinuous points from appearing in the temperature change, and to smoothly connect the boundary points. Therefore, the user can use this temperature measuring device without being aware of the boundary. Further, since no dead zone or discontinuous points are generated, the temperature accuracy at the boundary of the measurement region is not deteriorated.

以上、他の基本形態によれば、基本形態と同様の効果を得ることができるとともに、測定領域を越えて温度を計測する場合に、ユーザが測定領域の境界を意識することなく測定温度を算出することができる。また、不感帯が存在しないので、境界領域付近でも高精度に測定温度を測定することができる。 As described above, according to the other basic forms , the same effect as the basic form can be obtained, and when the temperature is measured beyond the measurement area, the measurement temperature is calculated without the user being aware of the boundary of the measurement area. can do. Moreover, since there is no dead zone, the measurement temperature can be measured with high accuracy even in the vicinity of the boundary region.

(実施形態
実施形態の温度計測装置は、基本形態の温度計測装置(図1参照)と同様に、測温抵抗体1と、複数の定抵抗2とを備えているが、基本形態の温度計測装置にはない以下に記載の特徴部分がある。
(Embodiment 1 )
Temperature measuring apparatus according to the first embodiment, similar to the temperature measuring device of the basic embodiment (see FIG. 1), and the temperature measuring resistor 1, and a plurality of fixed resistors 2, a temperature measuring device of the basic form There are no features described below.

本実施形態の温度計測装置は、複数(本実施形態では2つ)の補助抵抗(図示せず)を備えている。各補助抵抗は、定抵抗20,21,22(図1参照)と並列になるように、一端側で測温抵抗体1(図1参照)と直列に接続し、他端側で補助スイッチ(図示せず)と直列に接続する。上記各補助抵抗は、マイコン8(図1参照)により設定される補助測定領域に対応し、両端電圧Vaを測定値としてADコンバータ7(図1参照)に出力する。また、各補助抵抗の抵抗値rB1,rB2は、補助する対象の隣接する測定領域A1,A2,A3に対応する2つの定抵抗20,21,22の抵抗値rA1,rA2,rA3の積の略平方根値であり、rB1=(171.2×5.15)1/2=29.8(kΩ)、rB2=(5.15×0.154)1/2=0.88(kΩ)となる。 The temperature measurement device according to the present embodiment includes a plurality (two in the present embodiment ) of auxiliary resistors (not shown). Each auxiliary resistor is connected in series with the resistance temperature detector 1 (see FIG. 1) on one end side in parallel with the constant resistors 20, 21, 22 (see FIG. 1), and an auxiliary switch ( (Not shown) and connected in series. Each auxiliary resistor corresponds to an auxiliary measurement region set by the microcomputer 8 (see FIG. 1), and outputs the voltage Va between both ends as a measured value to the AD converter 7 (see FIG. 1). Also, the resistance values rB1, rB2 of each auxiliary resistor are the abbreviations of the product of the resistance values rA1, rA2, rA3 of the two constant resistances 20, 21, 22, corresponding to the adjacent measurement regions A1, A2, A3 to be supported. It is a square root value, and rB1 = (171.2 × 5.15) 1/2 = 29.8 (kΩ), rB2 = (5.15 × 0.154) 1/2 = 0.88 (kΩ) .

また、本実施形態の制御部3(図1参照)において、マイコン8は、図6に示すように、隣接する測定領域A1,A2,A3のうち予め決められた範囲の補助測定領域(図6のT3−T4間、T4−T5間参照)において、隣接する測定領域A1,A2,A3に対応する2つの定抵抗20,21,22の両端電圧V1,V2,V3に基づく定抵抗による仮測定温度Tb1と、補助抵抗(図示せず)の両端電圧V4,V5に基づく補助抵抗による仮測定温度Tb2との平均値を測定温度Tbとする。なお、本実施形態の制御部3は、上記以外の点において、基本形態の制御部3と同様である。 Further, in the control unit 3 (see FIG. 1) of the present embodiment , as shown in FIG. 6, the microcomputer 8 has an auxiliary measurement region (FIG. 6) in a predetermined range among the adjacent measurement regions A1, A2, and A3. T3-T4, T4-T5), provisional measurement with constant resistance based on voltage V1, V2, V3 across two constant resistances 20, 21, 22 corresponding to adjacent measurement areas A1, A2, A3 An average value of the temperature Tb1 and the provisional measurement temperature Tb2 by the auxiliary resistance based on the both-end voltages V4 and V5 of the auxiliary resistance (not shown) is defined as the measurement temperature Tb. In addition, the control part 3 of this embodiment is the same as that of the control part 3 of a basic form except the above.

