JP2006143560A - Method for producing hydrogen-generating medium and method for producing hydrogen - Google Patents

Method for producing hydrogen-generating medium and method for producing hydrogen Download PDF

Info

Publication number
JP2006143560A
JP2006143560A JP2004339242A JP2004339242A JP2006143560A JP 2006143560 A JP2006143560 A JP 2006143560A JP 2004339242 A JP2004339242 A JP 2004339242A JP 2004339242 A JP2004339242 A JP 2004339242A JP 2006143560 A JP2006143560 A JP 2006143560A
Authority
JP
Japan
Prior art keywords
hydrogen
iron
generating medium
producing
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004339242A
Other languages
Japanese (ja)
Other versions
JP4688477B2 (en
Inventor
Kiyoshi Otsuka
潔 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Uchiya Thermostat Co Ltd
Original Assignee
Nitto Denko Corp
Uchiya Thermostat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp, Uchiya Thermostat Co Ltd filed Critical Nitto Denko Corp
Priority to JP2004339242A priority Critical patent/JP4688477B2/en
Publication of JP2006143560A publication Critical patent/JP2006143560A/en
Application granted granted Critical
Publication of JP4688477B2 publication Critical patent/JP4688477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compounds Of Iron (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a hydrogen-generating medium capable of producing hydrogen from water at lower temperature. <P>SOLUTION: A method for producing the hydrogen-generating medium generating hydrogen when it is brought into contact with water, steam or a steam-containing gas includes an agitation process for agitating water, a soluble iron(II) salt, a soluble iron(III) salt and a precipitating agent, and a drying process for separating a precipitate obtained by allowing the resulting mixture to stand after agitation and drying the separated precipitate. It is preferable that the hydrogen-generating medium contains fine particles of triiron tetraoxide, the soluble iron(II) salt is iron(II) chloride, and the soluble iron(III) salt is iron(III) chloride. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水を分解して水素を製造することができる水素発生媒体製造方法及び水素製造方法に関する。   The present invention relates to a hydrogen generation medium production method and a hydrogen production method capable of producing hydrogen by decomposing water.

燃料電池に水素を供給するために、水素を製造する技術が盛んに研究されている。その一つとして、純鉄に水蒸気を接触させて水素を製造する技術が知られている。純鉄は水素を発生することで酸化されて酸化鉄となる。この酸化鉄は、従来、水素を用いて還元されている(例えば、特許文献1参照)。このような純鉄を用いた方法では、850℃〜900℃といった高温を必要とする。
特開2002−173301号公報 (段落番号0012、0032、0050参照)
In order to supply hydrogen to a fuel cell, a technique for producing hydrogen has been actively researched. As one of them, a technique for producing hydrogen by bringing water vapor into contact with pure iron is known. Pure iron is oxidized to produce iron oxide by generating hydrogen. This iron oxide has been conventionally reduced using hydrogen (see, for example, Patent Document 1). Such a method using pure iron requires a high temperature of 850 ° C. to 900 ° C.
JP 2002-173301 A (see paragraphs 0012, 0032, and 0050)

そこで本発明は、上記の問題に鑑み、水素をより低温で製造することができる水素発生媒体製造方法及び水素製造方法を提供することを目的とする。   Then, in view of said problem, this invention aims at providing the hydrogen generating medium manufacturing method and hydrogen manufacturing method which can manufacture hydrogen at lower temperature.

上記目的を達成するために、本発明の水素発生媒体製造方法は、水、水蒸気または水蒸気を含むガスと接触して水素を発生する水素発生媒体を製造する水素発生媒体製造方法であって、水と、溶解性鉄(II)塩と、溶解性鉄(III)塩と、沈殿剤とを混ぜて攪拌する撹拌工程と、前記撹拌工程の後、静置して得られた沈殿物を分離して乾燥する乾燥工程とを含むことを特徴とする。 In order to achieve the above object, a method for producing a hydrogen generating medium of the present invention is a method for producing a hydrogen generating medium for producing a hydrogen generating medium that generates hydrogen upon contact with water, water vapor or a gas containing water vapor, And a stirring step in which the soluble iron (II) salt, the soluble iron (III) salt, and the precipitant are mixed and stirred, and the precipitate obtained by standing after the stirring step is separated. And a drying step of drying.

上記の態様において、前記水素発生媒体は、四酸化三鉄を含む微粒子であることが好ましい。ここで、微粒子であるとは、BET比表面積が数十m2/gオーダー(10〜300m2/gであり、好ましくは、50〜200m2/gである。)の粒子であることである。微粒子のまま金属鉄にできれば、表面の鉄が増えて低温で高い水素生成率が得られると考えられるからである。また、溶解性鉄(II)は塩化鉄(II)であり、溶解性鉄(III)は塩化鉄(III)であり、沈殿剤はアンモニアであることが好ましい。 In the above aspect, the hydrogen generation medium is preferably fine particles containing triiron tetroxide. Here, as the fine particles, (a 10 to 300 m 2 / g, preferably, a 50~200m 2 / g.) BET specific surface area of several tens of m 2 / g order that it is a particle of . This is because it can be considered that if the fine particles can be made into metallic iron, the surface iron increases and a high hydrogen production rate can be obtained at a low temperature. The soluble iron (II) is preferably iron (II) chloride, the soluble iron (III) is iron (III) chloride, and the precipitating agent is preferably ammonia.

前記水素発生媒体には、鉄に加えて鉄以外の金属が添加されていることが好ましい。鉄以外の金属としては、ニッケル(Ni)、コバルト(Co)、クロム(Cr)、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)、バナジウム(V)、ニオブ(Nb)、モリブデン(Mo)、ガリウム(Ga)、マグネシウム(Mg)、スカンジウム(Sc)、銅(Cu)、ネオジウム(Nd)の少なくともいずれか1つから選ばれる金属を用いることが好ましい。これらの金属を添加することで、酸化還元反応で水素発生媒体のシンタリングによる粒子成長が抑えられ、水素発生効率の低下を抑えることができる。 It is preferable that a metal other than iron is added to the hydrogen generating medium in addition to iron. Examples of metals other than iron include nickel (Ni), cobalt (Co), chromium (Cr), aluminum (Al), titanium (Ti), zirconium (Zr), vanadium (V), niobium (Nb), molybdenum (Mo ), Gallium (Ga), magnesium (Mg), scandium (Sc), copper (Cu), or neodymium (Nd) is preferably used. By adding these metals, particle growth due to sintering of the hydrogen generation medium in the oxidation-reduction reaction can be suppressed, and a decrease in hydrogen generation efficiency can be suppressed.

また、鉄以外の金属として、白金(Pt)、ロジウム(Rh)、イリジウム(Ir)、パラジウム(Pd)、ルテニウム(Ru)の少なくともいずれか1つから選ばれる金属を用いることも好ましい。これらの金属を添加することで、200℃以下の低温で十分な発生をすることができる。 It is also preferable to use a metal selected from at least one of platinum (Pt), rhodium (Rh), iridium (Ir), palladium (Pd), and ruthenium (Ru) as the metal other than iron. By adding these metals, sufficient generation can be achieved at a low temperature of 200 ° C. or lower.

さらに、別の態様として、上記の水素発生媒体製造方法で製造された水素発生媒体を還元する工程と、水、水蒸気又は水蒸気を含むガスを還元された水素発生媒体に接触させて水素を発生する工程とを含む水素製造方法が挙げられる。   Further, as another aspect, a step of reducing the hydrogen generation medium manufactured by the above-described method for manufacturing a hydrogen generation medium, and generating hydrogen by bringing water, water vapor, or a gas containing water vapor into contact with the reduced hydrogen generation medium And a hydrogen production method including a process.

また、上記により製造した水素発生媒体を用いた水素発生装置用カセットや、水素発生装置も好ましく挙げられる態様である。   Moreover, the cassette for hydrogen generators using the hydrogen generating medium manufactured by the above, and the hydrogen generator are also an aspect preferably mentioned.

