JPH07258910A - Production of hot water-resistant polyvinyl alcohol fiber - Google Patents

Production of hot water-resistant polyvinyl alcohol fiber

Info

Publication number
JPH07258910A
JPH07258910A JP7391794A JP7391794A JPH07258910A JP H07258910 A JPH07258910 A JP H07258910A JP 7391794 A JP7391794 A JP 7391794A JP 7391794 A JP7391794 A JP 7391794A JP H07258910 A JPH07258910 A JP H07258910A
Authority
JP
Japan
Prior art keywords
fiber
pva
hot water
heat treatment
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7391794A
Other languages
Japanese (ja)
Inventor
Yoshihiro Akiyama
芳広 秋山
Naohiko Nagata
直彦 永田
Shiro Murakami
志朗 村上
Kazuya Nagatomi
一也 永冨
Naoji Ichinose
直次 一瀬
Shinya Takagi
伸哉 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP7391794A priority Critical patent/JPH07258910A/en
Publication of JPH07258910A publication Critical patent/JPH07258910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To provide a method for industrially producing polyvinyl alcohol(PVA) having high strength and excellent hot water resistance in good productivity. CONSTITUTION:In producing a hot water-resistant PVA fiber by thermally drawing PVA undrawn fiber in a multistage of two or more stages, and then, subjecting the drawn fiber to heat treatment, (1) heat treatment is applied to a PVA fiber to which a catalyst promoting dehydration reaction has added thereto, (2) two or more heating rollers are used as heat treating devices and each roller surface temperature is set to 100-300 deg.C and <=10.0% relax is applied to the yarn between heating rollers and (3) final winding rate is set to 100-600m/min.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,高強度で,かつ,優れ
た耐熱水性を有するポリビニルアルコール(以下, PV
Aと称する。) 繊維を工業的に生産性よく製造する方法
に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to polyvinyl alcohol having high strength and excellent hot water resistance (hereinafter referred to as PV
Called A. ) It relates to a method for industrially producing fibers with high productivity.

【0002】[0002]

【従来の技術】PVA繊維は,ポリアミド,ポリエステ
ル,ポリアクリロニトリル系等の繊維に比べ,強度,弾
性率共に高く,その主用途である産業資材用繊維として
はもちろんのこと,最近では,アスベスト代替繊維とし
て,また,セメント補強材等にも使用されている。
2. Description of the Related Art PVA fibers have higher strength and elastic modulus than fibers of polyamide, polyester, polyacrylonitrile, etc. and are not only used as fibers for industrial materials, which are their main applications, but recently, asbestos substitute fibers. It is also used as a cement reinforcement material.

【0003】近年,PVA繊維の強度や弾性率をさらに
高める方法として,高分子量ポリエチレンのゲル紡糸−
超延伸と同様の考え方に基づき,分子量50万以上のPV
Aを使用する方法等が提案されている。その結果,いわ
ゆるゲル紡糸方法によるポリエチレン繊維には及ばない
ものの,高強度, 高弾性率繊維の代表とされるポリパラ
フェニレンテレフタルアミド繊維に匹敵する高強度, 高
弾性率の繊維が得られている。
In recent years, as a method for further increasing the strength and elastic modulus of PVA fibers, gel spinning of high molecular weight polyethylene-
PV with a molecular weight of 500,000 or more based on the same concept as super stretching
A method using A is proposed. As a result, a fiber having a high strength and a high elastic modulus comparable to that of polyparaphenylene terephthalamide fiber, which is a representative of high strength and a high elastic modulus fiber, is obtained although it does not reach the polyethylene fiber by the so-called gel spinning method. .

【0004】また,PVA繊維の耐熱水性を向上させる
ために,古くはホルマリン等でアセタール化する方法が
提案され,最近では,特開平2-133605号公報に記載され
ているように,アクリル酸系重合体をブレンドして紡糸
する方法や,特開平4-126829号公報に記載されているよ
うに脱水反応促進用触媒を付与した後,熱処理して脱水
反応を起こす方法等が提案されている。
In order to improve the hot water resistance of PVA fibers, a method of acetalization with formalin or the like has been proposed in the past, and recently, as described in JP-A-2-133605, acrylic acid-based resins have been proposed. A method of blending a polymer and spinning it, a method of causing a dehydration reaction by heat treatment after applying a catalyst for promoting the dehydration reaction as described in JP-A-4-126829 have been proposed.

【0005】このような高強度, 高弾性率繊維であり,
かつ耐熱水性の優れたPVA繊維の用途拡大を阻んでい
る原因として,PVA繊維の工業的な生産ラインの最終
捲取速度が100m/min前後と遅いことがある。
[0005] Such high strength, high modulus fiber,
In addition, a factor that prevents the expansion of applications of PVA fibers having excellent hot water resistance is that the final winding speed of an industrial PVA fiber production line is slow at around 100 m / min.

【0006】上記の欠点を解消するために,本発明者ら
は,特願平5-193976号等で加熱ローラと熱風ヒータを利
用して最終捲取速度が 100〜600m/minと, PVA繊維を
高速で製造することが可能な方法を提案した。しかしな
がら,上記の方法では, PVA繊維を高速で製造するこ
とは可能であるが,耐熱水性を改善したPVA繊維を高
速で製造することはできなかった。
In order to solve the above-mentioned drawbacks, the present inventors used a heating roller and a hot air heater in Japanese Patent Application No. 5-193976, etc. to obtain a final winding speed of 100 to 600 m / min, and a PVA fiber. We have proposed a method that can be manufactured at high speed. However, according to the above method, PVA fibers can be produced at high speed, but PVA fibers having improved hot water resistance cannot be produced at high speed.

【0007】[0007]

【発明が解決しようとする課題】本発明は,上記の欠点
を解消し,高強度で, かつ耐熱水性を有するPVA繊維
を,画期的に高速で,生産性よく製造することが可能な
耐熱水性PVA繊維の製造方法を提供することを技術的
な課題とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks, and is capable of producing PVA fibers having high strength and hot water resistance at an epoch-making high speed and with high productivity. It is a technical subject to provide a method for producing an aqueous PVA fiber.

【0008】[0008]

【課題を解決するための手段】本発明者らは,上記の課
題を解決するために鋭意検討した結果,本発明に到達し
た。
The present inventors have arrived at the present invention as a result of extensive studies to solve the above problems.

【0009】すなわち, 本発明は,PVA未延伸繊維を
2段以上の多段で熱延伸した後,熱処理を施して耐熱水
性PVA繊維を製造するに際し,(1) 脱水反応を促進す
る触媒が付与されているPVA繊維に熱処理を施す,(2)
熱処理装置として加熱ローラを2基以上使用し,各ロ
ーラ表面温度を 100〜300℃とし,各加熱ローラ間にお
いて糸条に10.0%以下のリラックスを与える,(3) 最終
の捲取速度を 100〜600m/minとする,ことを特徴とする
耐熱水性PVA繊維の製造方法を要旨とするものであ
る。
That is, according to the present invention, (1) a catalyst for accelerating the dehydration reaction is added when the PVA unstretched fiber is hot-stretched in two or more stages and then heat-treated to produce a heat-resistant water-soluble PVA fiber. Heat treatment of the existing PVA fiber, (2)
Two or more heating rollers are used as a heat treatment device, the surface temperature of each roller is 100 to 300 ° C, and the yarn is relaxed by 10.0% or less between each heating roller. (3) The final winding speed is 100 to The gist is a method for producing a hot water-resistant PVA fiber, which is set to 600 m / min.

【0010】以下,本発明について詳細に説明する。The present invention will be described in detail below.

【0011】本発明で使用する未延伸繊維を構成するP
VAは,重合度が1500以上であることが好ましい。重合
度が1500より低いと欠陥部になり易い分子鎖末端が多く
なり,高強度,高弾性率繊維を得ることが難しくなる。
ケン化度は,99%以上のものが好ましい。
P constituting the undrawn fiber used in the present invention
VA preferably has a degree of polymerization of 1500 or more. If the degree of polymerization is lower than 1500, the number of molecular chain ends that tend to become defective increases, and it becomes difficult to obtain high-strength, high-modulus fibers.
The saponification degree is preferably 99% or more.

【0012】PVAを紡糸するに先立ち,PVAを溶媒
に溶解して紡糸原液を調製するが,溶媒としては,ジメ
チルスルホキシド(以下,DMSOと称する。)やエチ
レングリコール,水等を用いることができる。この中で
は,PVAが溶媒に溶解した際の分子鎖の広がり状態,
分子鎖の絡み具合,溶媒としての安定性,ゲル化の際の
非晶の状態,その時の分子の絡み具合,また作業上の問
題等を考慮すると,DMSOや水が特に好ましい。な
お,この溶液中に,PVAの酸化防止剤,耐熱剤等の添
加剤を混入して用いてもよい。
Prior to spinning PVA, PVA is dissolved in a solvent to prepare a spinning dope. As the solvent, dimethyl sulfoxide (hereinafter referred to as DMSO), ethylene glycol, water or the like can be used. In this, the spread state of the molecular chain when PVA is dissolved in the solvent,
Considering the degree of entanglement of molecular chains, the stability as a solvent, the amorphous state at the time of gelation, the degree of entanglement of molecules at that time, and working problems, DMSO and water are particularly preferable. It should be noted that additives such as PVA antioxidant and heat-resistant agent may be mixed and used in this solution.

【0013】紡糸原液中のPVA濃度は,2〜35重量%
の範囲に調整するのが好ましい。濃度が2重量%未満の
場合は曳糸性が低下し,35重量%を超えると粘度が高く
なり,紡糸原液の均一性が低下すると共に,曳糸性が低
下する。
The concentration of PVA in the spinning dope is 2 to 35% by weight.
It is preferable to adjust to the range. If the concentration is less than 2% by weight, the spinnability is reduced, and if it exceeds 35% by weight, the viscosity is increased, the uniformity of the spinning dope is reduced, and the spinnability is reduced.

【0014】紡糸方法は,乾湿式紡糸方法及び湿式紡糸
方法のいずれでもよく,乾湿式紡糸方法の場合は,口金
から紡糸原液を吐出し,気体の層を通した後,凝固浴中
に押し出し,PVA繊維を作製する。また,湿式紡糸方
法の場合は,口金を凝固浴中の溶液に浸漬させ,紡糸原
液をその溶液中に押し出し,PVA繊維を作製する。こ
の時使用する口金の孔数は,単数及び複数のいずれでも
よい。
The spinning method may be either a dry-wet spinning method or a wet-spinning method. In the case of the dry-wet spinning method, the spinning dope is discharged from the spinneret, passed through a gas layer, and then extruded into a coagulation bath. Make PVA fibers. In the case of the wet spinning method, the spinneret is immersed in the solution in the coagulation bath and the spinning solution is extruded into the solution to produce PVA fiber. The number of holes of the die used at this time may be singular or plural.

【0015】凝固浴に用いる液体としては,凝固抽出作
用を有するメタノール,エタノール,プロパノール等の
低級アルコール類,ぼう硝のアルカリ水溶液,アセトン
類,エーテル類,さらにこれらとPVAの溶媒との混合
溶液等が用いられるが,凝固速度,溶媒抽出速度の点か
らメタノールや,ぼう硝のアルカリ水溶液が特に好まし
い。
As the liquid used in the coagulation bath, lower alcohols such as methanol, ethanol and propanol which have a coagulation-extracting action, alkaline aqueous solution of Glauber's salt, acetones, ethers, and a mixed solution of these with a solvent of PVA, etc. However, methanol or an alkaline aqueous solution of Glauber's salt is particularly preferable in terms of coagulation rate and solvent extraction rate.

【0016】また,上記のように,凝固と溶媒抽出とを
同時に行うのではなく,凝固と抽出を分けて行ってもよ
い。この場合には,デカリン,パラフィン油等を使用し
た冷却浴で,もしくは,ほう酸等を使用して一旦固化さ
せた後,上記の溶液を使用して溶媒を抽出すればよい。
As described above, the coagulation and the solvent extraction may not be performed simultaneously, but the coagulation and the extraction may be performed separately. In this case, the solvent may be extracted using the above solution in a cooling bath using decalin, paraffin oil or the like, or after solidifying once using boric acid or the like.

【0017】上記のようにして得られた繊維を乾燥し,
モノフィラメントもしくはマルチフィラメント状の未延
伸繊維とする。なお,紡糸工程中で延伸する際は,溶媒
抽出中又は溶媒抽出後に紡糸浴中で延伸し,乾燥する。
The fibers obtained as described above are dried,
The monofilament or multifilament unstretched fiber is used. When the drawing is carried out in the spinning step, the drawing is carried out during the solvent extraction or after the solvent extraction, and the drawing bath is followed by drying.

【0018】本発明においては,脱水反応を促進する触
媒(以下,触媒と称する。)が付与された繊維に熱処理
を施し,繊維表面上に架橋層を形成して耐熱水性を向上
させる必要がある。繊維に触媒を付与する方法として
は,未延伸繊維段階までに触媒を付与して延伸した後,
熱処理を施す方法と,延伸した後,触媒を付与して熱処
理する方法とがあるが,前者が好ましい。なお,触媒を
付与せず,架橋層を形成させないと,熱水に溶解される
ので好ましくない。
In the present invention, it is necessary to improve the hot water resistance by heat-treating the fiber provided with a catalyst for promoting the dehydration reaction (hereinafter referred to as the catalyst) to form a crosslinked layer on the fiber surface. . The method of applying the catalyst to the fiber is to add the catalyst to the undrawn fiber stage and draw it,
There are a method of performing heat treatment and a method of applying a catalyst and then performing heat treatment after stretching, but the former is preferable. In addition, unless a catalyst is applied and a crosslinked layer is not formed, it is dissolved in hot water, which is not preferable.

【0019】また,未延伸繊維段階までに触媒を付与す
る場合,紡糸原液に触媒を添加する方法,凝固浴中もし
くは抽出浴中に触媒を添加することで,繊維内部にまで
触媒を含有させる方法,溶媒抽出後,繊維に付与する方
法等があるが,凝固浴中もしくは抽出浴中に触媒を添加
することで,繊維内部にまで触媒を含有させる方法や,
溶媒抽出後,繊維に付与する方法が好ましい。溶媒抽出
後,繊維に付与する場合,触媒は油剤とともに,すなわ
ち,油剤に触媒を混合して使用するのが好ましい。触媒
と油剤を別々に付与すると,工程が煩雑となるばかりか
触媒の浸透量が少なくなり,後工程で高速の延伸や熱処
理ができなかったり,耐熱水性の発現が不十分となる。
なお,延伸繊維に触媒を付与する場合も,未延伸繊維と
同様にして行うことができる。
When the catalyst is added before the undrawn fiber stage, the catalyst is added to the spinning stock solution, or the catalyst is added to the inside of the fiber by adding the catalyst to the coagulation bath or the extraction bath. , There is a method of applying to the fiber after solvent extraction, but a method of adding the catalyst to the coagulation bath or the extraction bath so that the catalyst is contained even inside the fiber,
The method of applying to the fiber after solvent extraction is preferable. When applied to the fibers after solvent extraction, it is preferable to use the catalyst together with the oil agent, that is, to mix the catalyst with the oil agent. If the catalyst and the oil agent are applied separately, not only the process becomes complicated, but also the permeation amount of the catalyst is reduced, high-speed drawing and heat treatment cannot be performed in the subsequent process, and the development of hot water resistance becomes insufficient.
The catalyst can be applied to the drawn fiber in the same manner as the undrawn fiber.

【0020】PVA繊維に付与する触媒は,熱を与える
ことによりPVAが脱水反応するものであればよく,例
えば硫酸,塩酸,リン酸,ポリリン酸等の無機酸,酢
酸,イタコン酸,アルキルスルホン酸,リン酸モノアル
キル,リン酸モノジアルキル,ポリアクリル酸等を採用
することができる。これらの中では,PVAに対する熱
分解反応と脱水反応の点で無機酸,特にリン酸が好まし
い。また,触媒を混合する油剤は特に限定されるもので
はないが,ポリオキシエチレンソルビタントリオレエー
ト,ポリオキシエチレンオレイルエーテル,ポリオキシ
エチレンラウリルアミノエーテル等を主成分とし,鉱物
油を希釈剤とする,いわゆるストレート油剤が好まし
い。
The catalyst applied to the PVA fiber may be one that can dehydrate PVA by applying heat, for example, inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid, polyphosphoric acid, acetic acid, itaconic acid, alkylsulfonic acid. , Monoalkyl phosphate, monodialkyl phosphate, polyacrylic acid and the like can be adopted. Among these, inorganic acids, particularly phosphoric acid, are preferable from the viewpoint of thermal decomposition reaction and dehydration reaction with respect to PVA. In addition, the oil agent to be mixed with the catalyst is not particularly limited, but polyoxyethylene sorbitan trioleate, polyoxyethylene oleyl ether, polyoxyethylene lauryl amino ether, etc. as a main component, and mineral oil as a diluent, So-called straight oil agents are preferred.

【0021】触媒の付与量はその種類によって異なる
が,PVA繊維に対して0.01〜5.0重量%であることが
好ましい。触媒の付与量が0.01重量%より少ないと,繊
維の表面で脱水反応が均一に起こり難くなり,また,5.
0重量%より多いと,脱水作用が強過ぎて強度低下を生
じやすいので好ましくない。
Although the amount of the catalyst applied varies depending on the type, it is preferably 0.01 to 5.0% by weight based on the PVA fiber. If the amount of catalyst added is less than 0.01% by weight, it becomes difficult for the dehydration reaction to occur uniformly on the surface of the fiber.
If it is more than 0% by weight, the dehydration effect is too strong and the strength is apt to be lowered, which is not preferable.

【0022】本発明では,未延伸繊維を紡糸に引き続
き,もしくは一旦捲取った後,2段以上の多段で熱延伸
を行う。延伸時の加熱手段は特に限定されるものではな
く,加熱ローラ, 熱風炉あるいはこれらの組み合わせ等
を使用することができる。また,熱延伸の際の延伸倍率
は,総延伸倍率が15倍以上となるように設定するのが好
ましい。
In the present invention, the unstretched fibers are subjected to hot drawing subsequent to spinning or after being once wound and then in multiple stages of two or more stages. The heating means at the time of stretching is not particularly limited, and a heating roller, a hot air oven, or a combination thereof can be used. Further, it is preferable that the stretching ratio in the hot stretching is set so that the total stretching ratio is 15 times or more.

【0023】次いで,熱延伸後の繊維に熱処理を施す
が,熱処理方法としては加熱ローラを使用する必要があ
る。熱処理装置としては,加熱ローラ以外に熱風炉やホ
ットプレート等があるが,熱風炉では繊維が高速で炉内
を移動する上,繊維に間接的にしか熱を付与することが
できないため,多量に熱を付与するためには炉長を長く
する必要があり,操業上,経済上好ましくない。また,
ホットプレートは,繊維に熱を直接付与することが可能
であるが,繊維表面が高速でプレート面に擦れるため,
繊維表面に損傷を与えることになる。
Next, the heat-stretched fiber is subjected to heat treatment, and it is necessary to use a heating roller as a heat treatment method. In addition to heating rollers, there are hot blast stoves, hot plates, etc. as heat treatment equipment. In the hot blast stoves, since the fibers move at high speed in the furnace, heat can only be indirectly applied to the fibers, so a large amount of heat is required. In order to apply heat, it is necessary to lengthen the furnace length, which is not preferable in terms of operation and economy. Also,
The hot plate can directly apply heat to the fiber, but since the fiber surface rubs against the plate surface at high speed,
This will damage the fiber surface.

【0024】加熱ローラを2基以上使用した上で,各加
熱ローラ間で,前ローラに対して速度比10.0%以下,好
ましくは8.0%以下,より好ましくは5.0%以下のリラ
ックスを与えて熱処理する必要がある。このリラックス
率が10.0%を超えると,必要以上に分子鎖の熱緩和が生
じてしまう上に,熱緩和が生じた状態で結晶化するため
極度の強度低下を引き起こす。
After using two or more heating rollers, relax between each heating roller by a speed ratio of 10.0% or less, preferably 8.0% or less, and more preferably 5.0% or less with respect to the front roller. It must be given and heat treated. If this relaxation rate exceeds 10.0%, thermal relaxation of the molecular chain will occur more than necessary, and crystallization will occur in the state of thermal relaxation, resulting in an extreme decrease in strength.

【0025】本発明において使用する加熱ローラの表面
温度は100〜300℃に設定することが必要である。この表
面温度が 100℃未満では結晶化や触媒の作用による脱水
反応が進行せず,また,300℃を超えると,熱劣化により
着色するので好ましくない。
The surface temperature of the heating roller used in the present invention must be set to 100 to 300 ° C. If the surface temperature is less than 100 ° C, the dehydration reaction due to crystallization or the action of the catalyst does not proceed, and if it exceeds 300 ° C, coloring is caused by thermal deterioration, which is not preferable.

【0026】本発明では,2段以上の多段で熱延伸を施
した触媒付与後のPVA繊維を, 2基以上の加熱ローラ
を使用し,各ローラ表面温度を 100〜 300℃,各加熱ロ
ーラ間のリラックス率を10.0%以下にして熱処理するこ
とで,熱延伸による緊張状態の分子鎖を熱緩和させると
ともに,触媒の作用による脱水反応で繊維の表面に架橋
層を形成させ,高強度と優れた耐熱水性を有するモノフ
ィラメントやマルチフィラメント状のPVA繊維を最終
捲取速度 100〜600m/minという高速で製造することが可
能となる。なお,本発明は,最終捲取速度を100m/min未
満にしても適用できるのはもちろんである。また,上記
の熱処理で使用する加熱ローラをローラボックス等で包
み込めば,加熱ローラ表面からの熱の放出を抑制するこ
とが可能となり,加熱ローラの熱処理効果が向上する
上,得られるPVA繊維の耐熱水性の向上や製造の高速
化を図ることができる。
In the present invention, two or more heating rollers are used for the PVA fiber after catalyst addition which has been subjected to hot drawing in two or more steps, and the surface temperature of each roller is 100 to 300 ° C. The heat treatment with a relaxation rate of 10.0% or less relaxes the molecular chains in a tense state due to hot drawing, and forms a crosslinked layer on the surface of the fiber by the dehydration reaction due to the action of the catalyst. It is possible to produce monofilament or multifilament PVA fibers having hot water resistance at a high final winding speed of 100 to 600 m / min. The present invention can of course be applied even when the final winding speed is less than 100 m / min. Further, if the heating roller used in the above heat treatment is wrapped in a roller box or the like, it becomes possible to suppress the release of heat from the surface of the heating roller, the heat treatment effect of the heating roller is improved, and the PVA fiber obtained is The hot water resistance can be improved and the production speed can be increased.

【0027】[0027]

【実施例】次に,本発明を実施例により具体的に説明す
る。なお, 本発明において,耐熱水性は,下記の条件で
得られる融解(溶解)曲線のピーク温度で表した。 使用装置 :パーキンエルマー社製DSCー2C型示差
走査熱量計 昇温速度 :10℃/分 試料セル :高耐圧(50気圧)セル 試料調製法:長さ約50mmに切断した繊維サンプル5mgを
水10mgと共に試料セル中に封入する。
EXAMPLES Next, the present invention will be specifically described by way of examples. In the present invention, the hot water resistance is represented by the peak temperature of the melting (dissolution) curve obtained under the following conditions. Equipment used: DSC-2C type differential scanning calorimeter manufactured by Perkin Elmer Inc. Temperature rising rate: 10 ° C / min Sample cell: High pressure (50 atm) cell Sample preparation method: 5 mg of fiber sample cut to a length of about 50 mm and 10 mg of water Together with it, it is enclosed in a sample cell.

【0028】実施例1,比較例1〜3 平均重合度4000の乾燥PVAを濃度が15重量%となるよ
うに,120℃でDMSOに溶解した。溶解に際しては密閉
容器を用い,内部を窒素置換して行った。この溶液を,
孔径0.3mm,孔数 300の口金から温度 105℃で吐出し,リ
ン酸を0.05重量%添加したメタノールからなる凝固浴中
に落下させた。凝固繊維中のDMSOをさらにメタノー
ルで抽出した後,繊維を80℃で乾燥し,リン酸0.045 重
量%を含有する未延伸繊維を作製した。
Examples 1 and Comparative Examples 1 to 3 Dry PVA having an average degree of polymerization of 4000 was dissolved in DMSO at 120 ° C. so that the concentration was 15% by weight. When melting, a closed vessel was used and the inside was replaced with nitrogen. This solution
It was discharged from a die with a hole diameter of 0.3 mm and 300 holes at a temperature of 105 ° C and dropped into a coagulation bath consisting of methanol containing 0.05% by weight phosphoric acid. After DMSO in the coagulated fiber was further extracted with methanol, the fiber was dried at 80 ° C to prepare an unstretched fiber containing 0.045% by weight of phosphoric acid.

【0029】上記で得た未延伸繊維を熱延伸及び熱処理
に供した。熱延伸は80℃の第1加熱ローラ,170℃の第2
加熱ローラ,第1及び第2加熱ローラ間に配された入口
温度169℃,出口温度 235℃の長さ4mの第1熱風炉
を,さらに 170℃の第3加熱ローラ,第2,3加熱ロー
ラ間に配された入口温度 174℃,出口温度 225℃, 長さ
6mの第2熱風炉を用いて, 総延伸倍率が16.5倍となる
ように行った。
The undrawn fiber obtained above was subjected to hot drawing and heat treatment. The hot drawing is the first heating roller at 80 ℃ and the second at 170 ℃.
The heating roller, the first hot air stove having an inlet temperature of 169 ° C. and the outlet temperature of 235 ° C. arranged between the first and second heating rollers and having a length of 4 m, the third heating roller of 170 ° C., the second and third heating rollers Using a second hot air stove with an inlet temperature of 174 ° C, an outlet temperature of 225 ° C, and a length of 6 m, the total draw ratio was 16.5 times.

【0030】熱処理は,実施例1では2基の 200℃の加
熱ローラを1.0%のリラックス率に設定して使用し,比
較例1では 250℃の4mのホットプレートを,比較例2
では6mの熱風炉を, 入口温度 200℃,出口温度 250℃
で使用し,比較例3では,200℃と 250℃の加熱ローラを
11%のリラックス率で使用した。その際の最終捲取速度
はいずれも400m/minとした。熱処理条件と得られたPV
A繊維の物性を表1に示す。
In the heat treatment, two heating rollers at 200 ° C. were used with a relaxation rate set to 1.0% in Example 1, and in Comparative Example 1, a hot plate of 4 m at 250 ° C. was used.
Then, a 6-meter hot air stove was used with an inlet temperature of 200 ℃ and an outlet temperature of 250 ℃.
In Comparative Example 3, heating rollers at 200 ° C and 250 ° C were used.
Used with a relaxation rate of 11%. The final winding speed at that time was 400 m / min. Heat treatment conditions and PV obtained
Table 1 shows the physical properties of the A fiber.

【0031】[0031]

【表1】 [Table 1]

【0032】表1から明らかなように,実施例1では,
強度16.3g/d,耐熱水性 136℃と, 高強度, 高耐熱水性の
PVA繊維が得られた。一方,熱処理装置としホットプ
レートを使用した比較例1では,耐熱水性が118℃と低い
繊維しか得られず,単糸切れや断糸も頻発した。また,
熱風炉を使用した比較例2では,耐熱水性が 103℃の繊
維しか得ることはできなかった。さらに,リラックス率
を11%とした比較例3では,耐熱水性が 142℃と高耐熱
水性ではあるが,9.3g/dと低強度の繊維しか得ることが
できなかった。
As is clear from Table 1, in Example 1,
A PVA fiber having a strength of 16.3 g / d and a hot water resistance of 136 ° C. and high strength and high heat resistance was obtained. On the other hand, in Comparative Example 1 in which the hot plate was used as the heat treatment device, only fibers having a low hot water resistance of 118 ° C were obtained, and single yarn breakage and yarn breakage occurred frequently. Also,
In Comparative Example 2 using the hot air oven, only fibers having a hot water resistance of 103 ° C could be obtained. Furthermore, in Comparative Example 3 in which the relaxation rate was 11%, although the hot water resistance was 142 ° C. and high hot water resistance, only fibers having a low strength of 9.3 g / d could be obtained.

【0033】実施例2,比較例4〜6 平均重合度4000の乾燥PVAを濃度が15重量%となるよ
うに,120℃でDMSOに溶解した。溶解は密閉容器を用
い,内部を窒素置換して行った。得られた溶液をドープ
温度105℃で乾湿式紡糸するに際し,孔径0.3mm,孔数300
の口金から 105℃で吐出し,メタノールからなる凝固浴
中に落下させた。凝固,抽出後,ポリオキシエチレンオ
レイルエーテルにリン酸を0.2当量添加し,オイリング
ローラによって繊維に触媒を付着させ,80℃で乾燥し,
未延伸繊維を作製した。
Example 2, Comparative Examples 4 to 6 Dry PVA having an average degree of polymerization of 4000 was dissolved in DMSO at 120 ° C. to a concentration of 15% by weight. The dissolution was performed by using a closed container and replacing the inside with nitrogen. When the obtained solution was subjected to dry-wet spinning at a dope temperature of 105 ° C, the pore size was 0.3 mm and the number of holes was 300.
It was discharged from the die at 105 ° C and dropped into a coagulation bath consisting of methanol. After coagulation and extraction, 0.2 equivalents of phosphoric acid was added to polyoxyethylene oleyl ether, a catalyst was attached to the fiber with an oiling roller, and dried at 80 ° C.
An undrawn fiber was produced.

【0034】熱延伸は, 80℃の第1加熱ローラ,170℃の
第2加熱ローラ,第1及び第2加熱ローラ間に配され
た, 入口温度 169℃,出口温度 235℃の長さ4mの第1
熱風炉を,さらに 170℃の第3加熱ローラ,第2,3加
熱ローラ間に配された, 入口温度 174℃,出口温度 225
℃の長さ6mの第2熱風炉を用いて, 総延伸倍率が15.7
倍となるように行った。
The hot stretching was carried out by arranging a first heating roller at 80 ° C., a second heating roller at 170 ° C., a first heating roller and a second heating roller at an inlet temperature of 169 ° C. and an outlet temperature of 235 ° C. and a length of 4 m. First
The hot blast stove was placed between the 3rd heating roller of 170 ℃ and the 2nd and 3rd heating rollers. The inlet temperature was 174 ℃ and the outlet temperature was 225 ℃.
Using a second hot air stove with a length of 6 m at ℃, the total draw ratio was 15.7
I went to double.

【0035】熱延伸後の熱処理は,加熱ローラの温度を
種々変更して施した。その際の最終捲取速度は500m/min
とした。熱処理条件と得られたPVA繊維の物性を表2
に示す。
The heat treatment after the hot drawing was performed by changing the temperature of the heating roller. The final winding speed at that time is 500 m / min
And Table 2 shows the heat treatment conditions and the physical properties of the obtained PVA fiber.
Shown in.

【0036】[0036]

【表2】 [Table 2]

【0037】表2から明らかなように,実施例2では,
強度17.0g/d,耐熱水性 138℃と,高強度, 高耐熱水性の
PVA繊維が得られた。一方,280℃の加熱ローラを使用
した比較例4では,耐熱水性が 108℃, また,80℃の加
熱ローラを使用した比較例5では,耐熱水性が98℃の繊
維しか得られなかった。さらに,350℃の加熱ローラを使
用した比較例6では,耐熱水性が 138℃と耐熱水性は良
好であるが,着色した繊維しか得ることができなかっ
た。
As is clear from Table 2, in Example 2,
High-strength, high-heat-resistant water PVA fiber with strength of 17.0 g / d and hot-water resistance of 138 ° C was obtained. On the other hand, in Comparative Example 4 using the heating roller at 280 ° C, the hot water resistance was 108 ° C, and in Comparative Example 5 using the heating roller at 80 ° C, only fibers having the hot water resistance of 98 ° C were obtained. Further, in Comparative Example 6 using a heating roller at 350 ° C, the hot water resistance was 138 ° C, which was good, but only colored fibers could be obtained.

【0038】参考例1 実施例2で作製した未延伸繊維を使用して熱延伸及び熱
処理に供した。熱延伸は80℃の第1加熱ローラ,170℃の
第2加熱ローラ,第1及び第2加熱ローラ間に配された
入口温度 160℃, 出口温度 230℃, 長さ2mの第1熱風
炉を, さらに,170℃の第3加熱ローラ, 第2,3加熱
ローラ間に間に配された入口温度 174℃, 出口温度 225
℃, 長さ4mの第2熱風炉を用いて, 総延伸倍率が16.0
倍となるように行った。
Reference Example 1 The undrawn fiber prepared in Example 2 was used for hot drawing and heat treatment. The hot drawing was performed by using a first heating roller of 80 ° C, a second heating roller of 170 ° C, an inlet temperature of 160 ° C, an outlet temperature of 230 ° C, and a first hot-air stove with a length of 2 m, which were arranged between the first and second heating rollers. In addition, the inlet temperature 174 ° C and the outlet temperature 225 were placed between the third heating roller of 170 ℃ and the second and third heating rollers.
Using a second hot air stove with a length of 4 m and a total draw ratio of 16.0
I went to double.

【0039】熱処理は, 200℃の加熱ローラと 210℃の
加熱ローラを1.0%のリラックス率に設定して行った。
この時の最終捲取速度は20m/min とした。得られた繊維
は,強度18.2g/d,耐熱水性 140℃と,高強度, 高耐熱水
性のPVA繊維であった。
The heat treatment was performed by setting the heating roller at 200 ° C. and the heating roller at 210 ° C. to a relaxation rate of 1.0%.
The final winding speed at this time was 20 m / min. The obtained fiber was PVA fiber having high strength and high hot water resistance, with a strength of 18.2 g / d and a hot water resistance of 140 ° C.

【0040】[0040]

【発明の効果】本発明によれば,従来不可能であった10
0m/min以上の高速で, 高強度で, かつ,耐熱水性の優れ
たPVA繊維を得ることが可能となり,これにより耐熱
水性の優れたPVA繊維の生産性が飛躍的に改善され,
産業資材用繊維としての用途の拡大が期待される。
EFFECTS OF THE INVENTION According to the present invention, heretofore impossible.
It is possible to obtain PVA fibers with a high speed of 0 m / min or more, high strength, and excellent hot water resistance, which dramatically improves the productivity of PVA fibers with excellent hot water resistance.
It is expected that the use as a fiber for industrial materials will be expanded.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永冨 一也 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 (72)発明者 一瀬 直次 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 (72)発明者 高木 伸哉 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuya Nagatomi 23 Uji Kozakura, Uji City, Kyoto Prefecture Unitika Co., Ltd. Central Research Institute (72) Inventor Naoji Ichise 23 Uji Kozakura, Uji City, Kyoto Unitika Co., Ltd. Central Research Institute (72) Inventor Shinya Takagi 23, Uji Kozakura, Uji City, Kyoto Unitika Ltd. Central Research Laboratories

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポリビニルアルコール未延伸繊維を2段
以上の多段で熱延伸した後,熱処理を施して耐熱水性ポ
リビニルアルコール繊維を製造するに際し,(1) 脱水反
応を促進する触媒が付与されているポリビニルアルコー
ル繊維に熱処理を施す,(2) 熱処理装置として加熱ロー
ラを2基以上使用し,各ローラ表面温度を 100〜300℃
とし,各加熱ローラ間において糸条に10.0%以下のリラ
ックスを与える,(3) 最終の捲取速度を 100〜600m/min
とする,ことを特徴とする耐熱水性ポリビニルアルコー
ル繊維の製造方法。
1. When a heat-resistant polyvinyl alcohol fiber is produced by heat-treating unstretched polyvinyl alcohol fiber in multiple stages of two or more stages, (1) a catalyst for accelerating the dehydration reaction is added. Heat treatment of polyvinyl alcohol fiber, (2) Use two or more heating rollers as a heat treatment device, and set the surface temperature of each roller to 100-300 ℃.
The yarn is relaxed by 10.0% or less between each heating roller. (3) The final winding speed is 100 to 600m / min.
A method for producing a hot water-resistant polyvinyl alcohol fiber, comprising:
JP7391794A 1994-03-18 1994-03-18 Production of hot water-resistant polyvinyl alcohol fiber Pending JPH07258910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7391794A JPH07258910A (en) 1994-03-18 1994-03-18 Production of hot water-resistant polyvinyl alcohol fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7391794A JPH07258910A (en) 1994-03-18 1994-03-18 Production of hot water-resistant polyvinyl alcohol fiber

Publications (1)

Publication Number Publication Date
JPH07258910A true JPH07258910A (en) 1995-10-09

Family

ID=13532007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7391794A Pending JPH07258910A (en) 1994-03-18 1994-03-18 Production of hot water-resistant polyvinyl alcohol fiber

Country Status (1)

Country Link
JP (1) JPH07258910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016186075A1 (en) * 2015-05-21 2018-03-01 三井化学東セロ株式会社 Method for producing gas barrier laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016186075A1 (en) * 2015-05-21 2018-03-01 三井化学東セロ株式会社 Method for producing gas barrier laminate

Similar Documents

Publication Publication Date Title
JP3564822B2 (en) Method for producing polybenzazole fiber
JPH10110329A (en) Polybenzazole fiber and production thereof
JP2569352B2 (en) High strength water-soluble polyvinyl alcohol fiber and method for producing the same
JPH07258910A (en) Production of hot water-resistant polyvinyl alcohol fiber
JP2016145441A (en) High performance fiber and method for producing the same
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JP3423814B2 (en) A method for producing a high-strength, high-modulus polyvinyl alcohol-based monofilament yarn having excellent hot water resistance.
CN115704116A (en) Method for manufacturing aromatic polysulfonamide fibers
JPH0233314A (en) High-tenacity polyvinyl alcohol based fiber and production thereof
JPH1181053A (en) High-strength acrylic fiber, its production and production of carbon fiber
JPH076087B2 (en) High strength and high modulus PVA fiber and method for producing the same
JPS62162010A (en) Production of polyvinyl alcohol fiber of high tenacity and elasticity
JPS61215708A (en) Production of multifilament yarn
JPH0670283B2 (en) Method for producing high-strength, high-modulus polyvinyl alcohol fiber
JPH0718514A (en) Production of polyvinyl alcohol fiber
JP2656332B2 (en) Polyvinyl alcohol fiber drawing method
JPH0726412A (en) Production of polyvinyl alcohol fiber
JPH06313209A (en) Production of polyvinyl alcohol fiber
KR100368064B1 (en) Polybenzazole monofilament and its manufacturing method
JP2024084198A (en) Manufacturing method of acrylonitrile fiber
JPS63190010A (en) Production of high-tenacity polyvinyl alcohol based fiber
JPH07305222A (en) Method for producing polyvinyl alcohol fiber
JP2004346447A (en) Method for producing acrylic fiber
JP2899426B2 (en) Manufacturing method of high strength vinyl alcohol polymer fiber
JPH07189022A (en) Production of polyvinyl alcohol-based fiber