JPH07258752A - Method for controlling combustion in heating furnace for rolling - Google Patents

Method for controlling combustion in heating furnace for rolling

Info

Publication number
JPH07258752A
JPH07258752A JP4925694A JP4925694A JPH07258752A JP H07258752 A JPH07258752 A JP H07258752A JP 4925694 A JP4925694 A JP 4925694A JP 4925694 A JP4925694 A JP 4925694A JP H07258752 A JPH07258752 A JP H07258752A
Authority
JP
Japan
Prior art keywords
slab
temperature
furnace
thickness direction
skids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4925694A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Nakajima
島 弘 喜 中
Masahiro Usui
井 雅 弘 臼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4925694A priority Critical patent/JPH07258752A/en
Publication of JPH07258752A publication Critical patent/JPH07258752A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To calculate the furnace temp. to be set to a heating furnace for rolling by dissolving an unidimensional thermal conduction difference equation in the thickness direction of a slab within a range between skids and a two-dimensional thermal conduction difference equation in the thickness direction and in the longitudinal direction of the slab on the skid part. CONSTITUTION:At the time of controlling heating-up of the slab in the heating furnace for rolling, within a range between the skids, the unidimensional thermal conduction difference equation in the thickness direction of the slab is dissolved. Further, on the skid part, the two-dimensional thermal conduction difference equation in the thickness direction and the longitudinal direction of the slab simplified with the thermal conduction in the longitudinal direction of the slab by introducing a factor is dissolved. By this method, the future temp. distributions are predicted as to the slab between the skids and on the skid part in the furnace, these heating-up quality is evaluated, the furnace temp. to be set to the heating furnace for rolling is calculated and the heating-up quality of the slab is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧延加熱炉の燃焼制御
(スラブ焼き上げ制御)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to combustion control (slab baking control) of a rolling heating furnace.

【0002】[0002]

【従来技術】一般に、圧延工場の加熱炉を計算機制御す
る目的は、連続的に装入されるスラブを圧延条件(製品
寸法,圧延温度など)によって定まる目標温度に加熱し
て、圧延ラインの要求するピッチに合わせて抽出するこ
とにある。さらに、抽出時のスラブの焼けむらを防止す
るため極力均熱化することが品質上望ましい。一方、燃
量消費低減のためには過均熱は避けるべきであり、品質
と省エネルギーの相反する両方の目的を満足させる制御
が必要とされる。
2. Description of the Related Art Generally, the purpose of computer control of a heating furnace in a rolling mill is to heat a continuously charged slab to a target temperature determined by rolling conditions (product size, rolling temperature, etc.) and to demand the rolling line. It is to extract according to the pitch. Furthermore, in order to prevent uneven burning of the slab during extraction, it is desirable in terms of quality to soak the heat as much as possible. On the other hand, in order to reduce the fuel consumption, overheating should be avoided, and control that satisfies both the contradictory objectives of quality and energy saving is required.

【0003】これを達成するためには、精度のよいスラ
ブ温度計算モデルおよび炉温設定モデルが必要である。
ここでスラブ温度計算モデルとは、炉温検出器より検出
された炉内の雰囲気温度と熱伝導方程式からスラブの現
在温度を計算するものであり、計算方法としては、スキ
ッド間とスキッド部の温度分布が精度良く計算できる二
次元(スラブ厚み方向×スラブ長手方向)の熱伝導差分
方程式などがよく用いられている。炉温設定モデルは、
スラブを現在温度から抽出目標温度までに焼き上げるた
めに必要な炉温を計算するモデルであり、その計算方法
は種々提唱されているが、一般にその内部では適当な条
件でスラブの焼き上げシミュレーションを行ない、その
焼き上げ結果を評価して設定値を決定している。そし
て、この焼き上げシミュレーション機能には、スラブの
昇温予測計算モデルが必要である。ここでスラブの昇温
予測計算モデルは、炉内の全スラブに対して各スラブが
抽出されるまでの昇温予測計算が繰返し必要であり、二
次元の熱伝導差分方程式を解くとすれば、その計算量は
一般に膨大なものとなり、処理時間的にオンライン制御
に耐えない。そのため計算時間を短縮化するために、基
本式としては、数値計算手法を用いて解いた場合計算負
荷の小さいスラブ厚み方向一次元の熱伝導方程式を使用
するか、あるいは現在温度と目標温度の差が最も大きい
など、最も焼けにくいと考えられるスラブをネックスラ
ブとし、これを焼き上げることで全スラブの焼き上げを
達成しようと考えて、ネックスラブのみを計算対象スラ
ブとして限定し計算負荷を下げるのが一般的である。
To achieve this, an accurate slab temperature calculation model and furnace temperature setting model are required.
Here, the slab temperature calculation model is to calculate the current temperature of the slab from the atmosphere temperature in the furnace detected by the furnace temperature detector and the heat conduction equation.The calculation method is the temperature between the skids and the temperature of the skid part. A two-dimensional (slab thickness direction x slab longitudinal direction) heat conduction difference equation that can calculate the distribution with high accuracy is often used. The furnace temperature setting model is
It is a model to calculate the furnace temperature required to bake the slab from the current temperature to the extraction target temperature, and various calculation methods have been proposed, but in general, the slab baking simulation is performed under appropriate conditions, The baking result is evaluated to determine the set value. The baking simulation function requires a slab temperature rise prediction calculation model. Here, the slab temperature rise prediction calculation model requires repeated temperature rise prediction calculation until each slab is extracted for all slabs in the furnace, and if a two-dimensional heat conduction difference equation is to be solved, The amount of calculation is generally enormous, and the processing time cannot withstand online control. Therefore, in order to reduce the calculation time, use the one-dimensional heat conduction equation in the slab thickness direction, which has a small calculation load when solving it using a numerical calculation method, or the difference between the current temperature and the target temperature. It is common to limit the calculation load by limiting the neck slab to the calculation target slab in order to achieve baking of all slabs by baking the slab that is considered to be the most difficult to burn, such as the largest slab. Target.

