JPH07271074A - Production of electrophotographic photoreceptor - Google Patents

Production of electrophotographic photoreceptor

Info

Publication number
JPH07271074A
JPH07271074A JP26943794A JP26943794A JPH07271074A JP H07271074 A JPH07271074 A JP H07271074A JP 26943794 A JP26943794 A JP 26943794A JP 26943794 A JP26943794 A JP 26943794A JP H07271074 A JPH07271074 A JP H07271074A
Authority
JP
Japan
Prior art keywords
layer
charge transfer
transfer layer
photosensitive member
electrophotographic photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26943794A
Other languages
Japanese (ja)
Other versions
JP2638511B2 (en
Inventor
Eiichiro Tanaka
栄一郎 田中
Akio Takimoto
昭雄 滝本
Kyoko Onomichi
京子 尾道
Koji Akiyama
浩二 秋山
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6269437A priority Critical patent/JP2638511B2/en
Publication of JPH07271074A publication Critical patent/JPH07271074A/en
Application granted granted Critical
Publication of JP2638511B2 publication Critical patent/JP2638511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a charge transfer layer excellent in heat resistance, increased in carrier mobility and improved in charge injection efficiency at the time of laminating a photoconductive layer on the charge transfer layer by forming a specified polymer layer and then heat-treating the layer in an oxygen- contg. atmosphere. CONSTITUTION:This electrophotographic photoreceptor having the laminate of a photoconductive layer to generate a carrier movable by light excitation and a charge transfer layer into which the carrier is efficiently injected and which is movable effectively from the injection side to the opposite side is produced. In this case, a polymer layer consisting essentially of the structure contg. p-phenylene and any of S, Se and Te in the principal chain and shown by the formula is formed, and then the charge transfer layer is heat-treated in an oxygen-contg. atmosphere. As a result, a thermal decomposition reaction, a thermal polymerization reaction or oxygen doping is induced in the polymmer layer, and a charge transfer layer having excellent heat resistance and large carrier mobility with respect to the photoconductive layer such as a-SiiH having a small ionization potential and into which a charge from the photoconductive layer is efficiently injected is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子写真方式の複写
機、光プリンタ等に用いられる電子写真感光体の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrophotographic photosensitive member used in electrophotographic copying machines, optical printers and the like.

【0002】[0002]

【従来の技術】電子写真感光体における光導電体とし
て、10〜40atm%の水素を局在化状態密度を減少せしめる
修飾物質として含む非晶質シリコン(以下、a−Si:
Hと記す)が高い光感度、無公害性、及び高い硬度を有
することにより注目され利用されている。
2. Description of the Related Art As a photoconductor for an electrophotographic photosensitive member, amorphous silicon (hereinafter referred to as a-Si: 10 to 40 atm%) containing hydrogen as a modifier for reducing the localized density of states is used.
H) is noted and used because of its high photosensitivity, pollution-free property, and high hardness.

【0003】しかしながら、上記のa−Si:Hで構成
される電子写真感光体ではまだまだ解決すべき問題も多
い。
However, there are still many problems to be solved in the above electrophotographic photosensitive member composed of a-Si: H.

【0004】例えば、第1の問題としてa−Si:H
は、他の感光体材料である有機光半導体(以下OPCと
記す)、あるいはSeに比較して誘電率が約11と大き
く(OPC:約3、Se:約6)静電容量が大きいた
め、表面への帯電処理を行う際には非常に大きな帯電電
流を必要とする。
For example, the first problem is a-Si: H.
Has a large dielectric constant of about 11 (OPC: about 3, Se: about 6) as compared with other photoconductor materials such as organic photo-semiconductors (hereinafter referred to as OPC) or Se, and therefore has a large capacitance, A very large charging current is required when charging the surface.

【0005】また、実用表面電位(〜400V)を得るに
は表面電荷の電荷密度も高く、この電荷を光除電するた
めには多くの光エネルギーを必要とするため、実際の光
感度は十分高いとは言えない。
Further, in order to obtain a practical surface potential (up to 400 V), the charge density of the surface charge is high, and a large amount of light energy is required to photo-eliminate this charge, so that the actual photosensitivity is sufficiently high. It can not be said.

【0006】さらに、第2の問題としてシラン(SiH
4と記す)ガスを原料ガスとしたプラズマCVD法で
は、堆積速度も10μm/H以下と遅く、SiH4ガスも
高価であることから、製造コストの低減は困難である。
A second problem is silane (SiH
In the plasma CVD method using a gas (referred to as 4 ) as a raw material gas, the deposition rate is as low as 10 μm / H or less, and the SiH 4 gas is also expensive, so it is difficult to reduce the manufacturing cost.

