JPH07257930A - Spherical magnetite grain and production thereof - Google Patents

Spherical magnetite grain and production thereof

Info

Publication number
JPH07257930A
JPH07257930A JP7537194A JP7537194A JPH07257930A JP H07257930 A JPH07257930 A JP H07257930A JP 7537194 A JP7537194 A JP 7537194A JP 7537194 A JP7537194 A JP 7537194A JP H07257930 A JPH07257930 A JP H07257930A
Authority
JP
Japan
Prior art keywords
fatty acid
magnetite
particles
added
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7537194A
Other languages
Japanese (ja)
Other versions
JP3651017B2 (en
Inventor
Eiko Kanda
栄子 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP07537194A priority Critical patent/JP3651017B2/en
Publication of JPH07257930A publication Critical patent/JPH07257930A/en
Application granted granted Critical
Publication of JP3651017B2 publication Critical patent/JP3651017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain a spherical magnetite particle excellent in dispersibility and change of color tone with time by coating the surface of a magnetite particle having a specified diameter. CONSTITUTION:An aq. mixed soln. contg. a 1:1.2 to 1:1 ratio of the ferrous ion and ferric ion is added with <=1.3 equiovalents of alkali to control the soln, to pH5-12, and the soln. is heated to 80-100 deg.C to form magnetite fine particles having 0.01-0.05mum average diameter. A straight-chain fatty acid having a 12-22C fatty acid part or fatty acid salt is added to a suspension of the magnetite fine particle and agitated to obtain a spherical magnetite particle coated with the fatty acid or its salt and having 0.01-0.05mum average diameter. After fatty acid treatment, 0.025-0.15mol/l soluble silicate is added, as required, agitated for 0.1hr at 50-120 deg.C to obtain a spherical magnetite particle coated with a silicon oxide layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、球状マグネタイト粒子
およびその製造方法、特に、分散性及び色調の経時安定
性に優れた球状マグネタイト粒子およびその製造方法に
関する。本発明により得られる球状マグネタイト粒子
は、黒色顔料、なかでも化粧品用黒色顔料として特に有
用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to spherical magnetite particles and a method for producing the same, and more particularly to spherical magnetite particles excellent in dispersibility and stability of color tone over time and a method for producing the same. The spherical magnetite particles obtained by the present invention are particularly useful as a black pigment, especially a black pigment for cosmetics.

【0002】[0002]

【従来技術】黒色顔料としては、従来、カーボンブラッ
ク、マグネタイト(理想的な組成はFe IIFeIII 24)が
一般に用いられている。このうち、カーボンブラックは
製造上ベンツピレンなどの発ガン物質が混入する危険が
あり、安全面に問題がある。このため、化粧品など、顔
料粒子が直接人体に接する用途ではマグネタイトが広く
用いられている。
2. Description of the Related Art Conventionally, carbon black and magnetite (ideal composition is Fe II Fe III 2 O 4 ) are generally used as black pigments. Of these, carbon black has a safety problem because it has a risk of being mixed with a carcinogen such as benzpyrene during production. For this reason, magnetite is widely used in applications such as cosmetics in which pigment particles come into direct contact with the human body.

【0003】マグネタイトの工業的製法としては、ゲー
タイト(α−FeOOH)の還元による方法や水酸化第一
鉄の酸化による方法が知られている。ところが、これら
の方法により得られるマグネタイトは、平均粒径が 0.1
μmよりも大きい。したがって、これを水系に分散させ
た場合には沈降速度が大きく分散液の安定性に乏しい。
また、粒径が大きいため可視光が散乱して深みのある黒
色が得られない。このため、化粧品、特に水系の分散液
として使用するマスカラ、アイライナーなどに添加され
る黒色顔料としては好ましくないという問題があった。
As a method for industrially producing magnetite, a method of reducing goethite (α-FeOOH) and a method of oxidizing ferrous hydroxide are known. However, the magnetite obtained by these methods has an average particle size of 0.1
It is larger than μm. Therefore, when it is dispersed in an aqueous system, the sedimentation rate is high and the stability of the dispersion is poor.
Further, since the particle size is large, visible light is scattered and a deep black color cannot be obtained. Therefore, there is a problem that it is not preferable as a black pigment to be added to cosmetics, particularly mascara and eyeliner used as an aqueous dispersion.

【0004】これらの問題点を解決するため、従来、製
造されるマグネタイト粒子の小粒径化、表面特性の改善
の2つの方向からの検討がなされてきた。微小粒径のマ
グネタイトを得る方法としては、第一鉄イオンと第二鉄
イオンとをそのモル混合比が1:1である水溶液のpH
をアルカリ添加によりpH11以上に高めてマグネタイ
ト微粒子を生成させる方法が知られている。この方法に
よれば粒径0.01μm以下の粒子が得られるが、粒径や形
状が不均一であるため二次凝集性が強く、結局、良好な
分散状態を保持するのが困難である。また、マグネタイ
トは空気中でFe23に変化して色が黒褐色ないし褐色に
変化する傾向があるが、表面積が大きいとこうした経時
変化が顕著に現れるという問題がある。
In order to solve these problems, conventionally, studies have been made from two directions of reducing the particle size of magnetite particles produced and improving the surface characteristics. As a method for obtaining magnetite with a fine particle diameter, the pH of an aqueous solution containing ferrous ions and ferric ions in a molar mixing ratio of 1: 1
It is known to increase the pH to 11 or more by adding alkali to generate magnetite fine particles. According to this method, particles having a particle size of 0.01 μm or less can be obtained, but since the particle size and the shape are non-uniform, the secondary agglomeration is strong, and it is difficult to maintain a good dispersion state. Further, magnetite tends to change to Fe 2 O 3 in the air to change its color to blackish brown or brown, but when the surface area is large, such a change with time becomes remarkable.

【0005】上記方法によって得られるものよりも若干
大きな、粒径0.01〜0.1μmのマグネタイト粒子を製造
する方法も提案されている。例えば、特開平4-238819号
公報には、第一鉄イオン含有水溶液に不活性ガスを吹き
込んで水溶液中の溶存酸素濃度を減少させながらアルカ
リを添加して水酸化第一鉄を生成させ、この分散液を6
0〜100℃に加熱してマグネタイト微結晶を成長させる
方法が開示されている。しかし、この方法は工程が複雑
である上、生産性が悪い。また、経時的な変化に対する
安定性には問題が残る。
A method for producing magnetite particles having a particle size of 0.01 to 0.1 μm, which is slightly larger than that obtained by the above method, has also been proposed. For example, in JP-A-4-238819, an inert gas is blown into a ferrous ion-containing aqueous solution to generate ferrous hydroxide by adding an alkali while reducing the dissolved oxygen concentration in the aqueous solution. Dispersion 6
A method for growing magnetite crystallites by heating to 0 to 100 ° C. is disclosed. However, this method has complicated steps and poor productivity. Further, there remains a problem in stability with respect to changes with time.