【0004】[0004]

【発明が解決しようとする課題】しかし、通常一次元の
熱伝導方程式ではスキッド部の温度分布が計算できない
ため、これをスラブ昇温予測モデルに利用した炉温設定
モデルでは、スキッド部をうまく焼き上げることができ
ない。
However, since the temperature distribution of the skid part cannot be calculated usually by the one-dimensional heat conduction equation, the skid part is successfully baked in the furnace temperature setting model using this for the slab temperature rise prediction model. I can't.

【0005】また、計算対象スラブを限定した場合、炉
内のスラブが多品種にわたっている場合には、計算対象
外のスラブについては、無駄焼きを発生しやすい。
Further, when the slabs to be calculated are limited, and when the slabs in the furnace are of various types, waste slabs are likely to occur for slabs not to be calculated.

【0006】本発明は、上記欠点を解決し、少ない計算
量で、炉内の全スラブに対してスキッド間とスキッド部
の温度分布予測を行うことを可能とし、これを用いた炉
温設定モデルにおいて、スラブの厚み方向のみならずス
ラブ長手方向にも均熱性に優れた高品質な焼き上げを確
保する方法を提供することを課題とする。
The present invention solves the above-mentioned drawbacks and makes it possible to predict the temperature distribution between skids and skid parts for all slabs in the furnace with a small amount of calculation, and a furnace temperature setting model using this It is an object of the present invention to provide a method for ensuring high quality baking excellent in heat uniformity not only in the thickness direction of the slab but also in the longitudinal direction of the slab.

【0007】[0007]

【課題を解決するための手段】本発明によれば、上記の
課題は、スキッド間についてはスラブ厚み方向一次元の
熱伝導差分方程式を、スキッド部についてはスラブ長手
方向の熱伝導を係数導入によって簡略化した二次元(ス
ラブ厚み方向×スラブ長手方向)の熱伝導差分方程式を
解くことで、炉内スラブのスキッド間とスキッド部の厚
み方向の将来温度分布を予測し、それらの焼き上げ品質
を評価することにより、圧延加熱炉に設定すべき炉温
(設定炉温)を算出する。
According to the present invention, the above-mentioned problems are solved by introducing a one-dimensional heat conduction difference equation in the slab thickness direction between skids and introducing a coefficient of heat conduction in the longitudinal direction of the slab for skid parts. By solving a simplified two-dimensional (slab thickness direction x slab longitudinal direction) heat conduction difference equation, the future temperature distribution between the skids of the slab in the furnace and in the thickness direction of the skid part is predicted, and their baking quality is evaluated. By doing so, the furnace temperature to be set in the rolling heating furnace (set furnace temperature) is calculated.

【0008】[0008]