以上、本実施形態によれば、基本形態と同様の効果を得ることができるとともに、補助測定領域(図6のT3−T4間、T4−T5間)の最も測定分解能の高い部分(図6のT1,T2の部分)を、測定領域A1,A2,A3の最も測定分解能が低い部分である境界近傍に設定することができ、測定領域A1,A2,A3と補助測定領域(T3−T4間、T4−T5間)とで二重に温度を測定し、それらの平均を取ることができるので、測定分解能を上げることができる。また、白色性の読み取り誤差が発生した場合であっても、定抵抗20,21,22の両端電圧V1,V2,V3に基づく定抵抗による仮測定温度Tb1と、補助抵抗の両端電圧V4,V5に基づく補助抵抗による仮測定温度Tb2との平均値により、上記誤差要因を低減することができる。 As described above, according to the present embodiment , the same effect as that of the basic embodiment can be obtained, and the auxiliary measurement region (between T3 and T4 in FIG. 6, between T4 and T5) has the highest measurement resolution (in FIG. 6). T1, T2 portion) can be set in the vicinity of the boundary where the measurement resolution of the measurement areas A1, A2, A3 is the lowest, and between the measurement areas A1, A2, A3 and the auxiliary measurement areas (between T3-T4, The temperature can be measured twice between T4 and T5, and the average of them can be taken, so that the measurement resolution can be increased. Even when a white reading error occurs, the provisional measurement temperature Tb1 by the constant resistance based on the voltages V1, V2, and V3 across the constant resistances 20, 21, and 22, and the voltages V4 and V5 across the auxiliary resistance. The error factor can be reduced by the average value with the temporary measurement temperature Tb2 by the auxiliary resistance based on the above.

(実施形態
実施形態の温度計測装置は、実施形態の温度計測装置と同様に、測温抵抗体1(図1参照)と、複数の定抵抗2(図1参照)と、複数の補助抵抗(図示せず)とを備えているが、実施形態の温度計測装置にはない以下に記載の特徴部分がある。
(Embodiment 2 )
Similar to the temperature measurement device of the first embodiment, the temperature measurement device of the second embodiment includes a resistance temperature detector 1 (see FIG. 1), a plurality of constant resistors 2 (see FIG. 1), and a plurality of auxiliary resistors (see FIG. 1). However, the temperature measuring device of the first embodiment has the following characteristic part.

本実施形態の制御部3(図1参照)において、マイコン8(図1参照)は、単純な相加平均ではなく、測定領域と補助測定領域の線形度に応じて、定抵抗による仮測定温度と補助抵抗による仮測定温度とに重みをつけて平均を取り、平均値を測定温度としている。なお、本実施形態の制御部3は、上記以外の点において、実施形態の制御部3と同様である。 In the control unit 3 (see FIG. 1) of the present embodiment , the microcomputer 8 (see FIG. 1) is not a simple arithmetic average, but a temporary measurement temperature by a constant resistance according to the linearity of the measurement region and the auxiliary measurement region. And the temporary measured temperature by the auxiliary resistor are weighted and averaged, and the average value is used as the measured temperature. In addition, the control part 3 of this embodiment is the same as that of the control part 3 of Embodiment 1 in points other than the above.

以上、本実施形態によれば、実施形態と同様の効果をさらに上昇して得ることができる。 As described above, according to this embodiment , the same effect as that of Embodiment 1 can be further increased.

(実施形態
実施形態の温度計測装置は、実施形態の温度計測装置と同様に、測温抵抗体1(図1参照)と、複数の定抵抗2(図1参照)と、複数の補助抵抗(図示せず)とを備えているが、実施形態の温度計測装置にはない以下に記載の特徴部分がある。
(Embodiment 3 )
Similar to the temperature measurement device of the first embodiment, the temperature measurement device of the third embodiment includes a resistance temperature detector 1 (see FIG. 1), a plurality of constant resistors 2 (see FIG. 1), and a plurality of auxiliary resistors (see FIG. 1). However, the temperature measuring device of the first embodiment has the following characteristic part.