【0006】表面特性を改善する方法としては、粒子表
面を脂肪酸で被覆する方法が知られている。例えば、特
開昭54-139544 号公報、特開昭56-64348号公報、特開昭
56-128957号公報、特開昭58-14773号公報、特開昭61-5
3654号公報等には、種々の方法で製造したマグネタイト
粒子の表面を脂肪酸等で被覆する方法が記載されてい
る。しかしながら、脂肪酸被覆だけでは十分な効果が得
られておらず、さらに種々の改良法が提案されているの
が現状である。例えば、特開昭60-69011号公報には、水
中に3〜35%の顔料を加えて懸濁させ、顔料に対して
0.5 〜10%相当量の脂肪酸可溶性塩を滴下し、均一に
混合した後、Al、Mg、Ca、Zn、Zr、Tiより選ばれた可溶
性塩の1〜30%水溶液を滴下して、生成する金属塩を
顔料表面に配向吸着させる方法が記載されている。ま
た、特開昭63-17222号公報には、水酸化第一鉄の酸化の
際に水溶性ケイ酸塩を添加してSiを含有するマグネタイ
ト粒子を生成し、その後に脂肪酸被覆を行なう方法が記
載されている。また、特開平4-144924号公報は、脂肪酸
に代えてMn塩水溶液を添加してMn被覆を行ない、これを
加熱焼成してMn固溶ヘマタイトとする方法を記載してい
る。しかし、これらの方法は、複雑な共沈反応により得
たマグネタイト粒子にさらに複雑な表面被覆等を行なう
ため工程が煩雑になる。しかも、均一な製品を得るため
には慎重な反応制御が必要である。
As a method of improving the surface characteristics, a method of coating the particle surface with a fatty acid is known. For example, JP-A-54-139544, JP-A-56-64348, and JP-A-
56-128957, JP-A-58-14773, JP-A-61-5
No. 3654 discloses a method of coating the surface of magnetite particles produced by various methods with a fatty acid or the like. However, the fatty acid coating alone does not provide a sufficient effect, and various improvements have been proposed at present. For example, in JP-A-60-69011, 3 to 35% of a pigment is added and suspended in water, and
0.5 to 10% of a fatty acid-soluble salt is added dropwise and uniformly mixed, and then a 1 to 30% aqueous solution of a soluble salt selected from Al, Mg, Ca, Zn, Zr and Ti is added dropwise to produce A method for orienting and adsorbing a metal salt on the surface of a pigment is described. Further, JP-A-63-17222 discloses a method in which a water-soluble silicate is added at the time of oxidation of ferrous hydroxide to produce magnetite particles containing Si, and then fatty acid coating is performed. Have been described. Further, Japanese Patent Application Laid-Open No. 4-144924 describes a method of adding Mn salt aqueous solution in place of fatty acid to perform Mn coating, and heating and firing this to obtain Mn solid solution hematite. However, in these methods, the steps are complicated because the magnetite particles obtained by the complicated coprecipitation reaction are subjected to more complicated surface coating and the like. Moreover, careful reaction control is necessary to obtain a uniform product.

【0007】[0007]

【発明が解決しようとする課題】本発明は従来の製造方
法における上記問題点を解決した球状マグネタイト粒子
とその製造方法を提供することを目的とするものであっ
て、本発明によれば、粒子の分散性に優れ、かつ色調の
経時変化に対する安定性を兼ね備えたマグネタイト粒子
を複雑な工程を経ることなく容易に製造することができ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide spherical magnetite particles and a method for manufacturing the same, which solve the above problems in the conventional manufacturing method. It is possible to easily produce magnetite particles having excellent dispersibility and stability with respect to changes in color tone with time without complicated steps.

【0008】[0008]

【課題解決のための手段】本発明者らは、第一鉄イオン
と第二鉄イオンとの混合液にアルカリを添加してマグネ
タイトを生成させる方法において、マグネタイト生成時
のpH、温度条件、濃度、反応時間を特定することによ
り粒径0.01〜0.05μmのマグネタイトを生成させること
が可能であり、かかる粒径の粒子が懸濁している液中に
脂肪酸またはその塩を添加すると、形状の比較的整っ
た、分散性に優れた粒子が得られ、しかもかかる粒子は
経時変化に対して優れた分散安定性を示すことを見出し
本発明に至った。
[Means for Solving the Problems] In the method for producing magnetite by adding an alkali to a mixed solution of ferrous and ferric ions, the present inventors have found that pH, temperature conditions and concentration at the time of producing magnetite. By specifying the reaction time, it is possible to generate magnetite with a particle size of 0.01 to 0.05 μm, and if fatty acid or its salt is added to the liquid in which particles of such particle size are suspended, the shape of The present invention has been accomplished by finding that particles that are regular and have excellent dispersibility can be obtained, and that such particles exhibit excellent dispersion stability over time.

【0009】すなわち、本発明は、以下の構成からなる
マグネタイト粒子およびその製造方法を提供する。 (1) 粒子表面が脂肪酸またはその塩で被覆されてい
る平均粒径0.01〜0.05μmの球状マグネタイト粒子。 (2) 粒子表面が脂肪酸またはその塩で被覆され、さ
らに酸化ケイ素層で被覆されている上記(1)に記載の
球状マグネタイト粒子。 (3) 第一鉄イオンと第二鉄イオンとの混合水溶液に
1.3 当量以下のアルカリを添加し、生成した平均粒径0.
01〜0.05μmのマグネタイト微粒子が懸濁している液中
に脂肪酸または脂肪酸塩を添加し撹拌することにより脂
肪酸またはその塩で被覆された平均粒径0.01〜0.05μm
の球状マグネタイト粒子を製造する方法。 (4) 第一鉄イオンと第二鉄イオンとの含有比が1:
1.2 〜1:2である混合水溶液を用いる上記(3)に記
載の方法。 (5) アルカリ添加後、液温を80〜100℃に加熱し
てマグネタイト微粒子を生成させる上記(3)または
(4)に記載の方法。 (6) 脂肪酸または脂肪酸塩の脂肪酸部分が12〜2
2個の炭素を含む直鎖の脂肪酸である上記(3)〜
(5)のいずれかに記載の方法。 (7) 脂肪酸またはその塩で被覆された球状マグネタ
イト粒子を含有する懸濁液に可溶性ケイ酸塩水溶液を添
加して、さらに酸化ケイ素層を形成する上記(3)〜
(6)のいずれかに記載の方法。
That is, the present invention provides a magnetite particle having the following constitution and a method for producing the same. (1) Spherical magnetite particles having an average particle size of 0.01 to 0.05 μm, the particle surface of which is coated with a fatty acid or a salt thereof. (2) The spherical magnetite particles according to (1), wherein the particle surface is coated with a fatty acid or a salt thereof, and further coated with a silicon oxide layer. (3) In a mixed aqueous solution of ferrous and ferric ions
1.3 average equivalent or less of alkali was added to produce an average particle size of 0.
An average particle size of 0.01-0.05 μm coated with a fatty acid or its salt by adding a fatty acid or fatty acid salt to a liquid in which magnetite fine particles of 01-0.05 μm are suspended and stirring.
To produce spherical magnetite particles. (4) The content ratio of ferrous ion to ferric ion is 1:
The method according to (3) above, which uses a mixed aqueous solution of 1.2 to 1: 2. (5) The method according to the above (3) or (4), wherein after adding the alkali, the liquid temperature is heated to 80 to 100 ° C. to generate magnetite fine particles. (6) The fatty acid portion of the fatty acid or fatty acid salt is 12 to 2
(3), which is a straight-chain fatty acid containing two carbons,
The method according to any one of (5). (7) A soluble silicate aqueous solution is added to a suspension containing spherical magnetite particles coated with a fatty acid or a salt thereof to further form a silicon oxide layer.
The method according to any one of (6).

【0010】以下、本発明の各構成要件について、その
詳細を説明する。本発明の方法は第一鉄イオンと第二鉄
イオンの混合水溶液を用いる。第一鉄イオンを生じさせ
る化合物の例としては、塩化第一鉄のようなハロゲン化
物、硫酸第一鉄、硝酸第一鉄、過塩素酸第一鉄等が挙げ
られる。また、第二鉄イオンを生じさせる化合物として
はこれらに対応する第二鉄塩が挙げられる。工業的製造
においては価格の安い塩化第一鉄や硫酸第一鉄、塩化第
二鉄や硫酸第二鉄が好ましい。
The details of each constituent element of the present invention will be described below. The method of the present invention uses a mixed aqueous solution of ferrous ions and ferric ions. Examples of compounds that generate ferrous ions include halides such as ferrous chloride, ferrous sulfate, ferrous nitrate, and ferrous perchlorate. In addition, examples of the compound that produces ferric ion include ferric salts corresponding to these. In industrial production, ferrous chloride, ferrous sulfate, ferric chloride and ferric sulfate, which are inexpensive, are preferable.