【作用】図1に本発明の処理の概要を、機能構成の表現
を用いて示す。本発明では、炉内スラブに対して、現時
点での炉温が継続するものと仮定し、予定した抽出ピッ
チでスラブが炉内を移動するとして抽出時のスラブ温度
を予測したうえで、設定炉温の算出を、現時点の炉温近
傍の微小変動の問題として線形化し、焼き上げ品質の制
約条件下で、最適な各燃焼帯の炉温変更量を求める線形
計画処理で解く。スラブ昇温予測においては、スキッド
間のみならずスキッド部までその温度分布を予測するた
め、最適な炉温変更量を決定する際の焼き上げ品質の制
約条件の中にスキッド間〜スキッド部に関する均熱度に
ついても考慮することができ、スラブ厚み方向のみなら
ずスラブ長手方向についても均一に焼き上げることが可
能な炉温変更量を算出することができる。また、最適な
設定炉温は、炉内全スラブに対して算出され、最終的な
設定炉温は、それらの加重平均値として出力することに
より、炉内のスラブが多品種にわたっている場合におい
ても、それらを平均的にあるいは優先度をつけて、焼き
上げることが可能である。
The outline of the processing of the present invention is shown in FIG. 1 using the expression of the functional configuration. In the present invention, with respect to the slab in the furnace, it is assumed that the furnace temperature at the present time continues, and after predicting the slab temperature at the time of extraction assuming that the slab moves in the furnace at the planned extraction pitch, the set furnace The calculation of the temperature is linearized as a problem of minute fluctuations near the current furnace temperature, and is solved by a linear programming process that finds the optimum furnace temperature change amount of each combustion zone under the constraint condition of baking quality. In the slab temperature rise prediction, the temperature distribution is predicted not only between the skids but also up to the skid part.Therefore, the soaking degree between the skid and the skid part is one of the constraints of the baking quality when determining the optimal furnace temperature change amount. Can be taken into consideration, and it is possible to calculate the amount of change in furnace temperature that enables uniform baking not only in the slab thickness direction but also in the slab longitudinal direction. In addition, the optimum set furnace temperature is calculated for all slabs in the furnace, and the final set furnace temperature is output as a weighted average value of those slabs, so that even when there are many types of slabs in the furnace , It is possible to bake them on average or with priorities.

【0009】[0009]

【実施例】以下に、本発明を用いた圧延加熱炉燃焼制御
方法の実施例を説明する。図2に、一般的な圧延加熱炉
とこれに対して本発明を実施するコンピュ−タ6を示
し、コンピュ−タ6のブロック内には計算機能を示す。
コンピュ−タ6で計算された設定炉温を目標値として燃
料流量制御機器2が燃料流量を制御することにより、加
熱炉1に連続的に装入されるスラブを圧延条件(製品寸
法,圧延温度など)によって定まる目標温度に加熱す
る。
EXAMPLES Examples of a rolling heating furnace combustion control method according to the present invention will be described below. FIG. 2 shows a general rolling heating furnace and a computer 6 for carrying out the present invention, and a calculation function is shown in a block of the computer 6.
The fuel flow rate control device 2 controls the fuel flow rate by using the set furnace temperature calculated by the computer 6 as a target value, so that the slab continuously charged into the heating furnace 1 is rolled under the rolling conditions (product size, rolling temperature). Etc.) to a target temperature determined by.

【0010】コンピュ−タ(燃焼制御機能)6は、現状
スラブ温度計算機能7と設定炉温計算機能8を含む。現
状スラブ温度計算機能7は、炉温検出器3からの炉内温
度情報とスラブ情報機能5からのスラブ情報(炉内位
置、スラブ寸法など)をもとに、二次元の熱伝導方程式
を差分法を使って解くことにより、その時刻におけるス
ラブの温度分布を精度良く計算する。設定炉温計算機能
8では、現状スラブ温度計算機能7の計算結果(スラブ
現在温度)を受けて、スラブが抽出されるまでに、現在
温度から目標温度まで焼き上げるために必要な炉温を算
出して、設定炉温を燃料流量制御機器2に設定する。
The computer (combustion control function) 6 includes a current slab temperature calculation function 7 and a set furnace temperature calculation function 8. The current slab temperature calculation function 7 calculates the difference between the two-dimensional heat conduction equation based on the furnace temperature information from the furnace temperature detector 3 and the slab information (reactor position, slab size, etc.) from the slab information function 5. By using the method, the temperature distribution of the slab at that time is calculated accurately. The set furnace temperature calculation function 8 receives the calculation result of the current slab temperature calculation function 7 (slab current temperature) and calculates the furnace temperature required to bake from the current temperature to the target temperature until the slab is extracted. Then, the set furnace temperature is set in the fuel flow rate control device 2.

【0011】本発明は、最終的に設定炉温を求めるもの
であり、目標値までスラブを焼き上げるために必要な炉
温を以下の図3のフローに従って算出する。本発明にお
いては、炉内スラブに対して、現時点での炉温が継続す
るものと仮定し、予定した抽出ピッチでスラブが炉内を
移動するとして抽出時のスラブ温度を予測したうえで、
設定炉温の算出を、現時点の炉温近傍の微小変動の問題
として線形化し、焼き上げ品質の制約条件下で、最適な
各燃焼帯の炉温変更量を求める線形計画処理で解く。
The present invention finally obtains the set furnace temperature, and the furnace temperature required for baking the slab to the target value is calculated according to the flow of FIG. 3 below. In the present invention, with respect to the in-furnace slab, assuming that the furnace temperature at the present time continues, after predicting the slab temperature at the time of extraction as the slab moves in the furnace at the planned extraction pitch,
The calculation of the set furnace temperature is linearized as a problem of minute fluctuations in the vicinity of the current furnace temperature, and is solved by a linear programming process that finds the optimum furnace temperature change amount of each combustion zone under the constraint condition of baking quality.