このように、本発明によれば、水素をより低温で製造することができる水素発生媒体製造方法及び水素製造方法を提供することができる。   Thus, according to the present invention, it is possible to provide a method for producing a hydrogen generation medium and a method for producing hydrogen, which can produce hydrogen at a lower temperature.

以下に、本発明に係る水素発生媒体製造方法及び水素製造方法の実施の形態について説明する。   Embodiments of a hydrogen generation medium manufacturing method and a hydrogen manufacturing method according to the present invention will be described below.

本発明の水素発生媒体製造方法は、水、水蒸気または水蒸気を含むガスと接触して水素を発生する水素発生媒体を製造する水素発生媒体製造方法であって、水と、溶解性鉄(II)塩及び溶解性鉄(III)塩と、沈殿剤とを攪拌する撹拌工程と、前記撹拌工程の後、静置して得られた沈殿物を分離して乾燥する乾燥工程とを含むことを特徴とする。   The hydrogen generation medium production method of the present invention is a hydrogen generation medium production method for producing a hydrogen generation medium that generates hydrogen upon contact with water, water vapor, or a gas containing water vapor, comprising water and soluble iron (II) A stirring step of stirring the salt and the soluble iron (III) salt and the precipitant, and a drying step of separating and drying the precipitate obtained by standing after the stirring step. And

本発明の水素発生媒体製造方法で用いられる水は、通常の化学工程で用いられるものであってよい。しかし、この水は、脱気してあることがより好ましいことが分かっている。脱気により水中の溶存酸素が除去され、沈殿する鉄や鉄以外の金属が酸化されず、より微細な四酸化三鉄の微粒子を得ることができるからである。不活性ガスの雰囲気中で、イオン交換水等の水を超音波洗浄器などの超音波振動器を用いて加振し、脱気することができる。もちろん、他の公知の脱気方法を用いることもできる。   The water used in the method for producing a hydrogen generating medium of the present invention may be used in a normal chemical process. However, it has been found that the water is more preferably degassed. It is because dissolved oxygen in water is removed by deaeration, and the precipitated iron and metals other than iron are not oxidized, and finer triiron tetraoxide particles can be obtained. In an inert gas atmosphere, water such as ion-exchanged water can be vibrated and deaerated using an ultrasonic vibrator such as an ultrasonic cleaner. Of course, other known degassing methods can also be used.

水に加えられる溶解性鉄(II)としては、例えば、塩化鉄(II)、硫酸鉄(II)、硝酸鉄(II)などを用いることができるが、塩化鉄(II)を用いることが特に好ましい。また、溶解性鉄(III)としては、例えば、塩化鉄(III)、硫酸鉄(III)、硝酸鉄(III)などを用いることができるが、塩化鉄(III)を用いることが特に好ましい。   As the soluble iron (II) added to water, for example, iron (II) chloride, iron (II) sulfate, iron (II) nitrate and the like can be used, but it is particularly preferable to use iron (II) chloride. preferable. Moreover, as soluble iron (III), for example, iron chloride (III), iron sulfate (III), iron nitrate (III) and the like can be used, and iron chloride (III) is particularly preferable.

また、前記水素発生媒体は、鉄に鉄以外の金属が添加されていることが好ましい。鉄以外の金属としては、ニッケル、コバルト、クロム、アルミニウム、チタン、ジルコニウム、バナジウム、ニオブ、モリブデン、ガリウム、マグネシウム、スカンジウム、銅、ネオジウムの少なくともいずれか1つから選ばれる金属を用いることができる。かかる金属を添加することで、酸化還元反応で水素発生媒体のシンタリングによる粒子成長が抑えられ、水素発生効率の低下を抑えることができるからである。また、鉄に鉄以外の金属として白金、ロジウム、イリジウム、パラジウム、ルテニウムの少なくともいずれか1つから選ばれる金属を用いて添加することもできる。これらの金属を添加することで、200℃以下の温度で十分な水素を発生することができる。これらの金属は、2つの態様の両方の金属を添加することもできる。添加する金属の配合割合は、全金属を100mol%とした場合、0.1〜30mol%が好ましく、0.1〜15mol%がより好ましい。0.1mol%未満の配合では、水素の発生効率を向上する効果が認められない。一方、30mol%を超えると、鉄の酸化還元反応の効率が低下するので好ましくない。   In addition, it is preferable that the hydrogen generating medium includes a metal other than iron added to iron. As the metal other than iron, a metal selected from at least one of nickel, cobalt, chromium, aluminum, titanium, zirconium, vanadium, niobium, molybdenum, gallium, magnesium, scandium, copper, and neodymium can be used. This is because by adding such a metal, particle growth due to sintering of the hydrogen generation medium in the oxidation-reduction reaction can be suppressed, and a decrease in hydrogen generation efficiency can be suppressed. Moreover, it can also add to iron using the metal chosen from at least any one of platinum, rhodium, iridium, palladium, and ruthenium as metals other than iron. By adding these metals, sufficient hydrogen can be generated at a temperature of 200 ° C. or lower. These metals can be added with both metals of the two embodiments. The mixing ratio of the metal to be added is preferably 0.1 to 30 mol%, more preferably 0.1 to 15 mol%, when all metals are 100 mol%. When the amount is less than 0.1 mol%, the effect of improving the hydrogen generation efficiency is not recognized. On the other hand, if it exceeds 30 mol%, the efficiency of the iron redox reaction is lowered, which is not preferable.

さらに、前記の金属塩を溶解させた溶液を、沈殿剤に滴下して撹拌する。沈殿剤としては、例えば、アンモニア、尿素、アルカリ金属水酸化物、アルカリ金属炭酸塩などを用いることができ、なかでもアンモニアを用いることが好ましい。そして、四酸化三鉄の微粒子が発生して沈殿する。この撹拌工程は、空気中でも行えるが、溶液を撹拌する際に、溶液中に空気中の酸素が混入しないようにアルゴンなどの不活性ガス雰囲気下又は空気に接しない条件下で行うことがより好ましい。溶液中に空気中の酸素が混入しないことで、沈殿する鉄や鉄以外の金属が酸化されず、より微細な四酸化三鉄の微粒子を得ることができるからである。また、前記滴下の方法は、沈殿剤として前記の金属塩等を溶解させた溶液を用いてこれに滴下してもよい。   Furthermore, the solution in which the metal salt is dissolved is dropped into the precipitant and stirred. As the precipitant, for example, ammonia, urea, alkali metal hydroxide, alkali metal carbonate or the like can be used, and among them, ammonia is preferably used. Then, fine particles of triiron tetroxide are generated and precipitated. This stirring step can be performed in the air, but when stirring the solution, it is more preferably performed under an inert gas atmosphere such as argon or in a condition not in contact with air so that oxygen in the air is not mixed in the solution. . This is because when the oxygen in the air is not mixed in the solution, precipitated iron and metals other than iron are not oxidized, and finer triiron tetraoxide particles can be obtained. In addition, the dropping method may be performed by using a solution in which the metal salt or the like is dissolved as a precipitant.

上記撹拌工程の後、静置して得られた沈殿物を分離する。分離の方法は、静置以外に遠心分離による方法や、磁気による分離など他の公知の分離方法を用いることもできる。その後、沈殿物をイオン交換水とアセトンで洗浄し、真空乾燥を行う。   After the stirring step, the precipitate obtained by standing is separated. As the separation method, in addition to standing, other known separation methods such as a centrifugal separation method and a magnetic separation method can also be used. Thereafter, the precipitate is washed with ion-exchanged water and acetone and vacuum dried.

乾燥した沈殿物は、熱処理した後、アルミナ乳鉢で粉砕することができる。そのまま粉末状でも水素発生媒体として用いることができるが、ペレット状、円筒状、ハニカム構造、不織布形状など反応に適した形状を選択することが好ましい。このようにして、本発明の水素発生媒体である四酸化三鉄(Fe34)の微粒子及び微粒子の成形体が製造できる。 The dried precipitate can be pulverized in an alumina mortar after heat treatment. The powder can be used as it is as a hydrogen generating medium, but it is preferable to select a shape suitable for the reaction such as a pellet shape, a cylindrical shape, a honeycomb structure, or a nonwoven fabric shape. In this way, fine particles of triiron tetroxide (Fe 3 O 4 ), which is the hydrogen generation medium of the present invention, and a compact of fine particles can be produced.

次に、以上の方法で製造された四酸化三鉄等の水素発生媒体を用いた本発明の水素製造方法について説明する。   Next, the hydrogen production method of the present invention using a hydrogen generation medium such as triiron tetroxide produced by the above method will be described.

図1を参照して、本発明の水素製造方法を好適に実施可能な水素発生装置について更に詳細に説明する。図1は、本発明の水素発生媒体を用いた水素発生装置の一例を示す模式図である。   With reference to FIG. 1, the hydrogen generator which can implement suitably the hydrogen production method of this invention is demonstrated still in detail. FIG. 1 is a schematic diagram showing an example of a hydrogen generation apparatus using the hydrogen generation medium of the present invention.

図1に示すように、水素発生装置10は、水を供給するための水供給装置1と、反応管22を収容したカセット2とを備えている。カセット2内の反応管22には、本発明の水素発生媒体23である四酸化三鉄が収容されている。当該反応管22は、水を供給するための水供給装置1と管11で結合され、一方で、水素や水蒸気排出のための管26に接続されている。水素発生装置10内で水分解反応を行い、発生した水素は、固体高分子型燃料電池(図示省略)などの水素を必要とする系にこの管26を介して送られる。管11と管26とはカセットの一部とすることもできる一方、水素発生装置10の側に設けておくこともできる。   As shown in FIG. 1, the hydrogen generator 10 includes a water supply device 1 for supplying water and a cassette 2 in which a reaction tube 22 is accommodated. The reaction tube 22 in the cassette 2 contains triiron tetroxide, which is the hydrogen generation medium 23 of the present invention. The reaction tube 22 is connected to a water supply device 1 for supplying water and a tube 11, and is connected to a tube 26 for discharging hydrogen and water vapor. A water splitting reaction is performed in the hydrogen generator 10, and the generated hydrogen is sent to the system that requires hydrogen, such as a polymer electrolyte fuel cell (not shown), through this pipe 26. The tube 11 and the tube 26 can be part of the cassette, but can also be provided on the hydrogen generator 10 side.

水分解・還元反応や水を気化させるための熱を供給する熱源として、カセット2内にはヒータ25が設置することができる。ヒータ25の熱源は一般的に使用される電気炉、ヒータ、電磁誘導加熱、触媒燃焼加熱、化学反応による加熱のいずれでもよい。反応管はステンレススチール、アルミ等の金属やアルミナ、ジルコニアなどのセラミックス、フェノール、ポリフェニレンサルファイド等の耐熱性プラスチック等で作られ、熱や内外圧力に耐えうる構造をとすることができる。カセット2内にはシリカ繊維などの断熱材21が挿入され、カバーで覆われる。カセット2のガス導入排出口にはそれぞれフィルタ24が設けられる。   A heater 25 can be installed in the cassette 2 as a heat source for supplying heat for water decomposition / reduction reaction and water vaporization. The heat source of the heater 25 may be any of a commonly used electric furnace, heater, electromagnetic induction heating, catalytic combustion heating, and heating by chemical reaction. The reaction tube is made of a metal such as stainless steel or aluminum, a ceramic such as alumina or zirconia, a heat-resistant plastic such as phenol or polyphenylene sulfide, and can have a structure that can withstand heat and internal / external pressure. A heat insulating material 21 such as silica fiber is inserted into the cassette 2 and covered with a cover. A filter 24 is provided at each gas inlet / outlet of the cassette 2.

上記の水素発生媒体製造方法により調製された四酸化三鉄を反応管22内に置き、水素や一酸化炭素などの還元性ガスにより四酸化三鉄を鉄に還元する。この還元された鉄の粒子に、水、水蒸気又は水蒸気を含むガスを接触させて水素を製造する。この際、水と反応した鉄は四酸化三鉄になる。かかる還元工程は、市販のFe34を用いると、反応管22内の温度を加熱手段により約330℃〜約700℃に加熱しなければならなかった。しかし、本発明にかかる水素発生媒体を用いた還元工程では、加熱手段により約310℃以下の加熱を行うだけでよい。還元剤として使用するガスは、高圧ボンベに充填された水素でもよいが、液体水素ボンベ、メタン(メタンガス、天然ガスあるいは石油等の炭化水素類系原料)等の炭化水素類を触媒を用いて分解した水素、炭化水素類と水蒸気による水蒸気改質法による生成した水素、メタノール改質による水素、水の電気分解による水素等の発生した水素を用いることもできる。尚、いずれの場合にも、反応管22に供給する前に水分を除去し、ドライな水素を供給することが好ましい。 The ferrous tetroxide prepared by the above method for producing a hydrogen generating medium is placed in the reaction tube 22, and the ferric tetroxide is reduced to iron by a reducing gas such as hydrogen or carbon monoxide. Hydrogen is produced by bringing the reduced iron particles into contact with water, water vapor or a gas containing water vapor. At this time, iron reacted with water becomes triiron tetroxide. In this reduction step, when commercially available Fe 3 O 4 was used, the temperature in the reaction tube 22 had to be heated to about 330 ° C. to about 700 ° C. by a heating means. However, in the reduction step using the hydrogen generating medium according to the present invention, it is only necessary to perform heating at about 310 ° C. or less by the heating means. The gas used as the reducing agent may be hydrogen filled in a high-pressure cylinder, but it decomposes hydrocarbons such as liquid hydrogen cylinders and methane (methane gas, natural gas or hydrocarbons such as petroleum) using a catalyst. Hydrogen generated by a steam reforming method using hydrogen, hydrocarbons and steam, hydrogen by methanol reforming, hydrogen by electrolysis of water, or the like can also be used. In any case, it is preferable to remove moisture before supplying the reaction tube 22 and supply dry hydrogen.

反応管22内では、導入された還元ガスによって、媒体中の水素発生媒体が純金属または低原子価金属酸化物に還元される。例えば、水素発生金属がFeで還元ガスが水素の場合の反応式を以下に示す。   In the reaction tube 22, the hydrogen generation medium in the medium is reduced to a pure metal or a low-valent metal oxide by the introduced reducing gas. For example, the reaction formula when the hydrogen generating metal is Fe and the reducing gas is hydrogen is shown below.

FeOx+H2→FeOx-y+yH2
ここで、上記式中、FeOXは酸化鉄(化学式FenmをFeOm/nと表記した)を表している。
FeO x + H 2 → FeO xy + yH 2 O
Here, in the above formula, FeO x represents iron oxide (the chemical formula Fe n O m is expressed as FeO m / n ).

本発明において、原料として用いられる水は、必ずしも純水でなくてもよく、水道水、工業用水などが用いられている。   In the present invention, water used as a raw material is not necessarily pure water, and tap water, industrial water, and the like are used.

本発明にかかる水素製造方法によれば、局地設備用、工場用、家庭用もしくは車両搭載用の燃料電池に、燃料電池の電極を被毒する一酸化炭素の発生なしに、水素を安価に供給することができる。製造した水素は、燃料電池に用いられるだけでなく、水素バーナなどの広範囲な水素利用手段に用いることができる。また、還元された水素発生媒体を容器に充填させ、可搬型水素供給カセットとして、前述したような燃料電池などの水素供給手段に用いることができる。   According to the hydrogen production method of the present invention, hydrogen can be produced at low cost without generating carbon monoxide that poisons fuel cell electrodes in fuel cells for local facilities, factories, homes or vehicles. Can be supplied. The produced hydrogen can be used not only for fuel cells but also for a wide range of hydrogen utilization means such as a hydrogen burner. Further, the reduced hydrogen generation medium can be filled in a container and used as a portable hydrogen supply cassette for a hydrogen supply means such as a fuel cell as described above.

更に、本発明によれば、内部に水素発生媒体を収納し、少なくとも2つの配管取付手段を具備したカセットからなり、このカセットには配管取付手段の一方を介して水又は水蒸気を注入することができ、水が分解して発生した水素を、他方の連結孔配管取付手段から水素消費装置へ供給可能であることを特徴とする水素発生装置が提供できる。カセットを外から加熱することもできるが、カセットの内部にヒータを設けてもよい。水と反応し酸化された鉄は、再度水素などにより還元され、活性が低下することなく繰り返し水素発生媒体として用いることができる。このカセットは、ある程度の耐熱性があり、金属などの材料により作ることができる。   Furthermore, according to the present invention, the hydrogen generating medium is housed in the cassette, and the cassette is provided with at least two pipe mounting means. Water or water vapor can be injected into the cassette through one of the pipe mounting means. In addition, it is possible to provide a hydrogen generating device characterized in that hydrogen generated by the decomposition of water can be supplied from the other connecting hole pipe mounting means to the hydrogen consuming device. Although the cassette can be heated from the outside, a heater may be provided inside the cassette. Iron oxidized by reacting with water is reduced again by hydrogen or the like, and can be repeatedly used as a hydrogen generating medium without decreasing its activity. This cassette has a certain degree of heat resistance and can be made of a material such as metal.

また、カセットから発生するガスは純粋な水素と水蒸気以外の不純物は含まないため、低温作動型燃料電池(固体高分子型、リン酸型、KOH型など)の燃料極を被毒することはなく、CO除去装置も必要でなくシンプルなシステムで構成することができ、経済的な効果が大きい。   In addition, since the gas generated from the cassette does not contain impurities other than pure hydrogen and water vapor, it does not poison the fuel electrode of low-temperature operation type fuel cells (solid polymer type, phosphoric acid type, KOH type, etc.) In addition, a CO removal device is not required and can be configured with a simple system, which is highly economical.

水素を得るための水分解工程は、従来では、反応管の温度を加熱手段により約250℃から約600℃に加熱しなければならなかった。しかし、本発明にかかる水素発生媒体を用いた水分解工程では、加熱手段により約100℃〜約240℃程度に加熱すればよい。   In the water splitting process for obtaining hydrogen, conventionally, the temperature of the reaction tube had to be heated from about 250 ° C. to about 600 ° C. by a heating means. However, in the water splitting process using the hydrogen generating medium according to the present invention, it may be heated to about 100 ° C. to about 240 ° C. by a heating means.

反応管内において、導入された水は加熱されて通常は水蒸気となり、この水蒸気は、還元工程により還元された媒体中の水素発生金属(純金属)又はその低原子価金属酸化物によって分解されて、水素が発生する。水素発生金属(純金属)又はその低原子価金属酸化物は、水分解反応により低原子価金属酸化物又は高原子価金属酸化物となる。水素発生金属として、鉄の酸化物を用いた場合の反応式を以下に示す。   In the reaction tube, the introduced water is heated to normally become water vapor, and this water vapor is decomposed by the hydrogen-generating metal (pure metal) or its low-valent metal oxide in the medium reduced by the reduction process, Hydrogen is generated. The hydrogen generating metal (pure metal) or a low valent metal oxide thereof becomes a low valent metal oxide or a high valent metal oxide by a water splitting reaction. The reaction formula when an iron oxide is used as the hydrogen generating metal is shown below.

FeOx-1+H2O→FeOx+H2 FeO x-1 + H 2 O → FeO x + H 2

図2は、図1に示した水素発生装置が燃料電池に接続された状態を示す模式図である。   FIG. 2 is a schematic diagram showing a state where the hydrogen generator shown in FIG. 1 is connected to a fuel cell.

上記の水分解工程により、図2に示すように、カセット内の還元された水素発生媒体は水と反応し、カセットから水素が発生する。発生した水素は、固体高分子型燃料電池3と接続された管を通して、固体高分子型燃料電池3の燃料極31へ供給される。固体高分子型燃料電池3の空気極32へは空気が導入され、水素と空気中の酸素の反応により、電気エネルギーが取り出される。   Through the above water splitting step, as shown in FIG. 2, the reduced hydrogen generating medium in the cassette reacts with water to generate hydrogen from the cassette. The generated hydrogen is supplied to the fuel electrode 31 of the polymer electrolyte fuel cell 3 through a pipe connected to the polymer electrolyte fuel cell 3. Air is introduced into the air electrode 32 of the polymer electrolyte fuel cell 3, and electric energy is extracted by the reaction between hydrogen and oxygen in the air.

本発明は、図1に示すシステムを用いて説明されているものであるが、本発明の実施はこのようなシステム構成に限られるものではなく、本発明の技術的思想の範囲内における修飾・変更・付加は全て本発明に含まれる。特に、本発明の水素発生媒体は、図1に示したもの以外の多くの水素発生システムにおいて使用できる。   Although the present invention has been described using the system shown in FIG. 1, the implementation of the present invention is not limited to such a system configuration, and modifications and modifications within the scope of the technical idea of the present invention are possible. All modifications and additions are included in the present invention. In particular, the hydrogen generation medium of the present invention can be used in many hydrogen generation systems other than those shown in FIG.

以下、本発明の効果を例証するための実施例について説明する。ただし本発明はこれに限定されるものではない。   Examples for illustrating the effects of the present invention will be described below. However, the present invention is not limited to this.

(実施例1)
以下に示す方法で液中でのFe34合成を行った。先ず、超音波洗浄器で脱気したイオン交換水20mlに、塩化鉄(II)(FeCl2)を2mmolと塩化鉄(III)六水和物(FeCl3・6H20)を4mmolとニッケルの塩化物とを溶かし,25%アンモニア水20mlに滴下していく。ニッケルの塩化物は、Fe:Ni=95:5になるように添加した。
Example 1
Fe 3 0 4 was synthesized in the liquid by the following method. First, in 20 ml of ion-exchanged water degassed by an ultrasonic cleaner, 2 mmol of iron (II) chloride (FeCl 2 ), 4 mmol of iron (III) chloride hexahydrate (FeCl 3 .6H 2 0) and nickel Dissolve the chloride and add it dropwise to 20 ml of 25% aqueous ammonia. Nickel chloride was added so that Fe: Ni = 95: 5.

滴下終了後,Arガス雰囲気下で1時間撹拌して30分静置した。静置して得られた沈殿をイオン交換水で5回、アセトンで5回洗浄し、真空乾燥した。その後、473Kで30分熱処理後、アルミナ乳鉢で粉砕してNiが添加された四酸化三鉄を得た。   After completion of the dropping, the mixture was stirred for 1 hour under an Ar gas atmosphere and allowed to stand for 30 minutes. The precipitate obtained by standing was washed 5 times with ion-exchanged water, 5 times with acetone, and vacuum-dried. Thereafter, after heat treatment at 473 K for 30 minutes, triiron tetroxide to which Ni was added was obtained by grinding in an alumina mortar.

次いで、以下に示す装置を用いて、得られたNiが添加された四酸化三鉄を水素により還元させた後、水蒸気を接触させて水素を発生させる実験を行った。反応は、図3に示す閉鎖型ガス循環型反応装置で行った。   Next, using the apparatus shown below, the obtained triiron tetroxide to which Ni was added was reduced with hydrogen, and then an experiment was conducted in which hydrogen was generated by contacting with water vapor. The reaction was carried out in a closed gas circulation reactor shown in FIG.

図3は、この実験に用いた反応装置の概要を示す模式図であり、(a)は水素による還元反応を、(b)は水素発生反応(水分解反応)を行う場合を示す。水素による還元では、系内に水素を導入し、還元により生成するH20をドライアイスエタノールでトラップしながら反応を行なった。水蒸気による再酸化では、水を15℃でトラップし、系内の水蒸気圧が常に一定(13.0Torr)になるようにして反応を行った。水素発生媒体である四酸化三鉄の微粒子に含まれるFeが5.0×10-4mol(Fe34なら38.6mg)になるように秤量し実験を行った。 FIG. 3 is a schematic diagram showing an outline of the reaction apparatus used in this experiment, in which (a) shows a reduction reaction with hydrogen, and (b) shows a case where a hydrogen generation reaction (water splitting reaction) is carried out. In the reduction with hydrogen, hydrogen was introduced into the system, and the reaction was carried out while trapping H 2 O produced by the reduction with dry ice ethanol. In reoxidation with water vapor, the reaction was carried out by trapping water at 15 ° C. so that the water vapor pressure in the system was always constant (13.0 Torr). An experiment was conducted by weighing so that Fe contained in fine particles of triiron tetroxide, which is a hydrogen generation medium, was 5.0 × 10 −4 mol (38.6 mg for Fe 3 O 4 ).

まず、前処理として図3(a)に示すように、パイレックス(登録商標)ガラス製の反応器70内に、得られた水素発生媒体90を入れ、ガラス管72に設けられた弁61、62、65、66を閉じ、弁63、64を開くことで、反応装置を固定床流通式とした。そして、弁63を介して、室温にて10分間不活性ガスであるArを系内に流通させた。その後、弁63、64を閉じて弁62、65、66を開き、真空ポンプ88により523Kで30分の真空排気を行った。   First, as shown in FIG. 3A, as a pretreatment, the obtained hydrogen generating medium 90 is placed in a reactor 70 made of Pyrex (registered trademark) glass, and valves 61 and 62 provided in a glass tube 72 are provided. , 65, 66 are closed, and the valves 63, 64 are opened, so that the reaction apparatus is a fixed bed flow type. Then, Ar, which is an inert gas, was circulated through the system through the valve 63 at room temperature for 10 minutes. Thereafter, the valves 63 and 64 were closed, the valves 62, 65 and 66 were opened, and the vacuum pump 88 was evacuated for 30 minutes at 523K.

次に、還元反応を行うため、弁63を開いた。トラップ装置82内には、ドライアイス84とエタノール85を充填した。また、弁63を介して1.5×10-3molのH2を系内に導入し、閉鎖型ガス循環式で水素発生媒体90に接触させた。見かけ上反応の進行が止まるまで、電気炉80にて反応器70を433Kから0.9K/minで昇温していった。圧力計76により系内の圧力を測定し、圧力が低下し始めたことにより還元が起こり始めたと判断した。還元は、250℃で起こり始めたので昇温をとめた。そのまま水素還元を続けて水素消費量を見た。 Next, the valve 63 was opened to perform a reduction reaction. The trap device 82 was filled with dry ice 84 and ethanol 85. Further, 1.5 × 10 −3 mol of H 2 was introduced into the system through the valve 63 and brought into contact with the hydrogen generation medium 90 by a closed gas circulation system. The reactor 70 was heated from 433 K to 0.9 K / min in the electric furnace 80 until the reaction proceeded apparently. The pressure in the system was measured with the pressure gauge 76, and it was judged that the reduction began to occur because the pressure began to drop. Since the reduction began to occur at 250 ° C., the temperature was raised. We continued the hydrogen reduction and looked at the hydrogen consumption.

水素による還元反応が終了した後、図3(b)に示す水素発生反応(水分解反応)を行った。反応装置は、弁63、64を閉じて弁62、65を開き、閉鎖型ガス循環式とした。トラップ装置82内に冷水86を充填し、温度を15℃に保持し、系内の水蒸気圧が13.0Torrに保たれるようにした。電気炉80により反応器70を423Kから2K/minで昇温していった。圧力計76により系内の圧力を測定し、圧力が上昇し始めたことにより水素の発生が起こり始めたと判断した。水素の発生は、423K(150℃)で起こり始めたので昇温をとめた。引き続き反応を水素の発生が停止するまで行った。Niが添加された四酸化三鉄により水は分解され、これにより発生した水素を含むガスは、ガス循環ポンプ74により系内を循環させた。そして、圧力計76により系内の圧力を測定し、ガスの発生量を測定するとともに、弁61を開閉してガスクロマトグラフ78によりガスの成分分析を行った。   After the reduction reaction with hydrogen was completed, a hydrogen generation reaction (water splitting reaction) shown in FIG. The reactor was closed type gas circulation type with the valves 63 and 64 closed and the valves 62 and 65 opened. The trap device 82 was filled with cold water 86, the temperature was maintained at 15 ° C., and the water vapor pressure in the system was maintained at 13.0 Torr. The temperature of the reactor 70 was increased from 423 K to 2 K / min by the electric furnace 80. The pressure inside the system was measured with a pressure gauge 76, and it was determined that hydrogen generation began to occur as the pressure began to rise. Since hydrogen generation began to occur at 423 K (150 ° C.), the temperature was raised. The reaction was continued until hydrogen evolution stopped. Water was decomposed by ferric tetroxide to which Ni was added, and the gas containing hydrogen generated thereby was circulated in the system by a gas circulation pump 74. Then, the pressure in the system was measured by the pressure gauge 76, the amount of gas generated was measured, and the valve 61 was opened and closed, and the gas component analysis was performed by the gas chromatograph 78.

水素の生成がほぼ停止した後、反応器70を423K(150℃)から2K/minで昇温した。すると、453K(180℃)に昇温した時点で再び水素が発生したので、昇温を止め、もう一度反応を行うことによって再酸化反応が止まるまで反応を行った。これらの測定結果に基づき、水素の発生量を求めた。水素の生成率は、423K(150℃)で34%(以下、水素の生成率は、すべてのFeが使われた場合を100%とする。)、453K(180℃)で57%であった。水素還元反応の結果を図4に、また、水分解反応の結果を図5に示す。   After the production of hydrogen almost stopped, the temperature of the reactor 70 was increased from 423 K (150 ° C.) at 2 K / min. Then, since hydrogen was generated again when the temperature was raised to 453 K (180 ° C.), the temperature was stopped and the reaction was performed again until the reoxidation reaction stopped. Based on these measurement results, the amount of hydrogen generated was determined. The hydrogen generation rate was 34% at 423 K (150 ° C.) (hereinafter, the hydrogen generation rate was 100% when all Fe was used), and 57% at 453 K (180 ° C.). . The result of the hydrogen reduction reaction is shown in FIG. 4, and the result of the water splitting reaction is shown in FIG.

図4及び図5において、実線は系内の温度を示し、破線は系内の水素の圧力変化を示している。   4 and 5, the solid line indicates the temperature in the system, and the broken line indicates the change in the pressure of hydrogen in the system.

(実施例2)
ニッケルの塩化物の代わりに白金の塩化物を用い、昇温は373K(100℃)から2K/minで行ったことを除き実施例1と同様にして、Pt−Fe34を調製し、水素還元反応及び水蒸気酸化反応の試験を行った。すると、還元では、220℃で起こり始めた。また、水素の生成率は、373K(100℃)で25%、453K(180℃)で65%であった。本実施例における水素還元反応の結果を図6に、また、水分解反応の結果を図7に示す。
(Example 2)
Pt—Fe 3 O 4 was prepared in the same manner as in Example 1 except that platinum chloride was used instead of nickel chloride and the temperature was raised from 373 K (100 ° C.) to 2 K / min. The hydrogen reduction reaction and the steam oxidation reaction were tested. Then, reduction began to occur at 220 ° C. The production rate of hydrogen was 25% at 373 K (100 ° C.) and 65% at 453 K (180 ° C.). The result of the hydrogen reduction reaction in this example is shown in FIG. 6, and the result of the water splitting reaction is shown in FIG.

図6及び図7において、図4及び図5と同様に、実線は系内の温度を示し、破線は系内の水素の圧力変化を示している。   In FIGS. 6 and 7, as in FIGS. 4 and 5, the solid line indicates the temperature in the system, and the broken line indicates the pressure change of hydrogen in the system.

(実施例3)
白金の塩化物の代わりにパラジウム(Pd)の塩化物を用い、実施例2と同様にして、Pd−Fe34を調製し、水素還元反応及び水蒸気酸化反応の試験を行った。すると、還元は、240℃で起こり始めた。また、水素の生成率は、393K(120℃)で26%、453K(180℃)で68%であった。本実施例における水素還元反応の結果を図8に、また、水分解反応の結果を図9に示す。
(Example 3)
Pd—Fe 3 O 4 was prepared in the same manner as in Example 2 using palladium (Pd) chloride instead of platinum chloride, and the hydrogen reduction reaction and the steam oxidation reaction were tested. The reduction then began to occur at 240 ° C. The production rate of hydrogen was 26% at 393 K (120 ° C.) and 68% at 453 K (180 ° C.). FIG. 8 shows the result of the hydrogen reduction reaction in this example, and FIG. 9 shows the result of the water splitting reaction.

図8及び図9において、図4及び図5と同様に、実線は系内の温度を示し、破線は系内の水素の圧力変化を示している。   8 and 9, as in FIGS. 4 and 5, the solid line indicates the temperature in the system, and the broken line indicates the pressure change of hydrogen in the system.

(実施例4〜7)
白金の塩化物の代わりにコバルトの塩化物(実施例4)、クロムの塩化物(実施例5)、アルミニウムの塩化物(実施例6)、ロジウムの塩化物(比較例7)を用いたことを除き実施例2と同様にして、各種金属添加Fe34を調製し、水素還元反応及び水蒸気酸化反応の試験を行った。本実施例における水素還元反応の結果を図10(コバルト)、12(クロム)、14(アルミニウム)、16(ロジウム)に、また、水分解反応の結果を図11(コバルト)、13(クロム)、15(アルミニウム)、17(ロジウム)に示す。
(Examples 4 to 7)
Cobalt chloride (Example 4), chromium chloride (Example 5), aluminum chloride (Example 6), and rhodium chloride (Comparative Example 7) were used in place of platinum chloride. Except for, various metal-added Fe 3 O 4 were prepared in the same manner as in Example 2 and tested for hydrogen reduction reaction and steam oxidation reaction. The results of the hydrogen reduction reaction in this example are shown in FIGS. 10 (cobalt), 12 (chromium), 14 (aluminum) and 16 (rhodium), and the results of the water splitting reaction are shown in FIGS. 11 (cobalt) and 13 (chromium). 15 (aluminum) and 17 (rhodium).

図10乃至図17において、図3及び図4と同様に、実線は系内の温度を示し、破線は系内の水素の圧力変化を示している。   10 to 17, as in FIGS. 3 and 4, the solid line indicates the temperature in the system, and the broken line indicates the pressure change of hydrogen in the system.

(実施例8)
白金の塩化物を添加しない以外は実施例2と同様の方法で、鉄以外の金属が添加されていないFe34を調製し、水素還元反応及び水蒸気酸化反応の試験を行った。すると還元は、270℃で起こり始めた。また、水素の生成率は483K(210℃)で53%であった。本実施例における本発明品のFe34を用いた水素還元反応の結果を図18に、また、水分解反応の結果を図19に示す。
(Example 8)
Fe 3 O 4 to which no metal other than iron was added was prepared in the same manner as in Example 2 except that platinum chloride was not added, and the hydrogen reduction reaction and the steam oxidation reaction were tested. The reduction then began to occur at 270 ° C. The production rate of hydrogen was 533% at 483 K (210 ° C.). The results of the hydrogen reduction reaction using Fe 3 O 4 of the present invention in this example are shown in FIG. 18, and the results of the water splitting reaction are shown in FIG.

図18及び図19において、他の実施例と同様に、実線は系内の温度を示し、破線は系内の水素の圧力変化を示している。   18 and 19, as in the other embodiments, the solid line indicates the temperature in the system, and the broken line indicates the pressure change of hydrogen in the system.

(比較例1)
本発明による調製法で得られた四酸化三鉄の代わりに、市販の四酸化三鉄(和光純薬工業製、BET比表面積3m2/g以下)を用い、実施例と同様に水素還元反応及び水蒸気酸化反応の試験を行った。すると、還元は、330℃で起こり始めた。また、水素の生成率は523K(250℃)で34%であった。このように、本発明の実施例と比較して、市販の四酸化三鉄では水素還元反応及び水蒸気酸化反応には、より高い温度を必要とすることが分かる。本実施例における水素還元反応の結果を図20に、また、水分解反応の結果を図21に示す。
(Comparative Example 1)
Instead of triiron tetroxide obtained by the preparation method according to the present invention, commercially available triiron tetroxide (manufactured by Wako Pure Chemical Industries, Ltd., BET specific surface area of 3 m 2 / g or less) was used, and the hydrogen reduction reaction was carried out in the same manner as in the Examples And the steam oxidation reaction was tested. The reduction then began to occur at 330 ° C. The production rate of hydrogen was 34% at 523 K (250 ° C.). Thus, it can be seen that the commercially available triiron tetroxide requires a higher temperature for the hydrogen reduction reaction and the steam oxidation reaction as compared with the examples of the present invention. The results of the hydrogen reduction reaction in this example are shown in FIG. 20, and the results of the water splitting reaction are shown in FIG.

図20及び図21において、他の実施例と同様に、実線は系内の温度を示し、破線は系内の水素の圧力変化を示している。   20 and 21, as in the other embodiments, the solid line indicates the temperature in the system, and the broken line indicates the pressure change of hydrogen in the system.

また、表1に各金属添加Fe34の各実施例について水素還元・水蒸気酸化が起こり始めた温度とその温度での水素生成率(カッコ内)とを示した。金属添加なしの結果も同時に示した。尚、表1におけるBET比表面積は、各実施例及び比較例において還元前のFe34を測定した結果を示す。

Figure 2006143560
Table 1 shows the temperature at which hydrogen reduction / steam oxidation began to occur and the hydrogen production rate (in parentheses) at each temperature for each example of each metal-added Fe 3 0 4 . The results without metal addition are also shown. In addition, the BET specific surface area in Table 1 shows the result of measuring Fe 3 0 4 before reduction in each Example and Comparative Example.
Figure 2006143560

表1によると、Pt添加では、100℃から水素が生成し、水素生成率25%まで反応が進行した。また、貴金属以外では、Ni添加が、150℃で水素生成率34%であった。またそこから昇温していくと水素の生成量は増え、200〜220℃程度で水素生成率は約90%に達した。Rh添加では水素還元に必要な温度は190℃と低いものの、水蒸気酸化には160℃という他の貴金属に比べ高い温度が必要であった。RhはPt、Pdに比べ水蒸気酸化を活性化する能力が低いか、水素還元時にFeもしくはRhがシンタリングしてしまい活性が下がるかのどちらかであると考えられる。   According to Table 1, when Pt was added, hydrogen was produced from 100 ° C., and the reaction proceeded to a hydrogen production rate of 25%. In addition to the noble metals, Ni addition had a hydrogen production rate of 34% at 150 ° C. When the temperature was raised from there, the amount of hydrogen produced increased, and the hydrogen production rate reached about 90% at about 200 to 220 ° C. When Rh is added, the temperature required for hydrogen reduction is as low as 190 ° C., but steam oxidation requires a higher temperature of 160 ° C. than other noble metals. It is considered that Rh has either a lower ability to activate steam oxidation than Pt or Pd, or that Fe or Rh sinters during hydrogen reduction and the activity decreases.

このように、Pt添加では、100℃で水素生成率25%、Ni添加では、150℃で水素生成率34%であった。このことから、本発明によれば、水素発生媒体を微粒子化してかつ促進効果のある金属を添加すれば、低温でも水素生成反応が進行することができる。また、水素生成率が温度を上げていくと増えていくので、100℃では微粒子の表面近傍だけが反応に関与して、温度を上げていくと内部の鉄も反応できるようになると考えられる。したがって微粒子のまま金属鉄にできれば,表面の鉄が増えて低温で高い水素生成率が得られると考えられる。   Thus, when Pt was added, the hydrogen production rate was 25% at 100 ° C., and when Ni was added, the hydrogen production rate was 34% at 150 ° C. From this, according to the present invention, if the hydrogen generating medium is made fine and a metal having a promoting effect is added, the hydrogen generating reaction can proceed even at a low temperature. Further, since the hydrogen generation rate increases as the temperature increases, it is considered that only the vicinity of the surface of the fine particles is involved in the reaction at 100 ° C., and the internal iron can also react when the temperature is increased. Therefore, if metallic iron can be produced with fine particles, the surface iron increases and a high hydrogen production rate can be obtained at low temperatures.

本発明に係る水素製造方法を実施するに好適な水素製造装置を示す模式図である。It is a schematic diagram which shows the suitable hydrogen production apparatus for implementing the hydrogen production method which concerns on this invention. 水素発生装置が燃料電池に接続された状態を示す模式図である。It is a schematic diagram which shows the state in which the hydrogen generator was connected to the fuel cell. 酸化鉄の反応装置を示す模式図であって、(a)は還元反応を、(b)は水分解反応を行う場合を示す図である。It is a schematic diagram which shows the reactor of iron oxide, Comprising: (a) is a figure which shows the case where a reduction reaction and (b) perform a water splitting reaction. ニッケル添加四酸化三鉄を用いた水素還元反応の結果を示すグラフである。It is a graph which shows the result of the hydrogen reduction reaction using nickel addition triiron tetroxide. ニッケル添加四酸化三鉄を用いた水分解反応の結果を示すグラフである。It is a graph which shows the result of the water splitting reaction using nickel addition triiron tetroxide. 白金添加四酸化三鉄を用いた水素還元反応の結果を示すグラフである。It is a graph which shows the result of the hydrogen reduction reaction using platinum addition triiron tetroxide. 白金添加四酸化三鉄を用いた水分解反応の結果を示すグラフである。It is a graph which shows the result of the water splitting reaction using platinum addition triiron tetroxide. パラジウム添加四酸化三鉄を用いた水素還元反応の結果を示すグラフである。It is a graph which shows the result of the hydrogen reduction reaction using palladium addition triiron tetroxide. パラジウム添加四酸化三鉄を用いた水分解反応の結果を示すグラフである。It is a graph which shows the result of the water splitting reaction using palladium addition triiron tetroxide. コバルト添加四酸化三鉄を用いた水素還元反応の結果を示すグラフである。It is a graph which shows the result of the hydrogen reduction reaction using cobalt addition triiron tetroxide. コバルト添加四酸化三鉄を用いた水分解反応の結果を示すグラフである。It is a graph which shows the result of the water splitting reaction using cobalt addition triiron tetroxide. クロム添加四酸化三鉄を用いた水素還元反応の結果を示すグラフである。It is a graph which shows the result of the hydrogen reduction reaction using chromium addition triiron tetroxide. クロム添加四酸化三鉄を用いた水分解反応の結果を示すグラフである。It is a graph which shows the result of the water splitting reaction using chromium addition triiron tetroxide. アルミニウム添加四酸化三鉄を用いた水素還元反応の結果を示すグラフである。It is a graph which shows the result of the hydrogen reduction reaction using aluminum addition triiron tetroxide. アルミニウム添加四酸化三鉄を用いた水分解反応の結果を示すグラフである。It is a graph which shows the result of the water splitting reaction using aluminum addition triiron tetroxide. ロジウム添加四酸化三鉄を用いた水素還元反応の結果を示すグラフである。It is a graph which shows the result of the hydrogen reduction reaction using rhodium addition triiron tetroxide. ロジウム添加四酸化三鉄を用いた水分解反応の結果を示すグラフである。It is a graph which shows the result of the water splitting reaction using rhodium addition triiron tetroxide. 本発明にかかる無添加四酸化三鉄を用いた水素還元反応の結果を示すグラフである。It is a graph which shows the result of the hydrogen reduction reaction using the additive-free triiron tetroxide concerning this invention. 本発明にかかる無添加四酸化三鉄を用いた水分解反応の結果を示すグラフである。It is a graph which shows the result of the water splitting reaction using the additive-free triiron tetroxide concerning this invention. 市販の無添加四酸化三鉄を用いた水素還元反応の結果を示すグラフである。It is a graph which shows the result of the hydrogen reduction reaction using commercially available non-added triiron tetroxide. 市販の無添加四酸化三鉄を用いた水分解反応の結果を示すグラフである。It is a graph which shows the result of the water splitting reaction using commercially available additive-free triiron tetroxide.

符号の説明Explanation of symbols

1 水供給装置
2 カセット
3 燃料電池
10 水素発生装置
11 管
21 断熱材
22 反応管
23 水素発生媒体
24 フィルタ
25 ヒータ
26 管
31 燃料極
32 空気極
61〜66 弁
70 反応器
72 ガラス管
74 ガス循環ポンプ
76 圧力計
78 ガスクロマトグラフ
80 電気炉
82 トラップ装置
84 ドライアイス
85 エタノール
86 冷水
88 真空ポンプ
90 試料
92、94 水
DESCRIPTION OF SYMBOLS 1 Water supply apparatus 2 Cassette 3 Fuel cell 10 Hydrogen generator 11 Pipe 21 Heat insulating material 22 Reaction pipe 23 Hydrogen generating medium 24 Filter 25 Heater 26 Pipe 31 Fuel electrode 32 Air electrode 61-66 Valve 70 Reactor 72 Glass pipe 74 Gas circulation Pump 76 Pressure gauge 78 Gas chromatograph 80 Electric furnace 82 Trap device 84 Dry ice 85 Ethanol 86 Cold water 88 Vacuum pump 90 Sample 92, 94 Water

Claims (11)

水、水蒸気または水蒸気を含むガスと接触して水素を発生する水素発生媒体を製造する水素発生媒体製造方法であって、
水と、溶解性鉄(II)塩と、溶解性鉄(III)塩と、沈殿剤とを混ぜて攪拌する撹拌工程と、
前記撹拌工程の後、静置して得られた沈殿物を分離して乾燥する乾燥工程と
を含む水素発生媒体製造方法。
A hydrogen generation medium production method for producing a hydrogen generation medium that generates hydrogen by contact with water, water vapor or a gas containing water vapor,
A stirring step in which water, a soluble iron (II) salt, a soluble iron (III) salt, and a precipitant are mixed and stirred;
A method for producing a hydrogen generating medium, comprising a drying step of separating and drying a precipitate obtained by standing after the stirring step.
前記水素発生媒体は、四酸化三鉄の微粒子を含むことを特徴とする請求項1記載の水素発生媒体製造方法。   The method for producing a hydrogen generating medium according to claim 1, wherein the hydrogen generating medium includes fine particles of triiron tetroxide. 前記溶解性鉄(II)が塩化鉄(II)であることを特徴とする請求項1又は2記載の水素発生媒体製造方法。   The method for producing a hydrogen generating medium according to claim 1 or 2, wherein the soluble iron (II) is iron (II) chloride. 前記溶解性鉄(III)が塩化鉄(III)であることを特徴とする請求項1乃至3のいずれかに記載の水素発生媒体製造方法。   The method for producing a hydrogen generating medium according to any one of claims 1 to 3, wherein the soluble iron (III) is iron (III) chloride. 前記沈殿剤がアンモニアであることを特徴とする請求項1乃至4のいずれかに記載の水素発生媒体製造方法。   The method for producing a hydrogen generating medium according to claim 1, wherein the precipitant is ammonia. 前記水素発生媒体には、鉄に鉄以外の金属を添加することを特徴とする請求項1乃至5のいずれかに記載の水素発生媒体製造方法。   6. The method for producing a hydrogen generating medium according to claim 1, wherein a metal other than iron is added to iron in the hydrogen generating medium. 前記鉄以外の金属として、ニッケル、コバルト、クロム、アルミニウム、チタン、ジルコニウム、バナジウム、ニオブ、モリブデン、ガリウム、マグネシウム、スカンジウム、銅、ネオジウムの少なくともいずれか1つから選ばれる金属を攪拌工程において加えることを特徴とする請求項6記載の水素発生媒体製造方法。   As a metal other than iron, a metal selected from at least one of nickel, cobalt, chromium, aluminum, titanium, zirconium, vanadium, niobium, molybdenum, gallium, magnesium, scandium, copper, and neodymium is added in the stirring step. The method for producing a hydrogen generating medium according to claim 6. 前記鉄以外の金属として、白金、ロジウム、イリジウム、パラジウム、ルテニウムの少なくともいずれか1つから選ばれる金属を用いることを特徴とする請求項6記載の水素発生媒体製造方法。   The method for producing a hydrogen generating medium according to claim 6, wherein a metal selected from at least one of platinum, rhodium, iridium, palladium, and ruthenium is used as the metal other than iron. 請求項1乃至8のいずれかに記載の水素発生媒体製造方法で製造された水素発生媒体を還元する工程と、
水、水蒸気又は水蒸気を含むガスを還元された水素発生媒体に接触させて水素を発生させる工程とを含む水素製造方法。
Reducing the hydrogen generating medium manufactured by the method for manufacturing a hydrogen generating medium according to any one of claims 1 to 8,
A process for producing hydrogen by bringing water, water vapor or a gas containing water vapor into contact with a reduced hydrogen generation medium to generate hydrogen.
請求項1乃至8のいずれかに記載の水素発生媒体を含む水素発生装置用カセット。   The cassette for hydrogen generators containing the hydrogen generating medium in any one of Claims 1 thru | or 8. 請求項1乃至8のいずれかに記載の水素発生媒体を含む水素発生装置。   A hydrogen generation apparatus comprising the hydrogen generation medium according to claim 1.
JP2004339242A 2004-11-24 2004-11-24 Method for producing hydrogen generating medium and method for producing hydrogen Active JP4688477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004339242A JP4688477B2 (en) 2004-11-24 2004-11-24 Method for producing hydrogen generating medium and method for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004339242A JP4688477B2 (en) 2004-11-24 2004-11-24 Method for producing hydrogen generating medium and method for producing hydrogen

Publications (2)

Publication Number Publication Date
JP2006143560A true JP2006143560A (en) 2006-06-08
JP4688477B2 JP4688477B2 (en) 2011-05-25

Family

ID=36623679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004339242A Active JP4688477B2 (en) 2004-11-24 2004-11-24 Method for producing hydrogen generating medium and method for producing hydrogen

Country Status (1)

Country Link
JP (1) JP4688477B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199759A (en) * 2008-02-19 2009-09-03 Aisin Seiki Co Ltd Water purifying system for fuel cell
WO2013084623A1 (en) * 2011-12-05 2013-06-13 コニカミノルタ株式会社 Fuel cell system
JP3195267U (en) * 2014-06-30 2015-01-15 T・D・S株式会社 Simultaneous improvement device of fuel consumption and exhaust gas of internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285831A (en) * 1990-04-02 1991-12-17 Iseki & Co Ltd Magnetite for decomposing oxygen compound and production thereof
JPH07257930A (en) * 1994-03-22 1995-10-09 Mitsubishi Materials Corp Spherical magnetite grain and production thereof
WO2002081368A1 (en) * 2001-04-02 2002-10-17 Uchiya Thermostat Co., Ltd. Method for producing hydrogen and apparatus for supplying hydrogen
WO2004002881A1 (en) * 2002-06-26 2004-01-08 Uchiya Thermostat Co.,Ltd. Method for producing hydrogen and apparatus for supplying hydrogen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285831A (en) * 1990-04-02 1991-12-17 Iseki & Co Ltd Magnetite for decomposing oxygen compound and production thereof
JPH07257930A (en) * 1994-03-22 1995-10-09 Mitsubishi Materials Corp Spherical magnetite grain and production thereof
WO2002081368A1 (en) * 2001-04-02 2002-10-17 Uchiya Thermostat Co., Ltd. Method for producing hydrogen and apparatus for supplying hydrogen
WO2004002881A1 (en) * 2002-06-26 2004-01-08 Uchiya Thermostat Co.,Ltd. Method for producing hydrogen and apparatus for supplying hydrogen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199759A (en) * 2008-02-19 2009-09-03 Aisin Seiki Co Ltd Water purifying system for fuel cell
WO2013084623A1 (en) * 2011-12-05 2013-06-13 コニカミノルタ株式会社 Fuel cell system
JPWO2013084623A1 (en) * 2011-12-05 2015-04-27 コニカミノルタ株式会社 Fuel cell system
JP3195267U (en) * 2014-06-30 2015-01-15 T・D・S株式会社 Simultaneous improvement device of fuel consumption and exhaust gas of internal combustion engine

Also Published As

Publication number Publication date
JP4688477B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP4858890B2 (en) Hydrogen production method and hydrogen supply apparatus
Rakap et al. Cobalt–nickel–phosphorus supported on Pd-activated TiO2 (Co–Ni–P/Pd-TiO2) as cost-effective and reusable catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution
Huang et al. Nickel–ceria nanowires embedded in microporous silica: controllable synthesis, formation mechanism, and catalytic applications
JP4295515B2 (en) Hydrogen supply method and hydrogen supply apparatus
Zheng et al. The unique Pd@ Pt/C core-shell nanoparticles as methanol-tolerant catalysts using sonochemical synthesis
Bi et al. Promoted hydrogen generation from formic acid with amines using Au/ZrO2 catalyst
WO2016173285A1 (en) Supported catalyst having core-shell structure, preparation method therefor, and application thereof
Gai et al. An alternative scheme of biological removal of ammonia nitrogen from wastewater–highly dispersed Ru cluster@ mesoporous TiO2 for the catalytic wet air oxidation of low-concentration ammonia
US11795055B1 (en) Systems and methods for processing ammonia
WO2005094988A1 (en) Carbon monoxide removal catalyst and method for preparation thereof, and apparatus for removing carbon monoxide
Asim et al. Synergetic effect of Au nanoparticles and transition metal phosphides for enhanced hydrogen evolution from ammonia-borane
KR20080034443A (en) Hydrogen generation catalysys and system for hydrogen generation
Xu et al. Iridium-based electrocatalysts for the acidic oxygen evolution reaction: engineering strategies to enhance the activity and stability
Zhang et al. Fe3C nanoclusters integrated with Fe single-atom planted in nitrogen doped carbon derived from truncated hexahedron zeolitic imidazolate framework for the efficient transfer hydrogenation of halogenated nitrobenzenes
JP4688477B2 (en) Method for producing hydrogen generating medium and method for producing hydrogen
US20090220413A1 (en) Catalyst For Methane Steam Reformation, Method Of Producing The Same, And Method Of Producing Hydrogen Using The Same
JP2007269529A (en) Hydrogen production apparatus
JP4594649B2 (en) Hydrogen generating medium and hydrogen production method
JP2006036579A (en) Method for producing hydrogen
JP5105709B2 (en) Water gas shift reaction catalyst
JP4829471B2 (en) Hydrogen production method
JPWO2005072865A1 (en) Intermetallic compound Ni3Al catalyst for methanol reforming and methanol reforming method using the same
JP4795741B2 (en) Nitrogen gas generator and fuel cell power generation system using the same
Sarkodie et al. Optimizing the catalytic activity of flame‐spray‐pyrolyzed Pt/Fe2O3 catalyst toward CO oxidation: Effect of fluorination and reduction
JP2005255505A (en) Hydrogen supply method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Ref document number: 4688477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250