【0011】第一鉄イオン含有の水溶液中の濃度は特に
限定されないが、0.5〜1.5mol/リットル程度の濃度が好ま
しい。0.5mol/リットル未満では生産効率が悪く、1.5mol/
リットルを超えても生産性が向上する割合はわずかで経済性
がむしろ低下する。第二鉄イオン含有化合物の種類およ
びその液中濃度についても同様である。一般には第一鉄
塩に対応した第二鉄塩を用いることが好ましい。マグネ
タイトの理想的な組成は Fe IIFeIII 24であるため、
水溶液中の第一鉄イオンと第二鉄イオンとの含有比は原
則的には1:2となるが、実際の組成には幅があるた
め、1:1.2〜1:2の範囲であれば良い。
The concentration of the ferrous ion-containing aqueous solution is not particularly limited, but a concentration of about 0.5 to 1.5 mol / liter is preferable. If it is less than 0.5 mol / liter, the production efficiency is poor and 1.5 mol / liter
Even if it exceeds the liter, the rate of improvement in productivity is small and the economy is rather reduced. The same applies to the type of ferric ion-containing compound and its concentration in the liquid. Generally, it is preferable to use a ferric salt corresponding to the ferrous salt. Since the ideal composition of magnetite is Fe II Fe III 2 O 4 ,
The content ratio of ferrous ions to ferric ions in the aqueous solution is 1: 2 in principle, but the actual composition has a range, so if it is in the range of 1: 1.2 to 1: 2. good.

【0012】本発明においては、第一鉄イオンと第二鉄
イオンの混合水溶液にアルカリを添加してマグネタイト
微粒子を生成させる。一般に第一鉄イオンにアルカリを
添加すると水酸化物の沈殿が生じるが、第一鉄塩と第二
鉄塩の混合水溶液にアルカリを添加するとマグネタイト
の沈殿が生じることが知られている。用いるアルカリと
しては水酸化アルカリが好ましい。具体的には、水酸化
ナトリウム、水酸化カリウムのようなアルカリ金属水酸
化物、水酸化マグネシウム、水酸化カルシウムのような
アルカリ土類金属の水酸化物が挙げられる。アンモニア
のようなアルカリ性物質も用いることができる。なお、
第一鉄イオンと第二鉄イオンとの混合液に水酸化ナトリ
ウムを添加した場合の反応は以下の式にしたがうものと
考えられる。
In the present invention, magnetite fine particles are produced by adding an alkali to a mixed aqueous solution of ferrous and ferric ions. It is generally known that addition of an alkali to ferrous ions causes precipitation of hydroxide, but addition of an alkali to a mixed aqueous solution of ferrous salt and ferric salt causes precipitation of magnetite. The alkali used is preferably alkali hydroxide. Specific examples thereof include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide. Alkaline substances such as ammonia can also be used. In addition,
The reaction when sodium hydroxide is added to the mixed liquid of ferrous and ferric ions is considered to follow the following formula.

【化1】FeCl2 +2FeCl3 +8NaOH →Fe34+8NaCl+4H2O 水酸化アルカリの量は、全鉄イオンに対して1.3当量以
下とする。1.3当量以上では、針状ゲータイトが生じ
る。水酸化アルカリは、好ましくは、1.0当量以上とす
る。1.0当量を下回るとマグネタイトの生成効率が悪
い。
## STR1 ## FeCl 2 + 2FeCl 3 + 8NaOH → Fe 3 O 4 + 8NaCl + 4H 2 O The amount of alkali hydroxide is 1.3 equivalents or less with respect to all iron ions. At 1.3 equivalents or more, acicular goethite occurs. The alkali hydroxide is preferably 1.0 equivalent or more. If it is less than 1.0 equivalent, the production efficiency of magnetite is poor.

【0013】本発明においてはアルカリを添加後のpH
を5〜12とすることが必要であり、好ましくはpH5
〜11、より好ましくは7〜9とする。アルカリ添加後
のpHを上記範囲に保ち、後述のように加熱・撹拌する
ことにより、平均粒径0.01〜0.05μmの球状のマグネタ
イト粒子が得られる。pH5よりも酸性側ではマグネタ
イトが生じない。また、pHが12以上であると、生じ
るマグネタイトが板状となり二次凝集が生じやすい。さ
らにまた、後述の通り、脂肪酸を添加した際にマグネタ
イト表面に鉄イオンが存在していることが必要であるた
め、アルカリは過剰でないことが好ましい。これらの理
由からpHの上限はおよそ12、好ましくは11、より
好ましくは9である。反応を円滑にし溶液pHが均一に
なるように、水酸化アルカリは、通常、水溶液として添
加する。この際の濃度としては、好ましくは1〜4mol/
リットル、より好ましくは1.5〜2.5mol/リットル、最も好ましく
は2〜2.1mol/リットル程度である。アルカリを添加した
後、液を加熱・撹拌して反応を進行させる。液温を80
〜100℃の範囲とすることが好ましい。液温が低いと酸
化速度が低く、生成するマグネタイトの粒径が大きくな
る。但し、液温を 100℃以上としても酸化速度は大差な
く、経済的観点から 100℃以下がよい。
In the present invention, the pH after addition of alkali
Is required to be 5 to 12, preferably pH 5
-11, and more preferably 7-9. By maintaining the pH after addition of the alkali within the above range and heating and stirring as described below, spherical magnetite particles having an average particle diameter of 0.01 to 0.05 μm can be obtained. Magnetite does not occur on the acidic side of pH 5. Further, when the pH is 12 or more, the generated magnetite becomes plate-like and secondary aggregation easily occurs. Furthermore, as described below, since it is necessary that iron ions are present on the surface of magnetite when the fatty acid is added, it is preferable that the alkali is not excessive. For these reasons, the upper limit of pH is approximately 12, preferably 11, and more preferably 9. Alkali hydroxide is usually added as an aqueous solution so that the reaction is smooth and the solution pH is uniform. The concentration at this time is preferably 1 to 4 mol /
It is about 1 liter, more preferably about 1.5 to 2.5 mol / liter, most preferably about 2 to 2.1 mol / liter. After adding the alkali, the liquid is heated and stirred to allow the reaction to proceed. Liquid temperature 80
It is preferably in the range of -100 ° C. When the liquid temperature is low, the oxidation rate is low and the particle size of the generated magnetite is large. However, even if the liquid temperature is 100 ° C or higher, the oxidation rate is not so different, and from the economical viewpoint, 100 ° C or lower is preferable.

【0014】マグネタイト粒子が生成・成長して平均粒
径0.01〜0.05μm程度の微粒子が液中に懸濁してきたら
これに脂肪酸または脂肪酸塩を添加する。平均粒径が上
記範囲に達したか否かの確認は種々の方法によることが
できるが、上述した反応条件下ではおよそ1時間以内で
この値に達する。反応条件を調整することにより、反応
時間を短縮・延長することも可能である。脂肪酸または
脂肪酸塩の脂肪酸部分としては、炭素数12〜22個の
脂肪酸が好ましい。安定性の面からは飽和脂肪酸がより
好ましいが、不飽和脂肪酸を用いることもできる。この
ような脂肪酸の例としては、ラウリン酸、ミリスチン
酸、ステアリン酸、パルミチン酸、ベヘン酸等の飽和脂
肪酸やオレイン酸等の不飽和脂肪酸が挙げられる。脂肪
酸塩に含有される金属イオンとしては、Na、Caを挙げる
ことができる。本発明の効果を損なわない限りで鉄塩を
用いてもよい。溶解性と入手のし易さの点でナトリウム
塩が好ましい。
When magnetite particles are generated and grow and fine particles having an average particle size of 0.01 to 0.05 μm are suspended in the liquid, a fatty acid or a fatty acid salt is added thereto. Various methods can be used to confirm whether or not the average particle size has reached the above range, but this value is reached within about 1 hour under the above-mentioned reaction conditions. The reaction time can be shortened or extended by adjusting the reaction conditions. The fatty acid portion of the fatty acid or fatty acid salt is preferably a fatty acid having 12 to 22 carbon atoms. Saturated fatty acids are more preferable from the viewpoint of stability, but unsaturated fatty acids can also be used. Examples of such fatty acids include saturated fatty acids such as lauric acid, myristic acid, stearic acid, palmitic acid and behenic acid, and unsaturated fatty acids such as oleic acid. Examples of metal ions contained in the fatty acid salt include Na and Ca. An iron salt may be used as long as the effect of the present invention is not impaired. Sodium salt is preferable from the viewpoint of solubility and easy availability.