【0012】図3を参照すると、まずステップ1におい
ては、現時点での炉温が継続するものと仮定し、予定し
た抽出ピッチでスラブが炉内を移動するとして抽出時の
スラブ温度分布を炉内全スラブに対して予測する。ここ
で、スラブ温度分布予測について説明する。温度の計算
点は、図4に示すように、スキッド間の厚み方向5点と
スキッド部の厚み方向5点の合計10点とする。但し、
これらの計算点は、スキッド間は隣接する固定スキッド
間のスラブ長手方向中央に存在し、スキッド間,スキッ
ド部ともにスラブ幅方向には、スラブ幅の中央に存在す
る。
Referring to FIG. 3, first, in step 1, assuming that the furnace temperature at the present time continues, assuming that the slab moves in the furnace at a planned extraction pitch, the slab temperature distribution at the time of extraction is determined as follows. Predict for all slabs. Here, the slab temperature distribution prediction will be described. As shown in FIG. 4, the temperature is calculated at a total of 10 points including 5 points in the thickness direction between skids and 5 points in the thickness direction of the skid portion. However,
These calculation points exist between the skids in the center of the slab longitudinal direction between the adjacent fixed skids, and in the slab width direction in the slab width direction, both the skids and the skid part exist in the center of the slab width.

【0013】計算方法としては、スキッド間について
は、熱伝導差分方程式において厚み方向のみを考慮した
一次元4分割モデルを、スキッド部については、スラブ
長手方向の熱伝導を係数導入によって簡略化した簡易二
次元モデル(厚み方向4分割)を用いる。計算式を次に
示す。
As a calculation method, for the skids, a one-dimensional four-division model considering only the thickness direction in the heat conduction difference equation is used, and for the skids, the heat conduction in the longitudinal direction of the slab is simplified by introducing a coefficient. A two-dimensional model (4 divisions in the thickness direction) is used. The calculation formula is shown below.

【0014】スキッド間温度計算式: 一般的なスラブ厚み方向一次元の熱伝導差分方程式である(厚み方向4分割) 。 上面:H1(t+Δt)=H1(t)+(2×Kd×Δt)/(ρ×Δx2) ×{(Δx/Kd)×QU−Φ1(t)+Φ2(t)} 1/4上:H2(t+Δt)=H2(t)+(Kd×Δt)/(ρ×Δx2) ×{Φ1(t)−2×Φ2(t)+Φ3(t)} 中央:H3(t+Δt)=H3(t)+(Kd×Δt)/(ρ×Δx2) ×{Φ2(t)−2×Φ3(t)+Φ4(t)} 1/4下:H4(t+Δt)=H4(t)+(Kd×Δt)/(ρ×Δx2) ×{Φ3(t)−2×Φ4(t)+Φ5(t)} 下面:H5(t+Δt)=H5(t)+(2×Kd×Δt)/(ρ×Δx2) ×{Φ4(t)−Φ5(t)+(Δx/Kd)×QL} QU=σ×ΦCGH×{(TG+273)4−(Φ1(t)+273)4} QL=σ×ΦCGL×{(TG+273)4−(Φ5(t)+273)4}。Skid temperature calculation formula: A general one-dimensional differential equation of heat conduction in the slab thickness direction (divided in four in the thickness direction). Top surface: H1 (t + Δt) = H1 (t) + (2 × Kd × Δt) / (ρ × Δx 2 ) × {(Δx / Kd) × QU−Φ1 (t) + Φ2 (t)} 1/4 Above: H2 (t + Δt) = H2 (t) + (Kd × Δt) / (ρ × Δx 2) × {Φ1 (t) -2 × Φ2 (t) + Φ3 (t)} center: H3 (t + Δt) = H3 (t ) + (Kd × Δt) / (ρ × Δx 2 ) × {Φ2 (t) -2 × Φ3 (t) + Φ4 (t)} ¼ Bottom: H4 (t + Δt) = H4 (t) + (Kd × Δt) / (ρ × Δx 2 ) × {Φ3 (t) -2 × Φ4 (t) + Φ5 (t)} Lower surface: H5 (t + Δt) = H5 (t) + (2 × Kd × Δt) / (ρ × Δx 2 ) × {Φ4 (t) −Φ5 (t) + (Δx / Kd) × QL} QU = σ × ΦCGH × {(TG + 273) 4 − (Φ1 (t) +273) 4 } QL = σ × ΦCGL × {(TG + 273) 4 − (Φ5 (t) +273) 4 }.

【0015】スキッド部温度計算式:一般的なスラブ
厚み方向×スラブ長手方向二次元の熱伝導差分方程式
を、スラブ長手方向の熱伝導を係数導入によって簡略化
した簡易二次元熱伝導差分方程式である。つまり図5に
示すように、スキッド部の格子点へのスラブ長手方向の
熱伝導を考えた時に、一般的な二次元の熱伝導差分方程
式の場合、スキッド部の隣の格子点温度が必要である
が、この代わりに係数導入によってスキッド間の格子点
温度を利用することにより、スキッド部とスキッド間の
間の格子点の温度計算を省略している。尚、下面の式
は、スキッドレールからの放熱を考慮している(厚み方
向4分割)。
Skid part temperature calculation formula: A simple two-dimensional heat conduction difference equation in which a general two-dimensional heat conduction difference equation of the slab thickness direction × slab longitudinal direction is simplified by introducing a coefficient of heat conduction in the slab longitudinal direction. . That is, as shown in FIG. 5, when considering heat conduction in the longitudinal direction of the slab to the lattice points of the skid portion, in the case of a general two-dimensional heat conduction difference equation, the lattice point temperature next to the skid portion is required. However, instead of this, the temperature calculation of the grid point between the skid part and the skid is omitted by utilizing the grid point temperature between the skids by introducing the coefficient. The lower surface formula considers heat dissipation from the skid rail (divided in the thickness direction).

【0016】 上面:HS1(t+Δt)=HS1(t)+(2×Kd×Δt)/(ρ×Δx2) ×{(Δx/Kd)×QUS−ΦS1(t) +ΦS2(t)}+(2×Kd×Δt)/(ρ×Δy2) ×{(Φ1(t)−ΦS1(t))×αSKID} 1/4上:HS2(t+Δt)=HS2(t)+(2×Kd×Δt)/(ρ×Δx2) ×{ΦS1(t)−2×ΦS2(t)+ΦS3(t)} +(2×Kd×Δt)/(ρ×Δy2) ×{(Φ2(t)−ΦS2(t))×αSKID} 中央:HS3(t+Δt)=HS3(t)+(2×Kd×Δt)/(ρ×Δx2) ×{ΦS2(t)−2×ΦS3(t)+ΦS4(t)} +(2×Kd×Δt)/(ρ×Δy2) ×{(Φ3(t)−ΦS3(t))×αSKID} 1/4下:HS4(t+Δt)=HS4(t)+(2×Kd×Δt)/(ρ×Δx2) ×{ΦS3(t)−2×ΦS4(t)+ΦS5(t)} +(2×Kd×Δt)/(ρ×Δy2) ×{(Φ4(t)−ΦS4(t))×αSKID} 下面:HS5(t+Δt)=HS5(t)+(2×Kd×Δt)/(p×Δx2) ×{ΦS4(t)−ΦS5(t)+(Δx/Kd) ×((1.0−SB)×QS+SB×QW)} +(2×Kd×Δt)/(ρ×Δy2) ×{(Φ5(t)−ΦS5(t))×αSKID} QUS=σ×ΦCGH×{(TG+273)4−(ΦS1(t)+273)4} QLS=σ×ΦCGL×{(TG+273)4−(ΦS5(t)+273)4} QS =QLS×βSDW QW =(TW−ΦS5(t))×HK。Top surface: HS1 (t + Δt) = HS1 (t) + (2 × Kd × Δt) / (ρ × Δx 2 ) × {(Δx / Kd) × QUS−ΦS1 (t) + ΦS2 (t)} + ( 2 × Kd × Δt) / (ρ × Δy 2 ) × {(Φ1 (t) −ΦS1 (t)) × αSKID} 1/4 Above: HS2 (t + Δt) = HS2 (t) + (2 × Kd × Δt ) / (Ρ × Δx 2 ) × {ΦS1 (t) -2 × ΦS2 (t) + ΦS3 (t)} + (2 × Kd × Δt) / (ρ × Δy 2 ) × {(Φ2 (t) -ΦS2 (t)) × αSKID} Center: HS3 (t + Δt) = HS3 (t) + (2 × Kd × Δt) / (ρ × Δx 2 ) × {ΦS2 (t) -2 × ΦS3 (t) + ΦS4 (t) } + (2 × Kd × Δt) / (ρ × Δy 2 ) × {(Φ3 (t) −ΦS3 (t)) × αSKID} ¼ bottom: HS4 (t + Δt) = HS4 (t) + (2 × Kd × Δt) / (ρ × Δx 2 ) × {ΦS3 (t) -2 × ΦS4 (t) + ΦS5 (t)} + (2 × Kd × Δt) / (ρ × Δy 2 ) × {(Φ4 (t ) −ΦS4 (t)) × αSKID} Lower surface: HS5 (t Δt) = HS5 (t) + (2 × Kd × Δt) / (p × Δx 2) × {ΦS4 (t) -ΦS5 (t) + (Δx / Kd) × ((1.0-SB) × QS + SB × QW )} + (2 × Kd × Δt) / (ρ × Δy 2 ) × {(Φ5 (t) −ΦS5 (t)) × αSKID} QUS = σ × ΦCGH × {(TG + 273) 4 − (ΦS1 (t) +273) 4 } QLS = σ × ΦCGL × {(TG + 273) 4 − (ΦS5 (t) +273) 4 } QS = QLS × βSDW QW = (TW-ΦS5 (t)) × HK.

【0017】Hi(t):時刻tにおける含熱量 Φi(t):時刻tにおける変換温度 HSi(t):スキッド部の時刻tにおける含熱量 ΦSi(t):スキッド部の時刻tにおける変換温度 ρ:比重 Δx:スラブ厚み方向分割距離 Δy:スラブ厚み方向分割距離 Δt:分割時間 ΦCGH:上部燃焼帯総括熱吸収率 ΦCGL:下部燃焼帯総括熱吸収率 TG:炉内現在雰囲気温度 QU:スキッド間上表面への熱伝達量 QL:スキッド間下表面への熱伝達量 QUS:スキッド部上表面への熱伝達量 QLS:スキッド部下表面への熱伝達量 QW:スキッドレールからの熱伝達量 TW:冷却水温 HK:熱貫流率 SB:等価スキッドレール幅 αSKID:スキッド間→スキッド部への熱伝達係数 βSDW:スキッド影の影響係数。Hi (t): heat content at time t Φi (t): conversion temperature at time t HSi (t): heat content at skid part at time t ΦSi (t): conversion temperature at skid part t : Specific gravity Δx: Dividing distance in slab thickness direction Δy: Dividing distance in slab thickness direction Δt: Dividing time ΦCGH: Overall heat absorption rate of upper combustion zone ΦCGL: Overall heat absorption rate of lower combustion zone TG: Current atmospheric temperature in furnace QU: Above skid Amount of heat transfer to the surface QL: Amount of heat transfer to the lower surface between skids QUS: Amount of heat transfer to the upper surface of the skid part QLS: Amount of heat transfer to the lower surface of the skid part QW: Amount of heat transfer from the skid rail TW: Cooling Water temperature HK: Heat transmission coefficient SB: Equivalent skid rail width αSKID: Heat transfer coefficient between skids → skid part βSDW: Influence coefficient of skid shadow.

【0018】[0018]

【数1】 [Equation 1]

【0019】ステップ2では、炉温が現在炉温からΔT
Fi(i:燃焼帯番号)だけ変化したと仮定し、ステップ
1と同様にして抽出時のスラブ温度分布を炉内全スラブ
に対して予測する。
In step 2, the furnace temperature is ΔT from the current furnace temperature.
Assuming that only Fi (i: combustion zone number) has changed, the slab temperature distribution during extraction is predicted for all slabs in the furnace in the same manner as in step 1.

【0020】ステップ3では、線形計画法を用いて炉温
変更量を算出する際の制約条件(1)式,(2)式,
(3)式に使用される線形化係数である∂TSmj/∂T
Fi,∂TSscj/∂TFi,∂TSnsj/∂TFiを、ステップ
2で算出した炉温が微小変動した時のスラブ抽出温度分
布を使って、炉内全スラブに対して求める。∂TSmj
∂TFi,∂TSscj/∂TFi,∂TSnsj/∂TFiは、第i
燃焼帯の変更による変化率である。
In step 3, the constraint conditions (1), (2), and
∂T Smj / ∂T which is the linearization coefficient used in equation (3)
Fi , ∂T Sscj / ∂T Fi , and ∂T Snsj / ∂T Fi are obtained for all slabs in the furnace using the slab extraction temperature distribution when the furnace temperature calculated in step 2 slightly changes. ∂T Smj /
∂T Fi , ∂T Sscj / ∂T Fi , ∂T Snsj / ∂T Fi are the i-th
This is the rate of change due to changes in the combustion zone.

【0021】[抽出時のスキッド間における厚み方向平
均温度] TSmj 0+Σ(∂TSmj / ∂TFi)・ΔTFi ≧ TSjaim ・・・(1) [抽出時のスキッド間における表面温度と中心温度の
差] TSscj 0+Σ(∂TSscj/∂TFi)・ΔTFi ≧ TSscjaim ・・・(2) [抽出時のスキッド間とスキッド部の厚み方向平均温度
の差] TSnsj 0+Σ(∂TSnsj/∂TFi)・ΔTFi ≧ TSnsjaim ・・・(3)。
[Average temperature in the thickness direction between skids during extraction] T Smj 0 + Σ (∂T Smj / ∂T Fi ) · ΔT Fi ≧ T Sj aim ・ ・ ・ (1) [Surface temperature during skids during extraction] And the central temperature] T Sscj 0 + Σ (∂T Sscj / ∂T Fi ) ・ ΔT Fi ≧ T Sscj aim ・ ・ ・ (2) [Difference between the skids during extraction and the thickness direction average temperature] T Snsj 0 + Σ (∂T Snsj / ∂T Fi ) · ΔT Fi ≧ T Snsj aim (3).

【0022】ここで、TSmj 0,TSscj 0およびTSnsj 0
それぞれ、ステップ1で求めた抽出時のスキッド間にお
ける厚み方向平均温度,抽出時のスキッド間における表
面温度と中心温度の差および抽出時のスキッド間とスキ
ッド部の厚み方向平均温度の差であり、TSjaim,T
SscjaimおよびTSnsjaimは、それぞれの目標値である。
Here, T Smj 0 , T Sscj 0, and T Snsj 0 are the average temperature in the thickness direction between the skids during extraction, the difference between the surface temperature and the central temperature between the skids during extraction, and It is the difference between the skids during extraction and the average temperature in the thickness direction of the skid part, T Sj aim, T
Sscj aim and T Snsj aim are respective target values.

【0023】ステップ4では、制約条件(1)式,
(2)式,(3)式のもとで、(4)式の目的関数Zを
最小にする炉温変更量ΔTFiを炉内全スラブに対して求
める; Z=ΣWi・ΔTFi ・・・(4) ここで、wiは係数であり、w1>w2>w3>w4とする
ことにより、後段負荷型の省エネルギー指向の焼き上げ
を行うことが可能である。
In step 4, the constraint condition (1) expression,
Under the equations (2) and (3), the furnace temperature change amount ΔT Fi that minimizes the objective function Z of the equation (4) is obtained for all in-reactor slabs; Z = Σ Wi · ΔT Fi (4) Here, w i is a coefficient, and by setting w 1 > w 2 > w 3 > w 4 , it is possible to perform post-loading type energy saving-oriented baking.

【0024】ステップ5では、ステップ4までにおいて
スラブ毎に算出された炉温変更量ΔTFiを燃焼帯毎に加
重平均し、これを現時点の設定炉温に加えた値を設定炉
温として、流量制御機器2に出力する。
In step 5, the furnace temperature change amount ΔT Fi calculated for each slab up to step 4 is weighted averaged for each combustion zone, and a value obtained by adding this to the set furnace temperature at the present time is set as the set furnace temperature, and the flow rate is set. Output to the control device 2.

【0025】[0025]

【発明の効果】この発明は以上説明したとおり、スラブ
の温度分布予測においては、スキッド間〜スキッド部の
スラブ長手方向の熱伝導を係数導入によって簡略化し計
算点数を減らして、少ない計算負荷でスラブの焼き上げ
品質評価上必要な部位の温度分布を算出している。この
ため、実用上オンライン制御に使用できるくらいの処理
時間で、スラブの焼き上げ品質評価上必要なスキッド間
とスキッド部の温度分布をも算出することが可能とな
り、これを用いた炉温設定モデルでは、スラブの厚み方
向のみならずスラブ長手方向にも均熱性に優れた高品質
な焼き上げを確保することが可能となる。
As described above, according to the present invention, in predicting the temperature distribution of a slab, the heat conduction in the longitudinal direction of the slab between the skids and the skid portion is simplified by introducing a coefficient to reduce the number of calculation points, and the slab with a small calculation load. The temperature distribution of the part required for the evaluation of baking quality is calculated. Therefore, it is possible to calculate the temperature distribution between the skids and the skid part necessary for the slab baking quality evaluation with a processing time that can be practically used for online control, and with the furnace temperature setting model using this Therefore, it is possible to secure high quality baking excellent in heat uniformity not only in the thickness direction of the slab but also in the longitudinal direction of the slab.

【0026】また、炉内全スラブに対して設定炉温計算
を行い、加重平均値を出力としているので、炉内に寸法
や抽出目標温度などの異なったスラブが混在しても、そ
れらを平均的にあるいは優先度をつけて、焼き上げるこ
とが可能である。
Since the set furnace temperature is calculated for all slabs in the furnace and the weighted average value is output, even if different slabs such as dimensions and target extraction temperature are mixed in the furnace, they are averaged. It is possible to bake with a certain priority or priority.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の処理の概要を、機能構成の表現を用
いて示すブロック図である。
FIG. 1 is a block diagram showing an outline of processing of the present invention by using a functional configuration expression.

【図2】 一般的な圧延加熱炉とこれに対して本発明を
実施するコンピュ−タ6を示すブロック図であり、コン
ピュ−タ6のブロック内には計算機能を示す。
FIG. 2 is a block diagram showing a general rolling heating furnace and a computer 6 for carrying out the present invention thereto, and a calculation function is shown in the block of the computer 6.

【図3】 図2に示すコンピュ−タ6の、設定炉温計算
および出力の処理内容を示すフロ−チャ−トである。
FIG. 3 is a flowchart showing the processing contents of setting furnace temperature calculation and output of the computer 6 shown in FIG.

【図4】 図2に示す加熱炉1内の1つのスラブの拡大
斜視図であり、本発明の実施例におけるスラブ温度分布
予測の計算対象部位を示す。
FIG. 4 is an enlarged perspective view of one slab in the heating furnace 1 shown in FIG. 2, showing a calculation target portion of slab temperature distribution prediction in the embodiment of the present invention.

【図5】 図4に示すスラブの厚み方向縦断面におけ
る、温度計算上の仮空格子点の分布を示す平面図であ
る。
5 is a plan view showing a distribution of temporary vacancies in temperature calculation in a vertical cross section in the thickness direction of the slab shown in FIG.

【符号の説明】[Explanation of symbols]

1:加熱炉 2:燃料流量制御
機器 3:炉温検出器 4:燃焼用バーナ 5:スラブ情報機能 6:コンピュ−タ
(炉温設定機能) 7:現状スラブ温度計算機能 8:設定炉温計算
機能
1: Heating furnace 2: Fuel flow control device 3: Furnace temperature detector 4: Combustion burner 5: Slab information function 6: Computer (furnace temperature setting function) 7: Current slab temperature calculation function 8: Set furnace temperature calculation function

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧延加熱炉内のスラブの焼き上げを制御
する方法において、スキッド間についてはスラブ厚み方
向の一次元の熱伝導差分方程式を、スキッド部について
はスラブ長手方向の熱伝導を係数導入によって簡略化し
たスラブ厚み方向およびスラブ長手方向の二次元の熱伝
導差分方程式を解くことで、炉内スラブのスキッド間と
スキッド部の将来温度分布を予測し、それらの焼き上げ
品質を評価することにより、圧延加熱炉に設定すべき炉
温を算出することを特徴とする圧延炉加熱炉燃焼制御方
法。
1. A method for controlling baking of a slab in a rolling heating furnace, wherein a one-dimensional heat conduction difference equation in the slab thickness direction between the skids and a coefficient of the heat conduction in the longitudinal direction of the slab for the skid part are introduced. By solving a simplified two-dimensional heat conduction difference equation in the slab thickness direction and the slab longitudinal direction, by predicting the future temperature distribution between the skids of the in-reactor slab and the skid part and evaluating their baking quality, A rolling furnace heating furnace combustion control method, which comprises calculating a furnace temperature to be set in the rolling heating furnace.
JP4925694A 1994-03-18 1994-03-18 Method for controlling combustion in heating furnace for rolling Withdrawn JPH07258752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4925694A JPH07258752A (en) 1994-03-18 1994-03-18 Method for controlling combustion in heating furnace for rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4925694A JPH07258752A (en) 1994-03-18 1994-03-18 Method for controlling combustion in heating furnace for rolling

Publications (1)

Publication Number Publication Date
JPH07258752A true JPH07258752A (en) 1995-10-09

Family

ID=12825763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4925694A Withdrawn JPH07258752A (en) 1994-03-18 1994-03-18 Method for controlling combustion in heating furnace for rolling

Country Status (1)

Country Link
JP (1) JPH07258752A (en)

Similar Documents

Publication Publication Date Title
CN105018718B (en) Heating furnace process furnace temperature control method based on thermal load distribution
CN110918655A (en) Refined heating control method
CN1940905A (en) Method for determining hot-rolling heating furnace board briquette
CN109182731A (en) A kind of high-carbon-chromium bearing steel continuous casting billet method for heating and controlling based on temperature-time control
GB2171816A (en) Heating control method of heat furnace
JPH07258752A (en) Method for controlling combustion in heating furnace for rolling
CN105385843B (en) A kind of hot rolling slab method for heating and controlling based on the last temperature of section
CN116127760A (en) Heating furnace temperature optimization method based on hybrid modeling and improved sand dune cat swarm algorithm
JP3799656B2 (en) Combustion control method for continuous heating furnace
JPS6254024A (en) Method for controlling automatic combustion in heating furnace
JP2815319B2 (en) Furnace temperature determination method in continuous heating furnace
JPH0532448B2 (en)
KR100360086B1 (en) Uniform heating method using walking beam type furnace
JPS61170508A (en) Method for erasing skid mark in continuous heating furnace
JP2581832B2 (en) Temperature control method for continuous heating furnace
JPH09209044A (en) Operation of continuous type steel cast slab heating furnace
KR100299452B1 (en) Method for predicting temperature of slab in walking beam type heating furnace
JPH09268328A (en) Temperature controller for continuous heating furnace
JP3297741B2 (en) Furnace temperature control method for continuous heating furnace
JPH05230526A (en) Temperature control method for continuous heating furnace
CN114752753A (en) Furnace temperature setting method suitable for H-shaped steel rolling heating furnace
CN108796208A (en) A kind of flexible measurement method of heating steel billet process austenite grain size
JPH09296228A (en) Method for controlling combustion of continuous heating furnace and device therefor
JPH08311567A (en) Device for controlling temperature in heating furnace
JPS5812325B2 (en) Control method for continuous heating furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605