【0007】また、第3の問題は、膜厚においても30μ
m以下で使用されることが多く帯電電界強度も30V/μm
程度から、実用の表面電位はSe感光体の800Vに比べ5
00V以下と低い電位で使用されるため、通常の2成分現
像剤では十分な画像濃度のコピーが得られないと言った
問題がある。
The third problem is that the film thickness is 30 μm.
Often used below m, the charging electric field strength is also 30V / μm
From the level, the practical surface potential is 5 compared to 800V of the Se photoconductor.
Since it is used at a potential as low as 00 V or less, there is a problem that a usual two-component developer cannot obtain a copy having a sufficient image density.

【0008】[0008]

【発明が解決しようとする課題】このような諸問題を解
決する手段として、特開昭54-143645号公報には、有機
半導体材料を用いた機能分離型の感光体が開示されてい
る。
As a means for solving such problems, Japanese Patent Laid-Open Publication No. 54-143645 discloses a function-separated type photoreceptor using an organic semiconductor material.

【0009】この有機半導体材料を用いた光導電層上に
形成し用いた場合、誘電率の減少による帯電電位向上が
望めるものの、有機半導体材料は硬度が小さいため、S
iを含む非晶質光導電膜の持つ高い硬度の長寿命感光体
としての特長が生かせない。また、従来の有機半導体上
に温度150℃以上で良質なa−Si:H膜を形成するに
は耐熱性に乏しいため良好な電子写真感光体が得られな
い。あるいは、耐熱性を有するポリアクリルニトリル
(PAN)を加熱処理を行うことも提案されているが、
十分なキャリアの移動度、キャリア寿命のものが得られ
ていないため、残留電位が高く、感度も十分とは言えな
い。
When formed and used on a photoconductive layer using this organic semiconductor material, although the charging potential can be improved by decreasing the dielectric constant, the hardness of the organic semiconductor material is small, so that S
The characteristics of the amorphous photoconductive film containing i as a high-hardness long-life photoreceptor cannot be utilized. Further, in order to form a good quality a-Si: H film at a temperature of 150 ° C. or higher on a conventional organic semiconductor, a good electrophotographic photoreceptor cannot be obtained because of poor heat resistance. Alternatively, it has been proposed to heat-treat polyacrylonitrile (PAN) having heat resistance,
Since sufficient carrier mobility and carrier lifetime have not been obtained, the residual potential is high and the sensitivity cannot be said to be sufficient.

【0010】[0010]

【課題を解決するための手段】光励起によって移動可能
なキャリアを発生する光導電層と、上記キャリアが効果
的に注入され、且つ注入面から反対面に効果的に移動し
得る電荷移動層とを積層する電子写真感光体の製造方法
において、前記電荷移動層を主鎖にp−フェニレンと
S、Se、Teのいずれかを含む下記の構造を主成分と
する高分子層を形成後に、酸素を含む雰囲気中で加熱処
理を行うことによって耐熱性の優れたキャリア移動度の
大きな、また光導電層からの電荷注入効率の良い電荷移
動層を得る。
A photoconductive layer that generates movable carriers by photoexcitation and a charge transfer layer that is capable of effectively injecting the carriers and effectively moving from the injection surface to the opposite surface are provided. In the method for producing an electrophotographic photosensitive member to be laminated, oxygen is added to the charge transfer layer after forming a polymer layer mainly containing the following structure containing p-phenylene and any of S, Se and Te in the main chain. By performing the heat treatment in an atmosphere containing the above, a charge transfer layer having high heat resistance, high carrier mobility, and high charge injection efficiency from the photoconductive layer can be obtained.

【0011】[0011]

【化2】 [Chemical 2]

【0012】[0012]

【作用】主鎖にp−フェニレンとS、Se、Teのいず
れかを含む上記の構造を主成分とする高分子層を形成後
に、150〜450℃にて0.1〜15時間の酸素を含む雰囲気中
で加熱処理を行うことによって、高分子層に熱分解反
応、あるいは熱重合反応や酸素ドープを誘起し、a−S
i:Hのようなイオン化ポテンシャルの小さな光導電層
に対して耐熱性の優れたキャリア移動度の大きな、また
光導電層からの電荷注入効率の良い電荷移動層を得る。
特に一部の構造変化により光学的禁止帯幅を減少せし
め、注入効率を向上せしめる。
[Function] An atmosphere containing oxygen for 0.1 to 15 hours at 150 to 450 ° C. after formation of a polymer layer mainly containing the above structure containing p-phenylene and any of S, Se and Te in the main chain. By performing heat treatment in the polymer layer, a thermal decomposition reaction, a thermal polymerization reaction, or oxygen doping is induced in the polymer layer, and a-S
It is possible to obtain a charge transfer layer having a high heat resistance, a large carrier mobility, and a high charge injection efficiency from the photoconductive layer with respect to a photoconductive layer having a small ionization potential such as i: H.
In particular, some structural changes reduce the optical bandgap and improve the injection efficiency.

【0013】また、誘電率も3〜3.5と小さく表面電
位の向上と帯電電流の減少をもたらす。
Further, the dielectric constant is as small as 3 to 3.5, which improves the surface potential and reduces the charging current.

【0014】以上の相乗効果により、残留電位の小さ
な、高感度で帯電電位の大きな電子写真感光体が得られ
る。
Due to the above synergistic effect, an electrophotographic photosensitive member having a small residual potential, a high sensitivity and a large charging potential can be obtained.

【0015】[0015]

【実施例】図1は、本発明における基本的な電子写真感
光体の一実施例の断面を模式的に示したものである。
EXAMPLE FIG. 1 is a schematic sectional view showing an example of a basic electrophotographic photosensitive member according to the present invention.

【0016】図1に示す電子写真感光体は、電子写真感
光体としての支持体1上に、主鎖にp−フェニレンと
S、Se、Teのいずれかを含む高分子層からなる電荷
移動層2と光導電層3とを有し、前記光導電層3は一方
で自由表面4を有している。
The electrophotographic photoreceptor shown in FIG. 1 comprises a support 1 as an electrophotographic photoreceptor, a charge transfer layer comprising a polymer layer containing p-phenylene and any of S, Se and Te in the main chain. 2 and a photoconductive layer 3, said photoconductive layer 3 having a free surface 4 on the one hand.

【0017】本発明において、光導電層として硬度の高
いシリコンを含有する非晶質層を用い、光導電層として
は、a−Si(:H:X)、a−Si1-yy(:H:
X)(0<y<1)、a−Si1-yy(:H:X)(0<
y<1)、a−Si1-yy(:H:X)(0<y<
1)、a−Si1-zGez(:H:X)(0<z<1)、
a−(Si1-zGez1-y y(:H:X)(0<y,z
<1)、a−(Si1-zGez1-yy(:H:X)(0
<y,z<1)、または、a−(Si1-zGez1-yy
(:H:X)(0<y,z<1)ここでXはハロゲン元
素の単層、あるいはこれらの積層体を用いる。また、y
を連続的に変化させた場合も使用できる。
In the present invention, the photoconductive layer has high hardness.
As a photoconductive layer using an amorphous layer containing silicon
Is a-Si (: H: X), a-Si1-yCy(: H:
X) (0 <y <1), a-Si1-yOy(: H: X) (0 <
y <1), a-Si1-yNy(: H: X) (0 <y <
1), a-Si1-zGez(: H: X) (0 <z <1),
a- (Si1-zGez)1-yN y(: H: X) (0 <y, z
<1), a- (Si1-zGez)1-yCy(: H: X) (0
<Y, z <1) or a- (Si1-zGez)1-yOy
(: H: X) (0 <y, z <1) where X is a halogen element
A single element layer or a laminate of these is used. Also, y
It can also be used when is continuously changed.

【0018】このときの膜厚は、電荷移動層は5〜50
μm好適には10〜25μm、また光導電層の膜厚は
0.5〜10μm好適には1〜5μmとすればよい。
The film thickness at this time is 5 to 50 for the charge transfer layer.
The thickness of the photoconductive layer may be 0.5 to 10 μm, and preferably 1 to 5 μm.

【0019】本発明において、更に電子写真特性を向上
させるために、図1において、支持体1と電荷移動層2
との間に、支持体1から電荷移動層2に注入するキャリ
アを効果的に阻止するための障壁層を設けてもよい。
In the present invention, in order to further improve the electrophotographic characteristics, the support 1 and the charge transfer layer 2 in FIG.
A barrier layer for effectively blocking the carriers injected from the support 1 to the charge transfer layer 2 may be provided between and.

【0020】障壁層を形成する材料としては、Al
23、BaO、BaO2、BeO、Bi23、CaO、
CeO2、Ce23、La23、Dy23、Lu23
Cr23、CuO、Cu2O、FeO、PbO、Mg
O、SrO、Ta23、ThO2、ZrO2、HfO2
TiO2、SiO2、GeO2、SiO、GeO等の金属
酸化物またはTiN、AlN、SnN、NbN、Ta
N、GaN等の金属窒化物、またはWC、SnC、Si
C、TiC等の金属炭化物またはSi23、GeC、G
eN、BC、BN等の絶縁物、ポリイミド、ポリアミド
イミド、PAN等の耐熱性を有する有機化合物が使用さ
れる。
As a material for forming the barrier layer, Al is used.
2 O 3 , BaO, BaO 2 , BeO, Bi 2 O 3 , CaO,
CeO 2 , Ce 2 O 3 , La 2 O 3 , Dy 2 O 3 , Lu 2 O 3 ,
Cr 2 O 3 , CuO, Cu 2 O, FeO, PbO, Mg
O, SrO, Ta 2 O 3 , ThO 2 , ZrO 2 , HfO 2 ,
Metal oxides such as TiO 2 , SiO 2 , GeO 2 , SiO, GeO or TiN, AlN, SnN, NbN, Ta
Metal nitride such as N, GaN, or WC, SnC, Si
Metal carbide such as C and TiC or Si 2 N 3 , GeC and G
An insulating material such as eN, BC, BN, or a heat-resistant organic compound such as polyimide, polyamide-imide, or PAN is used.

【0021】また、クリーニング性あるいは耐摩耗性あ
るいは耐コロナ性を向上させるため、図1における自由
表面4上に表面被覆層を形成する。表面被覆層として好
適な材料としては、Six1-x、Six1-x、Six
1-x、Gex1-x、Gex1-x、Gex1-x、B
x1-x、Bx1-x、Alx1-x(0<x<1)、および
これらに水素あるいはハロゲンを含有する層等の無機物
などが上げられる。
A surface coating layer is formed on the free surface 4 in FIG. 1 in order to improve the cleaning property, the wear resistance or the corona resistance. Suitable materials for the surface coating layer include Si x O 1-x , Si x C 1-x , and Si x N
1-x , Ge x N 1-x , Ge x O 1-x , Ge x C 1-x , B
Examples include x C 1-x , B x N 1-x , Al x N 1-x (0 <x <1), and inorganic substances such as layers containing hydrogen or halogen therein.

【0022】シリコンを含有する光導電層であるa−S
i(:H:X)の作成には、SiH 4、Si26、Si3
8 、SiF4、SiCl4、SiHF3、SiH22
SiH3F、SiHCl3、SiH2Cl2、SiH3Cl
等のSi原子の原料ガスを用いたプラズマCVD法、ま
たは多結晶シリコンをターゲットとし、Arと水素(さ
らにF2叉はCl2を混合してもよい)の混合ガス中での
反応性スパッタ法が用いられる。また、a−Si1-yy
(:H:X)(0<y<1)、a−Si1-yy(:H:
X)(0<y<1)、a−Si1-yy(:H:X)(0<
y<1)の作成には、更に炭素源としてCH4、C
26、C38、C410、C24、C36、C 66等の
炭化水素、CH3F、CH3Cl、CH3I、C25
l、C25Br等のハロゲン化アリル、CClF3、C
4、CHF3、C26、C38等のフロンガス、C6
6-mm(m=1〜6)のベンゼン等のC原子原料ガスと
混合してあるいは反応性スパッタ法にはAr等のスパッ
タガスと混合して用いる。また、酸素源としてはO2
CO、CO2、NO、NO2等、また、窒素源としてはN
2、NH3、NO等を混合して用いる。
A-S, a photoconductive layer containing silicon
To create i (: H: X), use SiH Four, Si2H6, Si3
H8 , SiFFour, SiClFour, SiHF3, SiH2F2,
SiH3F, SiHCl3, SiH2Cl2, SiH3Cl
Plasma CVD method using a source gas of Si atoms such as
Targeting polycrystalline silicon or Ar and hydrogen (sa
Rani F2Or Cl2May be mixed) in a mixed gas
A reactive sputtering method is used. In addition, a-Si1-yCy
(: H: X) (0 <y <1), a-Si1-yOy(: H:
X) (0 <y <1), a-Si1-yNy(: H: X) (0 <
For the production of y <1), CH is used as a carbon source.Four, C
2H6, C3H8, CFourHTen, C2HFour, C3H6, C 6H6Etc.
Hydrocarbon, CH3F, CH3Cl, CH3I, C2HFiveC
l, C2HFiveAllyl halides such as Br, CClF3, C
FFour, CHF3, C2F6, C3F8CFCs such as CFCs6H
6-mFm(M = 1 to 6) C atom source gas such as benzene
For mixed or reactive sputtering, a spatter such as Ar is used.
Used as a mixture with Tagus. Also, as an oxygen source, O2,
CO, CO2, NO, NO2Etc., and N as the nitrogen source
2, NH3, NO and the like are mixed and used.

【0023】また、a−Si(:H:X)にGeを添加
する場合もGeH4、Ge26、Ge38、GeF4、G
eCl4、GeHF3、GeH22、GeH3F、GeH
Cl 3、GeH2Cl2、GeH3Cl等のガスを上記Si
原料ガスと混合しプラズマCVD法によって形成するこ
ともできる。
Ge is added to a-Si (: H: X).
If you do GeHFour, Ge2H6, Ge3H8, GeFFour, G
eClFour, GeHF3, GeH2F2, GeH3F, GeH
Cl 3, GeH2Cl2, GeH3A gas such as Cl is added to the above Si
It may be formed by plasma CVD method by mixing with source gas.
I can do it.

【0024】さらに、本発明において、上記の、a−S
1-yy(:H:X)(0<y<1)、a−Si1-yy
(:H:X)(0<y<1)、a−Si1-yy(:H:
X)(0<y<1)、あるいはこれらにGeを添加した
膜中に、不純物を添加することによって伝導性を制御
し、所望の電子写真特性を得ることができる。p型伝導
性を与えるp型不純物としては、周期律表第III族bに
属するB、Al、Ga、In等があり、好適にはB、A
l、Gaが用いられ、n型伝導性を与えるn型不純物と
しては、周期律表第V族bに属するN、P、As、Sb
等があり、好適にはP、Asが用いられる。
Further, in the present invention, the above-mentioned a-S
i 1-y C y (: H: X) (0 <y <1), a-Si 1-y O y
(: H: X) (0 <y <1), a-Si 1-y N y (: H:
X) (0 <y <1) or a film in which Ge is added thereto can be doped with impurities to control conductivity and obtain desired electrophotographic characteristics. Examples of p-type impurities that impart p-type conductivity include B, Al, Ga, In, and the like, which belong to Group IIIb of the periodic table, and are preferably B and A.
n, P, As, and Sb belonging to Group V b of the periodic table are used as n-type impurities that give n-type conductivity.
Etc., and P and As are preferably used.

【0025】また、これらの不純物を添加する方法とし
て、p型不純物の場合、B26、B 410、B59、B5
11、BF3、BCl3、BBr3AlCl3、(CH33
Al、(C253Al、(i−C493Al、(CH
33Ga、(C253Ga、InCl3、(C253
Inを、n型不純物の場合、N2、NH3、NO、N
2O、NO2、PH3、P24、PH4I、PF3、PC
3、PCl5、PBr3、PBr5、PI3、AsH3、A
sF3、AsCl3、AsBr3、SbH3、SbF3、S
bF5、SbCl3、SbCl5等のガスを、あるいはこ
れらのガスをH2、He、Arで希釈したガスを、プラ
ズマCVD法ではそれぞれの膜形成時の原料ガスに混合
して用いればよく、反応性スパッタ法では、Arまたは
2あるいはF2、Cl2に混合して用いればよい。以下
実施例に付いて述べる。
Further, as a method of adding these impurities
In the case of p-type impurities, B2H6, B FourHTen, BFiveH9, BFive
H11, BF3, BCl3, BBr3AlCl3, (CH3)3
Al, (C2HFive)3Al, (i-CFourH9)3Al, (CH
3)3Ga, (C2HFive)3Ga, InCl3, (C2HFive)3
If In is an n-type impurity, N2, NH3, NO, N
2O, NO2, PH3, P2HFour, PHFourI, PF3, PC
l3, PClFive, PBr3, PBrFive, PI3, AsH3, A
sF3, AsCl3, AsBr3, SbH3, SbF3, S
bFFive, SbCl3, SbClFiveGas such as
H for these gases2Gas diluted with He, He, Ar
In the Zuma CVD method, it is mixed with the raw material gas when each film is formed.
In the reactive sputtering method, Ar or
H2Or F2, Cl2It may be used as a mixture. Less than
An example will be described.

【0026】(実施例1)表面研磨したアルミニウムド
ラムにポリ−p−フェニレンサルファイド(以下PPS
と記す)の粉末を〜300℃で不活性ガス中にてホット
プレスにより〜20μmにする。PPSを溶融するため
プレス時に離型剤を治具に塗布することは言うまでもな
い。形成後表面を鏡面にわずかに研磨し電荷移動層とす
る。この状態でのPPSはわずかに黄色を帯びた透明に
近い膜である。 PPSは、下記の構造においてX:
S、n=10〜30の高分子であった。
Example 1 A surface-polished aluminum drum was coated with poly-p-phenylene sulfide (hereinafter referred to as PPS).
Described above) is hot-pressed in an inert gas at ˜300 ° C. to ˜20 μm. It goes without saying that a releasing agent is applied to the jig during pressing in order to melt the PPS. After the formation, the surface is slightly polished to a mirror surface to form a charge transfer layer. The PPS in this state is a slightly yellowish and nearly transparent film. PPS has the structure X:
The polymer was S, n = 10 to 30.

【0027】[0027]

【化3】 [Chemical 3]

【0028】このドラムを更に空気中にて150〜25
0℃にて0.1〜5時間の加熱処理を行う。このように
して得られたドラムは褐色を帯びたものとなり光学的禁
止帯幅で〜2.4eVであった。
This drum is further heated in air to 150 to 25
Heat treatment is performed at 0 ° C. for 0.1 to 5 hours. The drum thus obtained became brownish and had an optical band gap of ˜2.4 eV.

【0029】これを、長さ45cm、内径16cmφの
円筒型の放電電極を有する容量結合方式プラズマCVD
装置内に配置し、反応容器内を5×10-6Torr以下
に排気後、アルミニウムドラムを150〜200℃に加
熱した。SiH4を50〜150sccm、C22を2
〜10sccm、B26をSiH4に対し5〜100p
pm、圧力0.2〜1Torr、高周波電力100〜2
50Wで光導電層としてa−Si1-xx:H層を1〜5
μm形成し、続いて、SiH4に対してC22を20〜
50sccmと増加し、表面被覆層としてa−Si1-x
x:H層を0.05〜0.5μm形成し電子写真感光
体とした。この時の光導電層のa−Si1- xx:H層の
光学的禁止帯幅が1.7〜1.9eVであり、この感光
帯を670nmのLEDを光源とする光プリンタに実装
し、正帯電において+500〜800Vの表面電位で鮮
明な印字を確認した。
This was subjected to capacitive coupling plasma CVD having a cylindrical discharge electrode having a length of 45 cm and an inner diameter of 16 cmφ.
After being placed in the apparatus and evacuating the reaction vessel to 5 × 10 −6 Torr or less, the aluminum drum was heated to 150 to 200 ° C. SiH 4 50 to 150 sccm, C 2 H 2 2
-10 sccm, B 2 H 6 to SiH 4 5-100p
pm, pressure 0.2 to 1 Torr, high frequency power 100 to 2
1 to 5 a-Si 1-x C x : H layers as photoconductive layers at 50 W
and μm formed, followed by 20 to the C 2 H 2 with respect to SiH 4
Increased to 50 sccm and a-Si 1-x as a surface coating layer
A C x : H layer was formed in an amount of 0.05 to 0.5 μm to obtain an electrophotographic photosensitive member. The a-Si 1- x C x : H layer of the photoconductive layer had an optical bandgap of 1.7 to 1.9 eV at this time, and this photosensitive band was mounted on an optical printer using an LED of 670 nm as a light source. Then, clear printing was confirmed at a surface potential of +500 to 800 V when positively charged.

【0030】このドラムの残留電位は+100〜200
Vであった。また、a−Si1-xx:H層にGeを添加
したa−(Si1-zGez1-xx:Hを用いれば更に感
度の向上が図られた。
The residual potential of this drum is +100 to 200.
It was V. Further, if a- (Si 1-z Ge z ) 1-x C x : H in which Ge is added to the a-Si 1-x C x : H layer is used, the sensitivity is further improved.

【0031】また、電荷移動層として硫化高分子層を用
いたが、Se、あるいはTeのカルコゲン化高分子でも
同様な特性が得られる。
Further, although the sulfurized polymer layer is used as the charge transfer layer, the same characteristics can be obtained with a chalcogenized polymer of Se or Te.

【0032】表面被覆層としてa−Si1-xx:H層に
代わる材料として0.1〜0.5μmのa−Ge
1-xx:H(0<x<1)層をプラズマCVD法で形成
し、同様に光プリンタに実装したところ、この構成の電
子写真感光体が耐熱性、耐湿性に優れ、50万枚の耐刷
性を有することを確認した。
As a material for replacing the a-Si 1-x C x : H layer as a surface coating layer, 0.1-0.5 μm a-Ge
A 1-x C x : H (0 <x <1) layer was formed by a plasma CVD method and mounted in an optical printer in the same manner. As a result, the electrophotographic photosensitive member of this structure was excellent in heat resistance and moisture resistance, It was confirmed that the plate has printing durability.

【0033】また、PPS高分子層にTCNQを電子受
容体として0.05〜0.1wt%添加することによっ
て更に残留電位が減少し50〜90Vと小さな電子写真
感光体を得ることができた。
Further, by adding TCNQ as an electron acceptor in an amount of 0.05 to 0.1 wt% to the PPS polymer layer, the residual potential was further reduced, and an electrophotographic photosensitive member as small as 50 to 90 V could be obtained.

【0034】[0034]

【発明の効果】本発明によれば、光励起によって移動可
能なキャリアを発生する光導電層を、電荷移動層上に積
層する際、前記電荷移動層を主鎖にp−フェニレンと
S、Se、Teのいずれかを含む高分子層を形成した後
に、酸素を含む雰囲気中で加熱処理行うことによって、
耐熱性に優れた、キャリア移動度の大きな、また光学的
禁止帯幅の減少により光導電層からの電荷注入効率のよ
い電荷移動層を形成することが可能となる。
According to the present invention, when a photoconductive layer that generates movable carriers by photoexcitation is laminated on a charge transfer layer, the charge transfer layer has p-phenylene, S, Se and After forming a polymer layer containing any of Te, by performing heat treatment in an atmosphere containing oxygen,
It is possible to form a charge transfer layer which is excellent in heat resistance, has a large carrier mobility, and has a reduced optical bandgap, and which has a high charge injection efficiency from the photoconductive layer.

【0035】以上の相乗効果により残留電位の小さな、
高感度で帯電電位の大きな電子写真感光体が得られる。
Due to the above synergistic effect, the residual potential is small,
An electrophotographic photoreceptor having high sensitivity and a large charging potential can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における電子写真感光体の断
面図
FIG. 1 is a sectional view of an electrophotographic photosensitive member according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 支持体 2 電荷移動層 3 光導電層 4 自由表面 1 Support 2 Charge Transfer Layer 3 Photoconductive Layer 4 Free Surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秋山 浩二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 渡辺 正則 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koji Akiyama 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Masanori Watanabe 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】光励起によって移動可能なキャリアを発生
する光導電層と、上記キャリアが効果的に注入され、且
つ注入面から反対面に効果的に移動し得る電荷移動層と
を積層する電子写真感光体の製造方法において、前記電
荷移動層を主鎖にp−フェニレンとS、Se、Teのい
ずれかを含む下記の構造を主成分とする高分子層を形成
後に、酸素を含む雰囲気中で加熱処理を行う工程を含む
電子写真感光体の製造方法。 【化1】
1. An electrophotographic apparatus comprising a photoconductive layer for generating movable carriers by photoexcitation and a charge transfer layer for effectively injecting the carriers and capable of effectively moving from the injection surface to the opposite surface. In the method for producing a photoconductor, in the atmosphere containing oxygen, after forming a polymer layer containing the following structure containing p-phenylene and any of S, Se, and Te in the main chain of the charge transfer layer as a main component. A method for manufacturing an electrophotographic photosensitive member, which includes a step of performing heat treatment. [Chemical 1]
【請求項2】高分子層に電子受容体を添加することを特
徴とする特許請求の範囲第1項記載の電子写真感光体の
製造方法。
2. The method for producing an electrophotographic photosensitive member according to claim 1, wherein an electron acceptor is added to the polymer layer.
【請求項3】光導電層が局在化状態密度を減少せしめる
修飾物質を含む非晶質層を形成する工程を有する特許請
求の範囲第1項記載の電子写真感光体の製造方法。
3. The method for producing an electrophotographic photosensitive member according to claim 1, further comprising the step of forming an amorphous layer in which the photoconductive layer contains a modifier that reduces the localized density of states.
【請求項4】光導電層が、少なくとも水素あるいはハロ
ゲン元素のいずれかを含む特許請求の範囲第3項記載の
電子写真感光体の製造方法。
4. The method for producing an electrophotographic photosensitive member according to claim 3, wherein the photoconductive layer contains at least either hydrogen or a halogen element.
【請求項5】自由表面に表面被覆層を形成する工程を有
する特許請求の範囲第1項記載の電子写真感光体の製造
方法。
5. The method for producing an electrophotographic photosensitive member according to claim 1, further comprising the step of forming a surface coating layer on the free surface.
JP6269437A 1994-11-02 1994-11-02 Manufacturing method of electrophotographic photoreceptor Expired - Lifetime JP2638511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6269437A JP2638511B2 (en) 1994-11-02 1994-11-02 Manufacturing method of electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6269437A JP2638511B2 (en) 1994-11-02 1994-11-02 Manufacturing method of electrophotographic photoreceptor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62111002A Division JPH07120057B2 (en) 1987-05-07 1987-05-07 Method for manufacturing electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH07271074A true JPH07271074A (en) 1995-10-20
JP2638511B2 JP2638511B2 (en) 1997-08-06

Family

ID=17472428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6269437A Expired - Lifetime JP2638511B2 (en) 1994-11-02 1994-11-02 Manufacturing method of electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2638511B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017517835A (en) * 2014-04-01 2017-06-29 イオニツク・マテリアルズ・インコーポレーテツド High capacity polymer cathode and high energy density rechargeable battery comprising the cathode
US11611104B2 (en) 2012-04-11 2023-03-21 Ionic Materials, Inc. Solid electrolyte high energy battery
US11749833B2 (en) 2012-04-11 2023-09-05 Ionic Materials, Inc. Solid state bipolar battery
US11949105B2 (en) 2012-04-11 2024-04-02 Ionic Materials, Inc. Electrochemical cell having solid ionically conducting polymer material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590954A (en) * 1978-12-29 1980-07-10 Toray Ind Inc Photoconductor
JPS5695354A (en) * 1979-12-28 1981-08-01 Akira Okumura Dispensing and discharging method of liquid component in centrifugal rotor
JPS6059353A (en) * 1983-09-13 1985-04-05 Toshiba Corp Electrophotographic sensitive body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590954A (en) * 1978-12-29 1980-07-10 Toray Ind Inc Photoconductor
JPS5695354A (en) * 1979-12-28 1981-08-01 Akira Okumura Dispensing and discharging method of liquid component in centrifugal rotor
JPS6059353A (en) * 1983-09-13 1985-04-05 Toshiba Corp Electrophotographic sensitive body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11611104B2 (en) 2012-04-11 2023-03-21 Ionic Materials, Inc. Solid electrolyte high energy battery
US11749833B2 (en) 2012-04-11 2023-09-05 Ionic Materials, Inc. Solid state bipolar battery
US11949105B2 (en) 2012-04-11 2024-04-02 Ionic Materials, Inc. Electrochemical cell having solid ionically conducting polymer material
JP2017517835A (en) * 2014-04-01 2017-06-29 イオニツク・マテリアルズ・インコーポレーテツド High capacity polymer cathode and high energy density rechargeable battery comprising the cathode
JP2020184545A (en) * 2014-04-01 2020-11-12 イオニツク・マテリアルズ・インコーポレーテツド High-capacity polymer cathode and high energy density rechargeable battery containing the same

Also Published As

Publication number Publication date
JP2638511B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
US4572881A (en) Printing member for electrostatic photocopying
JP2638511B2 (en) Manufacturing method of electrophotographic photoreceptor
US5303007A (en) Printing apparatus for electrostatic photocopying
US4889782A (en) Electrostatic photocopying machine
JP2553558B2 (en) Electrophotographic photoreceptor
JPH0752301B2 (en) Electrophotographic photoreceptor
JP2595536B2 (en) Electrophotographic photoreceptor
JPH0823706B2 (en) Method for manufacturing electrophotographic photoreceptor
US5103262A (en) Printing member for electrostatic photocopying
JPH0220095B2 (en)
JPH07120057B2 (en) Method for manufacturing electrophotographic photoreceptor
JPH0797226B2 (en) Electrophotographic photoreceptor and manufacturing method thereof
US5094929A (en) Electrophotographic photoreceptor with amorphous carbon containing germanium
US5070364A (en) Printing member for electrostatic photocopying
US4999270A (en) Printing member for electrostatic photocopying
US5008171A (en) Printing member for electrostatic photocopying
JPS62242948A (en) Electrophotographic sensitive body
EP0300807A2 (en) Electrophotographic photosensitive member
US4971872A (en) Electrostatic photocopying machine
JPH0727246B2 (en) Electrophotographic photoreceptor
US5143808A (en) Printing member for electrostatic photocopying
JPS60140357A (en) Electrophotographic sensitive body
JP2565314B2 (en) Electrophotographic photoreceptor
JP2562583B2 (en) Electrophotographic photoreceptor
US5144367A (en) Printing member for electrostatic photocopying