【0015】脂肪酸の添加量は、マグネタイト粒子の表
面に単分子膜を形成するに必要な量以上とすることが好
ましい。本発明により得られるマグネタイトのBET値
は20〜100m2/g程度であり、マグネタイト1g
当り4.3×10-4モル程度以上であればよい。かかる量
を下回るとL値(黒色度)が低下し本発明の効果が発揮
されない。また、必要以上に脂肪酸を添加しても効果に
変わりはなく却って製品の品質に悪影響を及ぼすおそれ
があることから、単分子膜形成に必要な量の2倍以下と
することが好ましい。
The amount of fatty acid added is preferably at least the amount required to form a monolayer on the surface of magnetite particles. The BET value of the magnetite obtained by the present invention is about 20 to 100 m 2 / g, and 1 g of magnetite is used.
It may be about 4.3 × 10 −4 mol or more per unit. If the amount is less than this amount, the L value (blackness) is lowered and the effect of the present invention is not exhibited. Further, addition of more fatty acid does not change the effect and may adversely affect the quality of the product. Therefore, the amount is preferably twice or less than the amount required for forming a monomolecular film.

【0016】脂肪酸の添加は、脂肪酸を懸濁させた水溶
液または上記脂肪酸塩を溶解させた水溶液をマグネタイ
トの生成・懸濁している液中に添加して行なう。好まし
い濃度は0.025〜0.15mol/リットル程度である。0.025mol/
リットル未満では生産効率が悪い。また、0.15mol/リットルを
上回ると、脂肪酸や脂肪酸塩の溶解が不可能になる。脂
肪酸添加の後、懸濁液を引き続き、または50〜100
℃の温度範囲で0.5〜3時間加熱撹拌して反応を進行さ
せる。かかる処理によって、脂肪酸は、マグネタイト粒
子の表面近傍に存在する鉄イオンと反応して鉄塩とな
り、疎水基を外側に向けて粒子表面に吸着する。粒子表
面の脂肪酸またはその塩の存在により空気との接触が断
たれ酸化による色調の変化が防止される。また、マグネ
タイト粒子の二次凝集が防止される。
The fatty acid is added by adding an aqueous solution in which a fatty acid is suspended or an aqueous solution in which the above fatty acid salt is dissolved to the liquid in which magnetite is produced and suspended. A preferable concentration is about 0.025 to 0.15 mol / liter. 0.025mol /
If it is less than liter, the production efficiency is poor. If it exceeds 0.15 mol / liter, it becomes impossible to dissolve fatty acids and fatty acid salts. After the fatty acid addition, the suspension is continued, or 50-100
The reaction is allowed to proceed by heating and stirring in the temperature range of ℃ for 0.5 to 3 hours. By such a treatment, the fatty acid reacts with iron ions existing near the surface of the magnetite particles to form an iron salt, and the hydrophobic group is adsorbed on the particle surface with the hydrophobic group facing outward. The presence of the fatty acid or its salt on the surface of the particles interrupts the contact with the air and prevents the change in color due to oxidation. In addition, secondary aggregation of magnetite particles is prevented.

【0017】上記の脂肪酸による処理の後に、可溶性ケ
イ酸塩を添加し、脂肪酸またはその塩で被覆された粒子
表面にケイ酸被膜を形成することにより、脂肪酸処理に
よる疎水性を緩和し、かつツヤ消しによるマット感のあ
る黒色顔料を得ることができる。具体的には、0.025〜
0.15mol/リットル程度の濃度のケイ酸塩を添加した後、5
0〜120℃で0.5〜1時間程度、撹拌を続ける。温度が低
いと反応の進行が遅い。一方、温度が120℃を超える
とケイ酸塩のゲル化が問題となる。かかる処理により、
経時安定性が一層改善される。水可溶性ケイ酸塩の例と
しては、ナトリウム、カリウムのケイ酸塩が挙げられ
る。添加量は、Feに対してSi換算で0.2〜0.5原子%であ
る。0.2原子%未満である場合には疎水性緩和効果が見
られない。一方、0.5原子%を超える場合には、生産性
が低下するとともに黒色度も低下する。
After the treatment with the fatty acid described above, a soluble silicate is added to form a silicic acid film on the surface of the particles coated with the fatty acid or its salt, thereby alleviating the hydrophobicity due to the fatty acid treatment, and glossing. It is possible to obtain a black pigment having a matte feeling due to erasing. Specifically, from 0.025
After adding silicate at a concentration of about 0.15 mol / liter, 5
Continue stirring at 0 to 120 ° C. for about 0.5 to 1 hour. When the temperature is low, the reaction proceeds slowly. On the other hand, if the temperature exceeds 120 ° C, gelation of silicate becomes a problem. By this processing,
The temporal stability is further improved. Examples of water-soluble silicates include sodium and potassium silicates. The addition amount is 0.2 to 0.5 atom% in terms of Si with respect to Fe. If it is less than 0.2 atomic%, no effect of relaxing hydrophobicity is observed. On the other hand, if it exceeds 0.5 atom%, the productivity is lowered and the blackness is lowered.

【0018】本発明により得られたマグネタイト微粒子
は、上記処理を経た後に濾別・水洗し、40〜130℃
で24〜48時間乾燥させて粉末粒子として得ることが
できる。あるいは、デカンテーションによって水洗しス
ラリーとした後、必要に応じて含水率を調整して用いて
もよい。
The magnetite fine particles obtained by the present invention are filtered and washed with water after being subjected to the above treatment, and the temperature is 40 to 130 ° C.
Can be dried for 24 to 48 hours to obtain powder particles. Alternatively, the slurry may be washed with water by decantation, and the water content may be adjusted as necessary before use.

【0019】本発明によって製造されるマグネタイト
は、乾燥粉末としてのL値が4〜12程度である。ま
た、粒径が可視光の波長よりも小さいため、透明感があ
る。このため、黒色顔料、特に深みのある黒色を与える
化粧品用黒色顔料として有用である。また、粒径が小さ
いため、静電複写機用の磁性トナーに用いることができ
る。その他にも、塗料、インキ、合成樹脂の着色剤等、
顔料として各種の分野に使用できる。なお、これらの用
途に使用する場合には、当該技術分野において既知の成
分を添加して組成物として使用される。例えば、化粧用
顔料として用いる場合には、パラベン等の防腐剤を0.01
〜0.3%添加し、水中分散のスラリーまたはスラリー中
の水を非水系溶媒に置換して用いられる。かかる非水系
溶媒の例としては、イソパラフィン等の炭化水素油やオ
クタメチルシクロテトラシロキサンやメチルシクロペン
タンシロキサン等のシリコーン油が挙げられる。
The magnetite produced according to the present invention has an L value of about 4 to 12 as a dry powder. Further, since the particle size is smaller than the wavelength of visible light, there is a sense of transparency. Therefore, it is useful as a black pigment, especially as a black pigment for cosmetics which gives a deep black color. Further, since the particle size is small, it can be used as a magnetic toner for an electrostatic copying machine. In addition, paints, inks, coloring agents for synthetic resins, etc.
It can be used as a pigment in various fields. In addition, when using it for these uses, a component known in the said technical field is added and it is used as a composition. For example, when used as a cosmetic pigment, 0.01% of a preservative such as paraben is used.
˜0.3% is added, and the slurry is dispersed in water or the water in the slurry is replaced with a non-aqueous solvent. Examples of such non-aqueous solvents include hydrocarbon oils such as isoparaffin and silicone oils such as octamethylcyclotetrasiloxane and methylcyclopentanesiloxane.

【0020】[0020]

【実施例】以下、実施例及び比較例により本発明をより
具体的に説明する。なお、得られた粒子の平均粒子径、
色調の測定およびTEM(透過型電子顕微鏡)写真の撮
影は以下の方法および条件によった。 (1)平均粒子径:BET法により求めた。 (2)色調の測定:マグネタイトの色調は、粉末、分散
液、分散液塗布紙のL値、a値及びb値をカラーコンピ
ューターMS-7-IS-2B(スガ試験機(株)製)を用いて測
定し評価した。 (i)粉末:45℃以下で48時間以上、マグネタイト粒
子を乾燥し、乳鉢にて粉砕した。この粉末約5gをペレ
ット用セルに入れ、カラーコンピュータによりL値、a
値およびb値を測定した。測定は静置状態とタップ充填
した状態とで2回行ない、その算術平均値を測定値とし
た。 (ii)分散液:マグネタイト粒子、イオン交換水および分
散剤をサンプル瓶に入れ、スパーテルで撹拌しながら超
音波に約20分間かけた。マグネタイト固形分は10%
とした。また、分散剤を後から添加した場合と比較する
目的で、分散剤(C1733COONa)を3%含有する
分散液1と分散剤を含有しない分散液2の2種類の試料
を調製した。分散液の総量は各50gとした。この分散
液をペレット用セルに20ml入れ、カラーコンピュー
タ−によりL値、a値及びb値を測定した。 (iii) 分散液塗布紙:(ii)の分散液1を0.ml、20μ
m厚さで、白紙(上質紙)に塗布した。これを24〜4
8時間乾燥し、カラーコンピューターによりL値、a値
及びb値を測定した。測定時には白紙を分散液塗布紙の
上に重ね、光の透過を防いだ。2点で測定を行ないその
算術平均値を測定値とした。 (3)TEM写真撮影条件 (i) 試料作成方法:極微量のマグネタイト粒子と極微量
のアマニ油を乳鉢に入れ、乳棒で一定方向のみに10分
間以上撹拌し、マグネタイト粒子を分散させた。この操
作により、乳棒先端分に付着したマグネタイトは一次粒
子の状態まで分散される。これをコロジオン膜添付メッ
シュに取り、トルエンで洗浄してアマニ油を除去し、T
EM観察試料とした。 (ii)TEM撮影条件:加速電圧200kVで撮影(日立
H-800 透過型電子顕微鏡)。
EXAMPLES The present invention will be described more specifically below with reference to examples and comparative examples. The average particle size of the obtained particles,
The following method and conditions were used for measuring the color tone and taking a TEM (transmission electron microscope) photograph. (1) Average particle diameter: determined by the BET method. (2) Measurement of color tone: The color tone of magnetite is measured by using a color computer MS-7-IS-2B (manufactured by Suga Test Instruments Co., Ltd.) for L value, a value and b value of powder, dispersion liquid and dispersion liquid coated paper. Was measured and evaluated. (i) Powder: Magnetite particles were dried at 45 ° C. or lower for 48 hours or more and ground in a mortar. About 5 g of this powder was put into a pellet cell and L value, a
Values and b values were measured. The measurement was performed twice in the static state and the tap-filled state, and the arithmetic average value was used as the measured value. (ii) Dispersion liquid: Magnetite particles, ion-exchanged water and a dispersant were put in a sample bottle and subjected to ultrasonic waves for about 20 minutes while stirring with a spatula. Magnetite solid content is 10%
And Two types of samples were prepared for the purpose of comparison with the case where the dispersant was added later, that is, Dispersion 1 containing 3% of the dispersant (C 17 H 33 COONa) and Dispersion 2 containing no dispersant. . The total amount of dispersion was 50 g each. 20 ml of this dispersion was put in a pellet cell and the L value, a value and b value were measured by a color computer. (iii) Dispersion coated paper: Dispersion 1 of (ii) 0 ml, 20 μm
It was applied to a white paper (quality paper) with a thickness of m. This is 24-4
After drying for 8 hours, L value, a value and b value were measured by a color computer. At the time of measurement, a white paper was placed on the dispersion-coated paper to prevent light transmission. The measurement was performed at two points and the arithmetic mean value was used as the measurement value. (3) TEM photography conditions (i) Sample preparation method: An extremely small amount of magnetite particles and an extremely small amount of linseed oil were placed in a mortar and stirred with a pestle in a certain direction for 10 minutes or more to disperse the magnetite particles. By this operation, the magnetite attached to the tip of the pestle is dispersed to the state of primary particles. Take this on a collodion membrane-attached mesh and wash with toluene to remove linseed oil.
It was used as an EM observation sample. (ii) TEM shooting conditions: Shooting at an acceleration voltage of 200 kV (Hitachi
H-800 transmission electron microscope).

【0021】実施例1 Fe2+1.0mol/リットルを含む塩化第一鉄水溶液1リットルをFe3+
2.0mol/リットルを含む塩化第二鉄水溶液1リットルに加えた混
合溶液を2mol/リットルのNaOH水溶液4リットルに加え、pH1
0.43、温度90℃において約1時間撹拌を続けマグネタ
イト粒子を生成した。次いで、上記マグネタイトを含む
懸濁液に0.1mol/リットルのオレイン酸ナトリウム水溶液2
リットルを加え、温度90℃で撹拌した。生成した粒子を常
法により水洗し濾別し、45℃で118時間乾燥して黒色
の粉末(含水率0.62%)を得た。得られた粉末のBET
値は59.1m2 /gであり、これより計算された平均粒子
径は19.5nmであった。得られた粉末及びこれを表1の
条件にしたがって塗布液としたものの色調を上記の測色
法により測定した。結果を併せて表1に示す。また、こ
の粉末のTEM写真を図1に示す。
Example 1 1 liter of an aqueous ferrous chloride solution containing 1.0 mol / liter of Fe 2+ was added to Fe 3+.
The mixed solution added to 1 liter of ferric chloride aqueous solution containing 2.0 mol / liter was added to 4 liter of 2 mol / liter NaOH aqueous solution to adjust the pH to 1
Stirring was continued at 0.43 at a temperature of 90 ° C. for about 1 hour to produce magnetite particles. Then, a 0.1 mol / liter aqueous solution of sodium oleate 2 was added to the suspension containing magnetite.
1 liter was added, and the mixture was stirred at a temperature of 90 ° C. The produced particles were washed with water by a conventional method, filtered off, and dried at 45 ° C. for 118 hours to obtain a black powder (water content 0.62%). BET of the obtained powder
The value was 59.1 m 2 / g, and the average particle size calculated from this was 19.5 nm. The color tone of the obtained powder and the powder prepared as a coating liquid according to the conditions shown in Table 1 were measured by the above-described colorimetric method. The results are also shown in Table 1. A TEM photograph of this powder is shown in FIG.