本実施形態の制御部3(図1参照)において、マイコン8(図1参照)は、隣接する2つの補助測定領域(図6のT3−T4間、T4−T5間)の温度測定範囲を広げ、上記補助測定領域(T3−T4間、T4−T5間)うち予め決められた重複範囲の補助境界領域を設けている。上記補助境界領域において、それぞれの補助測定領域(T3−T4間、T4−T5間)に対応する補助抵抗(図示せず)の両端電圧V4,V5(図6参照)を入力し、上記両端電圧V4,V5に基づいて補助抵抗による仮測定温度Tc1,Tc2を算出する。次に、入力された2つの補助抵抗による仮測定温度Tc1,Tc2に対し、それぞれ他の補助測定領域側に近づくにつれて小さくなるように設定された重みをつける。重みをつけられた2つの補助抵抗による仮測定温度Tc1,Tc2の平均値と、定抵抗20,21,22の両端電圧V1,V2,V3(図6参照)に基づく定抵抗による仮測定温度Tc3との平均値を測定温度Tcとする。なお、本実施形態の制御部3は、上記以外の点において、実施形態の制御部3と同様である。 In the control unit 3 (see FIG. 1) of the present embodiment , the microcomputer 8 (see FIG. 1) expands the temperature measurement range in two adjacent auxiliary measurement areas (between T3-T4 and T4-T5 in FIG. 6). In the auxiliary measurement area (between T3 and T4, between T4 and T5), an auxiliary boundary area having a predetermined overlapping range is provided. In the auxiliary boundary region, voltages V4 and V5 (see FIG. 6) of auxiliary resistors (not shown) corresponding to the respective auxiliary measurement regions (between T3 and T4, between T4 and T5) are input, and the both end voltages are input. Based on V4 and V5, provisional measurement temperatures Tc1 and Tc2 by the auxiliary resistance are calculated. Next, a weight set so as to become smaller as it approaches the other auxiliary measurement region side is given to the temporary measurement temperatures Tc1 and Tc2 by the two input auxiliary resistors. Temporary measurement temperature Tc3 by the constant resistance based on the average value of the temporary measurement temperatures Tc1 and Tc2 by the two weighted auxiliary resistors and the voltages V1, V2 and V3 across the constant resistances 20, 21, and 22 (see FIG. 6). The average value is taken as the measurement temperature Tc. In addition, the control part 3 of this embodiment is the same as that of the control part 3 of Embodiment 1 in points other than the above.

以上、本実施形態によれば、補助測定領域(図6のT3−T4間、T4−T5間)の境界温度を越えて温度を計測する場合に、温度変化に対して測定値を滑らかに変化させることができるので、ユーザが補助測定領域(T3−T4間、T4−T5間)の境界を意識することなく測定温度Tcを算出することができる。また、不感帯が存在しないので、補助境界領域付近でも高精度に測定温度Tcを測定することができる。さらに、測定領域A1,A2,A3と補助測定領域(T3−T4間、T4−T5間)とが重複する範囲を広げることができるので、実施形態と同様の効果をさらに上昇して得ることができる。 As described above, according to the present embodiment , when the temperature is measured beyond the boundary temperature of the auxiliary measurement region (between T3 and T4 in FIG. 6, between T4 and T5), the measurement value changes smoothly with respect to the temperature change. Therefore, the measurement temperature Tc can be calculated without the user being aware of the boundary of the auxiliary measurement region (between T3 and T4, between T4 and T5). In addition, since there is no dead zone, the measurement temperature Tc can be measured with high accuracy even in the vicinity of the auxiliary boundary region. Furthermore, since the range in which the measurement areas A1, A2, A3 and the auxiliary measurement areas (between T3-T4 and T4-T5) overlap can be expanded, the same effect as in the first embodiment can be further increased. Can do.

参考例1
参考例1では、基本形態の温度計測装置において、定抵抗20の抵抗値rA1を変えて温度に対する両端電圧の変化率を測定したものである。
( Reference Example 1 )
In Reference Example 1 , the change rate of the voltage at both ends with respect to the temperature is measured by changing the resistance value rA1 of the constant resistance 20 in the temperature measurement device of the basic form .

先ず、抵抗値rA1を、測定領域A1において測温抵抗体1の最小値と略同じ抵抗値の29.9kΩとすると、測定領域A1において低分解能領域における両端電圧Vaの変化率は約3.1mV/℃となる。なお、抵抗値rA1を、測温抵抗体1の最大値と同じ抵抗値の1000kΩとする場合も同様の結果となる。また好ましくは、抵抗値rA1を、測定領域A1の中間温度における測温抵抗体1の抵抗値を2倍にした抵抗値と略同じ抵抗値の345kΩとすると、上記変化率は約8.1mV/℃となる。なお、抵抗値rA1を、測定領域A1の中間温度における測温抵抗体1の抵抗値を1/2倍にした抵抗値と略同じ抵抗値の86.5kΩとする場合も同様の結果となる。さらに好ましくは、抵抗値rA1を、測定領域A1の中間温度における測温抵抗体1の抵抗値と略同じ抵抗値の173kΩとすると、上記変化率は約13.7mV/℃となる。   First, if the resistance value rA1 is 29.9 kΩ, which is substantially the same as the minimum value of the resistance temperature detector 1 in the measurement region A1, the rate of change of the both-end voltage Va in the low resolution region in the measurement region A1 is about 3.1 mV. / ° C. The same result is obtained when the resistance value rA1 is set to 1000 kΩ, which is the same resistance value as the maximum value of the resistance temperature detector 1. Preferably, if the resistance value rA1 is 345 kΩ, which is approximately the same resistance value as the resistance value of the resistance temperature detector 1 at the intermediate temperature of the measurement region A1, the change rate is about 8.1 mV / It becomes ℃. The same result is obtained when the resistance value rA1 is set to 86.5 kΩ, which is substantially the same as the resistance value obtained by halving the resistance value of the resistance temperature detector 1 at the intermediate temperature in the measurement region A1. More preferably, when the resistance value rA1 is 173 kΩ, which is substantially the same as the resistance value of the resistance temperature detector 1 at the intermediate temperature in the measurement region A1, the rate of change is about 13.7 mV / ° C.

以上、本参考例によれば、定抵抗の抵抗値を、対応する測定領域における測温抵抗体の最小値と最大値との間の大きさにすると、測定領域において低分解能領域における両端電圧の変化率を大きくすることができる。特に、測定領域の中間温度における測温抵抗体1の抵抗値を1/2倍にした値以上、上記測温抵抗体1の抵抗値を2倍にした値以下の抵抗値とすると、両端電圧の変化率が3.5mV/℃を超えるので、両端電圧の範囲(0〜1V)に対して精度よく測定することができる変化率を得ることができる。さらに、測定領域の中間温度における測温抵抗体1の抵抗値と略同じ抵抗値とすると、変化率を飛躍的に大きくすることができる。 As described above, according to this reference example, when the resistance value of the constant resistance is set to a value between the minimum value and the maximum value of the resistance temperature detector in the corresponding measurement region, The rate of change can be increased. In particular, when the resistance value of the resistance temperature detector 1 at an intermediate temperature in the measurement region is equal to or greater than a value obtained by halving the resistance value of the resistance temperature detector 1, the voltage across the voltage Since the rate of change exceeds 3.5 mV / ° C., it is possible to obtain a rate of change that can be measured accurately with respect to the voltage range (0 to 1 V) at both ends. Furthermore, if the resistance value is substantially the same as the resistance value of the resistance temperature detector 1 at the intermediate temperature in the measurement region, the rate of change can be dramatically increased.

なお、本参考例の変形例として、定抵抗21,22の抵抗値rA2,rA3に対しても、それぞれ測定領域A2,A3において、上記定抵抗20の抵抗値rA1と同様の方法で設定することができる。このようにすると、測定領域A2,A3において、本参考例と同様の効果を得ることができる。 As a modification of this reference example , the resistance values rA2 and rA3 of the constant resistances 21 and 22 are set in the measurement regions A2 and A3 by the same method as the resistance value rA1 of the constant resistance 20, respectively. Can do. If it does in this way, the effect similar to this reference example can be acquired in measurement area | region A2, A3.

参考例2
参考例2の温度計測装置は、基本形態の温度計測装置(図1参照)と同様に、測温抵抗体1を備えているが、基本形態の温度計測装置にはない以下に記載の特徴部分がある。
( Reference Example 2 )
The temperature measuring device of the reference example 2 includes the resistance temperature detector 1 as in the temperature measuring device of the basic form (see FIG. 1), but the following characteristic portions not included in the temperature measuring device of the basic form There is.

本参考例の複数の定抵抗(図1参照)は、2つの定抵抗を備えている。各定抵抗は、マイコン8により設定される測定領域に対応している。なお、本参考例の複数の定抵抗2は、上記以外の点において、基本形態の複数の定抵抗2と同様である。 The plurality of constant resistances (see FIG. 1) of this reference example have two constant resistances. Each constant resistance corresponds to a measurement region set by the microcomputer 8. The plurality of constant resistances 2 in this reference example are the same as the plurality of constant resistances 2 in the basic form except for the above.

