JP2001321670A - Hydrocarbon decomposing material and hydrocarbon decomposing device - Google Patents

Hydrocarbon decomposing material and hydrocarbon decomposing device

Info

Publication number
JP2001321670A
JP2001321670A JP2000145573A JP2000145573A JP2001321670A JP 2001321670 A JP2001321670 A JP 2001321670A JP 2000145573 A JP2000145573 A JP 2000145573A JP 2000145573 A JP2000145573 A JP 2000145573A JP 2001321670 A JP2001321670 A JP 2001321670A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
decomposition
hydrocarbon
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000145573A
Other languages
Japanese (ja)
Other versions
JP3822022B2 (en
Inventor
Toshiki Kabutomori
俊樹 兜森
Toshio Takahashi
俊男 高橋
Takao Kono
孝央 河野
Yoichi Sakuma
洋一 佐久間
Minoru Yokozawa
実 横澤
Tsukasa Kumagai
司 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATL INST FOR FUSION SCIENCE
Japan Steel Works Ltd
Original Assignee
NATL INST FOR FUSION SCIENCE
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATL INST FOR FUSION SCIENCE, Japan Steel Works Ltd filed Critical NATL INST FOR FUSION SCIENCE
Priority to JP2000145573A priority Critical patent/JP3822022B2/en
Publication of JP2001321670A publication Critical patent/JP2001321670A/en
Application granted granted Critical
Publication of JP3822022B2 publication Critical patent/JP3822022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PROBLEM TO BE SOLVED: To efficiently separate hydrogen or a hydrogen isotope from hydrocarbons in the fields of nuclear fusion or industrial methane decomposition. SOLUTION: The hydrocarbon decomposing material has a basic composition composed of Ti1-xZrxNiy, wherein (x) is in the range of 0<=x<=0.7, (y) is in the range of 0.4<=y<=3, or a basic composition composed of Ca1Niz, where (z) is in the range of 1<=z<=6, and a hydrocarbon decomposing device uses this material. As a result, hydrogen, or the like, is efficiently separated without causing the production of by-products such as carbon dioxide, carbon monoxide by the direct decomposition of the hydrocarbons to enable the effective utilization of hydrogen or the efficient recovery of the hydrogen isotope. The decomposition is performed at a relatively low temperature and pressure to simplify the device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用技術】この発明は、炭化水素を構成する
成分である水素または水素同位体を該炭化水素から分離
させる炭化水素分解材料及びこの炭化水素分解材料を用
いた炭化水素分解装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrocarbon cracking material for separating hydrogen or a hydrogen isotope, which is a component of a hydrocarbon, from the hydrocarbon, and a hydrocarbon cracking apparatus using the hydrocarbon cracking material. It is.

【0002】[0002]

【従来の技術】核融合炉においては、核融合材料であり
放射性物質でもあるトリチウムと炉材との反応により、
様々なガスが発生し、その処分のために様々な手段が講
じられている。特に炉材の一部に使われる炭素とトリチ
ウムが反応して生成されるメタン、エタン等の炭化水素
は、放射性物質として処分に苦慮しているのが実情であ
る。従来は、核融合炉から発生する、トリチウム化した
メタンやエタンは、分子吸着材料を用いた回収や水蒸気
改質のように高温蒸気と反応させてメタノールとして液
体化して回収し、その後、放射性廃棄物として処分する
ことが考えられている。また、地球上では様々な有機物
の分解によってメタンガスが多量に発生しており、将来
石油等の化石燃料が枯渇した場合の燃料候補として期待
が持たれている。しかし、メタンの状態では燃焼させて
使用する用途しか期待できないため、利用に先立ってメ
タンを分解し、それによって得られる水素を利用するこ
とによって燃料とするだけでなく、様々な形態のエネル
ギーとして利用することが考えられている。産業用とし
てのメタンの分解は、上記した核融合分野と同様に水蒸
気改質による方法が一般的である。この場合、水蒸気改
質の方法としては、触媒を用いて高温高圧の水蒸気と反
応させ、水素と一酸化炭素(CO)とに分解させてい
る。
2. Description of the Related Art In a fusion reactor, a reaction between tritium, which is a fusion material and a radioactive substance, and a reactor material,
Various gases are generated and various measures are taken for their disposal. In particular, hydrocarbons such as methane and ethane generated by the reaction of carbon and tritium used in a part of the furnace material are difficult to dispose of as radioactive substances. Conventionally, tritiated methane and ethane generated from a nuclear fusion reactor are recovered using a molecule-adsorbing material, or as a result of reaction with high-temperature steam and liquefied as methanol, as in the case of steam reforming. It is considered to be disposed of as a thing. In addition, a large amount of methane gas is generated on the earth by the decomposition of various organic substances, and is expected as a fuel candidate when fossil fuels such as petroleum are depleted in the future. However, in the state of methane, it can only be expected to be used by burning it.Before use, methane is decomposed and the resulting hydrogen is used not only as fuel but also as various forms of energy. Is thought to be. For the decomposition of methane for industrial use, a method by steam reforming is generally used as in the above-mentioned nuclear fusion field. In this case, as a method of steam reforming, a catalyst is reacted with high-temperature and high-pressure steam to decompose it into hydrogen and carbon monoxide (CO).

【0003】[0003]

【発明が解決しようとする課題】しかし、核融合炉から
発生する、トリチウム化したメタンやエタンを吸着材を
用いて回収するにしろ、蒸気改質によりメタノールやエ
タノールにして液化して回収するにしろ、これらの方法
ではいずれも放射性廃棄物が多量に発生する。現在原子
力分野においては多量の放射性廃棄物が発生しその貯蔵
施設が満杯になりつつあり、その処分に苦慮しているの
が実情であり、核融合分野においてもできるだけ放射性
廃棄物を排出しないような方法を探って行かなければな
らない。また、産業用のメタンの分解においても、水蒸
気改質に際し高温高圧に耐える非常に大きな反応容器が
必要になることと、副生ガスとして猛毒のCOが排出さ
れ、これを無毒化するために酸化してCOに変換する
ための余分なプロセスも必要になる。さらに、CO
そのまま大気中に排出せざるを得ず、現在問題となって
いる地球温暖化の原因とされる大気中CO濃度を高め
る結果にもつながる。
However, regardless of whether tritiated methane or ethane generated from a fusion reactor is recovered using an adsorbent, it must be liquefied into methanol or ethanol by steam reforming and recovered. However, all of these methods generate a large amount of radioactive waste. At present, a large amount of radioactive waste is generated in the nuclear power field, and its storage facilities are becoming full, and the fact is that it is difficult to dispose of it. We have to find a way. Also, in the decomposition of methane for industrial use, a very large reaction vessel that can withstand high temperature and high pressure is required for steam reforming, and highly toxic CO is discharged as a by-product gas, and oxidation is performed to detoxify it. also it requires extra processing for converting CO 2 to. Furthermore, CO 2 must be discharged into the atmosphere as it is, which leads to an increase in the concentration of CO 2 in the atmosphere, which is a cause of global warming, which is currently a problem.

【0004】本発明は上記事情を背景としてなされたも
のであり、触媒として炭化水素から水素または水素同位
体を効率的に分離させることができる炭化水素分解材料
及びこの材料を用いた炭化水素分解装置を提供すること
を目的とし、特に核融合の分野では核融合炉から発生す
るトリチウム化したメタンやエタン等の炭化水素からト
リチウムを分離回収することを可能にし、また、産業用
のメタンの分解の分野では、高圧用の大掛かりな反応容
器を必要とすることなく常圧でも水素を分離することを
可能にする材料及びこの材料を用いた装置を提供するこ
とを目的とする。
[0004] The present invention has been made in view of the above circumstances, and a hydrocarbon cracking material capable of efficiently separating hydrogen or hydrogen isotopes from hydrocarbons as a catalyst and a hydrocarbon cracking apparatus using the material. In particular, in the field of fusion, it is possible to separate and recover tritium from tritiated methane and hydrocarbons such as ethane generated from fusion reactors, and also to achieve industrial methane decomposition. In the field, it is an object of the present invention to provide a material capable of separating hydrogen even at normal pressure without requiring a large-scale reaction vessel for high pressure, and an apparatus using this material.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
本発明の炭化水素分解材料のうち第1の発明は、水素ま
たは水素同位体を構成成分とする炭化水素から水素また
は水素同位体を分離させるための材料及びこの材料を用
いた装置であって、その基本組成がTi1−xZr
からなり、xが0≦x<0.7、yが0.4≦y≦
3の範囲にあることを特徴とする。
Means for Solving the Problems In order to solve the above-mentioned problems, a first invention of the hydrocarbon cracking material of the present invention is to separate hydrogen or hydrogen isotope from hydrocarbon having hydrogen or hydrogen isotope as a constituent. And a device using this material, wherein the basic composition is Ti 1-x Zr x N
consists i y, x is 0 ≦ x <0.7, y is 0.4 ≦ y ≦
3 range.

【0006】第2の発明の炭化水素分解材料は、同じく
水素または水素同位体を構成成分とする炭化水素から水
素または水素同位体を分離させるための材料及びこの材
料を用いた装置であって、その基本組成がCaNi
からなり、zが1≦z≦6の範囲にあることを特徴とす
る。
A hydrocarbon cracking material according to a second aspect of the present invention is a material for separating hydrogen or hydrogen isotopes from hydrocarbons also having hydrogen or hydrogen isotopes as components, and an apparatus using this material. the basic composition Ca 1 Ni z
And z is in the range of 1 ≦ z ≦ 6.

【0007】また、本発明の炭化水素分解装置は、炭化
水素を含むガスを移送するガス移送路と、該ガス移送路
が連結され該ガス移送路を通して導入されたガスから水
素を分離して該水素と残ガスとを分別する水素分離器
と、該水素分離器の水素ガス排出側に接続され、該水素
分離器から排出された水素を回収する水素回収器と、前
記水素分離器の残ガス排出側に接続され、上記第1また
は第2の発明の炭化水素分解材料を収容して、該材料の
機能によって該残ガス中の炭化水素を分解して水素を分
離し、その水素及びその他のガスを排出する炭化水素分
解反応器と、該炭化水素分解反応器のガス排出側に一端
側が接続され、他端側が上記水素分離器のガス導入側に
接続されたガス返送路とを備えていることを特徴とす
る。
Further, the hydrocarbon cracking device of the present invention has a gas transfer path for transferring a gas containing hydrocarbons, and the gas transfer path is connected to separate hydrogen from the gas introduced through the gas transfer path. A hydrogen separator for separating hydrogen and residual gas, a hydrogen collector connected to a hydrogen gas discharge side of the hydrogen separator, for recovering hydrogen discharged from the hydrogen separator, and a residual gas for the hydrogen separator. It is connected to the discharge side, contains the hydrocarbon cracking material of the first or second invention, cracks hydrocarbons in the residual gas by the function of the material to separate hydrogen, and separates the hydrogen and other hydrogen. A hydrocarbon cracking reactor for discharging gas, and a gas return path having one end connected to the gas discharge side of the hydrocarbon cracking reactor and the other end connected to the gas introduction side of the hydrogen separator. It is characterized by the following.

【0008】[0008]

【発明の実施形態】本発明の炭化水素分解材料は常法に
より製造することができ、本発明範囲の組成に調整して
溶製する。本発明はTi、ZrまたはCaとNiとによ
って構成されており、これら成分が適切な量比を有する
組成において優れた特性を発揮する。すなわち、本発明
によれば、メタンやエタン等の炭化水素を直接水素と炭
素とに高効率で分解することができる。この理由として
は、合金表面において炭化水素が解離し、得られた水素
原子が本発明の材料中に透過することによって水素と炭
素の再結合が阻止されるために起こるものと考えられ
る。さらに本発明材料が必須の元素とする、Ti、Ca
は、炭素と結合しやすく、炭素が合金表面のこれらの金
属点に吸着される力が強いことから、水素と炭素との再
結合を防いでいることも一つ要因となっているものと考
えられる。これらによって、単に炭化水素の熱分解温度
が必要とされ、より低温での分解が可能となる。これら
の作用は、上記元素以外に、Zr、La、Hf等の材料
においても多少は認められるが、本発明材料に必須元素
である、Ca、Tiにおいて顕著な作用が認められる。
また、Tiの一部をZrで置換することによっても同様
の作用が得られる。ここで、Tiの一部をZr(量比
x)で置換する際のxの限定理由は以下のとおりであ
る。すなわち、Tiの一部をZrで置換することにより
TiNiの特性を損なうことなくTiNiと同様の作用
が得られる。しかし、置換量xが大きくなりすぎると、
分解反応効率が置換量とともに低下するため、上限を
0.7未満とする。なお、同様の理由で上限を0.5と
するのが一層望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrocarbon cracking material of the present invention can be produced by a conventional method, and is melted by adjusting the composition within the range of the present invention. The present invention is composed of Ti, Zr or Ca and Ni, and exhibits excellent characteristics in a composition in which these components have an appropriate quantitative ratio. That is, according to the present invention, hydrocarbons such as methane and ethane can be directly decomposed into hydrogen and carbon with high efficiency. It is considered that the reason for this is that hydrocarbons dissociate on the alloy surface and the resulting hydrogen atoms penetrate into the material of the present invention, thereby preventing recombination of hydrogen and carbon. Further, Ti and Ca which are essential elements of the material of the present invention.
Is considered to be one of the factors that prevents the recombination of hydrogen and carbon, because carbon is easily bonded to carbon and the carbon is strongly adsorbed to these metal spots on the alloy surface. Can be These simply require the thermal decomposition temperature of the hydrocarbons and allow lower temperature decomposition. These effects are somewhat observed in materials such as Zr, La, and Hf in addition to the above elements, but remarkable effects are observed in Ca and Ti, which are essential elements in the material of the present invention.
A similar effect can be obtained by substituting a part of Ti with Zr. Here, the reason for limiting x when a part of Ti is replaced with Zr (quantity ratio x) is as follows. That is, by replacing a part of Ti with Zr, the same effect as TiNi can be obtained without impairing the characteristics of TiNi. However, if the replacement amount x becomes too large,
Since the decomposition reaction efficiency decreases with the substitution amount, the upper limit is set to less than 0.7. It is more preferable to set the upper limit to 0.5 for the same reason.

【0009】さらに、合金中にNiを含有させることに
よって、分解の効率が高まるとともに、合金の寿命が向
上することがわかった。これは、Niが非常に安定な元
素であるとともに触媒作用もあることから、分解材料が
炭素と化合物を形成をすることを阻止し、さらに触媒作
用によって炭化水素の分解を助長させるためと思われ
る。ここで、Niの構成比であるyまたはzの限定理由
は以下のとおりである。すなわち、Niが多すぎると分
解した水素を分解材料内に取り込む量、あるいは速度が
遅くなり、それによって炭化水素の分解効率が低下す
る。またこの効率を高めようとすると反応温度を高くし
なければならなくなる。一方、Niが少ないと合金中の
Ca、Ti、Zr等と炭素との反応が進み、炭化物を形
成しやすくなって、合金中のこれらの金属元素の消費が
進むとともに寿命が低下してくる。したがってNiの量
比y、zを適切な範囲に限定する必要があるが、その量
はNiとともに分解材料を構成する他成分の種別によっ
て異なってくる。すなわち、NiとTi(Zrによる一
部置換を含む)を基本成分とする場合には、上記理由に
より量比の下限は0.4、上限は3とする必要がある。
なお、同様の理由で下限を0.5、上限を2とするのが
望ましい。また、NiとCaを基本組成とする場合に
は、上記理由により量比の下限は1、上限は6とする必
要がある。なお、同様の理由で下限を2、上限を5とす
るのが望ましい。
Furthermore, it has been found that the inclusion of Ni in the alloy increases the efficiency of decomposition and the life of the alloy. This is thought to be because Ni is a very stable element and also has a catalytic action, which prevents the decomposition material from forming a compound with carbon and further promotes the decomposition of hydrocarbons by the catalytic action. . Here, the reasons for limiting the composition ratio of Ni, y or z, are as follows. That is, if the amount of Ni is too large, the amount or speed of taking in the decomposed hydrogen into the decomposed material is reduced, thereby reducing the decomposition efficiency of the hydrocarbon. In order to increase the efficiency, the reaction temperature must be increased. On the other hand, if the content of Ni is small, the reaction between Ca, Ti, Zr, and the like in the alloy and carbon proceeds, so that carbides are easily formed, and the consumption of these metal elements in the alloy proceeds and the life is shortened. Therefore, it is necessary to limit the ratios y and z of Ni to appropriate ranges, but the amounts differ depending on the types of other components constituting the decomposition material together with Ni. That is, when Ni and Ti (including partial substitution with Zr) are used as basic components, the lower limit of the quantitative ratio needs to be 0.4 and the upper limit must be 3 for the above reason.
It is desirable to set the lower limit to 0.5 and the upper limit to 2 for the same reason. Further, when the basic composition is Ni and Ca, the lower limit of the quantitative ratio needs to be 1 and the upper limit must be 6 for the above reason. For the same reason, it is desirable to set the lower limit to 2 and the upper limit to 5.

【0010】本発明の炭化水素分解材料は、固形、粉末
等の適宜の形態で使用することができ、炭化水素との接
触により上記作用を果たすことができる。なお、本発明
材料の使用方法は特に限定されるものではなく、適宜の
設備、使用条件において使用することができる。本発明
の分解材料を使用すれば、炭化水素を分解させるための
温度を比較的低くすることができ、また常圧環境で分解
することができる。すなわち炭化水素の分解を本発明材
料を用いた直接反応により行うことができ、白金系の高
価な触媒がいらなくなること、これらの触媒を使わない
場合でも反応温度を低下させることができ、装置の簡略
化が期待される。また、常圧での分解が可能となり、高
圧用の大掛かりな反応容器が不必要となる。ただし、本
発明としては、使用温度、雰囲気圧力が上記に限定され
るものではないことは勿論である。
[0010] The hydrocarbon decomposing material of the present invention can be used in an appropriate form such as solid or powder, and can achieve the above-mentioned action by contact with hydrocarbon. The method of using the material of the present invention is not particularly limited, and the material of the present invention can be used under appropriate equipment and conditions. When the decomposition material of the present invention is used, the temperature for decomposing hydrocarbons can be made relatively low, and it can be decomposed in a normal pressure environment. That is, the decomposition of hydrocarbons can be carried out by a direct reaction using the material of the present invention, which eliminates the need for expensive platinum-based catalysts and lowers the reaction temperature even when these catalysts are not used. Simplification is expected. Further, decomposition at normal pressure becomes possible, and a large-scale reaction vessel for high pressure is not required. However, it goes without saying that the working temperature and the atmospheric pressure are not limited to the above in the present invention.

【0011】さらに、本発明の分解材料では炭化水素を
直接分解させることから水素を有効に利用することがで
き、核融合の分野では、トリチウムを再び核融合炉の燃
料系にリサイクルさせることができ、燃料効率も向上
し、さらに放射性廃棄物を一切排出することもない。さ
らに、炭素成分を炭素の形で回収することができること
から、メタン等の産業用炭化水素の分解において二酸化
炭素の排出もなくすることが可能となる。なお、本発明
の適用は、上記したように核融合分野や産業用メタンの
分解に好適であるが、本発明の適用分野はこれらに限定
されるものではなく、炭化水素から水素または水素同位
体を分離させるあらゆる分野に適用が可能である。
Further, in the cracking material of the present invention, hydrogen can be effectively used because hydrocarbons are directly cracked. In the field of nuclear fusion, tritium can be recycled to the fuel system of a nuclear fusion reactor. It also improves fuel efficiency and does not emit any radioactive waste. Further, since the carbon component can be recovered in the form of carbon, it is possible to eliminate the emission of carbon dioxide in the decomposition of industrial hydrocarbons such as methane. Although the application of the present invention is suitable for the field of nuclear fusion and the decomposition of industrial methane as described above, the field of application of the present invention is not limited to these, and hydrocarbons may be hydrogen or hydrogen isotopes. Can be applied to any field that separates

【0012】上記分解材料の使用方法については特に限
定されるものではなく、例えば、密閉容器に上記分解材
料を収容し、この容器内に炭化水素を含むガスを導入し
て、該分解材料の作用によって炭化水素を分解すること
ができる。この容器では、容器内雰囲気を高温に保って
炭化水素の分解がなされるように、ヒータ等の適宜の加
熱手段を用いる。この密閉容器を分解反応器として用い
た分解装置を図1に基づいて説明する。
The method of using the above-mentioned decomposed material is not particularly limited. For example, the above-mentioned decomposed material is housed in a closed container, and a gas containing hydrocarbon is introduced into the container to allow the action of the decomposed material. Can decompose hydrocarbons. In this container, an appropriate heating means such as a heater is used so that the atmosphere in the container is kept at a high temperature to decompose the hydrocarbon. A decomposition apparatus using this closed container as a decomposition reactor will be described with reference to FIG.

【0013】ガス供給源(図示しない)に、ガス移送路
としてガス移送管1が接続されており、その他端は、水
素分離器であるPd分離器2に接続されている。なお、
該ガス移送管1の中途には、バッファ槽3、ポンプ4お
よび加熱器5が配置、接続されている。Pd分離器2
は、パラジウム触媒の作用により、導入されたガスから
水素を分離するものであり、水素と残ガスとを分別して
排出することができる。Pd分離器2は、水素排出部2
aと残ガス排出部2bとを有しており、水素排出部2a
に水素回収管8が接続され、残ガス排出部に残ガス移送
管9が接続されている。なお、本発明としては、水素分
離器がPd分離器に限定されるものではなく、ガス中の
水素を分離できるものであればよい。
A gas supply pipe (not shown) is connected to a gas transfer pipe 1 as a gas transfer path, and the other end is connected to a Pd separator 2 which is a hydrogen separator. In addition,
A buffer tank 3, a pump 4, and a heater 5 are arranged and connected in the middle of the gas transfer pipe 1. Pd separator 2
Is for separating hydrogen from the introduced gas by the action of a palladium catalyst, and can separate and discharge hydrogen and residual gas. The Pd separator 2 includes a hydrogen discharge unit 2
a and a residual gas discharge section 2b, and a hydrogen discharge section 2a
Is connected to a hydrogen recovery pipe 8, and a residual gas discharge pipe is connected to a residual gas transfer pipe 9. In the present invention, the hydrogen separator is not limited to the Pd separator, but may be any as long as it can separate hydrogen in gas.

【0014】上記水素回収管8には、その中途に冷却器
10およびポンプ11が配置、接続されており、水素回
収管8の端部側は、二方に分岐して、弁12a、12b
を介して水素回収器13a、13bに接続されている。
水素回収器13a、13b内には、適宜の水素吸蔵材料
を収容しておき、この材料に回収した水素を吸蔵させる
ものである。
A cooler 10 and a pump 11 are arranged and connected to the hydrogen recovery pipe 8 in the middle thereof. The end of the hydrogen recovery pipe 8 is branched in two directions to form valves 12a and 12b.
Are connected to the hydrogen recovery units 13a and 13b.
Appropriate hydrogen storage materials are stored in the hydrogen recovery units 13a and 13b, and the recovered hydrogen is stored in these materials.

【0015】一方、残ガス移送管9は、上記第1または
第2の発明で説明した炭化水素分解材料を収容した分解
反応器15に接続されている。分解反応器15では、残
ガス移送管9から導入されるガスが炭化水素分解材料と
接触しながら通過できるように構成されており、さらに
反応器15内部を高温に加熱するための加熱手段(図示
しない)を備えている。また、分解反応器15のガス排
出側には、ガス返送路であるガス返送管16が接続され
ており、該ガス返送管16は、加熱器5の手前位置でガ
ス移送管1に連結されている。また、ガス返送管16の
中途には、冷却器17、ポンプ18、循環ガス槽19が
順次、配置、接続されており、循環ガス槽19には、弁
20を設けた排気管21が取り付けられている。なお、
この実施形態では、ガス返送路(ガス返送管)をガス移
送管に連結したが、本発明としては、ガス分離器のガス
導入側に直接接続するものであってもよい。
On the other hand, the residual gas transfer pipe 9 is connected to a cracking reactor 15 containing the hydrocarbon cracking material described in the first or second invention. The cracking reactor 15 is configured so that the gas introduced from the residual gas transfer pipe 9 can pass therethrough while being in contact with the hydrocarbon cracking material, and is further provided with a heating means for heating the inside of the reactor 15 to a high temperature (shown in the drawing). No). A gas return pipe 16 serving as a gas return path is connected to the gas discharge side of the decomposition reactor 15. The gas return pipe 16 is connected to the gas transfer pipe 1 at a position before the heater 5. I have. A cooler 17, a pump 18, and a circulating gas tank 19 are sequentially arranged and connected in the middle of the gas return pipe 16, and an exhaust pipe 21 provided with a valve 20 is attached to the circulating gas tank 19. ing. In addition,
In this embodiment, the gas return path (gas return pipe) is connected to the gas transfer pipe. However, as the present invention, the gas return path may be directly connected to the gas introduction side of the gas separator.

【0016】次に、上記した炭化水素分解装置の動作プ
ロセスについて説明する。ガス供給源から炭化水素を含
むインプットガスがガス移送管1に送られると、先ず、
バッファ槽3に蓄えられ、適時、ポンプ4によってPd
分離器2側に移送される。この際には、水素の分離を促
進するため、ガスは加熱器5によって適宜の温度にまで
加熱される。Pd分離器5では、導入されたガス中の水
素をパラジウム膜によって吸収、分離し、この水素を水
素排出部2aに排出し、一方、炭化水素を含む残ガスは
残ガス排出部2bに排出する。水素排出部2aに送られ
た水素は、ポンプ11の動作により水素回収管8を通し
て水素回収器13a、13b側に移送される。この際
に、水素ガスは冷却器10で冷却され、さらに弁12
a、12bの切換により、回収器13a、13bのいず
れか、または両方に送られる。回収器13a、13bに
導入された水素は、該回収器13a、13b内に貯蔵さ
れ、適宜、外部に取り出して、所望の目的に利用した
り、容器に収容したりすることができる。一方、Pd分
離器5の残ガス排出部2bから排出された、その他のガ
スは、分解反応器15に移送され、その内部で高温に加
熱され、かつ炭化水素分解材料と接触する。この結果、
炭化水素分解材料の作用によりガス中の炭化水素が分解
して、水素とその他のガスになる。これらの混合ガス
(分解された水素、その他のガス成分、未分解ガス)
は、ポンプ18の動作によりガス返送管16を通して循
環ガス槽19に移送される。なお、移送の際には、冷却
器17によってガスは冷却される。循環ガス槽に収容し
たガスは、さらに、ガス返送管16を通してガス移送管
1へと送られ、再度、加熱器5で加熱された後、Pd分
離器2へと送られる。Pd分離器2では上記と同様に、
ガス中の水素が分離されて、水素回収器13a、13b
へと移送され、残ガスは、再度、分解反応器15へと移
送される。この動作を繰り返してガスを循環させること
により、炭化水素は確実に分解され、また、分解により
得られた水素が効率的に分離、回収される。上記動作を
繰り返して、十分に炭化水素の分解がなされた後は、分
解反応器15から循環ガス槽19に移送されたガスを、
排気ガスとして処理する。すなわち、弁20を開けて排
気管21を通して循環ガス槽19内からガスを取り出し
て適宜の処理を行う。上記の分解装置では、例えば、排
気ガス中に含まれるトリチウム量を、比においてインプ
ットガス中のトリチウム量の10−7以下にすることが
できる。
Next, the operation process of the above-described hydrocarbon cracking device will be described. When an input gas containing a hydrocarbon is sent from the gas supply source to the gas transfer pipe 1, first,
Pd is stored in the buffer tank 3 and is
It is transferred to the separator 2 side. At this time, the gas is heated to an appropriate temperature by the heater 5 in order to promote the separation of hydrogen. In the Pd separator 5, the hydrogen in the introduced gas is absorbed and separated by the palladium membrane, and this hydrogen is discharged to the hydrogen discharge part 2a, while the residual gas containing hydrocarbon is discharged to the residual gas discharge part 2b. . The hydrogen sent to the hydrogen discharge unit 2a is transferred to the hydrogen recovery units 13a and 13b through the hydrogen recovery pipe 8 by the operation of the pump 11. At this time, the hydrogen gas is cooled by the cooler 10, and
By switching between a and 12b, it is sent to one or both of the collecting units 13a and 13b. The hydrogen introduced into the recovery units 13a and 13b is stored in the recovery units 13a and 13b, and can be appropriately taken out to be used for a desired purpose or stored in a container. On the other hand, the other gas discharged from the residual gas discharge portion 2b of the Pd separator 5 is transferred to the cracking reactor 15, where it is heated to a high temperature and comes into contact with the hydrocarbon cracking material. As a result,
The hydrocarbons in the gas are decomposed into hydrogen and other gases by the action of the hydrocarbon decomposing material. These mixed gases (decomposed hydrogen, other gas components, undecomposed gas)
Is transferred to the circulation gas tank 19 through the gas return pipe 16 by the operation of the pump 18. At the time of transfer, the gas is cooled by the cooler 17. The gas contained in the circulating gas tank is further sent to the gas transfer pipe 1 through the gas return pipe 16, heated again by the heater 5, and then sent to the Pd separator 2. In the Pd separator 2, as described above,
The hydrogen in the gas is separated, and the hydrogen recovery units 13a, 13b
, And the residual gas is again transferred to the decomposition reactor 15. By repeating this operation and circulating the gas, the hydrocarbon is reliably decomposed, and the hydrogen obtained by the decomposition is efficiently separated and recovered. After the above operation is repeated and the hydrocarbon is sufficiently decomposed, the gas transferred from the decomposition reactor 15 to the circulation gas tank 19 is
Treat as exhaust gas. That is, the valve 20 is opened, gas is taken out from the circulation gas tank 19 through the exhaust pipe 21, and appropriate processing is performed. In the above-described decomposition apparatus, for example, the amount of tritium contained in the exhaust gas can be reduced to 10 −7 or less of the amount of tritium in the input gas in a ratio.

【0017】[0017]

【実施例】以下に、本発明の実施例を説明する。Ti、
ZrあるいはCaとNiとの合金を、表1に示す組成と
なるように配合し、これらをアーク溶解炉で溶解した。
得られた合金インゴットを大気中において70〜200
メッシュに粉砕し、約5gの粉末合金を分解反応容器に
封入した。反応容器を400℃にて約1時間程度真空脱
ガスした後、反応容器を600℃に保持した。炭化水素
としてはメタンを用い、これをHeガスを用いて約1%
程度に希釈し、圧力0.1MPa、流量35cc/mi
nにて分解反応容器に導入した。そして反応容器から排
出されるHeガス中のメタン濃度、水素濃度をガスクロ
マトグラフにて計測し、メタンの分解量を調べ、分解材
料1モルあたりのメタン分解モル量を表1に示した。表
1から明らかなように、水素吸蔵合金は、単体でのN
i、Zr、Tiに比べ、これらを適切な量比で合金化す
ることによって、メタンを効率よく分解することがわか
った。
Embodiments of the present invention will be described below. Ti,
An alloy of Zr or Ca and Ni was blended so as to have a composition shown in Table 1, and these were melted in an arc melting furnace.
The obtained alloy ingot is placed in the atmosphere at 70 to 200
The mixture was pulverized into a mesh, and about 5 g of the powder alloy was sealed in a decomposition reaction vessel. After vacuum degassing the reaction vessel at 400 ° C. for about 1 hour, the reaction vessel was maintained at 600 ° C. Methane is used as the hydrocarbon, which is reduced to about 1% using He gas.
Diluted to about 0.1MPa, flow rate 35cc / mi
At n, it was introduced into the decomposition reaction vessel. Then, the methane concentration and the hydrogen concentration in the He gas discharged from the reaction vessel were measured by a gas chromatograph, and the decomposition amount of methane was examined. The molar amount of methane decomposition per mol of decomposition material is shown in Table 1. As is clear from Table 1, the hydrogen storage alloy is N
It has been found that methane is decomposed more efficiently by alloying them at appropriate ratios than i, Zr, and Ti.

【0018】[0018]

【表1】 [Table 1]

【0019】また、TiNiおよびCaNiについ
てy、zの量比を変えて上記と同様に分解材料1モルあ
たりのメタン分解モル量を測定し、y、zをパラメータ
としてメタン分解モル量の変化を図2に示した。図から
明らかなように、Niの量比を適切な範囲に定めること
によりメタンの分解量が顕著に増大することが分かる。
The amount of methane decomposition per 1 mol of decomposition material was measured in the same manner as above by changing the amount ratio of y and z for TiNi y and CaNi z , and the change in the amount of methane decomposition was determined using y and z as parameters. Is shown in FIG. As is clear from the figure, it can be understood that the amount of decomposition of methane is significantly increased by setting the amount ratio of Ni in an appropriate range.

【0020】[0020]

【発明の効果】以上説明したように、本発明の炭化水素
分解材料によれば、水素または水素同位体を構成成分と
する炭化水素から水素または水素同位体を分離させるた
めの材料であって、その基本組成がTi1−xZr
(ただし、0≦x<0.7、0.4≦y≦3)、ま
たはCaNi(ただし、1≦z≦6)からなるもの
で、炭化水素を直接分解して水素または水素同位体を二
酸化炭素、一酸化炭素等の副生物の発生を招くことなく
効率よく分離することができ、水素の有効利用や水素同
位体の効率的な回収が可能になる。しかも、比較的低い
温度、圧力での分離が可能になるので装置の簡略化が可
能になる。
As described above, according to the hydrocarbon cracking material of the present invention, a material for separating hydrogen or a hydrogen isotope from a hydrocarbon containing hydrogen or a hydrogen isotope is provided. Its basic composition is Ti 1-x Zr x N
i y (where 0 ≦ x <0.7, 0.4 ≦ y ≦ 3) or Ca 1 Ni z (where 1 ≦ z ≦ 6), which directly decomposes hydrocarbons to form hydrogen or Hydrogen isotopes can be separated efficiently without inducing generation of by-products such as carbon dioxide and carbon monoxide, and effective use of hydrogen and efficient recovery of hydrogen isotopes can be achieved. In addition, since the separation can be performed at a relatively low temperature and pressure, the apparatus can be simplified.

【0021】また、本発明の炭化水素分解装置によれ
ば、炭化水素を含むガスを移送するガス移送路と、該ガ
ス移送路が連結され該ガス移送路を通して導入されたガ
スから水素を分離して該水素と残ガスとを分別する水素
分離器と、該水素分離器の水素ガス排出側に接続され、
該水素分離器から排出された水素を回収する水素回収器
と、前記水素分離器の残ガス排出側に接続され、請求項
1または2に記載の炭化水素分解材料を収容して、該材
料の機能によって該残ガス中の炭化水素を分解して水素
を分離し、その水素及びその他のガスを排出する炭化水
素分解反応器と、該炭化水素分解反応器のガス排出側に
一端側が接続され、他端側が上記水素分離器のガス導入
側に接続されたガス返送路とを備えているので、炭化水
素を効率的かつ確実に分解して、炭化水素を構成してい
る水素または水素同位体を効率的に回収することができ
る。
Further, according to the hydrocarbon cracking device of the present invention, a gas transfer path for transferring a gas containing hydrocarbons, and the gas transfer path is connected to separate hydrogen from the gas introduced through the gas transfer path. A hydrogen separator for separating the hydrogen and the residual gas, and connected to a hydrogen gas discharge side of the hydrogen separator;
A hydrogen recovery device for recovering hydrogen discharged from the hydrogen separator, and a hydrogen recovery material connected to the residual gas discharge side of the hydrogen separator, containing the hydrocarbon cracking material according to claim 1 or 2, A hydrocarbon cracking reactor that cracks hydrocarbons in the residual gas to separate hydrogen by function and discharges the hydrogen and other gases, and one end is connected to a gas discharge side of the hydrocarbon cracking reactor, Since the other end side is provided with a gas return path connected to the gas introduction side of the hydrogen separator, hydrocarbons are efficiently and reliably decomposed, and hydrogen or hydrogen isotopes constituting the hydrocarbons are decomposed. It can be collected efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の分解装置の一実施形態を示す概略図
である。
FIG. 1 is a schematic view showing one embodiment of a decomposition apparatus of the present invention.

【図2】 本発明の一実施例におけるNi量比とメタン
分解量との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a Ni content ratio and a methane decomposition amount in one embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G21F 9/02 B01J 23/74 321M (72)発明者 高橋 俊男 北海道室蘭市茶津町4番地 株式会社日本 製鋼所内 (72)発明者 河野 孝央 岐阜県土岐市下石町322−6 核融合科学 研究所内 (72)発明者 佐久間 洋一 岐阜県土岐市下石町322−6 核融合科学 研究所内 (72)発明者 横澤 実 横浜市西区みなとみらい二丁目三番一号 日揮株式会社内 (72)発明者 熊谷 司 横浜市西区みなとみらい二丁目三番一号 日揮株式会社内 Fターム(参考) 4G040 DA03 DC02 DC05 FA02 FB05 FC07 FE01 4G069 AA02 AA08 BB02A BB02B BC09A BC09B BC50A BC50B BC51A BC51B BC68A BC68B CC31 CC40 DA05 FA01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) G21F 9/02 B01J 23/74 321M (72) Inventor Toshio Takahashi 4th Chazu-cho, Muroran-shi, Hokkaido Japan Steel Works, Ltd. In-house (72) Inventor Takao Kono 322-6 Shimoishi-cho, Toki-shi, Gifu Pref. In the Fusion Science Research Institute (72) Inventor Yoichi Sakuma 322-6 Shimoishi-cho, Shimoishi-cho, Toki-City, Gifu Pref. Actual 2-71-3 Minatomirai, Nishi-ku, Yokohama-shi JGC Corporation (72) Inventor Tsukasa Kumagai 2-3-1-1, Minatomirai 2-chome, Nishi-ku, Yokohama-shi FGC term (reference) 4G040 DA03 DC02 DC05 FA02 FB05 FC07 FE01 4G069 AA02 AA08 BB02A BB02B BC09A BC09B BC50A BC50B BC51A BC51B BC68A BC68B CC31 CC40 DA05 FA01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水素または水素同位体を構成成分とする
炭化水素から水素または水素同位体を分離させるための
材料であって、その基本組成がTi1−xZrNi
からなり、xが0≦x<0.7、yが0.4≦y≦3の
範囲にあることを特徴とする炭化水素分解材料
1. A material for separating hydrogen or a hydrogen isotope from a hydrocarbon having hydrogen or a hydrogen isotope as a component, and having a basic composition of Ti 1-x Zr x Ni y
Wherein x is in the range of 0 ≦ x <0.7 and y is in the range of 0.4 ≦ y ≦ 3.
【請求項2】 水素または水素同位体を構成成分とする
炭化水素から水素または水素同位体を分離させるための
材料であって、その基本組成がCaNiからなり、
zが1≦z≦6の範囲にあることを特徴とする炭化水素
分解材料
2. A material for the separation of hydrogen or hydrogen isotopes from hydrocarbons as a constituent of hydrogen or hydrogen isotopes, the basic composition consists of Ca 1 Ni z,
A hydrocarbon cracking material characterized in that z is in the range of 1 ≦ z ≦ 6.
【請求項3】 炭化水素を含むガスを移送するガス移送
路と、該ガス移送路が連結され該ガス移送路を通して導
入されたガスから水素を分離して該水素と残ガスとを分
別する水素分離器と、該水素分離器の水素ガス排出側に
接続され、該水素分離器から排出された水素を回収する
水素回収器と、前記水素分離器の残ガス排出側に接続さ
れ、請求項1または2に記載の炭化水素分解材料を収容
して、該材料の機能によって該残ガス中の炭化水素を分
解して水素を分離し、その水素及びその他のガスを排出
する炭化水素分解反応器と、該炭化水素分解反応器のガ
ス排出側に一端側が接続され、他端側が上記水素分離器
のガス導入側に接続されたガス返送路とを備えているこ
とを特徴とする炭化水素分解装置
3. A gas transfer path for transferring a gas containing hydrocarbons, and hydrogen connected to the gas transfer path for separating hydrogen from gas introduced through the gas transfer path to separate the hydrogen from residual gas. 2. A hydrogen separator connected to a hydrogen gas discharge side of the hydrogen separator for recovering hydrogen discharged from the hydrogen separator, and a hydrogen collector connected to a residual gas discharge side of the hydrogen separator. Or a hydrocarbon cracking reactor containing the hydrocarbon cracking material described in 2 above, cracking the hydrocarbons in the residual gas by the function of the material to separate hydrogen, and discharging the hydrogen and other gases. A gas return path connected at one end to a gas discharge side of the hydrocarbon cracking reactor and a gas return path connected at the other end to a gas inlet side of the hydrogen separator.
JP2000145573A 2000-05-17 2000-05-17 Hydrocarbon decomposition material and hydrocarbon decomposition apparatus Expired - Lifetime JP3822022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000145573A JP3822022B2 (en) 2000-05-17 2000-05-17 Hydrocarbon decomposition material and hydrocarbon decomposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000145573A JP3822022B2 (en) 2000-05-17 2000-05-17 Hydrocarbon decomposition material and hydrocarbon decomposition apparatus

Publications (2)

Publication Number Publication Date
JP2001321670A true JP2001321670A (en) 2001-11-20
JP3822022B2 JP3822022B2 (en) 2006-09-13

Family

ID=18652061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000145573A Expired - Lifetime JP3822022B2 (en) 2000-05-17 2000-05-17 Hydrocarbon decomposition material and hydrocarbon decomposition apparatus

Country Status (1)

Country Link
JP (1) JP3822022B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069183A (en) * 2005-09-09 2007-03-22 Mitsubishi Materials Corp Hydrogen separation permeable membrane exhibiting excellent hydrogen separation permeable function for long duration by high-pressure operation of apparatus for highly-purifying and refining hydrogen
JP2007527348A (en) * 2003-11-21 2007-09-27 スタットオイル エイエスエイ Method for converting hydrocarbons
JP2009028583A (en) * 2007-07-24 2009-02-12 Osaka Prefecture Univ Catalyst of ni3(si, ti) intermetallic compound for producing hydrogen from methanol, method of producing hydrogen, and apparatus for producing hydrogen
JP2010066114A (en) * 2008-09-10 2010-03-25 Mitsubishi Heavy Ind Ltd Nuclear transformation system and method
JP2012196662A (en) * 2011-03-08 2012-10-18 Denso Corp Steam-reforming catalyst and reforming catalytic body
WO2023074167A1 (en) * 2021-10-29 2023-05-04 三菱重工業株式会社 Production method for fine metal particles
WO2023189197A1 (en) * 2022-03-30 2023-10-05 三菱重工業株式会社 Method for producing fine metal particles
JP7469354B2 (en) 2022-03-30 2024-04-16 三菱重工業株式会社 Method for producing fine metal particles

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527348A (en) * 2003-11-21 2007-09-27 スタットオイル エイエスエイ Method for converting hydrocarbons
JP2007069183A (en) * 2005-09-09 2007-03-22 Mitsubishi Materials Corp Hydrogen separation permeable membrane exhibiting excellent hydrogen separation permeable function for long duration by high-pressure operation of apparatus for highly-purifying and refining hydrogen
JP4608657B2 (en) * 2005-09-09 2011-01-12 三菱マテリアル株式会社 Hydrogen separation and permeation membrane that exhibits excellent hydrogen separation and permeation function over a long period of time by high pressure operation of high purity hydrogen purifier
JP2009028583A (en) * 2007-07-24 2009-02-12 Osaka Prefecture Univ Catalyst of ni3(si, ti) intermetallic compound for producing hydrogen from methanol, method of producing hydrogen, and apparatus for producing hydrogen
JP2010066114A (en) * 2008-09-10 2010-03-25 Mitsubishi Heavy Ind Ltd Nuclear transformation system and method
JP2012196662A (en) * 2011-03-08 2012-10-18 Denso Corp Steam-reforming catalyst and reforming catalytic body
WO2023074167A1 (en) * 2021-10-29 2023-05-04 三菱重工業株式会社 Production method for fine metal particles
JP2023066934A (en) * 2021-10-29 2023-05-16 三菱重工業株式会社 Production method for fine metal particle
JP7291191B2 (en) 2021-10-29 2023-06-14 三菱重工業株式会社 Method for producing fine metal particles
TWI814581B (en) * 2021-10-29 2023-09-01 日商三菱重工業股份有限公司 Method for producing fine metal particles
WO2023189197A1 (en) * 2022-03-30 2023-10-05 三菱重工業株式会社 Method for producing fine metal particles
JP7469354B2 (en) 2022-03-30 2024-04-16 三菱重工業株式会社 Method for producing fine metal particles

Also Published As

Publication number Publication date
JP3822022B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
CN1130245C (en) Carbon dioxide fixation system
RU2423176C2 (en) Method of producing hydrogen-rich fuel by decomposing methane on catalyst exposed to microwave effects
JP4276067B2 (en) Production of hydrogen from hydrocarbons and oxygen-containing hydrocarbons
US20060127718A1 (en) Fuel cell, operating method thereof, sintering furnace, and power generator
Marques et al. Gibbs free energy (ΔG) analysis for the NaOH (sodium-oxygen-hydrogen) thermochemical water splitting cycle
JP4705752B2 (en) Energy recovery from ammonia from waste treatment
JP2010159194A (en) Ammonia synthesis method
WO2001096233A9 (en) Method and apparatus for supplying hydrogen and portable cassette for supplying hydrogen
JP4323184B2 (en) Hydrogen production apparatus and hydrogen production method
JP2010521278A (en) Novel series power plant process and method for providing a hydrogen carrier reversibly usable in the power plant process
JP2001321670A (en) Hydrocarbon decomposing material and hydrocarbon decomposing device
US10280079B2 (en) Method for producing hydrogen
US8318112B2 (en) System and process of light chain hydrocarbon synthesis
Gude et al. Towards the development of materials for chemically stable carbonate-ceramic membranes to be used for CO2 separation in water-gas-shift reactors
Słowiński Some technical issues of zero-emission coal technology
JP2002193601A (en) Method and device for water decomposition
CN112011375A (en) Extraterrestrial base solid waste and in-situ material resource integrated utilization system and method
Willms et al. Performance of a palladium membrane reactor using an Ni catalyst for fusion fuel impurities processing
JP2005255505A (en) Hydrogen supply method
KR20230018436A (en) Cyclic Carbon Process
JPH1179701A (en) Gas generating device and system in which gas generating device is incorporated
JP2005239488A (en) Thermochemical decomposition method for water
JP2001137691A (en) Device for carbon dioxide fixation
JP2014201621A (en) Method of annihilating carbon dioxide and saving fuel consumption
WO2024005184A1 (en) Production system for organic substance, production device for organic substance, and method for producing organic substance

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060621

R150 Certificate of patent or registration of utility model

Ref document number: 3822022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140630

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term