【0022】[0022]

【表1】 [Table 1]

【0023】比較例1 以下のように脂肪酸処理を行なわないほかは実施例1と
ほぼ同様の条件でマグネタイト粒子を製造した。Fe2+1.
0mol/リットルを含む塩化第一鉄水溶液1リットルをFe3+2.0mol
/リットルを含む塩化第二鉄水溶液1リットルに加えた混合溶液
を8mol/リットルのNaOH水溶液4リットルに加え、pH7.76、
温度90℃において約1時間撹拌を続けマグネタイト粒
子を生成した。生成した粒子を常法により水洗し濾別
し、40℃で48時間乾燥して黒色の粉末を得た。得ら
れた粉末のBET値は75.5m2 /gであり、これより計
算された平均粒子径は16.1nmであった。得られた粉末
及びこれを表2の条件にしたがって塗布液としたものの
色調を上記の通り測定した。結果を併せて表2に示す。
また、この粉末のTEM写真を図2に示す。
Comparative Example 1 Magnetite particles were produced under substantially the same conditions as in Example 1 except that the fatty acid treatment was not carried out as follows. Fe 2+ 1.
1 liter of ferrous chloride aqueous solution containing 0 mol / liter is Fe 3+ 2.0 mol
The mixed solution added to 1 liter of an aqueous ferric chloride solution containing 1 / liter was added to 4 liters of an 8 mol / liter NaOH aqueous solution, and the pH was 7.76.
The stirring was continued at a temperature of 90 ° C. for about 1 hour to generate magnetite particles. The produced particles were washed with water by a conventional method, filtered off, and dried at 40 ° C. for 48 hours to obtain a black powder. The BET value of the obtained powder was 75.5 m 2 / g, and the average particle size calculated from this was 16.1 nm. The color tone of the obtained powder and that obtained as a coating liquid according to the conditions of Table 2 were measured as described above. The results are also shown in Table 2.
A TEM photograph of this powder is shown in FIG.

【0024】[0024]

【表2】 [Table 2]

【0025】実施例2 Fe2+1.2mol/リットルを含む塩化第一鉄水溶液1リットルをFe3+
2.0mol/リットルを含む塩化第二鉄水溶液1リットルに加えた混
合溶液を2.4mol/リットルのNaOH水溶液4リットルに加え、pH
9.24、温度90℃において約1時間間撹拌を続けた。引
き続き、上記マグネタイトを含む懸濁液に0.1mol/リットル
のオレイン酸ナトリウム水溶液2リットルを加え、温度29
℃で撹拌した。生成した粒子を常法により水洗し濾別
し、45℃で55時間乾燥して黒色の粉末(含水率0.20
%)を得た。得られた粉末のBET値は36.2m2 /gで
あり、これより計算された平均粒子径は31.8nmであっ
た。得られた粉末及びこれを表3の条件にしたがって塗
布液としたものの色調を上記の測色法により測定した。
結果を併せて表3に示す。また、この粉末のTEM写真
を図3に示す。
Example 2 1 liter of an aqueous ferrous chloride solution containing 1.2 mol / liter of Fe 2+ was added to Fe 3+.
The mixed solution added to 1 liter of ferric chloride aqueous solution containing 2.0 mol / liter was added to 4 liter of 2.4 mol / liter NaOH aqueous solution to adjust pH.
Stirring was continued for about 1 hour at 9.24 at a temperature of 90 ° C. Then, 2 liters of 0.1 mol / liter sodium oleate aqueous solution was added to the above magnetite-containing suspension, and the temperature was adjusted to 29
Stirred at ° C. The produced particles are washed with water by a conventional method, filtered off, and dried at 45 ° C. for 55 hours to obtain a black powder (water content: 0.20
%) Was obtained. The BET value of the obtained powder was 36.2 m 2 / g, and the average particle size calculated from this was 31.8 nm. The color tone of the obtained powder and that obtained as a coating liquid according to the conditions in Table 3 were measured by the above-described colorimetric method.
The results are also shown in Table 3. Further, a TEM photograph of this powder is shown in FIG.

【0026】[0026]

【表3】 [Table 3]

【0027】比較例2 以下のように脂肪酸処理を行なわないほかは実施例2と
ほぼ同様の条件でマグネタイト粒子を製造した。Fe2+1.
0mol/リットルを含む塩化第一鉄水溶液1リットルをFe3+2.0mol
/リットルを含む塩化第二鉄水溶液1リットルに加えた混合溶液
を2.1mol/リットルのNaOH水溶液4リットルに加え、pH10.38
、温度90℃において約1時間撹拌を続けマグネタイ
ト粒子を生成した。生成した粒子を常法により水洗し濾
別し、40℃で48時間乾燥して黒色の粉末を得た。得
られた粉末のBET値は73.1m2 /gであり、これより
計算された平均粒子径は16.6nmであった。得られた粉
末及びこれを表2の条件にしたがって塗布液としたもの
の色調を上記の通り測定した。結果を併せて表4に示
す。また、この粉末のTEM写真を図4に示す
Comparative Example 2 Magnetite particles were produced under substantially the same conditions as in Example 2 except that the fatty acid treatment was not carried out as follows. Fe 2+ 1.
1 liter of ferrous chloride aqueous solution containing 0 mol / liter is Fe 3+ 2.0 mol
The mixed solution added to 1 liter of ferric chloride aqueous solution containing 1 / liter was added to 4 liters of 2.1 mol / liter NaOH aqueous solution to adjust the pH to 10.38.
Then, stirring was continued at a temperature of 90 ° C. for about 1 hour to generate magnetite particles. The produced particles were washed with water by a conventional method, filtered off, and dried at 40 ° C. for 48 hours to obtain a black powder. The BET value of the obtained powder was 73.1 m 2 / g, and the average particle size calculated from this was 16.6 nm. The color tone of the obtained powder and that obtained as a coating liquid according to the conditions of Table 2 were measured as described above. The results are also shown in Table 4. In addition, a TEM photograph of this powder is shown in FIG.

【0028】[0028]

【表4】 [Table 4]

【0029】実施例3 Fe2+1.0mol/リットルを含む塩化第一鉄水溶液1リットルをFe3+
2.0mol/リットルを含む塩化第二鉄水溶液1リットルに加えた混
合溶液を2mol/リットルのNaOH水溶液4リットルに加え、pH1
1.67、温度90℃において1時間撹拌を行なった。引き
続き、上記マグネタイトを含む懸濁液に0.1mol/リットルの
オレイン酸ナトリウム水溶液2リットルを加え、温度90℃
で30分撹拌した後、Si換算で0.3 mol 含むように二ケ
イ酸ナトリウム水和物(SiO2 :52.75 %)水溶液2リット
ルを加え、温度90℃で撹拌した。生成した粒子を常法
により水洗し濾別し、45℃で 163時間乾燥して黒色の
粉末(含水率0.70%)を得た。得られた粉末のBET値
は74.5m2 /gであり、これより計算された平均粒子径
は15.5nmであった。得られた粉末及びこれを表5の条
件にしたがって塗布液としたものの色調を上記の測色法
により測定した。結果を併せて表5に示す。また、この
粉末のTEM写真を図5に示す。
Example 3 1 liter of an aqueous ferrous chloride solution containing 1.0 mol / liter of Fe 2+ was added to Fe 3+.
The mixed solution added to 1 liter of ferric chloride aqueous solution containing 2.0 mol / liter was added to 4 liter of 2 mol / liter NaOH aqueous solution to adjust the pH to 1
The mixture was stirred at 1.67 and a temperature of 90 ° C. for 1 hour. Subsequently, 2 liters of a 0.1 mol / liter sodium oleate aqueous solution was added to the magnetite-containing suspension at a temperature of 90 ° C.
After stirring for 30 minutes at room temperature, 2 liters of an aqueous solution of sodium disilicate hydrate (SiO 2 : 52.75%) was added so as to contain 0.3 mol in terms of Si, and the mixture was stirred at a temperature of 90 ° C. The produced particles were washed with water by a conventional method, filtered off, and dried at 45 ° C. for 163 hours to obtain a black powder (water content 0.70%). The BET value of the obtained powder was 74.5 m 2 / g, and the average particle size calculated from this was 15.5 nm. The color tone of the obtained powder and that obtained as a coating liquid according to the conditions in Table 5 were measured by the above-described colorimetric method. The results are also shown in Table 5. Further, a TEM photograph of this powder is shown in FIG.

【0030】[0030]

【表5】 [Table 5]

【0031】実施例4 Fe2+1.0mol/リットルを含む塩化第一鉄水溶液1リットルをFe3+
2.0mol/リットルを含む塩化第二鉄水溶液1リットルに加えた混
合溶液を2mol/リットルのNaOH水溶液4リットルに加え、pH
8.68、温度90℃において約1時間撹拌を続けマグネタ
イト粒子を生成した。次いで、上記マグネタイトを含む
懸濁液に0.1mol/リットルのステアリン酸ナトリウム水溶液
2リットルを加え、温度90℃で撹拌した。生成した粒子を
常法により水洗し濾別し、45℃で79時間乾燥して黒
色の粉末(含水率0.24%)を得た。得られた粉末のBE
T値は39.5m2 /gであり、これより計算された平均粒
子径は29.2nmであった。得られた粉末及びこれを表6
の条件にしたがって塗布液としたものの色調を上記の測
色法により測定した。結果を併せて表6に示す。
Example 4 1 liter of an aqueous ferrous chloride solution containing 1.0 mol / liter of Fe 2+ was added to Fe 3+.
The mixed solution added to 1 liter of ferric chloride aqueous solution containing 2.0 mol / liter was added to 4 liter of 2 mol / liter NaOH aqueous solution to adjust pH.
Stirring was continued for about 1 hour at 8.68 and a temperature of 90 ° C. to generate magnetite particles. Then, 2 liters of a 0.1 mol / liter sodium stearate aqueous solution was added to the suspension containing magnetite, and the mixture was stirred at a temperature of 90 ° C. The produced particles were washed with water by a conventional method, filtered off, and dried at 45 ° C. for 79 hours to obtain a black powder (water content 0.24%). BE of the obtained powder
The T value was 39.5 m 2 / g, and the average particle size calculated from this was 29.2 nm. The powder obtained and this are shown in Table 6.
The color tone of the coating solution was measured according to the above conditions by the above colorimetric method. The results are also shown in Table 6.

【0032】[0032]

【表6】 [Table 6]

【0033】上記各実施例・比較例で得られた粒子のT
EM写真に示されるように、比較例の粒子は微細粒子が
不規則に凝集して形成されたものであることがわかる。
すなわち、各二次粒子を構成する一次粒子が容易に識別
でき、各一次粒子の大きさや形状も極めて不均一であ
る。これに対し、本発明の粒子は、球形性が高く、大き
さも均一な一次粒子である。
The T of the particles obtained in each of the above Examples and Comparative Examples
As shown in the EM photograph, it can be seen that the particles of Comparative Example are formed by irregularly agglomerating fine particles.
That is, the primary particles constituting each secondary particle can be easily identified, and the size and shape of each primary particle are also extremely non-uniform. On the other hand, the particles of the present invention are primary particles having high sphericity and a uniform size.

【0034】試験例(経時変化測定試験) 実施例および比較例で得られたマグネタイト、イオン交
換水および分散剤をサンプル瓶に入れ、スパーテルで撹
拌しながら超音波に約20分間かけ、マグネタイトを固
形分濃度で10%、分散剤(C1733COONa)を3
%含有する水分散液を調製した。分散液の総量は50g
とした。この分散液をペレット用セルに20ml入れ、
約150時間に亘って、L値、a値及びb値の変化を測
定した。図6に示す結果より、本発明のマグネタイト粒
子を用いた分散液は長期に亘って良好な安定性を示すこ
とがわかる。
Test Example (Aging Change Measurement Test) The magnetite, ion-exchanged water and dispersant obtained in the examples and comparative examples were put in a sample bottle and subjected to ultrasonic waves for about 20 minutes while stirring with a spatula to solidify the magnetite. Dispersant (C 17 H 33 COONa) 3% with a concentration of 10%
% To prepare an aqueous dispersion. Total amount of dispersion is 50g
And 20 ml of this dispersion is put in a pellet cell,
Changes in L value, a value and b value were measured over about 150 hours. From the results shown in FIG. 6, it can be seen that the dispersion liquid using the magnetite particles of the present invention shows good stability over a long period of time.

【0035】[0035]

【発明の効果】本発明のマグネタイト粒子は、粒径が0.
01μm〜0.05μmと従来のマグネタイト粒子よりも小さ
いため、分散性が良く、なおかつ可視光の波長以下であ
るため、黒色に深みがある、また、本発明のマグネタイ
ト粒子は、脂肪酸被覆されているため、酸化などの経時
的変化を受けにくく、色調の経時変化がない。このた
め、黒色顔料として特に有用である。また、本発明のマ
グネタイトは、比較的簡単に製造することができ、従来
のような煩雑な工程を必要としない。
The magnetite particles of the present invention have a particle size of 0.
Since the particle size is 01 μm to 0.05 μm, which is smaller than that of conventional magnetite particles, the dispersibility is good, and since the wavelength is shorter than the wavelength of visible light, the magnetite particles of the present invention have a fatty acid coating. It is resistant to changes with time, such as oxidation, and there is no change in color tone with time. Therefore, it is particularly useful as a black pigment. Further, the magnetite of the present invention can be manufactured relatively easily, and does not require a complicated process as in the past.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のマグネタイト粒子の粒子構造を示すT
EM写真。
FIG. 1 shows T showing the particle structure of magnetite particles of the present invention.
EM photograph.

【図2】脂肪酸被覆処理を施さないマグネタイト粒子の
粒子構造を示すTEM写真。
FIG. 2 is a TEM photograph showing a particle structure of magnetite particles not subjected to a fatty acid coating treatment.

【図3】本発明のマグネタイト粒子の粒子構造を示すT
EM写真。
FIG. 3 shows the particle structure of magnetite particles of the present invention T
EM photograph.

【図4】脂肪酸被覆処理を施さないマグネタイト粒子の
粒子構造を示すTEM写真。
FIG. 4 is a TEM photograph showing a particle structure of magnetite particles not subjected to a fatty acid coating treatment.

【図5】本発明のマグネタイト粒子の粒子構造を示すT
EM写真。
FIG. 5: T showing the particle structure of magnetite particles of the present invention
EM photograph.

【図6】本発明および比較例のマグネタイト粒子の分散
液についてL値の経時変化を示すグラフ。
FIG. 6 is a graph showing changes in L value with time for dispersions of magnetite particles of the present invention and comparative examples.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 粒子表面が脂肪酸またはその塩で被覆さ
れている平均粒径0.01〜0.05μmの球状マグネタイト粒
子。
1. Spherical magnetite particles having an average particle size of 0.01 to 0.05 μm, the surface of which is coated with a fatty acid or a salt thereof.
【請求項2】 粒子表面が脂肪酸またはその塩で被覆さ
れ、さらに酸化ケイ素層で被覆されている請求項1に記
載の球状マグネタイト粒子。
2. The spherical magnetite particles according to claim 1, wherein the particle surface is coated with a fatty acid or a salt thereof, and further coated with a silicon oxide layer.
【請求項3】 第一鉄イオンと第二鉄イオンとの混合水
溶液に1.3 当量以下のアルカリを添加し、平均粒径0.01
〜0.05μmのマグネタイト微粒子を生成させ、生成した
マグネタイト微粒子が懸濁している液中に脂肪酸または
脂肪酸塩を添加し撹拌することにより脂肪酸またはその
塩で被覆された平均粒径0.01〜0.05μmの球状マグネタ
イト粒子を製造する方法。
3. An average particle diameter of 0.01 is obtained by adding an alkali of 1.3 equivalents or less to a mixed aqueous solution of ferrous and ferric ions.
~ 0.05μm magnetite fine particles are generated, and the fatty acid or fatty acid salt is added to the liquid in which the generated magnetite fine particles are suspended and stirred to form a spherical shape with an average particle size of 0.01 to 0.05μm Method for producing magnetite particles.
【請求項4】 第一鉄イオンと第二鉄イオンとの含有比
が1:1.2 〜1:2である混合水溶液を用いる請求項3
に記載の方法。
4. A mixed aqueous solution in which the content ratio of ferrous ions to ferric ions is 1: 1.2 to 1: 2 is used.
The method described in.
【請求項5】 アルカリ添加後、液温を80〜 100℃に
加熱してマグネタイト微粒子を生成させる請求項3また
は4に記載の方法。
5. The method according to claim 3, wherein after adding the alkali, the liquid temperature is heated to 80 to 100 ° C. to generate magnetite fine particles.
【請求項6】 脂肪酸または脂肪酸塩の脂肪酸部分が1
2〜22個の炭素を含む直鎖の脂肪酸である請求項3〜
5のいずれかに記載の方法。
6. The fatty acid portion of the fatty acid or fatty acid salt is 1
A linear fatty acid containing 2 to 22 carbons.
5. The method according to any one of 5 above.
【請求項7】 脂肪酸またはその塩で被覆された球状マ
グネタイト粒子を含有する懸濁液に可溶性ケイ酸塩水溶
液を添加して、さらに酸化ケイ素層を形成する請求項3
〜6のいずれかに記載の方法。
7. A solution of a soluble silicate solution is added to a suspension containing spherical magnetite particles coated with a fatty acid or a salt thereof to further form a silicon oxide layer.
7. The method according to any one of 6 to 6.
JP07537194A 1994-03-22 1994-03-22 Spherical magnetite particles and method for producing the same Expired - Fee Related JP3651017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07537194A JP3651017B2 (en) 1994-03-22 1994-03-22 Spherical magnetite particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07537194A JP3651017B2 (en) 1994-03-22 1994-03-22 Spherical magnetite particles and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07257930A true JPH07257930A (en) 1995-10-09
JP3651017B2 JP3651017B2 (en) 2005-05-25

Family

ID=13574292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07537194A Expired - Fee Related JP3651017B2 (en) 1994-03-22 1994-03-22 Spherical magnetite particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP3651017B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997042125A1 (en) * 1996-05-08 1997-11-13 Mitsui Mining & Smelting Company, Ltd. Black ultrafine magnetite particles and process for preparing the same
US6355260B1 (en) 1996-12-10 2002-03-12 Catalysts & Chemicals Industries Co., Ltd. Inorganic compound-coated pigments and cosmetics using the same
JP2006143560A (en) * 2004-11-24 2006-06-08 Kiyoshi Otsuka Method for producing hydrogen-generating medium and method for producing hydrogen
JP2006282438A (en) * 2005-03-31 2006-10-19 Mitsui Mining & Smelting Co Ltd Magnetite particles and its manufacturing method
JP2008001889A (en) * 2006-05-18 2008-01-10 Lanxess Deutschland Gmbh Oxidation-stable iron oxide pigments, their production method, and their use
JP2012097135A (en) * 2010-10-29 2012-05-24 Mitsui Mining & Smelting Co Ltd Magnetic iron oxide particle dispersion and method for producing the same
KR101226610B1 (en) * 2010-05-10 2013-01-28 한국세라믹기술원 Manufacturing method of magnetite nanoparticle dispersed polymer composite film
JP5925932B1 (en) * 2015-03-31 2016-05-25 株式会社明菱 Black rust fine particle production method, production apparatus, and black rust fine particle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997042125A1 (en) * 1996-05-08 1997-11-13 Mitsui Mining & Smelting Company, Ltd. Black ultrafine magnetite particles and process for preparing the same
US6355260B1 (en) 1996-12-10 2002-03-12 Catalysts & Chemicals Industries Co., Ltd. Inorganic compound-coated pigments and cosmetics using the same
JP2006143560A (en) * 2004-11-24 2006-06-08 Kiyoshi Otsuka Method for producing hydrogen-generating medium and method for producing hydrogen
JP4688477B2 (en) * 2004-11-24 2011-05-25 大塚 潔 Method for producing hydrogen generating medium and method for producing hydrogen
JP2006282438A (en) * 2005-03-31 2006-10-19 Mitsui Mining & Smelting Co Ltd Magnetite particles and its manufacturing method
JP4641445B2 (en) * 2005-03-31 2011-03-02 三井金属鉱業株式会社 Magnetite particle powder
JP2008001889A (en) * 2006-05-18 2008-01-10 Lanxess Deutschland Gmbh Oxidation-stable iron oxide pigments, their production method, and their use
JP2015052116A (en) * 2006-05-18 2015-03-19 ランクセス・ドイチュランド・ゲーエムベーハー Oxidation-stable iron oxide pigment and preparation method and usage of the same
KR101226610B1 (en) * 2010-05-10 2013-01-28 한국세라믹기술원 Manufacturing method of magnetite nanoparticle dispersed polymer composite film
JP2012097135A (en) * 2010-10-29 2012-05-24 Mitsui Mining & Smelting Co Ltd Magnetic iron oxide particle dispersion and method for producing the same
JP5925932B1 (en) * 2015-03-31 2016-05-25 株式会社明菱 Black rust fine particle production method, production apparatus, and black rust fine particle

Also Published As

Publication number Publication date
JP3651017B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
EP0187434B2 (en) Spherical magnetite particles
JP3651017B2 (en) Spherical magnetite particles and method for producing the same
US6953504B2 (en) Black pigment powder having a low value of magnetization, process for producing the same, and applications thereof
JP2000351914A (en) Iron-based black composite particulate powder and its production, coating material using the same and rubber/ resin composition colored therewith
EP0808801B1 (en) Magnetite particles and process for production thereof
JP3473003B2 (en) Black magnetic iron oxide particle powder
JP4448687B2 (en) Black iron oxide particles, method for producing the same, electrophotographic toner using the same, and image forming method using the toner
JP4490667B2 (en) Black pigment particles
JP3828727B2 (en) Iron oxide particles
JP3664216B2 (en) Black magnetic particle powder for black magnetic toner and black magnetic toner using the black magnetic particle powder
JP2756845B2 (en) Hexahedral magnetite particle powder and its manufacturing method
JP5016162B2 (en) Black pigment and method for producing the same
JP3464801B2 (en) Black ultrafine magnetite particles and method for producing the same
JPH0624986B2 (en) Spherical magnetite particle powder and its manufacturing method
JP4473683B2 (en) Magnetite particles, manufacturing method thereof, electrophotographic toner using the same, and image forming method
JP7229814B2 (en) Electrophotographic pigment and method for producing the same
JP4815075B2 (en) Magnetite containing toner
JP4401154B2 (en) Black composite iron oxide particles
JPH10279314A (en) Nonmagnetic black pigment powder, nonmagnetic black coating material using that nonmagnetic black pigment powder, and black rubber and resin composition using that nonmagnetic black pigment powder
JP3864030B2 (en) Iron oxide particles for electrostatic copying toner, iron oxide particles for electrostatic latent image developing carrier, iron oxide powder for electrostatic copying toner, iron oxide powder for electrostatic latent image developing carrier, electrostatic copying toner, Carrier for developing electrostatic latent image and method for producing iron oxide particles
JP2000351630A (en) Production of magnetite
JP2997167B2 (en) Magnetite particles and method for producing the same
JP4448715B2 (en) Black iron oxide particles, method for producing the same, electrophotographic toner using the same, and image forming method using the toner
JP2743028B2 (en) Iron oxide superparamagnetic fine particle powder and method for producing the same
JP5029981B2 (en) Black composite iron oxide particles, electrophotographic toner using the same, and image forming method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20041005

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Effective date: 20050214

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees