JP2005255505A - Hydrogen supply method - Google Patents

Hydrogen supply method Download PDF

Info

Publication number
JP2005255505A
JP2005255505A JP2004073101A JP2004073101A JP2005255505A JP 2005255505 A JP2005255505 A JP 2005255505A JP 2004073101 A JP2004073101 A JP 2004073101A JP 2004073101 A JP2004073101 A JP 2004073101A JP 2005255505 A JP2005255505 A JP 2005255505A
Authority
JP
Japan
Prior art keywords
hydrogen
oxide
water
metal oxide
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004073101A
Other languages
Japanese (ja)
Inventor
Satoshi Kashiwagi
聡 柏木
Minoru Yagi
稔 八木
Kiyoshi Otsuka
大塚  潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004073101A priority Critical patent/JP2005255505A/en
Publication of JP2005255505A publication Critical patent/JP2005255505A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To supply pure hydrogen containing no carbon monoxide at a low cost. <P>SOLUTION: The hydrogen supply method includes: a water decomposition process for decomposing water to produce hydrogen; a reducing process for reducing oxides with hydrogen from the water decomposition process to form a reduced body; and a hydrogen producing process for producing hydrogen by bringing the reduced body from the reducing process into contact with H<SB>2</SB>O. As the oxide, a metallic oxide such as iron oxide is suitably used. Hydrogen is easily obtained in a hydrogen demand site by transporting the easily handleable reduced body to the hydrogen demand site in place of directly transporting hydrogen produced by the water decomposition process to the hydrogen demand site. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水素を水素需要箇所に容易に、例えば高圧タンクを用いることなく、供給することができる水素供給方法に関する。   The present invention relates to a hydrogen supply method capable of supplying hydrogen easily to a hydrogen demand point without using, for example, a high-pressure tank.

従来から水素の製造方法の一つとして、石油・天然ガスを原料とした部分酸化や水蒸気改質方法が提案されているが、これらの方法では、水素合成の際に多くの炭酸ガスを発生する。   Conventionally, partial oxidation and steam reforming methods using petroleum and natural gas as raw materials have been proposed as one of the methods for producing hydrogen. In these methods, a large amount of carbon dioxide gas is generated during hydrogen synthesis. .

そこで、炭酸ガスを発生しない方法として、太陽熱を利用した特開平07−267601公報の方法が提案されている。しかし、この方法は太陽熱を利用するに当たり、大きなシステムが必要で、コストもそれに伴い多大なものになる。   Therefore, as a method of not generating carbon dioxide gas, a method of Japanese Patent Application Laid-Open No. 07-267601 using solar heat has been proposed. However, this method requires a large system to use solar heat, and the cost increases accordingly.

別の方法として、天然ガスの主成分であるメタンを、触媒を用いて炭素と水素に分解する方法が考えられる。例えば、特許第2767390号公報には、外表面が1m/g以上の炭素物質の存在下にメタン等の炭化水素類を熱分解することが提案されている。しかし、この提案方法では熱分解時に1000℃前後という極めて高温に加熱する必要があり、不利である。また、特許第2838192号公報には、炭素物質にニッケル化合物及びアルカリ金属とアルカリ土類金属の中から選ばれた少なくとも1種の金属の化合物を担持させたメタン等の炭化水素分解用触媒が提案されている。しかし、この提案では、熱力学的制約によりメタンを充分に分解することができず、更に大量の窒素ガス等にメタンを混合して供給するため、供給ガス中におけるメタンの分解される割合が低く、実際に使用できなかった。 As another method, a method of decomposing methane, which is a main component of natural gas, into carbon and hydrogen using a catalyst can be considered. For example, Japanese Patent No. 2767390 proposes thermal decomposition of hydrocarbons such as methane in the presence of a carbon substance having an outer surface of 1 m 2 / g or more. However, this proposed method is disadvantageous because it needs to be heated to an extremely high temperature of about 1000 ° C. during pyrolysis. Japanese Patent No. 2838192 proposes a hydrocarbon decomposition catalyst such as methane in which a carbon compound is loaded with a nickel compound and at least one metal compound selected from alkali metals and alkaline earth metals. Has been. However, in this proposal, methane cannot be decomposed sufficiently due to thermodynamic restrictions, and since methane is mixed and supplied to a large amount of nitrogen gas, etc., the rate of decomposition of methane in the supply gas is low. Couldn't actually be used.

また、水素と空気を原料とした燃料電池の場合、メタノールやガソリンの水蒸気改質により水素を供給する方法が一般的で多くの発明が提案されている。しかし、何れの提案方法も一酸化炭素、炭酸ガスの発生が同時に起こり、特に一酸化炭素は、燃料電池電極の被毒の問題から、10ppm以下に除去するための装置が必要となり、コストが多大に掛かってている。   In the case of a fuel cell using hydrogen and air as raw materials, a method of supplying hydrogen by steam reforming of methanol or gasoline is common, and many inventions have been proposed. However, in any of the proposed methods, carbon monoxide and carbon dioxide gas are generated at the same time. In particular, carbon monoxide requires a device for removing it to 10 ppm or less due to the problem of poisoning of the fuel cell electrode, and the cost is great. It is hanging on.

一方、水素供給方法の一つとしては、高圧ボンベにより供給することがある。しかし、高圧ボンベは重量、容量が大きく、水素を大量に自動車に積むのは困難であり、また、爆発の危険性等の問題がある。   On the other hand, as one of hydrogen supply methods, there is a method of supplying by a high pressure cylinder. However, the high-pressure cylinder has a large weight and a large capacity, and it is difficult to load a large amount of hydrogen in an automobile, and there are problems such as the risk of explosion.

また、水素を安全に貯蔵・運搬する手段として高圧ボンベの代わりに、水素吸蔵合金を用いることが多数提案されている。しかし、水素吸蔵合金への水素吸蔵には高い水素圧が必要であったり、このような水素吸蔵合金に吸蔵した状態では、依然として空気および水蒸気雰囲気下で使用できない等の問題点がある。   In addition, many proposals have been made to use hydrogen storage alloys in place of high-pressure cylinders as means for safely storing and transporting hydrogen. However, there is a problem that a high hydrogen pressure is required for hydrogen storage in the hydrogen storage alloy, or that the hydrogen storage alloy cannot be used in an atmosphere of air and water vapor when stored in such a hydrogen storage alloy.

国際公開WO01/96233号(特願2002−510383号)には、メタン等の炭化水素を分解して水素を生成させ、この水素によって金属酸化物を還元して低原子価酸化物又は元素金属とし、この低原子価酸化物又は元素金属と水とを接触させて水素を製造する方法が記載されている。   International Publication No. WO 01/96233 (Japanese Patent Application No. 2002-510383) decomposes hydrocarbons such as methane to generate hydrogen, and the metal oxide is reduced by this hydrogen to form a low-valence oxide or elemental metal. And a method for producing hydrogen by bringing this low-valent oxide or elemental metal into contact with water.

しかしながら、この方法では、第1段階の水素生成工程において、例えばCH→C+2H等の反応により炭素が副生することになり、その取り扱い、処理が必要となる。
特開平07−267601公報 特許第2767390号公報 特許第2838192号公報 国際公開WO01/96233号(特願2002−510383号)
However, in this method, carbon is by-produced by a reaction such as CH 4 → C + 2H 2 in the first stage hydrogen generation step, and handling and treatment thereof are required.
JP 07-267601 A Japanese Patent No. 2767390 Japanese Patent No. 2838192 International Publication No. WO01 / 96233 (Japanese Patent Application No. 2002-510383)

上述のような従来技術に鑑みて、本発明は、炭酸ガスや一酸化炭素、炭素の発生なしに、安価に水素の供給が行え、同時に燃料電池等の水素供給装置として一酸化炭素を含まない純粋な水素が供給できる方法を提供することを目的とする。   In view of the prior art as described above, the present invention can supply hydrogen at low cost without generation of carbon dioxide, carbon monoxide, and carbon, and at the same time does not include carbon monoxide as a hydrogen supply device such as a fuel cell. An object is to provide a method capable of supplying pure hydrogen.

本発明(請求項1)の水素供給方法は、水を分解して水素を発生させる水分解工程と、該水分解工程からの水素により酸化物を還元して還元体とする還元工程と、該還元工程からの還元体とHOとを接触させて水素を発生させる水素発生工程と、を有するものである。 The hydrogen supply method of the present invention (Claim 1) includes a water splitting step in which water is decomposed to generate hydrogen, a reduction step in which an oxide is reduced by hydrogen from the water splitting step to form a reductant, And a hydrogen generation step of generating hydrogen by bringing the reductant from the reduction step into contact with H 2 O.

本発明(請求項2)の水素供給方法は、請求項1において、該酸化物は金属酸化物であり、該還元体は低原子価の金属酸化物又は金属であることを特徴とするものである。   The hydrogen supply method of the present invention (Claim 2) is characterized in that, in Claim 1, the oxide is a metal oxide, and the reductant is a low-valent metal oxide or metal. is there.

本発明(請求項3)の水素供給方法は、請求項2において、該金属酸化物は、鉄、インジウム、スズ、マグネシウム及びセリウムの少なくとも1種の酸化物と、Ti、Zr、V、Nb、Cr、Mo、Al、Ga、Sc、Ni及びCuの少なくとも1種の酸化物とからなることを特徴とするものである。   According to the hydrogen supply method of the present invention (Claim 3), in Claim 2, the metal oxide includes at least one oxide of iron, indium, tin, magnesium, and cerium, Ti, Zr, V, Nb, It consists of at least one oxide of Cr, Mo, Al, Ga, Sc, Ni and Cu.

本発明(請求項4)の水素供給方法は、請求項1ないし3のいずれか1項において、前記水分解工程と水素発生工程とは異なる箇所で行われ、前記還元工程で得られた還元体を前記水素発生工程が行われる箇所へ移す工程を有することを特徴とするものである。   The hydrogen supply method of the present invention (Claim 4) is the reductant obtained in any one of Claims 1 to 3, wherein the water splitting step and the hydrogen generation step are performed at different locations, and obtained in the reduction step. It has the process of moving to the location where the said hydrogen generation process is performed.

本発明の水素供給方法にあっては、水を分解することにより発生させた水素により金属酸化物などの酸化物を還元し、元素状金属又は低原子価酸化物の状態などの還元体とし、この還元体をHO(水、水蒸気、水蒸気含有ガス等)と接触させて水素を発生させる。この還元体は、水素ガスと異なり運搬等の取り扱いが容易であり、常温で保管、移動が可能である。 In the hydrogen supply method of the present invention, an oxide such as a metal oxide is reduced by hydrogen generated by decomposing water to form a reductant such as an elemental metal or a low-valent oxide state, This reductant is brought into contact with H 2 O (water, water vapor, water vapor-containing gas, etc.) to generate hydrogen. Unlike hydrogen gas, this reductant is easy to handle such as transportation and can be stored and moved at room temperature.

本発明によると、水分解工程で発生させた水素を直接に需要箇所へ移すのではなく、取り扱いが容易な還元体を需要箇所へ移し、水素需要箇所において容易に水素を得ることができる。   According to the present invention, hydrogen generated in the water splitting process is not directly transferred to the demand point, but a reductant that is easy to handle can be transferred to the demand point, and hydrogen can be easily obtained at the hydrogen demand point.

また、水分解工程では、水の分解によって水素を発生させるので、炭素、一酸化炭素や、炭酸ガスが発生しない。さらに、需要箇所においても、還元体とHOとを接触させて水素を発生させるので、一酸化炭素等が混入していない高純度の水素を生成させることができる。 In the water splitting process, hydrogen is generated by water splitting, so that no carbon, carbon monoxide, or carbon dioxide gas is generated. Furthermore, since hydrogen is generated by bringing the reductant and H 2 O into contact with each other at the demand location, high-purity hydrogen that is not mixed with carbon monoxide or the like can be generated.

本発明によると、水素を必要とする小規模な装置や可動型装置、例えば燃料電池、燃料電池車、又は局地設備用、工場用、家庭用、溶接用水素バーナーなどの水素を必要とする装置へ高純度の水素を安価に安全に供給することができる。   According to the present invention, small-scale devices and movable devices that require hydrogen, such as fuel cells, fuel cell vehicles, or local equipment, factories, households, welding hydrogen burners, etc. are required. High purity hydrogen can be safely supplied to the apparatus at low cost.

本発明は、水素を発生させるための水分解工程と、この水分解工程からの水素を用いて還元体を生成させる還元工程と、この還元体とHOとを反応させて水素を取り出す水素発生工程とを有する。 The present invention relates to a water splitting step for generating hydrogen, a reduction step for generating a reductant using hydrogen from the water splitting step, and a hydrogen that takes out hydrogen by reacting the reductant with H 2 O. Generating step.

以下、各工程について詳細に説明する。
A:水分解工程
この水分解工程では、2HO→2H+Oなる水の分解反応により水素を発生させる。この分解は、固体高分子電解質水電解式、アルカリ隔膜水電解式などによる電気分解が好適であるが、触媒、光触媒、プラズマ、放射線、又は、微生物を利用した水分解であってもい。
Hereinafter, each step will be described in detail.
A: Water splitting step In this water splitting step, hydrogen is generated by a water splitting reaction of 2H 2 O → 2H 2 + O 2 . This decomposition is preferably electrolysis by a solid polymer electrolyte water electrolysis type, an alkaline membrane water electrolysis type, or the like, but may be water decomposition utilizing a catalyst, a photocatalyst, plasma, radiation, or a microorganism.

B:還元工程
この還元工程では、上記水分解工程で生成した水素を用いて酸化物を還元し、還元体を生成させる。
B: Reduction step In this reduction step, the oxide is reduced using hydrogen generated in the water splitting step to generate a reductant.

この酸化物としては金属酸化物が好適である。金属酸化物としては酸化鉄(Fe、Fe、FeO)、酸化インジウム、酸化スズ、酸化マグネシウム、酸化セリウムの少なくとも1種が好適である。金属酸化物(MO)をアルミナ、酸化亜鉛、マグネシア、活性炭、チタニア、ゼオライト等の担体に担持させてもよい。 A metal oxide is suitable as this oxide. As the metal oxide, at least one of iron oxide (Fe 3 O 4 , Fe 2 O 3 , FeO), indium oxide, tin oxide, magnesium oxide, and cerium oxide is preferable. A metal oxide (MO X ) may be supported on a carrier such as alumina, zinc oxide, magnesia, activated carbon, titania, zeolite, and the like.

この還元反応は、ヒータを備えるか、又は外部熱源からの熱を反応ゾーンに与え得る構造の反応器中において行うのが好ましい。具体的には、ヒータを備えた可搬式のカセット中に金属酸化物を収容しておき、該ヒータでカセット内を加熱しながら水分解工程からの水素を該カセット中に導入し、還元反応を行うのが好ましい。還元反応により生じた水は、通常、水蒸気としてカセットから取り出される。   This reduction reaction is preferably carried out in a reactor equipped with a heater or configured to provide heat from an external heat source to the reaction zone. Specifically, the metal oxide is stored in a portable cassette equipped with a heater, and hydrogen from the water splitting process is introduced into the cassette while heating the inside of the cassette with the heater, and a reduction reaction is performed. It is preferred to do so. The water produced by the reduction reaction is usually taken out from the cassette as water vapor.

このカセットは、上記工程Aを行う水分解装置と一体化されていてもよい。   This cassette may be integrated with the water splitting apparatus that performs the above-described step A.

なお、金属酸化物(特に酸化鉄)の酸化・還元を繰り返すと、金属が凝集ないし焼結して活性が次第に低下してくる。この活性低下を防止するために、Ti、Zr、V、Nb、Cr、Mo、Al、Ga、Sc、Ni、Cuの少なくとも1種の酸化物を上記金属酸化物(酸化・還元用酸化物)に付加してもよい。金属酸化物が酸化マグネシウム以外のもの(例えば、酸化鉄、酸化インジウム、酸化スズ)である場合には、酸化マグネシウムを付加してもよい。この付加を行うには、酸化・還元用酸化物の金属の塩(例えば硝酸塩)と、付加すべき金属酸化物の金属の塩とを含む溶液から共沈させ、次いで焼成してこれら金属酸化物の混合物とするのが好ましい。付加すべき金属酸化物の量は、酸化・還元用金属酸化物に対し0.5〜30モル%特に0.5〜15モル%程度が好適である。   When the oxidation / reduction of metal oxide (especially iron oxide) is repeated, the metal aggregates or sinters and the activity gradually decreases. In order to prevent this decrease in activity, at least one oxide of Ti, Zr, V, Nb, Cr, Mo, Al, Ga, Sc, Ni, and Cu is converted into the metal oxide (oxide for reduction / reduction). May be added. When the metal oxide is other than magnesium oxide (for example, iron oxide, indium oxide, tin oxide), magnesium oxide may be added. In order to perform this addition, the metal oxide (for example, nitrate) for oxidation / reduction oxide is co-precipitated from a solution containing the metal salt of the metal oxide to be added, and then calcined. It is preferable to use a mixture of The amount of the metal oxide to be added is preferably about 0.5 to 30 mol%, particularly about 0.5 to 15 mol% with respect to the metal oxide for oxidation / reduction.

C:水素発生工程
この水素発生工程では、上記還元工程で得られた還元体とHO(液体の水、水蒸気、水蒸気を含むガス)とを接触させて水素を発生させる。好適には、金属の低原子価酸化物又は元素状金属と水蒸気とを接触させ、例えばMOX−1+HO→MO+H(X≧1)なる反応に従って水素を発生させる。
C: Hydrogen generation step In this hydrogen generation step, hydrogen is generated by bringing the reductant obtained in the reduction step into contact with H 2 O (gas containing liquid water, water vapor, and water vapor). Preferably, a metal low-valent oxide or elemental metal is brought into contact with water vapor, and hydrogen is generated, for example, according to a reaction of MO X-1 + H 2 O → MO X + H 2 (X ≧ 1).

この反応は600℃未満、好ましくは250〜450℃で行う。これにより、発生した水素が、その場で金属酸化物を還元する還元反応が防止される。即ち、600℃よりも高温であると、上記反応が左向きに進行し、水素が発生しなくなるので、水素発生工程では反応温度を600℃未満とする。   This reaction is carried out at less than 600 ° C, preferably 250-450 ° C. As a result, the reduction reaction in which the generated hydrogen reduces the metal oxide in situ is prevented. That is, when the temperature is higher than 600 ° C., the reaction proceeds to the left and hydrogen is not generated. Therefore, in the hydrogen generation step, the reaction temperature is set to less than 600 ° C.

この反応は吸熱反応であるので、水素発生工程では反応熱を与える必要があるので、反応温度は100℃以上程度とする。上記還元工程において、金属酸化物をカセットに収容して還元反応を行わせた場合には、この水素発生工程において、このカセット全体又はカセット内部を加熱しつつ水又は水蒸気をカセット内に供給することにより水素がカセットから取り出される。   Since this reaction is an endothermic reaction, it is necessary to give reaction heat in the hydrogen generation step, and therefore the reaction temperature is set to about 100 ° C. In the above reduction step, when a metal oxide is contained in the cassette and the reduction reaction is performed, in this hydrogen generation step, water or water vapor is supplied into the cassette while heating the entire cassette or inside the cassette. To remove hydrogen from the cassette.

取り出される水素は、一酸化炭素等を含まない高純度のものであるので、この水素を燃料電池等に供給した場合、電極の一酸化炭素被毒対策をとる必要がない。   Since the extracted hydrogen is of a high purity that does not contain carbon monoxide or the like, when this hydrogen is supplied to a fuel cell or the like, it is not necessary to take measures against poisoning of the electrode by carbon monoxide.

この水素発生工程で発生した水素を燃料電池に供給して発電運転を行うようにした場合、この運転に伴って熱が発生する。この熱を水素発生工程での反応熱として与えてもよい。このようにすれば、熱の有効利用を図ることができると共に、水素発生工程では、工程の起動時にのみヒータ等で熱を与えるだけで、その後は燃料電池からの熱により反応を継続させることが可能となる。   When hydrogen generated in this hydrogen generation step is supplied to the fuel cell to perform a power generation operation, heat is generated along with this operation. This heat may be given as reaction heat in the hydrogen generation step. In this way, effective use of heat can be achieved, and in the hydrogen generation process, the reaction can be continued by the heat from the fuel cell only by applying heat with a heater or the like only at the start of the process. It becomes possible.

この水素発生工程において、還元体が酸化された場合、この還元体は上記還元工程に戻される。還元体がカセットに収容されている場合には、このカセットを還元工程に戻せばよい。   In the hydrogen generation step, when the reductant is oxidized, the reductant is returned to the reduction step. When the reductant is accommodated in the cassette, the cassette may be returned to the reduction process.

[実施例1]
図1に示すシステムにより水分解工程、還元工程及び水素発生工程を行った。図1のシステムは、固体高分子型水電解水素発生装置10と、酸化鉄を収容したカセット20とを備えている。固体高分子型水電解水素発生装置10内はイオン交換膜11によって陰極室と陽極室とに区画され、各室にそれぞれ触媒電極12とチタン・白金電極13とが配置されている。装置10内に純水を供給すると共に、電源14より電極13に電圧を印加することにより、陽極において水素が発生し、陰極で酸素が発生する。この陽極からの水素は、配管16、三方弁17、配管18を介してカセット20内に導入され、金属酸化物21を還元する。このカセット20は、加熱炉25内に設置されている。
[Example 1]
A water splitting process, a reduction process, and a hydrogen generation process were performed by the system shown in FIG. The system of FIG. 1 includes a solid polymer type water electrolysis hydrogen generator 10 and a cassette 20 containing iron oxide. The inside of the polymer electrolyte water electrolysis hydrogen generator 10 is partitioned into a cathode chamber and an anode chamber by an ion exchange membrane 11, and a catalyst electrode 12 and a titanium / platinum electrode 13 are disposed in each chamber. By supplying pure water into the apparatus 10 and applying a voltage to the electrode 13 from the power source 14, hydrogen is generated at the anode and oxygen is generated at the cathode. Hydrogen from the anode is introduced into the cassette 20 through the pipe 16, the three-way valve 17, and the pipe 18 to reduce the metal oxide 21. The cassette 20 is installed in the heating furnace 25.

還元により生じた水蒸気は、配管22を介してコールドトラップ30に導入される。コールドトラップ30内は、配管31、三方弁32及び配管33を介して真空ポンプにより吸引可能とされている。前記カセット20内も配管18、三方弁17と配管19を介して真空ポンプにより吸引可能とされている。三方弁32にはサンプリング配管34が接続され、採取したガスをガスクロマトグラフによって分析するようにしている。   Water vapor generated by the reduction is introduced into the cold trap 30 through the pipe 22. The inside of the cold trap 30 can be sucked by a vacuum pump through a pipe 31, a three-way valve 32 and a pipe 33. The inside of the cassette 20 can also be sucked by a vacuum pump through the pipe 18, the three-way valve 17 and the pipe 19. A sampling pipe 34 is connected to the three-way valve 32, and the collected gas is analyzed by a gas chromatograph.

カセット20の中に金属酸化物として三酸化二鉄(和光純薬工業株式会社)0.1gを添加し、カセット温度が400℃になるように加熱炉25を設定した。固体高分子型水電解水素発生装置10にて発生させた水素をカセット20に導入し金属酸化物を還元した。還元の際に発生した水蒸気をコールドトラップ30にてドライアイス温度(−78℃)で凝集させた。   In the cassette 20, 0.1 g of ferric trioxide (Wako Pure Chemical Industries, Ltd.) was added as a metal oxide, and the heating furnace 25 was set so that the cassette temperature was 400 ° C. Hydrogen generated by the solid polymer water electrolysis hydrogen generator 10 was introduced into the cassette 20 to reduce the metal oxide. Water vapor generated during the reduction was aggregated in the cold trap 30 at the dry ice temperature (−78 ° C.).

反応器(カセット)を400℃に加熱すると共に、固体高分子型水電解水素発生装置10から所定量の水素及びアルゴンを導入し、まず金属酸化物の還元を行った。還元した金属酸化物からの水素の再生は、還元後の400℃に加熱した反応器にアルゴンと共に水蒸気を導入し水素を発生させた。図2は水素による還元と、還元された酸化鉄による400℃における水蒸気の分解状態を示す。図2中のaの時点(0分)で1000μmolの水素を導入して三酸化二鉄の還元を行い、その後、酸化と還元を繰り返した。   The reactor (cassette) was heated to 400 ° C., and a predetermined amount of hydrogen and argon were introduced from the solid polymer type water electrolysis hydrogen generator 10 to first reduce the metal oxide. Regeneration of hydrogen from the reduced metal oxide was performed by introducing water vapor together with argon into the reactor heated to 400 ° C. after the reduction. FIG. 2 shows the state of decomposition of water vapor at 400 ° C. by reduction with hydrogen and reduced iron oxide. At a time point (a minute) in FIG. 2, 1000 μmol of hydrogen was introduced to reduce ferric trioxide, and then oxidation and reduction were repeated.

図2に示されるように、1回目の還元終了のb時点から水素発生終了のc時点までの水蒸気導入による水素発生量は約700μmolであり、a時点で導入した水素量よりやや減少したが、2〜4回目まではほぼ同量の水素を発生させることができた。   As shown in FIG. 2, the amount of hydrogen generated by the introduction of water vapor from the time point b at the end of the first reduction to the time point c at the end of hydrogen generation was about 700 μmol, which was slightly reduced from the amount of hydrogen introduced at the time point a. Almost the same amount of hydrogen could be generated up to the second to fourth times.

実施例を示す系統図である。It is a systematic diagram which shows an Example. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example.

符号の説明Explanation of symbols

10 固体高分子型水電解水素発生装置
20 カセット
30 コールドトラップ
10 Polymer Electrolyte Hydrogen Electrogen Generator 20 Cassette 30 Cold Trap

Claims (4)

水を分解して水素を発生させる水分解工程と、
該水分解工程からの水素により酸化物を還元して還元体とする還元工程と、
該還元工程からの還元体とHOとを接触させて水素を発生させる水素発生工程と、
を有する水素供給方法。
A water splitting process for splitting water to generate hydrogen;
A reduction step of reducing the oxide with hydrogen from the water splitting step to form a reductant;
A hydrogen generation step in which hydrogen is generated by contacting a reductant from the reduction step with H 2 O;
A hydrogen supply method comprising:
請求項1において、該酸化物は金属酸化物であり、該還元体は低原子価の金属酸化物又は金属であることを特徴とする水素供給方法。   2. The hydrogen supply method according to claim 1, wherein the oxide is a metal oxide, and the reductant is a low-valent metal oxide or a metal. 請求項2において、該金属酸化物は、鉄、インジウム、スズ、マグネシウム及びセリウムの少なくとも1種の酸化物と、Ti、Zr、V、Nb、Cr、Mo、Al、Ga、Sc、Ni及びCuの少なくとも1種の酸化物とからなることを特徴とする水素供給方法。   3. The metal oxide according to claim 2, wherein the metal oxide includes at least one oxide of iron, indium, tin, magnesium, and cerium, and Ti, Zr, V, Nb, Cr, Mo, Al, Ga, Sc, Ni, and Cu. A hydrogen supply method comprising: at least one oxide selected from the group consisting of: 請求項1ないし3のいずれか1項において、前記水分解工程と水素発生工程とは異なる箇所で行われ、前記還元工程で得られた還元体を前記水素発生工程が行われる箇所へ移す工程を有することを特徴とする水素供給方法。   The process of any one of claims 1 to 3, wherein the water splitting step and the hydrogen generation step are performed at different locations, and the reduced product obtained in the reduction step is transferred to the location where the hydrogen generation step is performed. A hydrogen supply method comprising:
JP2004073101A 2004-03-15 2004-03-15 Hydrogen supply method Pending JP2005255505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004073101A JP2005255505A (en) 2004-03-15 2004-03-15 Hydrogen supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004073101A JP2005255505A (en) 2004-03-15 2004-03-15 Hydrogen supply method

Publications (1)

Publication Number Publication Date
JP2005255505A true JP2005255505A (en) 2005-09-22

Family

ID=35081599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004073101A Pending JP2005255505A (en) 2004-03-15 2004-03-15 Hydrogen supply method

Country Status (1)

Country Link
JP (1) JP2005255505A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112672A (en) * 2005-10-21 2007-05-10 Toho Gas Co Ltd Apparatus and method for producing hydrogen
JP2008094645A (en) * 2006-10-10 2008-04-24 Uchiya Thermostat Kk Method for manufacturing hydrogen generating medium
KR100878742B1 (en) 2007-08-14 2009-01-14 한국에너지기술연구원 Enzymatic hydrogen production device by using anodized tubular tio2 electrode, solar cell and nanofiltration membrane
JP2010150055A (en) * 2008-12-24 2010-07-08 Toho Gas Co Ltd Hydrogen storage apparatus
JPWO2011077969A1 (en) * 2009-12-24 2013-05-02 コニカミノルタホールディングス株式会社 Reaction vessel and fuel cell system using the same
WO2014054336A1 (en) * 2012-10-05 2014-04-10 株式会社日立製作所 Renewable energy storage system
JP7464996B2 (en) 2018-07-19 2024-04-10 ユニバーシティ オブ サリー A continuous process for the sustainable production of hydrogen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123801A (en) * 1980-12-31 1982-08-02 Ibm Method of simultaneously generating energy of heat and hydrogen type
JPH07506327A (en) * 1992-04-24 1995-07-13 エイチ−パワー・コーポレーシヨン Improved hydrogen generation system
JPH11501448A (en) * 1995-01-25 1999-02-02 ウエスチングハウス・エレクトリック・コーポレイション Electrochemical energy conversion storage device
WO2002081368A1 (en) * 2001-04-02 2002-10-17 Uchiya Thermostat Co., Ltd. Method for producing hydrogen and apparatus for supplying hydrogen
JP2004067422A (en) * 2002-08-05 2004-03-04 Uchiya Thermostat Kk Hydrogen generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123801A (en) * 1980-12-31 1982-08-02 Ibm Method of simultaneously generating energy of heat and hydrogen type
JPH07506327A (en) * 1992-04-24 1995-07-13 エイチ−パワー・コーポレーシヨン Improved hydrogen generation system
JPH11501448A (en) * 1995-01-25 1999-02-02 ウエスチングハウス・エレクトリック・コーポレイション Electrochemical energy conversion storage device
WO2002081368A1 (en) * 2001-04-02 2002-10-17 Uchiya Thermostat Co., Ltd. Method for producing hydrogen and apparatus for supplying hydrogen
JP2004067422A (en) * 2002-08-05 2004-03-04 Uchiya Thermostat Kk Hydrogen generator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112672A (en) * 2005-10-21 2007-05-10 Toho Gas Co Ltd Apparatus and method for producing hydrogen
JP2008094645A (en) * 2006-10-10 2008-04-24 Uchiya Thermostat Kk Method for manufacturing hydrogen generating medium
KR100878742B1 (en) 2007-08-14 2009-01-14 한국에너지기술연구원 Enzymatic hydrogen production device by using anodized tubular tio2 electrode, solar cell and nanofiltration membrane
JP2010150055A (en) * 2008-12-24 2010-07-08 Toho Gas Co Ltd Hydrogen storage apparatus
JPWO2011077969A1 (en) * 2009-12-24 2013-05-02 コニカミノルタホールディングス株式会社 Reaction vessel and fuel cell system using the same
US8637198B2 (en) 2009-12-24 2014-01-28 Konica Minolta Holdings, Inc. Reaction container and fuel cell system equipped with same
WO2014054336A1 (en) * 2012-10-05 2014-04-10 株式会社日立製作所 Renewable energy storage system
JP2014074207A (en) * 2012-10-05 2014-04-24 Hitachi Ltd Renewable energy storage system
JP7464996B2 (en) 2018-07-19 2024-04-10 ユニバーシティ オブ サリー A continuous process for the sustainable production of hydrogen

Similar Documents

Publication Publication Date Title
JP4295515B2 (en) Hydrogen supply method and hydrogen supply apparatus
JP3766063B2 (en) Hydrogen supply method, apparatus, and portable hydrogen supply cassette
JP5346693B2 (en) Fuel cell system using ammonia as fuel
Jin et al. High-yield reduction of carbon dioxide into formic acid by zero-valent metal/metal oxide redox cycles
WO2004002881A1 (en) Method for producing hydrogen and apparatus for supplying hydrogen
US20220305439A1 (en) Gas production apparatus, gas production system, steel production system, chemical production system, and gas production method
JP2014532119A (en) Method for generating hydrogen and oxygen by electrolysis of water vapor
JP2015071536A5 (en)
KR102251314B1 (en) System for producing carbon monoxide and hydrogen from carbon dioxide and steam through a redox process and the method thereof
EP2107937A2 (en) Method and system for producing a hydrogen enriched fuel using microwave assisted methane decomposition on catalyst
KR20240020274A (en) Systems and methods for processing ammonia
Zhao et al. Thermodynamic analysis of a new chemical looping process for syngas production with simultaneous CO2 capture and utilization
WO2012020834A1 (en) Method and apparatus for production of hydrogen
EP2197784B1 (en) Hydrogen production method, hydrogen production system, and fuel cell system
Kamali Clean production and utilisation of hydrogen in molten salts
JP2005255505A (en) Hydrogen supply method
JP2002193601A (en) Method and device for water decomposition
US11795055B1 (en) Systems and methods for processing ammonia
JP2004359536A (en) Method for reducing metal oxide and method for manufacturing hydrogen
JP2008121096A (en) Method for reducing metal oxide, and method for producing hydrogen
JP4795741B2 (en) Nitrogen gas generator and fuel cell power generation system using the same
JP2001321670A (en) Hydrocarbon decomposing material and hydrocarbon decomposing device
JP2009143744A (en) Energy station
US11866328B1 (en) Systems and methods for processing ammonia
JP4688477B2 (en) Method for producing hydrogen generating medium and method for producing hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019