本参考例の温度計測装置において、マイコン8は、予め決められた温度領域を2つの測定領域に分割している。2つの測定領域は、各測定領域の両端温度における測温抵抗体の抵抗値が等比級数的になるように分割されている。つまり、0,50,100℃であるときの測温抵抗体の抵抗値が等比級数的になる。なお、本参考例のマイコン8は、上記以外の点において、基本形態のマイコン8と同様である。 In the temperature measurement device of this reference example , the microcomputer 8 divides a predetermined temperature region into two measurement regions. The two measurement regions are divided so that the resistance values of the resistance temperature detectors at the temperature at both ends of each measurement region are geometric series. That is, the resistance value of the resistance temperature detector at 0, 50, and 100 ° C. becomes a geometric series. The microcomputer 8 of this reference example is the same as the microcomputer 8 of the basic form except for the points described above.

次に、本参考例の温度計測装置の低温側の測定領域において、定抵抗の抵抗値を変えた場合の低分解能領域における温度に対する両端電圧の変化率について説明する。先ず、上記定抵抗の抵抗値を、測定領域の中間温度における測温抵抗体の抵抗値を2倍にした抵抗値と略同じ抵抗値の143kΩとすると、上記変化率は約3.7mV/℃となる。なお、上記定抵抗の抵抗値を、測定領域の中間温度における測温抵抗体の抵抗値を1/2倍にした抵抗値と略同じ抵抗値の36kΩとする場合も同様の結果となる。また好ましくは、上記定抵抗の抵抗値を、測定領域の中間温度における測温抵抗体の抵抗値と略同じ抵抗値の71.8kΩとすると、上記変化率は約6.9mV/℃となる。 Next, the change rate of the both-ends voltage with respect to the temperature in the low resolution region when the resistance value of the constant resistance is changed in the low temperature side measurement region of the temperature measuring device of this reference example will be described. First, assuming that the resistance value of the constant resistance is 143 kΩ, which is substantially the same resistance value as the resistance value of the resistance temperature detector doubled at the intermediate temperature in the measurement region, the rate of change is about 3.7 mV / ° C. It becomes. The same result is obtained when the resistance value of the constant resistance is set to 36 kΩ, which is substantially the same as the resistance value obtained by halving the resistance value of the resistance temperature detector at the intermediate temperature in the measurement region. Preferably, if the resistance value of the constant resistance is 71.8 kΩ, which is substantially the same as the resistance value of the resistance temperature detector at the intermediate temperature of the measurement region, the rate of change is about 6.9 mV / ° C.

以上、本参考例によれば、予め決められた温度領域を2つの測定領域に分割した場合であっても、測定領域の中間温度における測温抵抗体1の抵抗値を1/2倍にした値以上、上記測温抵抗体1の抵抗値を2倍にした値以下の抵抗値とすると、低分解能領域における両端電圧の変化率を3.5mV/℃以上にすることができるので、両端電圧の範囲(0〜1V)に対して精度よく測定することができる変化率を得ることができる。さらに、測定領域の中間温度における測温抵抗体の抵抗値と略同じ抵抗値とすると、上記変化率を飛躍的に大きくすることができる。 As described above, according to this reference example , even when the predetermined temperature region is divided into two measurement regions, the resistance value of the resistance thermometer 1 at the intermediate temperature of the measurement region is halved. If the resistance value is equal to or greater than the resistance value of the resistance temperature detector 1, the voltage change rate at both ends in the low resolution region can be 3.5 mV / ° C. or more. It is possible to obtain a rate of change that can be accurately measured with respect to the range (0 to 1 V). Furthermore, when the resistance value is substantially the same as the resistance value of the resistance temperature detector at the intermediate temperature in the measurement region, the rate of change can be greatly increased.

なお、本参考例の変形例として、高温側の測定領域に対応する定抵抗においても、低温側の測定領域に対応する定抵抗と同様の方法で抵抗値を設定することができる。このようにすると、高温側の測定領域において、本参考例と同様の効果を得ることができる。 As a modification of the present reference example , even in a constant resistance corresponding to the high temperature side measurement region, the resistance value can be set by the same method as the constant resistance corresponding to the low temperature side measurement region. If it does in this way, the effect similar to this reference example can be acquired in the measurement area | region of a high temperature side.

度計測装置の回路図である。It is a circuit diagram of a temperature measuring device. 同上の温度計測装置において、温度と測温抵抗体の抵抗値との関係を表す線形図である。In a temperature measuring device same as the above, it is a linear diagram showing the relation between temperature and resistance value of a resistance temperature detector. 同上の温度計測装置において、温度と測温抵抗体の抵抗値との関係を表す対数図である。In a temperature measuring device same as the above, it is a logarithm figure showing the relation between temperature and resistance value of a resistance temperature detector. 同上の温度計測装置において、温度と定抵抗の両端電圧との関係を表す図である。In a temperature measuring apparatus same as the above, it is a figure showing the relationship between temperature and the voltage of both ends of a constant resistance. 度計測装置において、補助測定領域での重みを表す図である。In temperature measuring device is a diagram representing the weight of the auxiliary measurement region. 本発明による実施形態の温度計測装置において、温度と定抵抗及び補助抵抗の両端電圧との関係を表す図である。In the temperature measuring device of Embodiment 1 by the present invention, it is a figure showing the relation between temperature and the both-ends voltage of constant resistance and auxiliary resistance. 従来の温度計測装置において、温度と定抵抗の両端電圧との関係を表す図である。It is a figure showing the relationship between temperature and the voltage of both ends of a constant resistance in the conventional temperature measuring device.

1 測温抵抗体
2 複数の定抵抗
4 複数のスイッチ
7 ADコンバータ
8 マイクロコンピュータ
1 RTD 2 Multiple constant resistance 4 Multiple switches 7 AD converter 8 Microcomputer

Claims (7)

温度が線形的に変化すると抵抗値が略指数関数的に変化する測温抵抗体と、
両端温度における前記測温抵抗体の抵抗値が等比級数的になるように、予め決められた温度領域を複数の測定領域に分割し、測定値を入力し、前記測定値に基づいて、測定温度を算出するか、又は前記測定領域を切り替えて前記測定値を再入力するかの判断を行う制御手段と
それぞれ異なる前記測定領域と対応し、対応する測定領域における前記測温抵抗体の最小値と最大値との間の大きさの抵抗値を有する複数の定抵抗と、
隣接する測定領域に対応する2つの定抵抗の抵抗値の積の略平方根値を抵抗値とする補助抵抗とを備え
前記制御手段は、前記複数の定抵抗と前記補助抵抗とを選択的に前記測温抵抗体と直列に接続させる機能を有し、前記隣接する測定領域のうち予め決められた範囲の補助測定領域において、前記隣接する測定領域に対応する2つの定抵抗の両端電圧を前記測定値として入力し当該測定値に基づいて前記定抵抗による仮測定温度を算出し、前記補助抵抗の両端電圧を前記測定値として入力し当該測定値に基づいて前記補助抵抗による仮測定温度を算出し、前記定抵抗による仮測定温度と前記補助抵抗による仮測定温度との平均値を前記測定温度とする
ことを特徴とする温度計測装置。
A resistance temperature detector whose resistance value changes approximately exponentially when the temperature changes linearly,
A predetermined temperature region is divided into a plurality of measurement regions so that the resistance value of the resistance temperature detector at both end temperatures becomes a geometric series, and the measurement value is input and measured based on the measurement value. A control means for determining whether to calculate temperature or switch the measurement region and re-input the measurement value ;
A plurality of constant resistances corresponding to the different measurement areas, each having a resistance value having a magnitude between a minimum value and a maximum value of the resistance thermometer in the corresponding measurement area ;
An auxiliary resistor having a resistance value that is approximately the square root of the product of the resistance values of two constant resistances corresponding to adjacent measurement regions ;
The control means has a function of selectively connecting the plurality of constant resistances and the auxiliary resistors in series with the resistance temperature detector, and an auxiliary measurement region in a predetermined range among the adjacent measurement regions The voltage across the two constant resistances corresponding to the adjacent measurement regions is input as the measurement value, the temporary measurement temperature by the constant resistance is calculated based on the measurement value, and the voltage across the auxiliary resistance is measured A temporary measurement temperature by the auxiliary resistance is calculated based on the measured value and the average value of the temporary measurement temperature by the constant resistance and the temporary measurement temperature by the auxiliary resistance is used as the measurement temperature. Temperature measuring device.
前記制御手段が、前記予め決められた温度領域を3以上の前記測定領域に分割し、
前記複数の定抵抗の抵抗値が、等比級数的になることを特徴とする請求項1記載の温度計測装置。
The control means divides the predetermined temperature region into three or more measurement regions;
The temperature measuring apparatus according to claim 1, wherein the resistance values of the plurality of constant resistances are geometric series.
前記各定抵抗の抵抗値が、前記対応する測定領域の中間温度における前記測温抵抗体の抵抗値と略等しいことを特徴とする請求項1又は2記載の温度計測装置。   The temperature measuring device according to claim 1 or 2, wherein a resistance value of each constant resistance is substantially equal to a resistance value of the resistance temperature detector at an intermediate temperature of the corresponding measurement region. 前記制御手段が、隣接する測定領域のうち予め決められた範囲の境界領域において、前記隣接する測定領域に対応する2つの定抵抗の両端電圧を前記測定値として入力し、入力された各測定値に基づいて定抵抗による仮測定温度を算出し、算出された2つの定抵抗による仮測定温度に対し、それぞれ他の測定領域側に近づくにつれて小さくなるように設定された重みをつけ、重みをつけられた2つの定抵抗による仮測定温度の平均値を前記測定温度とすることを特徴とする請求項1〜3のいずれか記載の温度計測装置。   The control means inputs, as the measurement value, both-end voltages of two constant resistances corresponding to the adjacent measurement region in a boundary region of a predetermined range among the adjacent measurement regions, and each input measurement value The temporary measurement temperature with constant resistance is calculated based on the above, and the calculated temporary measurement temperatures with two constant resistances are weighted so as to decrease as they approach each other measurement area, and weights are assigned. The temperature measuring device according to any one of claims 1 to 3, wherein an average value of provisional measurement temperatures obtained by the two constant resistances is set as the measurement temperature. 隣接する測定領域の全てにおいて、前記補助抵抗を備え、
前記制御手段が、前記隣接する測定領域のうち予め決められた範囲の補助測定領域の全てにおいて、前記判断を行う
ことを特徴とする請求項記載の温度計測装置。
The auxiliary resistance is provided in all adjacent measurement areas,
Said control means, said all of the auxiliary measurement region of a predetermined range of the adjacent measurement regions, a temperature measuring device according to claim 1, characterized in that to perform said determination.
記制御手段が、隣接する補助測定領域のうち予め決められた範囲の補助境界域において、前記隣接する補助測定領域に対応する2つの補助抵抗の両端電圧を前記測定値として入力し、入力された各測定値に基づいて補助抵抗による仮測定温度を算出し、算出された2つの前記補助抵抗による仮測定温度に対し、それぞれ他の補助測定領域側に近づくにつれて小さくなるように設定された重みをつけ、重みをつけられた2つの補助抵抗による仮測定温度の平均値と、前記定抵抗の両端電圧である測定値に基づいて算出される定抵抗による仮測定温度との平均値を前記測定温度とすることを特徴とする請求項又は記載の温度計測装置。 Before SL control means inputs Oite auxiliary boundary area of a predetermined range of the next adjacent auxiliary measuring region, the two voltage across the auxiliary resistance corresponding to the auxiliary measurement region where the adjacent as the measurement value Based on each input measurement value, the temporary measurement temperature by the auxiliary resistance is calculated, and the calculated temporary measurement temperature by the two auxiliary resistances is set so as to become smaller as it approaches the other auxiliary measurement region side. The average value of the temporary measured temperature by the two auxiliary resistors weighted and the average value of the temporary measured temperature by the constant resistance calculated based on the measured value that is the voltage across the constant resistance the temperature measuring device according to claim 1 or 5, wherein the to the measured temperature. 前記制御手段は、標準電圧と前記測定値とを切り替えて入力し、前記標準電圧と前記測定値とから前記測定温度を算出することを特徴とする請求項1〜6のいずれか記載の温度計測装置 The temperature measurement according to any one of claims 1 to 6, wherein the control means switches between a standard voltage and the measured value and calculates the measured temperature from the standard voltage and the measured value. Equipment .
JP2005061363A 2005-03-04 2005-03-04 Temperature measuring device Expired - Fee Related JP4613643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005061363A JP4613643B2 (en) 2005-03-04 2005-03-04 Temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005061363A JP4613643B2 (en) 2005-03-04 2005-03-04 Temperature measuring device

Publications (2)

Publication Number Publication Date
JP2006242865A JP2006242865A (en) 2006-09-14
JP4613643B2 true JP4613643B2 (en) 2011-01-19

Family

ID=37049422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005061363A Expired - Fee Related JP4613643B2 (en) 2005-03-04 2005-03-04 Temperature measuring device

Country Status (1)

Country Link
JP (1) JP4613643B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5568379B2 (en) * 2010-05-27 2014-08-06 ラピスセミコンダクタ株式会社 Detection device
JP5738141B2 (en) * 2011-09-20 2015-06-17 ルネサスエレクトロニクス株式会社 Semiconductor device and temperature sensor system
JP2015200633A (en) * 2014-04-04 2015-11-12 株式会社デンソー Device for correcting temperature characteristic of thermistor and method for correcting temperature characteristic of thermistor
JP5885872B2 (en) * 2015-04-21 2016-03-16 ルネサスエレクトロニクス株式会社 Semiconductor device
JP6583216B2 (en) * 2016-11-09 2019-10-02 株式会社デンソー Thermistor drive circuit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273054A (en) * 1991-04-23 1993-10-22 Toshiba Corp Cryogenic thermometer
JPH07128153A (en) * 1993-10-29 1995-05-19 Sanyo Electric Co Ltd Temperature detection apparatus
JPH07151612A (en) * 1993-11-30 1995-06-16 Nec Corp Temperature measuring instrument using resistance temperature detector
JPH07272155A (en) * 1994-03-28 1995-10-20 Matsushita Electric Works Ltd Differential type heat sensor
JPH0829463A (en) * 1994-07-19 1996-02-02 Nippondenso Co Ltd Resistance value detecting device
JPH0843213A (en) * 1994-07-29 1996-02-16 T & D:Kk Instrument for measuring temperature, etc.
JPH10239171A (en) * 1997-02-28 1998-09-11 Yazaki Corp Temperature measuring apparatus
JPH11248547A (en) * 1998-03-02 1999-09-17 T & D:Kk Measuring device and measuring method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273054A (en) * 1991-04-23 1993-10-22 Toshiba Corp Cryogenic thermometer
JPH07128153A (en) * 1993-10-29 1995-05-19 Sanyo Electric Co Ltd Temperature detection apparatus
JPH07151612A (en) * 1993-11-30 1995-06-16 Nec Corp Temperature measuring instrument using resistance temperature detector
JPH07272155A (en) * 1994-03-28 1995-10-20 Matsushita Electric Works Ltd Differential type heat sensor
JPH0829463A (en) * 1994-07-19 1996-02-02 Nippondenso Co Ltd Resistance value detecting device
JPH0843213A (en) * 1994-07-29 1996-02-16 T & D:Kk Instrument for measuring temperature, etc.
JPH10239171A (en) * 1997-02-28 1998-09-11 Yazaki Corp Temperature measuring apparatus
JPH11248547A (en) * 1998-03-02 1999-09-17 T & D:Kk Measuring device and measuring method therefor

Also Published As

Publication number Publication date
JP2006242865A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4613643B2 (en) Temperature measuring device
JP2010249817A (en) Circuit and method for temperature detection
EP2924405B1 (en) Intake air temperature sensor and flow measurement device
US9429605B2 (en) Techniques for determining a resistance value
CN105784179A (en) Temperature detection circuit
CN106289559A (en) For the method using the temperature drift compensation of the temperature measuring equipment of thermocouple
JP2002508062A (en) Temperature measurement by interleaved two-level current of diode and two-level current source therefor
KR101978516B1 (en) Semiconductor device
KR101375363B1 (en) Apparatus for measuring temperature using thermistor
KR20030017531A (en) Method and circuit for measuring a voltage or a temperature and for generating a voltage with any predeterminable temperature dependence
JPS6277604A (en) Proportional controller
JP2003106886A (en) Thermal flowmeter
JP2005274372A (en) Temperature detector
JP2990569B2 (en) Differential heat detector
US9755640B2 (en) Resistive input system with resistor matrix
EP3396392A1 (en) Apparatus and method for determining a power value of a target
JPH0545231A (en) Temperature measuring device
JP5235963B2 (en) Temperature measuring device and air conditioner using this temperature measuring device
US10742206B2 (en) Switching circuit
JP2005241305A (en) Phase adjustment circuit of watthour meter
US20230048597A1 (en) Method for temperature measurement and temperature measuring arrangement
JP2008107162A (en) Sensor
JPH05281053A (en) Temperature detecting device
JP3070308B2 (en) Heat detector
Batra et al. FPGA implementation of interpolation techniques for thermistor linearization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

R151 Written notification of patent or utility model registration

Ref document number: 4613643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees