JP2006036579A - Method for producing hydrogen - Google Patents

Method for producing hydrogen Download PDF

Info

Publication number
JP2006036579A
JP2006036579A JP2004218305A JP2004218305A JP2006036579A JP 2006036579 A JP2006036579 A JP 2006036579A JP 2004218305 A JP2004218305 A JP 2004218305A JP 2004218305 A JP2004218305 A JP 2004218305A JP 2006036579 A JP2006036579 A JP 2006036579A
Authority
JP
Japan
Prior art keywords
metal
hydrogen
iron
oxide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004218305A
Other languages
Japanese (ja)
Inventor
Kazuyuki Iizuka
和幸 飯塚
Kiyozumi Nakamura
清純 中村
Kiyoshi Otsuka
潔 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchiya Thermostat Co Ltd
Original Assignee
Uchiya Thermostat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchiya Thermostat Co Ltd filed Critical Uchiya Thermostat Co Ltd
Priority to JP2004218305A priority Critical patent/JP2006036579A/en
Priority to PCT/JP2005/013611 priority patent/WO2006011462A1/en
Publication of JP2006036579A publication Critical patent/JP2006036579A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0476Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds
    • B01J8/0484Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds the beds being placed next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0492Feeding reactive fluids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/061Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of metal oxides with water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/10Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/192Details relating to the geometry of the reactor polygonal
    • B01J2219/1923Details relating to the geometry of the reactor polygonal square or square-derived
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing hydrogen capable of stably generating hydrogen without generating carbon monoxide or carbon dioxide as by-products, and without requiring much electric energy. <P>SOLUTION: This method for producing hydrogen comprises generating hydrogen by a chemical reaction of at least a metal selected from iron, indium, tin, magnesium and cerium or an oxide thereof with water, characterized in comprising a step of supplying an oxygen-containing gas into a reactor 10 housing the metal or oxide thereof in a form of a fixed bed and elevating the inside temperature of the reactor 10 by the oxidation reaction of the metal or oxide thereof, and a step of supplying water into the reactor 10 the temperature of which has been elevated to generate hydrogen by the oxidation reaction of the metal or oxide thereof. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池、水素バーナー、分析機器などの水素を必要とする装置に水素を供給するのに適した水素製造方法に関する。   The present invention relates to a hydrogen production method suitable for supplying hydrogen to an apparatus requiring hydrogen, such as a fuel cell, a hydrogen burner, and an analytical instrument.

燃料として水素を用いる燃料電池には、部分酸化法や水蒸気改質法によってメタノール等を水素に改質し、これを燃料電池に供給するための水素発生装置が一般的に併設されている。しかし、このような方法では水素とともに一酸化炭素(CO)が副生し、これが燃料電池の電極を被毒する。したがって、COを10ppm以下にまで除去する必要があるが、CO除去手段を設置すると、改質器が大型化及び高コスト化するという問題がある。また、水蒸気改質法は、約800℃の非常に高い温度まで加熱する必要がある。一方、COやCO2を発生しない方法として、太陽熱を利用したUT−3サイクルや特開平07−267601号公報の方法が提案されている。しかし、これらの方法は太陽熱を利用するため、大規模なシステムが必要でコストが非常に高いという問題がある。 A fuel cell using hydrogen as a fuel is generally provided with a hydrogen generator for reforming methanol or the like into hydrogen by a partial oxidation method or a steam reforming method, and supplying this to the fuel cell. However, in such a method, carbon monoxide (CO) is by-produced with hydrogen, which poisons the fuel cell electrode. Therefore, it is necessary to remove CO to 10 ppm or less. However, if a CO removing means is installed, there is a problem that the reformer becomes large and expensive. In addition, the steam reforming method needs to be heated to a very high temperature of about 800 ° C. On the other hand, as a method that does not generate CO or CO 2 , a UT-3 cycle using solar heat and a method disclosed in Japanese Patent Laid-Open No. 07-267601 have been proposed. However, since these methods use solar heat, there is a problem that a large-scale system is required and the cost is very high.

また、鉄スクラップと酸素の酸化熱を利用し、鉄スクラップと水蒸気により水素を発生させる方法が、特開平06−157003号公報に提案されている。使用する鉄スクラップは厚さが0.5〜5mmであり、表面上だけの酸化反応であり、水素の発生量としては僅かであり、1000K以上での高温で行う反応である。
特開平07−267601号公報 特開平06−157003号公報
Japanese Patent Laid-Open No. 06-157003 proposes a method of generating hydrogen from iron scrap and steam using the oxidation heat of iron scrap and oxygen. The iron scrap to be used has a thickness of 0.5 to 5 mm, is an oxidation reaction only on the surface, is a slight amount of hydrogen generation, and is a reaction performed at a high temperature of 1000K or more.
JP 07-267601 A Japanese Patent Laid-Open No. 06-157003

そこで本発明は、上記の問題点に鑑み、一酸化炭素や二酸化炭素を副生せず、かつ多量の電気エネルギーを必要とせずに水素を安定的に生成することができる水素製造方法を提供することを目的とする。   In view of the above problems, the present invention provides a hydrogen production method capable of stably generating hydrogen without producing carbon monoxide or carbon dioxide as a by-product and without requiring a large amount of electric energy. For the purpose.

上記の目的を達成するために、本発明は、鉄(Fe)、インジウム(In)、スズ(Sn)、マグネシウム(Mg)、セリウム(Ce)の少なくともいずれかひとつの金属又はその酸化物と水との化学反応により水素を発生させる水素製造方法であって、前記金属又はその酸化物を固定床式に収納した反応容器の内部に酸素含有ガスを供給し、前記金属又はその酸化物の酸化反応により反応容器内の温度を上昇させる工程と、温度が上昇した前記反応容器内に水を供給し、前記金属又はその酸化物の酸化反応により水素を発生させる工程とを含んでなることを特徴とする。   In order to achieve the above object, the present invention provides at least one metal of iron (Fe), indium (In), tin (Sn), magnesium (Mg), and cerium (Ce) or an oxide thereof and water. A hydrogen production method in which hydrogen is generated by a chemical reaction with an oxygen-containing gas supplied into a reaction vessel containing the metal or oxide thereof in a fixed bed type, and an oxidation reaction of the metal or oxide thereof And a step of increasing the temperature in the reaction vessel by supplying water into the reaction vessel having the increased temperature and generating hydrogen by an oxidation reaction of the metal or its oxide. To do.

このように、前記金属又はその酸化物が固定床式に収納された反応容器の内部に、先ず、空気等の酸素含有ガスを導入することで、前記金属又はその酸化物と酸素との発熱反応を進行させることができる(例えば、純鉄の場合、Fe+3/4O2→1/2Fe23、ΔH=−412.1kJ/mol,298.15K,101.3kPa)。そして、この反応により発生した熱で反応容器内の温度が所定の温度に上昇した後、今度は反応容器内に水を導入することで、前記金属又はその酸化物と水との反応により水素を発生させることができる(例えば、純鉄の場合、Fe+4/3H2O→1/3Fe34+4/3H2、ΔH=−50.4kJ/mol,298.15K,101.3kPa)。なお、水との反応でFe34等となった低原子価金属酸化物も所定の温度以上の高温下なら酸素と反応してFe23等の高原子価金属酸化物まで速やかに酸化し、発熱反応を進行させることができる(例えば、酸化鉄の場合、200℃以上の高温下で、Fe34+1/4O2→3/2Fe23、ΔH=−118kJ/mol,298.15K,101.3kPa)。 In this way, first, by introducing an oxygen-containing gas such as air into the reaction vessel in which the metal or its oxide is stored in a fixed bed type, an exothermic reaction between the metal or its oxide and oxygen. (For example, in the case of pure iron, Fe + 3 / 4O 2 → 1 / 2Fe 2 O 3 , ΔH = −412.1 kJ / mol, 298.15 K, 101.3 kPa). Then, after the temperature in the reaction vessel rises to a predetermined temperature due to the heat generated by this reaction, hydrogen is introduced into the reaction vessel this time, so that hydrogen is reacted by the reaction between the metal or its oxide and water. (For example, in the case of pure iron, Fe + 4 / 3H 2 O → 1 / 3Fe 3 O 4 + 4 / 3H 2 , ΔH = −50.4 kJ / mol, 298.15 K, 101.3 kPa). It should be noted that the low valent metal oxide that has become Fe 3 O 4 or the like by the reaction with water reacts with oxygen at a high temperature above a predetermined temperature and quickly reaches a high valent metal oxide such as Fe 2 O 3. It can oxidize and allow an exothermic reaction to proceed (for example, in the case of iron oxide, Fe 3 O 4 + 1 / 4O 2 → 3 / 2Fe 2 O 3 , ΔH = −118 kJ / mol, at a high temperature of 200 ° C. or higher, 298.15K, 101.3 kPa).

よって、上記反応式に示す通り、燃料電池の電極を被毒する一酸化炭素(CO)は副生しないので、CO除去手段を設ける必要がなくなり、装置の小型化及び低コスト化を達成することができる。また、前記反応は全て発熱反応で自発的に進行する反応である。よって、水蒸気改質法のように多量の電気エネルギーを用いて約800℃の高温まで加熱する必要はなく、常温からの起動で、水素を発生させるのに充分な温度帯まで、自ら昇温する。さらに、反応が完了して水素を発生できなくなった前記金属又はその酸化物は、水素等の還元剤で還元処理されることで再び繰り返し水素を発生することができる(例えば、鉄の場合、Fe23+3H2→2Fe+3H2O、Fe34+4H2→3Fe+4H2O)。さらに、水及び酸素と酸化反応させる前記金属又はその酸化物を同一の反応容器内に収納し、この金属又はその酸化物を固定した状態にして水及び酸素を流通させる(いわゆる固定床流通式)ことで、酸化による発熱が反応容器内に安定的に蓄熱され、水素を効率よく発生させることができる。 Therefore, as shown in the above reaction formula, carbon monoxide (CO) that poisons the electrode of the fuel cell is not by-produced, so there is no need to provide a CO removal means, and the device can be reduced in size and cost. Can do. The above reactions are all exothermic reactions and proceed spontaneously. Therefore, it is not necessary to heat to a high temperature of about 800 ° C. using a large amount of electric energy as in the steam reforming method, and the temperature is raised to a temperature range sufficient for generating hydrogen by starting from room temperature. . Furthermore, the metal or its oxide that has become unable to generate hydrogen after the completion of the reaction can generate hydrogen again by being reduced with a reducing agent such as hydrogen (for example, in the case of iron, Fe 2 O 3 + 3H 2 → 2Fe + 3H 2 O, Fe 3 O 4 + 4H 2 → 3Fe + 4H 2 O). Further, the metal or oxide thereof that undergoes an oxidation reaction with water and oxygen is housed in the same reaction vessel, and water and oxygen are circulated with the metal or oxide thereof fixed (so-called fixed bed flow type). Thus, heat generated by oxidation is stably stored in the reaction vessel, and hydrogen can be generated efficiently.

前記鉄としては、鋳鉄粉、還元鉄粉、電解鉄粉、アトマイズ鉄粉の少なくともいずれかひとつの純鉄粉を用いることが好ましい。このような純鉄粉を用いることで、酸素及び水との反応性を向上させることができ、反応容器内の温度を効率良く上昇させることができるとともに、水素発生速度も向上させることができる。   As the iron, it is preferable to use at least one pure iron powder of cast iron powder, reduced iron powder, electrolytic iron powder, and atomized iron powder. By using such pure iron powder, the reactivity with oxygen and water can be improved, the temperature in the reaction vessel can be increased efficiently, and the hydrogen generation rate can also be improved.

前記鉄又は酸化鉄としては、鉄以外の他の金属が添加されて前記反応容器内に収納されていることが好ましい。鉄以外の他の金属としては、チタン(Ti)、ジルコニウム(Zr)、バナジウム(V)、ニオブ(Nb)、クロム(Cr)、モリブデン(Mo)、アルミニウム(Al)、ガリウム(Ga)、マグネシウム(Mg)、スカンジウム(Sc)、ニッケル(Ni)、銅(Cu)、ネオジム(Nd)の金属の少なくともいずれか一つが好ましい。これら金属を添加することで、酸化還元反応で鉄又は酸化鉄を繰り返し使用する場合に、シンタリングによる粒子成長が抑えられ、水素発生効率の低下を抑えることができる。   As the iron or iron oxide, a metal other than iron is preferably added and stored in the reaction vessel. Examples of metals other than iron include titanium (Ti), zirconium (Zr), vanadium (V), niobium (Nb), chromium (Cr), molybdenum (Mo), aluminum (Al), gallium (Ga), and magnesium. (Mg), scandium (Sc), nickel (Ni), copper (Cu), or at least one metal of neodymium (Nd) is preferable. By adding these metals, when iron or iron oxide is repeatedly used in the oxidation-reduction reaction, particle growth due to sintering can be suppressed, and a decrease in hydrogen generation efficiency can be suppressed.

また、鉄以外の他の金属としては、ロジウム(Rh)、イリジウム(Ir)、プラチナ(Pt)、ルテニウム(Ru)、パラジウム(Pd)の金属の少なくともいずれか一つも好ましい。これら金属を添加することで、鉄又は酸化鉄の自己発熱温度を高く上げなくても、200℃以下の低温で水素を発生することができる。つまり、鉄又は酸化鉄の酸素による酸化量を減少させ、鉄又は酸化鉄と水の反応が増加でき、結果として水素発生量を増加することができる。   As the metal other than iron, at least one of rhodium (Rh), iridium (Ir), platinum (Pt), ruthenium (Ru), and palladium (Pd) is also preferable. By adding these metals, hydrogen can be generated at a low temperature of 200 ° C. or lower without increasing the self-heating temperature of iron or iron oxide. That is, the amount of iron or iron oxide oxidized by oxygen can be decreased, the reaction of iron or iron oxide and water can be increased, and as a result, the amount of hydrogen generation can be increased.

上述したように、本発明によれば、一酸化炭素や二酸化炭素を副生せず、かつ多量の電気エネルギーを必要とせずに水素を安定的に生成することができる水素製造方法を提供することができる。   As described above, according to the present invention, there is provided a hydrogen production method capable of stably generating hydrogen without producing carbon monoxide or carbon dioxide as a by-product and without requiring a large amount of electric energy. Can do.

以下、添付図面を参照して、本発明の実施形態について説明する。図1は、本発明に係る水素発生方法を実施するために好適な水素発生装置を簡略的に示す断面図である。図1に示すように、水素発生装置は、その内部で水と金属とを化学反応させて水素を発生させる反応容器10と、反応容器10内に水、空気及び還元ガスを供給するための導入管21と、反応容器10内で生成した水素及び未反応の水並びに空気又は窒素を排出するための排出管22とを備える。反応容器10は直方体の形状であり、その一面14に、反応容器10内と導入管21内とを連通するための導入口11と、反応容器10内と排出管21内とを連通するための排出口12とを配置する。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a cross-sectional view schematically showing a hydrogen generation apparatus suitable for carrying out the hydrogen generation method according to the present invention. As shown in FIG. 1, the hydrogen generator has a reaction vessel 10 for generating hydrogen by chemically reacting water and metal therein, and an introduction for supplying water, air, and reducing gas into the reaction vessel 10. A pipe 21 and a discharge pipe 22 for discharging hydrogen generated in the reaction vessel 10 and unreacted water and air or nitrogen are provided. The reaction vessel 10 has a rectangular parallelepiped shape, and an introduction port 11 for communicating the inside of the reaction vessel 10 and the inside of the introduction tube 21 and the inside of the reaction vessel 10 and the inside of the discharge tube 21 are communicated on one surface 14 thereof. A discharge port 12 is arranged.

反応容器10内は、導入口11を備える層と、排出口12を備える層との2層になるように、導入口11及び排出口12が配置されている面14から、その対向面15へと直線状に延びる整流板30によって仕切る。整流板30には、両層内を連通するため、導入口11等の配置面14と対向面15との中間点よりも対向面15側の位置に、通気孔31を設ける。   In the reaction vessel 10, from the surface 14 on which the introduction port 11 and the discharge port 12 are arranged to be two layers of a layer having the introduction port 11 and a layer having the discharge port 12, the surface 15 is opposed to the opposite surface 15. And a straightening plate 30 extending linearly. The rectifying plate 30 is provided with a vent hole 31 at a position closer to the facing surface 15 than an intermediate point between the placement surface 14 such as the introduction port 11 and the facing surface 15 in order to communicate both layers.

導入口11を備える層は、さらにフィルタ41によって、空気と反応して発熱するとともに水と反応して水素を生成する金属を固定した状態で収納する金属収納部17aと、導入した水を気化するための気化空間部18とに仕切る。気化空間部18は、導入口11と金属収納部17aとの間となるようにする。フィルタ41は、導入する水や空気、還元ガスは通過させるが、収納されている金属は通過させないものである。一方、導入口11を備える層は、水と反応して水素を発生する金属を固定した状態で収納する金属収納部17bを構成する。金属収納部17bと排出口12との間には、反応容器10内から金属が飛散するのを防止するため、フィルタ42を設ける。フィルタ42は、生成した水素、未反応の水、空気及び窒素を通過させるが、収納されている金属を通過させないものである。   The layer including the introduction port 11 further vaporizes the introduced water by the filter 41, which stores the metal containing portion 17a that generates heat by reacting with air and that fixes the metal that generates hydrogen by reacting with water. For vaporization space 18 for the purpose. The vaporization space 18 is located between the inlet 11 and the metal storage part 17a. The filter 41 allows water to be introduced, air, and reducing gas to pass therethrough, but does not allow the contained metal to pass therethrough. On the other hand, the layer including the introduction port 11 constitutes a metal storage portion 17b that stores a metal that generates hydrogen by reacting with water in a fixed state. A filter 42 is provided between the metal storage portion 17 b and the discharge port 12 in order to prevent metal from scattering from within the reaction vessel 10. The filter 42 allows the generated hydrogen, unreacted water, air, and nitrogen to pass through, but does not allow the contained metal to pass through.

金属収納部17内に収納されている金属は、鉄(Fe)、インジウム(In)、スズ(Sn)、マグネシウム(Mg)、セリウム(Ce)のいずれかひとつの金属であり、これら金属は、水素の高い発生効率と酸化還元の繰り返しに対する優れた耐久性を有している。この中でもFeが特に好ましい。Feを用いる場合は、鋳鉄粉、還元鉄粉、電解鉄粉、アトマイズ鉄粉などの純鉄粉がより好ましい。これら金属は純金属の状態に限られず、例えば、FeO等の低原子価金属酸化物であってもよい。純金属又は低原子価金属酸化物は、1nm〜100μm、好ましくは1nm〜10μmの粉末でありそのままの粉末状でも水素発生媒体として使用できるが、ペレット状、円筒状、ハニカム構造、不織布形状などの反応に適した形状を選択して、金属収納部17内に収納することが好ましい。また、上記の純金属又は金属酸化物は、アルミナ、酸化亜鉛、マグネシア、シリカ、チタニアのいずれかの担体に担持させることもできる(国際公開第01/096233号パンフレットに記載の金属酸化物を、本発明に係る金属の酸化物として使用することができる)。   The metal stored in the metal storage unit 17 is any one of iron (Fe), indium (In), tin (Sn), magnesium (Mg), and cerium (Ce). It has high hydrogen generation efficiency and excellent durability against repeated redox. Among these, Fe is particularly preferable. When using Fe, pure iron powder, such as cast iron powder, reduced iron powder, electrolytic iron powder, and atomized iron powder, is more preferable. These metals are not limited to pure metals, and may be, for example, low-valent metal oxides such as FeO. The pure metal or low-valent metal oxide is a powder of 1 nm to 100 μm, preferably 1 nm to 10 μm, and can be used as a hydrogen generating medium even if it is in a powder form as it is, but has a pellet shape, a cylindrical shape, a honeycomb structure, a nonwoven fabric shape, etc. It is preferable to select a shape suitable for the reaction and store it in the metal storage unit 17. The pure metal or metal oxide can be supported on any one of alumina, zinc oxide, magnesia, silica, and titania (the metal oxide described in International Publication No. 01/096233 pamphlet, It can be used as a metal oxide according to the present invention).

Fe又はFeの低原子価金属酸化物を用いる場合、水素の発生効率を高めるために、Fe以外の金属を添加することが好ましい。添加する金属としては、チタン(Ti)、ジルコニウム(Zr)、バナジウム(V)、ニオブ(Nb)、クロム(Cr)、モリブデン(Mo)、アルミニウム(Al)、ガリウム(Ga)、マグネシウム(Mg)、スカンジウム(Sc)、ニッケル(Ni)、銅(Cu)、ネオジム(Nd)からなる第1群から選んだ少なくともいずれか1種の金属、またはロジウム(Rh)、イリジウム(Ir)、プラチナ(Pt)、ルテニウム(Ru)、パラジウム(Pd)からなる第2群から選んだ少なくともいずれか1種の金属を添加することが好ましい。この中でも第1群としてはMo、Alが、第2群としてはRh、Irがより好ましい。また、第1群と第2群からそれぞれ少なくともひとつずつ選んだ少なくとも計2種の金属を添加することもできる。添加する金属の配合割合は、全金属を100mol%とした場合、0.1〜30mol%が好ましく、0.5〜15mol%がより好ましい。0.1mol%未満の配合割合では、水素の発生効率を向上する効果が認められない。一方、30mol%を越えると、Feの酸化還元反応の効率が低下するので好ましくない。Feと添加する金属との調製方法は、物理混合法、含浸法、共沈法等により行い、特に共沈法が好ましい。   In the case of using Fe or a low-valent metal oxide of Fe, it is preferable to add a metal other than Fe in order to increase the generation efficiency of hydrogen. As the metal to be added, titanium (Ti), zirconium (Zr), vanadium (V), niobium (Nb), chromium (Cr), molybdenum (Mo), aluminum (Al), gallium (Ga), magnesium (Mg) , Scandium (Sc), nickel (Ni), copper (Cu), neodymium (Nd), at least one metal selected from the first group, or rhodium (Rh), iridium (Ir), platinum (Pt It is preferable to add at least one metal selected from the second group consisting of ruthenium (Ru) and palladium (Pd). Among these, Mo and Al are more preferable as the first group, and Rh and Ir are more preferable as the second group. Further, at least two kinds of metals selected at least one from each of the first group and the second group can be added. As for the compounding ratio of the metal to add, 0.1-30 mol% is preferable and 0.5-15 mol% is more preferable when all the metals are 100 mol%. When the blending ratio is less than 0.1 mol%, the effect of improving the hydrogen generation efficiency is not recognized. On the other hand, if it exceeds 30 mol%, the efficiency of the Fe redox reaction is lowered, which is not preferable. The preparation method of Fe and the metal to be added is performed by a physical mixing method, an impregnation method, a coprecipitation method, or the like, and the coprecipitation method is particularly preferable.

反応容器10は、ステンレススチールやアルミニウム等の金属、アルミナやジルコニア等のセラミックス、又はフェノール樹脂やポリフェニレンサルファイド等の耐熱性プラスチック等で作られており、熱や内外圧力に耐え得る構造をとっている。図1では直方体の形状を示したが、他の六面体でも、円柱状や円錐台状でもよい。反応容器10が高温となる場合は、反応容器10を断熱材で覆うことが好ましい。断熱材としては、ガラス繊維、シリカ繊維、シリカ粉末成形体などを使用することができる。また、気化空間部18には、導入された水を効率良く気化及び分散するため、セラミックボールや、ガラスウール、シリカウール等を充填することができる。   The reaction vessel 10 is made of a metal such as stainless steel or aluminum, a ceramic such as alumina or zirconia, or a heat-resistant plastic such as phenol resin or polyphenylene sulfide, and has a structure that can withstand heat and internal / external pressure. . Although a rectangular parallelepiped shape is shown in FIG. 1, it may be another hexahedron, a columnar shape or a truncated cone shape. When reaction container 10 becomes high temperature, it is preferable to cover reaction container 10 with a heat insulating material. As the heat insulating material, glass fiber, silica fiber, silica powder molded body and the like can be used. The vaporization space 18 can be filled with ceramic balls, glass wool, silica wool or the like in order to efficiently vaporize and disperse the introduced water.

以上の構成によれば、先ず初めに、空気を導入口11から反応容器10内に導入する。導入された空気は、気化空間部18を通って金属収納部17a全体に拡散し、さらに通気孔31を通って隣りの金属収納部17b全体に拡散する。金属収納部17内の金属は空気中の酸素によって酸化し、金属自身が自己加熱する。これにより常温からの起動で、水素を発生させるのに充分な温度帯まで、自ら昇温する(例えば、純鉄の場合、Fe+3/4O2→1/2Fe23、ΔH=−412.1kJ/mol,298.15K,101.3kPa)。 According to the above configuration, first, air is introduced into the reaction vessel 10 from the introduction port 11. The introduced air diffuses through the vaporization space 18 to the entire metal storage portion 17a, and further diffuses through the vent hole 31 to the entire adjacent metal storage portion 17b. The metal in the metal storage part 17 is oxidized by oxygen in the air, and the metal itself is self-heated. As a result, the temperature rises by itself to a temperature range sufficient to generate hydrogen at startup from room temperature (for example, in the case of pure iron, Fe + 3 / 4O 2 → 1 / 2Fe 2 O 3 , ΔH = −412.1 kJ / Mol, 298.15K, 101.3 kPa).

この時、反応容器10内の金属の温度を50〜600℃の範囲となるように空気(酸素)を導入することが好ましい。金属の温度が50℃未満だと、導入した水(液体)の蒸発量が少なく、水蒸気(気体)による金属の酸化反応(水素発生反応)が活発に進行しないため好ましくない。一方、600℃を超える温度まで加熱するには、酸素による金属の酸化反応(発熱反応)を大量に行う必要があり、水蒸気と反応できる金属の量がほとんど残らず、水素発生量が低下するため好ましくない。より好ましい金属の温度は、100〜400℃の範囲である。金属と反応して含有する酸素が全部又は一部消費された空気は、排出管22から排出する。   At this time, it is preferable to introduce air (oxygen) so that the temperature of the metal in the reaction vessel 10 is in the range of 50 to 600 ° C. If the temperature of the metal is less than 50 ° C., the amount of water (liquid) introduced is small, and the metal oxidation reaction (hydrogen generation reaction) by water vapor (gas) does not proceed actively. On the other hand, in order to heat to a temperature exceeding 600 ° C., it is necessary to carry out a large amount of metal oxidation reaction (exothermic reaction) with oxygen, and since there is almost no amount of metal that can react with water vapor, the amount of hydrogen generation decreases. It is not preferable. The metal temperature is more preferably in the range of 100 to 400 ° C. Air in which all or part of oxygen contained by reacting with the metal is consumed is discharged from the discharge pipe 22.

次に、反応容器10内が水素を発生可能な上記の温度範囲になったら、今度は水を導入管21から反応容器10内に導入する。導入された水は、気化空間部18内で速やかに気化して水蒸気となる。この水蒸気は、気化空間部18から金属収納部17aに拡散するとともに、通気孔31を介して金属収納部17bに拡散する。金属収納部17内の金属は水蒸気によって酸化し、水素が発生する(例えば、純鉄の場合、Fe+4/3H2O→1/3Fe34+4/3H2、ΔH=−50.4kJ/mol,298.15K,101.3kPa)。発生した水素及び未反応の水蒸気は、排出口12から排出する。この水素を含有するガスは、燃料電池などの水素を必要とする系へ導入する。 Next, when the inside of the reaction vessel 10 is in the above temperature range where hydrogen can be generated, water is introduced into the reaction vessel 10 from the introduction tube 21 this time. The introduced water quickly vaporizes in the vaporization space 18 and becomes water vapor. The water vapor diffuses from the vaporization space portion 18 to the metal housing portion 17 a and diffuses to the metal housing portion 17 b through the vent hole 31. The metal in the metal storage portion 17 is oxidized by water vapor to generate hydrogen (for example, in the case of pure iron, Fe + 4 / 3H 2 O → 1 / 3Fe 3 O 4 + 4 / 3H 2 , ΔH = −50.4 kJ / mol) 298.15 K, 101.3 kPa). The generated hydrogen and unreacted water vapor are discharged from the discharge port 12. This gas containing hydrogen is introduced into a system that requires hydrogen, such as a fuel cell.

そして、金属収納部17内の金属が完全に酸化して反応が終了したら、今度は、水素などの還元ガスを導入管21から反応容器10内に導入して、金属収納部17内の酸化した金属の還元を行う(例えば、鉄の場合、Fe23+3H2→2Fe+3H2O、Fe34+4H2→3Fe+4H2O)。酸化した金属を還元することで、金属は再び前述の酸化反応を行うことができ、繰り返し使用することができる。このときの加熱温度は200〜600℃で行うことが還元効率の観点から好ましい。 Then, when the metal in the metal storage unit 17 is completely oxidized and the reaction is completed, a reducing gas such as hydrogen is introduced into the reaction vessel 10 from the introduction pipe 21 and oxidized in the metal storage unit 17. Reduction of the metal is performed (for example, in the case of iron, Fe 2 O 3 + 3H 2 → 2Fe + 3H 2 O, Fe 3 O 4 + 4H 2 → 3Fe + 4H 2 O). By reducing the oxidized metal, the metal can be subjected to the aforementioned oxidation reaction again and can be used repeatedly. The heating temperature at this time is preferably 200 to 600 ° C. from the viewpoint of reduction efficiency.

なお、還元剤として使用するガスは、高圧ボンベに充填された水素でも良いが、液体水素ボンベ、メタン(メタンガス、天然ガスあるいは石油等の炭化水素系原料)等の炭化水素類を触媒を用いて分解した水素、炭化水素類と水蒸気による水蒸気改質法により生成した水素、メタノール改質による水素、水の電気分解による水素等の生成した水素を用いることもできる。なお、いずれの場合も、反応容器内に供給する前に水分を除去し、ドライな水素を供給することが好ましい。   The gas used as the reducing agent may be hydrogen filled in a high-pressure cylinder, but a hydrocarbon such as a liquid hydrogen cylinder or methane (methane gas, natural gas or hydrocarbon raw material such as petroleum) is used as a catalyst. Hydrogen generated by cracked hydrogen, hydrogen generated by a steam reforming method using hydrocarbons and steam, hydrogen generated by methanol reforming, hydrogen generated by electrolysis of water, or the like can also be used. In either case, it is preferable to remove moisture and supply dry hydrogen before supplying it into the reaction vessel.

このように、本実施の形態によれば、多量の電気エネルギーを用いることなく、導入管21から酸素を導入するだけで、常温から起動して、水素を発生させるのに充分な温度帯まで反応容器10内を昇温させることができる。また、反応容器10内の反応には炭素(C)が含まれないので、水素とともに排出管22から燃料電池の電極を被毒する一酸化炭素(CO)が排出されることがない。さらに、反応が完了して水素を発生できなくなった金属収納部17内の金属又はその酸化物は、水素等の還元ガスで還元処理することで再び繰り返し水素を発生することができる。さらに、酸素により酸化反応させる金属と水により酸化反応させる金属とを同一の金属収納部17内に収納し、この金属を固定した状態にして(いわゆる固定床流通式)水及び酸素を供給することで、酸化による発熱が反応容器10内に安定的に蓄熱され、水素を効率よく発生させることができる。   As described above, according to the present embodiment, it is possible to start from room temperature and react to a temperature range sufficient to generate hydrogen by simply introducing oxygen from the introduction pipe 21 without using a large amount of electric energy. The temperature inside the container 10 can be raised. Further, since carbon (C) is not included in the reaction in the reaction vessel 10, carbon monoxide (CO) that poisons the electrode of the fuel cell is not discharged from the discharge pipe 22 together with hydrogen. Furthermore, the metal or its oxide in the metal storage part 17 which has become unable to generate hydrogen after the reaction is completed can be repeatedly generated with hydrogen by reducing with a reducing gas such as hydrogen. Further, a metal that is oxidized by oxygen and a metal that is oxidized by water are stored in the same metal storage unit 17, and the metal is fixed (so-called fixed bed flow type) to supply water and oxygen. Thus, heat generated by oxidation is stably stored in the reaction vessel 10, and hydrogen can be generated efficiently.

なお、上記の説明では、空気を導入して初期加熱した後に水のみを導入したが、初期加熱した後に水と共に空気を導入することもできる。これにより反応容器10内で、水蒸気と金属の反応による水素発生と同時に、空気中の酸素と金属の反応による発熱を行うことができる。なお、水との反応でFe34等となった低原子価金属酸化物も所定の温度以上(例えば、酸化鉄の場合、200℃以上)の高温下なら酸素と反応してFe23等の高原子価金属酸化物まで速やかに酸化し、発熱反応を進行させることができる(例えば、酸化鉄の場合、Fe34+1/4O2→3/2Fe23、ΔH=−118kJ/mol,298.15K,101.3kPa)。 In the above description, only water is introduced after air is introduced and initially heated. However, air can be introduced together with water after the initial heating. As a result, in the reaction vessel 10, heat can be generated by the reaction of oxygen and metal in the air simultaneously with the generation of hydrogen by the reaction of water vapor and metal. The low valent metal oxide became Fe 3 O 4 or the like in reaction with water more than a predetermined temperature (for example, in the case of iron oxide, 200 ° C. or higher) Fe 2 O reacts with high temperature if oxygen It can rapidly oxidize to a high valent metal oxide such as 3 to cause an exothermic reaction (for example, in the case of iron oxide, Fe 3 O 4 + 1 / 4O 2 → 3/2 Fe 2 O 3 , ΔH = − 118 kJ / mol, 298.15 K, 101.3 kPa).

水と共に空気を導入した場合は、水のみを導入した場合に比べ、金属収納部17内の温度がより上昇するので、空気の導入により温度制御を図ることができる。空気中の酸素は金属の酸化により全て消費され、排出口12から酸素が排出されないように、反応容器の構造や、水と空気の導入量、充填する金属の量等の条件を設定することが好ましい。また、空気中の二酸化炭素が一酸化炭素に還元して水素とともに排出される可能性がある場合、導入する空気を苛性ソーダや石灰水などの二酸化炭素吸収剤に空気を通して二酸化炭素を吸収させることが好ましい。予め二酸化炭素を除去しなくとも、水と空気の導入量の設定で一酸化炭素の濃度を燃料電池の電極を大きく被毒しない10ppm以下に抑えることができる。酸素含有ガスとして空気の代わりに純酸素を導入してもよい。   When air is introduced together with water, the temperature in the metal housing portion 17 is further increased as compared with the case where only water is introduced, so that temperature control can be achieved by introducing air. Conditions such as the structure of the reaction vessel, the amount of water and air introduced, and the amount of metal to be filled can be set so that all oxygen in the air is consumed by oxidation of the metal and oxygen is not discharged from the discharge port 12. preferable. In addition, when carbon dioxide in the air may be reduced to carbon monoxide and discharged together with hydrogen, the introduced air may be absorbed by carbon dioxide absorbents such as caustic soda and lime water through the air. preferable. Even if carbon dioxide is not removed in advance, the concentration of carbon monoxide can be suppressed to 10 ppm or less which does not significantly poison the electrode of the fuel cell by setting the introduction amounts of water and air. Pure oxygen may be introduced instead of air as the oxygen-containing gas.

また、反応容器17内の酸化反応熱や排出管22から高温で排出される水素と、導入管21から導入する水とを熱交換器(図示省略)等で熱交換することで、導入する水を予備加熱することができる。これにより水素製造装置の熱効率を向上させることができる。   Further, the water to be introduced by exchanging heat of the oxidation reaction heat in the reaction vessel 17 or hydrogen discharged at a high temperature from the discharge pipe 22 and water introduced from the introduction pipe 21 by a heat exchanger (not shown) or the like. Can be preheated. Thereby, the thermal efficiency of a hydrogen production apparatus can be improved.

図2に示す装置を用いて水素を発生させる試験を行った。図2に示す装置は、常圧固定床流通式の反応装置であり、円筒状のステンレス製の反応容器50内で生成した反応ガスを水トラップ装置51に導入し、反応ガス中の水を凝集して除いた後、このガスの一部を採取し、ガスクロマトグラフ52で測定した。反応ガスの流量は流量計53で測定した。また同時に、反応容器50内の中心の試料の温度を測定した。なお、反応容器50はシリカファイバーからなる断熱材で覆って保温した。   A test for generating hydrogen was performed using the apparatus shown in FIG. The apparatus shown in FIG. 2 is an atmospheric pressure fixed bed flow type reaction apparatus, in which a reaction gas generated in a cylindrical stainless steel reaction vessel 50 is introduced into a water trap apparatus 51 to agglomerate water in the reaction gas. Then, a part of this gas was sampled and measured with a gas chromatograph 52. The flow rate of the reaction gas was measured with a flow meter 53. At the same time, the temperature of the central sample in the reaction vessel 50 was measured. The reaction vessel 50 was covered with a heat insulating material made of silica fiber and kept warm.

反応容器50に収納する鉄は、含浸法にて調製して3.6mol%のAlを添加した(BET比表面積52.1m2/g、平均粒子径0.11μm)。試料はペレット状に成形し、778gを反応容器50に入れて還元用の水素を導入し、電気炉(図示省略)にて500℃で6時間にわたり還元反応を行った。還元後の試料を取り出し、不活性ガスである窒素中で重量を測定したところ、582gであった。再び試料を反応容器50に詰め、試験を開始した。 Iron stored in the reaction vessel 50 was prepared by an impregnation method and 3.6 mol% of Al was added (BET specific surface area 52.1 m 2 / g, average particle size 0.11 μm). The sample was formed into a pellet, and 778 g was placed in the reaction vessel 50, hydrogen for reduction was introduced, and a reduction reaction was performed at 500 ° C. for 6 hours in an electric furnace (not shown). A sample after the reduction was taken out and weighed in nitrogen as an inert gas, and it was 582 g. The sample was again packed in the reaction vessel 50 and the test was started.

先ず初めに、苛性ソーダにて二酸化炭素を除去した空気を、1.2L/minの流量で常温の反応容器50内に導入し、還元した鉄と空気中の酸素との酸化反応を行った。そして、空気導入から40分後に、空気とともに室温の水を1.0mL/minの流量で反応容器50に導入した。そして、空気導入から270分後に実験を終了した。測定した水素発生速度と反応容器内の試料温度の結果を、図3に示す。   First, air from which carbon dioxide was removed with caustic soda was introduced into a reaction vessel 50 at a normal temperature at a flow rate of 1.2 L / min, and an oxidation reaction between reduced iron and oxygen in the air was performed. Then, 40 minutes after the introduction of air, room temperature water was introduced into the reaction vessel 50 together with air at a flow rate of 1.0 mL / min. The experiment was terminated 270 minutes after the introduction of air. The results of the measured hydrogen generation rate and the sample temperature in the reaction vessel are shown in FIG.

図3に示すように、水を入れた瞬間にすぐに水素を発生し、約1L/minの水素発生速度を約120分間にわたり安定的に維持した。その後、水素発生速度は低下し、水導入から約200分後には水素が発生しなくなった。この間、水素の発生総量は151Lであった。なお、反応中は、水素以外に空気中の窒素が約0.9L/min含まれていたが、酸素、二酸化炭素、一酸化炭素はガスクロマトグラフにて検出されなかった。このように水と空気の導入量により、水素とともに酸素が排出されない条件を設定できることが確認できた。   As shown in FIG. 3, hydrogen was generated immediately at the moment when water was added, and the hydrogen generation rate of about 1 L / min was stably maintained for about 120 minutes. Thereafter, the hydrogen generation rate decreased, and hydrogen was not generated about 200 minutes after the introduction of water. During this time, the total amount of hydrogen generated was 151 L. During the reaction, in addition to hydrogen, nitrogen in the air was contained at about 0.9 L / min, but oxygen, carbon dioxide, and carbon monoxide were not detected by gas chromatography. As described above, it was confirmed that the conditions under which oxygen is not discharged together with hydrogen can be set depending on the amounts of water and air introduced.

比較例として、空気を全く導入しなかったこと以外は上記の実施例と同様の手順にて実験を行った。その結果を図4に示す。図4に示すように、空気を導入しなかったので、反応容器50内の試料の温度は上がらずに室温のままであり、水を導入しても水素の発生を確認することはできなかった。   As a comparative example, an experiment was performed in the same procedure as in the above example except that no air was introduced. The result is shown in FIG. As shown in FIG. 4, since air was not introduced, the temperature of the sample in the reaction vessel 50 did not rise and remained at room temperature, and even when water was introduced, generation of hydrogen could not be confirmed. .

本発明に係る水素製造方法の実施に好適な装置の一例を簡略的に示す断面図である。It is sectional drawing which shows simply an example of the apparatus suitable for implementation of the hydrogen manufacturing method which concerns on this invention. 水素発生試験で使用した反応装置の概略を示す模式図である。It is a schematic diagram which shows the outline of the reaction apparatus used by the hydrogen generation test. 酸素及び水を導入した場合の試料温度と水素発生速度を示すグラフである。It is a graph which shows the sample temperature at the time of introduce | transducing oxygen and water, and a hydrogen generation rate. 水のみを導入した場合の試料温度と水素発生速度を示すグラフである。It is a graph which shows the sample temperature at the time of introduce | transducing only water and a hydrogen generation rate.

符号の説明Explanation of symbols

10 反応容器
11 導入口
12 排出口
17 金属収納部
18 気化空間部
21 導入管
22 排出管
30 整流板
31 通気孔
41、42 フィルタ
50 反応容器
51 水トラップ装置
52 ガスクロマトグラフ
53 流量計
DESCRIPTION OF SYMBOLS 10 Reaction container 11 Inlet port 12 Outlet port 17 Metal storage part 18 Vaporization space part 21 Introducing pipe 22 Outlet pipe 30 Current plate 31 Vent hole 41, 42 Filter 50 Reaction container 51 Water trap apparatus 52 Gas chromatograph 53 Flowmeter

Claims (5)

鉄、インジウム、スズ、マグネシウム、セリウムの少なくともいずれかひとつの金属又はその酸化物と水との化学反応により水素を発生させる水素製造方法であって、前記金属又はその酸化物を固定床式に収納した反応容器の内部に酸素含有ガスを供給し、前記金属又はその酸化物の酸化反応により反応容器内の温度を上昇させる工程と、温度が上昇した前記反応容器内に水を供給し、前記金属又はその酸化物の酸化反応により水素を発生させる工程とを含んでなる水素製造方法。   A hydrogen production method in which hydrogen is generated by a chemical reaction between at least one of iron, indium, tin, magnesium, and cerium or an oxide thereof and water, and the metal or the oxide is stored in a fixed bed type. A step of supplying an oxygen-containing gas to the inside of the reaction vessel and increasing the temperature in the reaction vessel by an oxidation reaction of the metal or its oxide; and supplying water into the reaction vessel having the increased temperature; Or a process for generating hydrogen by an oxidation reaction of the oxide. 前記鉄が、鋳鉄粉、還元鉄粉、電解鉄粉、アトマイズ鉄粉の少なくともいずれかひとつの純鉄粉である請求項1記載の水素製造方法。   The hydrogen production method according to claim 1, wherein the iron is at least one pure iron powder of cast iron powder, reduced iron powder, electrolytic iron powder, and atomized iron powder. 前記鉄又は酸化鉄に、鉄以外の他の金属が添加されて前記反応容器内に収納されている請求項1記載の水素製造方法。   The hydrogen production method according to claim 1, wherein a metal other than iron is added to the iron or iron oxide and is stored in the reaction vessel. 前記鉄以外の他の金属が、チタン、ジルコニウム、バナジウム、ニオブ、クロム、モリブデン、アルミニウム、ガリウム、マグネシウム、スカンジウム、ニッケル、銅、ネオジムの少なくともいずれか1つである請求項3記載の水素製造方法。   The method for producing hydrogen according to claim 3, wherein the metal other than iron is at least one of titanium, zirconium, vanadium, niobium, chromium, molybdenum, aluminum, gallium, magnesium, scandium, nickel, copper, and neodymium. . 前記鉄以外の他の金属が、ロジウム、イリジウム、プラチナ、ルテニウム、パラジウムの少なくともいずれか1つである請求項3記載の水素製造方法。   The method for producing hydrogen according to claim 3, wherein the metal other than iron is at least one of rhodium, iridium, platinum, ruthenium, and palladium.
JP2004218305A 2004-07-27 2004-07-27 Method for producing hydrogen Pending JP2006036579A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004218305A JP2006036579A (en) 2004-07-27 2004-07-27 Method for producing hydrogen
PCT/JP2005/013611 WO2006011462A1 (en) 2004-07-27 2005-07-26 Method for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004218305A JP2006036579A (en) 2004-07-27 2004-07-27 Method for producing hydrogen

Publications (1)

Publication Number Publication Date
JP2006036579A true JP2006036579A (en) 2006-02-09

Family

ID=35786211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004218305A Pending JP2006036579A (en) 2004-07-27 2004-07-27 Method for producing hydrogen

Country Status (2)

Country Link
JP (1) JP2006036579A (en)
WO (1) WO2006011462A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023857A (en) * 2007-07-18 2009-02-05 Toyota Central R&D Labs Inc Hydrogen generation apparatus
JP2010120825A (en) * 2008-11-21 2010-06-03 Wakasawan Energ Kenkyu Center Circulation type hydrogen-producing method capable of regenerating spongy iron
DE102009036987A1 (en) * 2009-08-12 2011-02-17 Ernest Stangl Converting chemical energy into thermal and electrical energy, comprises supplying magnesium and/or magnesium alloy to a combustion chamber, oxidizing the magnesium in the combustion chamber, and supplying water to the combustion chamber
CN112467178A (en) * 2019-09-09 2021-03-09 钱志刚 Vehicle-mounted fuel cell hydrogen supply system taking iron powder as fuel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438939B (en) * 2009-05-25 2016-02-17 独立行政法人物质·材料研究机构 Hydrogen-generating material and manufacture method, method for preparing hydrogen and hydrogen producing apparatus
CN109019510A (en) * 2018-09-25 2018-12-18 上海涛川能源科技有限公司 A kind of hydrogen production process
CN111410169B (en) * 2020-04-21 2021-09-24 杭州氢源素生物科技有限公司 Electronic atomization device capable of producing hydrogen
CN111761037B (en) * 2020-07-10 2021-11-23 洛阳理工学院 Water-soluble organic film coated Mg-Ce alloy nano composite hydrogen production belt and preparation method thereof
EP3971323A1 (en) * 2020-09-17 2022-03-23 Antonio Sgro Hydrogen production from water and metallic scrap

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221202A (en) * 2002-01-30 2003-08-05 Honda Motor Co Ltd Hydrogen generating device
JP2004168583A (en) * 2002-11-19 2004-06-17 Uchiya Thermostat Kk Hydrogen generating apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221202A (en) * 2002-01-30 2003-08-05 Honda Motor Co Ltd Hydrogen generating device
JP2004168583A (en) * 2002-11-19 2004-06-17 Uchiya Thermostat Kk Hydrogen generating apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023857A (en) * 2007-07-18 2009-02-05 Toyota Central R&D Labs Inc Hydrogen generation apparatus
JP2010120825A (en) * 2008-11-21 2010-06-03 Wakasawan Energ Kenkyu Center Circulation type hydrogen-producing method capable of regenerating spongy iron
DE102009036987A1 (en) * 2009-08-12 2011-02-17 Ernest Stangl Converting chemical energy into thermal and electrical energy, comprises supplying magnesium and/or magnesium alloy to a combustion chamber, oxidizing the magnesium in the combustion chamber, and supplying water to the combustion chamber
DE102009036987B4 (en) * 2009-08-12 2017-10-05 Ernest Stangl Process and apparatus for converting chemical energy into thermal and electrical energy
CN112467178A (en) * 2019-09-09 2021-03-09 钱志刚 Vehicle-mounted fuel cell hydrogen supply system taking iron powder as fuel

Also Published As

Publication number Publication date
WO2006011462A1 (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP4858890B2 (en) Hydrogen production method and hydrogen supply apparatus
JP4128425B2 (en) Hydrogen generator
WO2006011462A1 (en) Method for producing hydrogen
WO2000048261A1 (en) Carbon monoxide converting apparatus for fuel cell and generating system of fuel cell
JP4185952B2 (en) Carbon monoxide removal catalyst, production method thereof, and carbon monoxide removal apparatus
US11795055B1 (en) Systems and methods for processing ammonia
KR101866500B1 (en) Hydrogen production rector including carbon monoxide removing unit
US7985704B2 (en) Method of regenerating absorbent
JP4112304B2 (en) Hydrogen generator
JP2005200266A (en) Reforming method, reformer, power generator and fuel vessel
JP3943902B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP4795741B2 (en) Nitrogen gas generator and fuel cell power generation system using the same
KR20190059638A (en) Catalytic combustor of a liquid fuel containing high water content
JP2004168583A (en) Hydrogen generating apparatus
JP4740563B2 (en) Hydrogen generator
KR101830954B1 (en) Hydrogen production system including unit for removal of carbon monoxide
JP4688477B2 (en) Method for producing hydrogen generating medium and method for producing hydrogen
JP4663095B2 (en) Hydrogen purification equipment
JP6516393B1 (en) Hydrogen generator and hydrogen filling device
JP2006062934A (en) Carbon monoxide selective methanation device, carbon monoxide shift reactor and fuel cell system
JP5086599B2 (en) Method for producing hydrogen-containing gas
US20240132346A1 (en) Systems and methods for processing ammonia
TWI469830B (en) Preparation of iron oxide-titania-supported nano-gold catalysts and its application on preferential oxidation of carbon monoxide in hydrogen stream
JP2009149762A (en) Fuel oil for hydrogen preparation, and hydrogen preparation using it
JP5117014B2 (en) Kerosene desulfurization agent, desulfurization method, and fuel cell system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101022