JPH07253413A - Internal defect ultrasonic flaw detecting method for joint connected with different type material - Google Patents

Internal defect ultrasonic flaw detecting method for joint connected with different type material

Info

Publication number
JPH07253413A
JPH07253413A JP6339100A JP33910094A JPH07253413A JP H07253413 A JPH07253413 A JP H07253413A JP 6339100 A JP6339100 A JP 6339100A JP 33910094 A JP33910094 A JP 33910094A JP H07253413 A JPH07253413 A JP H07253413A
Authority
JP
Japan
Prior art keywords
deep
joint
defect
ultrasonic
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6339100A
Other languages
Japanese (ja)
Inventor
Kazuyuki Tsutsumi
一之 堤
Takao Inoue
隆夫 井上
Hitoshi Uchiumi
仁 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6339100A priority Critical patent/JPH07253413A/en
Publication of JPH07253413A publication Critical patent/JPH07253413A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To provide a method for ultrasonic detection of an internal flaw of a join connected with a different type material which can identify not only presence or absence of the flaw but also a size. CONSTITUTION:The method for ultrasonic-detecting an internal flaw of a joint connected with a different type material comprises the steps of holding an incident probe 40 and a receiving probe 50 in predetermined attitudes at a predetermined interval between both the probes, detecting a flaw while moving the probes in a perpendicular direction to a connecting surface 30, comparing a strength of a received transmitted wave with a strength of a strength deciding pattern S formed based on a passed wave strength P measured by a joint having no flaw at the connecting surface and detecting a size of a defect based on the interval of the probe positions in which the strength of the measured transmitted wave becomes the strength or less of the pattern.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化学プラントや原子力
プラント等において配管される異種材管継手の接合の良
否および欠陥部の大きさの検出に用いて好適な異種継手
の超音波深傷方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic deep damage method for dissimilar joints, which is suitable for detecting the quality of joints of dissimilar material pipe joints to be piped in chemical plants, nuclear power plants, etc. Regarding

【0002】[0002]

【従来の技術】配管用継手の接合の良否および内部欠陥
の有無を検査するのに、超音波深傷方法が用いられる
が、異種材料からなる部材相互を接合した継手の場合、
接合界面では、無欠陥であっても、材料特性(音響イン
ピーダンス)が異なるために超音波の一部を反射し、斜
めに入射した超音波は一部屈折して透過する。
2. Description of the Related Art An ultrasonic deep-scratch method is used to inspect the quality of joints for pipes and the presence or absence of internal defects. In the case of joints in which members made of different materials are joined together,
At the bonding interface, even if there is no defect, a part of the ultrasonic wave is reflected because the material characteristics (acoustic impedance) are different, and the obliquely incident ultrasonic wave is partially refracted and transmitted.

【0003】このため、接合不良、疲労亀裂や腐食亀裂
等の鋭い先端を有する亀裂では、亀裂先端からの散乱波
と良好な接合面からの散乱波を分離して検出することが
困難となる。
Therefore, in a crack having a sharp tip such as a poor joint, a fatigue crack or a corrosion crack, it is difficult to detect the scattered wave from the crack tip and the scattered wave from a good joint surface separately.

【0004】また、管内表面からの反射波を用いる方法
では、管内表面に開口した亀裂の有無は検出することは
できるが、亀裂先端を検出できないため、亀裂の大きさ
を検出することは不可能である。
Further, in the method using the reflected wave from the inner surface of the pipe, it is possible to detect the presence or absence of a crack opened on the inner surface of the pipe, but it is impossible to detect the size of the crack because the tip of the crack cannot be detected. Is.

【0005】そこで、亀裂の大きさを検出可能な異種継
手の超音波深傷方法として、特開平3−6185号公報
に開示される反射法によるものが提案されている。
Then, as a method of ultrasonic deep scratches on a dissimilar joint capable of detecting the size of a crack, a method by the reflection method disclosed in JP-A-3-6185 has been proposed.

【0006】しかしながら、上記特開平3−6185号
公報に開示された方法を用いる場合は、反射面を得るた
めに、管継手の形状を、一方をフランジ型に、他方をコ
ーン型に製作しなければならないという制約がある。
However, in the case of using the method disclosed in the above-mentioned Japanese Patent Laid-Open No. 3-6185, in order to obtain a reflection surface, one of the pipe joints must be manufactured in a flange type and the other in a cone type. There is a constraint that it must be.

【0007】このような反射法に対比されるものとして
透過法によるものがある。図12は、透過法による超音
波深傷の1例を示す図である。同図において、10は管
材、20は管材10とは異なる材料からなる管材、30
は両管材の接合面、40は入射用超音波深触子、50は
受信用超音波深触子であり、両深触子40、50は図示
実線矢印方向へ移動する。
A transmission method is compared with the reflection method. FIG. 12 is a diagram showing an example of ultrasonic deep scratches by the transmission method. In the figure, 10 is a pipe material, 20 is a pipe material made of a material different from the pipe material 10, and 30
Is a joining surface of the two pipe materials, 40 is an incident ultrasonic deep probe, 50 is a receiving ultrasonic deep probe, and both deep probe 40, 50 move in the direction of the solid line arrow in the figure.

【0008】超音波深触子40から管材10表面に入射
した超音波は管材10の内周面で反射し、この反射波が
管材を透過して超音波深触子50で受信される。接合面
30の健全な部分を透過した透過波の強度と欠陥部分R
を透過した透過波の強度とに差異が生じるので、この差
異から、欠陥部Aを検出することができる。
The ultrasonic waves incident on the surface of the pipe member 10 from the ultrasonic deep probe 40 are reflected by the inner peripheral surface of the pipe member 10, and the reflected waves are transmitted through the pipe member and received by the ultrasonic deep probe 50. The intensity of the transmitted wave transmitted through the sound portion of the joint surface 30 and the defect portion R
Since there is a difference in the intensity of the transmitted wave that has passed through, the defect portion A can be detected from this difference.

【0009】[0009]

【発明が解決しようとする課題】ところが、上記したよ
うに、異種材料の接合面では、材料特性(音響インピー
ダンス)の相違から、超音波が屈折する。このため、入
射位置xA に対する受信位置xA ’との間隔と、入射位
置xB に対する受信位置xB ’との間隔が異なってく
る。焦点型の深触子を用いた場合には、受信位置xA
と受信位置xB ’の管材表面からの間隔LA 、LB に差
が生じる。
However, as described above, ultrasonic waves are refracted at the joint surface of different materials due to the difference in material characteristics (acoustic impedance). Therefore, 'the distance between the receiving position x B with respect to the incident position x B' reception position x A for the incident position x A interval differs between. When a focus type deep probe is used, the reception position x A '
And a distance L A , L B from the surface of the pipe material at the receiving position x B 'has a difference.

【0010】これらの位置は、理論上は計算可能である
が、深触子の位置制御が煩雑となり、実用的ではない。
Although these positions can be calculated theoretically, it is not practical because the position control of the deep probe becomes complicated.

【0011】本発明は上記問題を解決するためになされ
たもので、入射用と受信用の深触子を特定間隔かつ特定
姿勢に保持したまま継手表面を超音波走査し、当該走査
により得られた透過波強度のデータを処理するだけで、
異種継手の内部欠陥の有無だけでなく大きさも知ること
ができる異種材を接合した継手の内部欠陥超音波深傷方
法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and is obtained by ultrasonically scanning the joint surface while holding the incident and receiving deep contactors at a specific interval and in a specific posture. By processing the transmitted wave intensity data,
An object of the present invention is to provide a method for deep flaw ultrasonic damage of a joint in which dissimilar materials are joined, in which not only the presence / absence of internal defects in the dissimilar joint but also the size thereof can be known.

【0012】[0012]

【課題を解決するための手段】本発明は上記目的を達成
するため、請求項1では、異種材料からなる部材相互を
接合した継手の表面から超音波伝播媒体を介し超音波を
入射し上記接合面を透過した上記超音波伝播媒体を介し
受信した透過波の強度から上記継手の欠陥部を深傷する
超音波深傷において、(a)入射用の深触子と受信用の
深触子をそれぞれ所定の姿勢にかつ両深触子相互を所定
間隔に保持して上記接合面に対し直角方向に移動させ、
(b)受信した透過波の強度を、健全接合面を有する標
準継手で計測した透過波強度に基づき作成した判定用強
度パターンの強度と比較し、(c)上記計測した透過波
の強度が上記判定用強度パターンの強度以下となる深触
子位置に基づき上記欠陥部の大きさを検出する、構成と
した。
In order to achieve the above object, the present invention provides, in claim 1, an ultrasonic wave from a surface of a joint in which members made of different materials are joined to each other through an ultrasonic wave propagating medium. In the ultrasonic deep scratch that deeply scratches the defective portion of the joint from the intensity of the transmitted wave that has been transmitted through the surface and transmitted through the ultrasonic propagation medium, (a) a deep probe for incidence and a deep probe for reception are provided. Each of them is held in a predetermined posture and both deep contact elements are held at a predetermined interval and moved in a direction perpendicular to the joint surface,
(B) The intensity of the received transmitted wave is compared with the intensity of the determination intensity pattern created based on the intensity of the transmitted wave measured by the standard joint having a sound joint surface, and (c) the intensity of the measured transmitted wave is as described above. The size of the defective portion is detected based on the depth of the probe that is less than or equal to the strength of the determination strength pattern.

【0013】請求項2では、所定の姿勢は、両部材の音
速と超音波伝播媒体の音速に基づき求めた姿勢であり、
所定の間隔は、上記両部材の音速、超音波伝播媒体の音
速、深触子の焦点距離および継手板厚に基づき求めた間
隔であることを特徴とする。請求項3では、強度判定パ
ターンの強度は、接合面に欠陥の無い継手で計測した透
過波強度の1/2であることを特徴とする。
According to a second aspect of the present invention, the predetermined posture is a posture obtained based on the sound velocity of both members and the sound velocity of the ultrasonic wave propagating medium,
The predetermined interval is characterized in that it is an interval determined based on the speed of sound of both members, the speed of sound of the ultrasonic wave propagation medium, the focal length of the deep probe, and the joint plate thickness. According to a third aspect of the present invention, the intensity of the intensity determination pattern is 1/2 of the intensity of the transmitted wave measured by the joint having no defect on the joint surface.

【0014】請求項では、異種材料からなる部材相互を
接合した継手の表面から超音波伝播媒体を介し超音波を
入射し次いで上記超音波伝播媒体を介し受信して上記継
手の欠陥部を深傷する超音波深傷であって、入射及び受
信兼用の第1深触子と受信用の第2深触子をそれぞれ所
定の姿勢にかつ両深触子相互を所定間隔に保持し、
(a)上記第1、第2深触子を上記接合面と平行に移動
させ、上記第1深触子で入射した超音波の反射波を同じ
上記第1深触子で受信し、上記反射波の強度から欠陥の
有無を検出し、(b)欠陥が検出されると、上記第1、
第2深触子を上記接合面に対し直角方向に移動させ、上
記第1深触子で入射した超音波の透過波を上記第2深触
子で受信し、上記透過波の強度から上記欠陥深さの大き
さを検出する構成とした。
According to the present invention, ultrasonic waves are incident from the surface of the joint in which members made of different materials are joined to each other through the ultrasonic wave propagating medium, and then received through the ultrasonic wave propagating medium to deeply scratch the defective portion of the joint. In the ultrasonic deep wound, the first deep contactor for both incidence and reception and the second deep contactor for reception are held in predetermined postures and both deep contactors are held at predetermined intervals,
(A) The first and second deep contactors are moved in parallel with the joint surface, the reflected waves of the ultrasonic waves incident on the first deep contactor are received by the same first deep contactor, and the reflected light is reflected. The presence or absence of a defect is detected from the wave intensity, and (b) when the defect is detected, the first,
The second deep contactor is moved in a direction perpendicular to the joint surface, the transmitted wave of the ultrasonic wave incident on the first deep contactor is received by the second deep contactor, and the defect is determined from the intensity of the transmitted wave. The configuration is such that the depth is detected.

【0015】請求項5では、異種材料からなる部材相互
を接合した継手の表面から超音波伝播媒体を介し超音波
を入射し次いで上記超音波伝播媒体を介し受信して上記
継手の欠陥部を深傷する超音波深傷であって、入射及び
受信兼用の第1深触子と受信用の第2深触子をそれぞれ
所定の姿勢にかつ両深触子相互を所定間隔に保持し、
(a)上記第1、第2深触子を上記接合面と平行に移動
させ、上記第1深触子で入射した超音波の反射波を同じ
上記第1深触子で受信し、上記反射波の強度から欠陥の
有無を検出し、(b)欠陥が検出されると、接合面に欠
陥が無い継手で計測した反射波と比較して表面からの欠
陥深さを検出し、(c)上記欠陥深さが所定値を越える
と、上記第1、第2深触子を上記接合面に対し直角方向
に移動させ、上記第1深触子で入射した超音波の透過波
を上記第2深触子で受信し、上記透過波の強度から上記
欠陥深さの大きさを検出する構成とした。
According to a fifth aspect of the present invention, ultrasonic waves are incident from the surface of the joint in which members made of different materials are joined to each other through the ultrasonic wave propagating medium and then received through the ultrasonic wave propagating medium to deepen the defective portion of the joint. An ultrasonic deep wound that is damaged, in which the first deep contactor for both incidence and reception and the second deep contactor for reception are held in predetermined postures, and both deep contactors are held at predetermined intervals.
(A) The first and second deep contactors are moved in parallel with the joint surface, the reflected waves of the ultrasonic waves incident on the first deep contactor are received by the same first deep contactor, and the reflected light is reflected. The presence or absence of a defect is detected from the wave intensity, and (b) when the defect is detected, the depth of the defect from the surface is detected by comparing with the reflected wave measured by the joint having no defect on the joint surface, (c) When the defect depth exceeds a predetermined value, the first and second deep contactors are moved in a direction perpendicular to the joint surface, and the transmitted wave of the ultrasonic wave incident on the first deep contactor is changed to the second depth. The structure is such that the depth of the defect is detected from the intensity of the transmitted wave received by the deep probe.

【0016】[0016]

【作用】請求項1〜3記載の発明では、入射用の深触子
と受信用の深触子の位置を個別に制御することなく、接
合面に対して直角方向に移動させるだけで、欠陥の大き
さを特定できる。また、強度判定パターンを用い、計測
した透過波強度を当該強度判定パターンと比較し、比較
結果をデータ処理して、欠陥の有無と大きさを検知す
る。
According to the invention described in claims 1 to 3, the defect can be obtained by simply moving the incident deep contact element and the receiving deep contact element in the direction perpendicular to the joint surface without individually controlling the positions. The size of can be specified. Further, the intensity determination pattern is used to compare the measured transmitted wave intensity with the intensity determination pattern, and the comparison result is subjected to data processing to detect the presence and size of a defect.

【0017】請求項4記載の発明では、まず、特例配列
の第1、第2深触子を接合面に沿って移動させ、第1深
触子による反射法で表面に至る重要な欠陥の有無を検出
し、次いで、この特例配列の第1、第2深触子を欠陥が
ある位置で接合面に対して垂直に移動させ、第1、第2
深触子による透過法で内部に至る欠陥の長さを検出す
る。
In the invention according to claim 4, first, the first and second deep contactors of the special arrangement are moved along the joint surface, and the presence or absence of an important defect reaching the surface by the reflection method by the first deep contactor. Is detected, and then the first and second deep contactors of this special arrangement are moved perpendicularly to the joint surface at the position where there is a defect, and the first and second
The length of the defect reaching the inside is detected by the transmission method using a deep probe.

【0018】請求項5記載の発明では、第1、第2深触
子による透過法による欠陥長さの検出は表面に至る短い
欠陥に対しては不適である反面、第1深触子による反射
法によって表面に至る短い欠陥の長さを特定できること
に着目し、この反射法によって検出可能な所定値を越え
ると、第1、第2深触子による透過法で内部に至る欠陥
の長さを検出するすることで、表面からの短い欠陥から
長い欠陥まで検出できる。
According to the fifth aspect of the invention, the detection of the defect length by the transmission method using the first and second deep contact elements is not suitable for a short defect reaching the surface, but the reflection by the first deep contact element is not suitable. Focusing on the fact that it is possible to specify the length of a short defect reaching the surface by the method, and when a predetermined value that can be detected by this reflection method is exceeded, the length of the defect reaching the inside by the transmission method using the first and second deep contact elements By detecting, short defects from the surface to long defects can be detected.

【0019】[0019]

【実施例】以下、本発明の実施例を図1を参照して説明
する。まず、透過法による欠陥の長さ検出の場合を説明
し、次に透過法と反射法の組み合わせによる欠陥長さ検
出の場合を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG. First, the case of defect length detection by the transmission method will be described, and then the case of defect length detection by the combination of the transmission method and the reflection method will be described.

【0020】図1において、10は管材、20は管材1
0とは異なる材料からなる管材、30は両管材の接合界
面、30Rは接合界面にできた欠陥部、40は入射用超
音波深触子、50は受信用超音波深触子であり、両深触
子40、50は後述する姿勢を保持して図示しない駆動
機構により、実線矢印方向へ駆動される。60は超音波
伝播媒体(この例では、水)であり、深触子40、50
と管材10、20との間を満たしている。
In FIG. 1, 10 is a pipe material and 20 is a pipe material 1.
A pipe material made of a material different from 0, 30 is a joint interface of both pipe materials, 30R is a defective portion formed at the joint interface, 40 is an incident ultrasonic deep probe, and 50 is a receiving ultrasonic deep probe. The deep contactors 40, 50 are driven in the direction of the solid line arrow by a driving mechanism (not shown) while maintaining the posture described later. Reference numeral 60 denotes an ultrasonic wave propagating medium (water in this example).
And the pipe materials 10 and 20 are filled.

【0021】当該図で、θ40は入射用超音波深触子40
の姿勢(傾き角度)、L40は入射用超音波深触子40と
管材10表面との間隔(管材半径方向距離)、θ50は受
信用超音波深触子50の姿勢(傾き角度)、L50は受信
用超音波深触子と管材10表面との間隔(管材半径方向
距離)である。また、W40は接合界面30と入射用超音
波深触子40との初期軸方向距離、W50は接合界面30
と受信用超音波深触子50との初期軸方向距離である。
In the figure, θ 40 is the ultrasonic probe for incidence 40
L 40 is the distance between the entrance ultrasonic deep probe 40 and the surface of the pipe material 10 (distance in the radial direction of the pipe material), θ 50 is the attitude (tilt angle) of the reception ultrasonic deep probe 50, L 50 is the distance (distance in the radial direction of the pipe material) between the receiving ultrasonic probe and the surface of the pipe material 10. Further, W 40 is the initial axial distance between the bonding interface 30 and the ultrasonic deep probe 40 for incidence, and W 50 is the bonding interface 30.
And an initial axial distance between the ultrasonic wave deep probe 50 for reception.

【0022】この数値L40、θ40、W40およびL50、θ
50、W50は下記(1)〜(3)式により求めた値であ
る。
These numerical values L 40 , θ 40 , W 40 and L 50 , θ
50 and W 50 are values obtained by the following equations (1) to (3).

【0023】 40=d+L40・sinθ40、W50=d+L50・sin
θ50 ・・・(3) ここで、CW ;水の音速 CS40 ;管材10の横波音速 CS50 ;管材20の横波音速 L;深触子40、50の媒体中での焦点距離 d;継手の厚さ 本実施例においては、深触子40、50を管軸X方向に
移動させつつ、深触子50で受信した透過波の強度Qを
計測し、この強度Qを予め設定した判定パターン(図3
に、符号Sで示す)の強度dBS と比較する。
[0023]  W40= D + L40・ Sin θ40, W50= D + L50・ Sin
θ50 ... (3) where CW; Speed of sound of water CS40; Transverse wave sound velocity C of pipe 10S50The transverse wave sound velocity L of the pipe member 20; the focal length of the deep contactors 40, 50 in the medium d; the thickness of the joint.
While moving, the intensity Q of the transmitted wave received by the deep probe 50
A determination pattern in which the intensity Q is measured and set in advance (see FIG.
To the intensity dB).SCompare with.

【0024】この強度判定パターンSは、図4は、接合
界面30が完全に健全な健全継手で計測した透過波の強
度パターン(Pで示す)を示したもので、当該強度パタ
ーンPの強度よりも、所定強度低い(この例では、6d
B)強度の強度パターンSを上記強度判定パターンとし
て設定する。この6dBは、強度パターンPの1/2の
値である。
This strength judgment pattern S shows the strength pattern (indicated by P) of the transmitted wave measured at a sound joint in which the joint interface 30 is perfectly sound. Is lower by a predetermined intensity (6d in this example)
B) The intensity pattern S of intensity is set as the intensity determination pattern. This 6 dB is half the value of the intensity pattern P.

【0025】接合界面30に、欠陥部があると、欠陥部
を通過する間は、図3に示す如く、透過波強度Qが低下
する。
If the bonding interface 30 has a defective portion, the transmitted wave intensity Q decreases as shown in FIG. 3 while passing through the defective portion.

【0026】図2に示す如く、接合面30に欠陥部30
Rがあると、透過波強度Qは、深触子40が位置
40-1、X40-2間にある時(深触子50が位置X50-1
50-2間にある時)、強度判定パターンSの強度より低
下し、更に、深触子40が位置X40-3、X40-4間にある
時(深触子50が位置X50-3、X50-4間にある時)、強
度判定パターンSの強度より低下する。
As shown in FIG. 2, the defective portion 30 is formed on the joint surface 30.
When there is R, the transmitted wave intensity Q is when the deep probe 40 is between the positions X 40-1 and X 40-2 (when the deep probe 50 is at the position X 50-1 ,
When it is between X 50-2 ), the strength is lower than the strength of the strength determination pattern S, and when the deep contact element 40 is between positions X 40-3 and X 40-4 (deep contact element 50 is at position X 50). -3 , X 50-4 )), the strength is lower than the strength of the strength determination pattern S.

【0027】このことから、接合面30に欠陥部30R
があることがわかる。
From this fact, the defective portion 30R is formed on the joint surface 30.
You can see that there is.

【0028】本実施例では、透過波強度Qが、判定パタ
ーンSの強度より低下した時の深触子位置X40-1、X
50-1、X40-2、X50-2と欠陥部30Rを通過して判定パ
ターンSの強度より大きくなった時の深触子位置
40-3、X50-3、X40-4、X50-4との間隔X50-1〜X
50-2(X40-1〜X40-2)、X50-3〜X50-3(X40-3〜X
40-3)、〔図5に示す半値幅;20log(1/2)=
−6.02〕を求め、この半値幅1と2との合計の1/
2を欠陥部30Rの管厚み方向の長さと推定する。
In this embodiment, when the transmitted wave intensity Q is lower than the intensity of the judgment pattern S, the deep probe positions X 40-1 , X 40-1 , X
50-1 , X 40-2 , X 50-2 and the depth of the contact point X 40-3 , X 50-3 , X 40-4 when the strength of the judgment pattern S becomes greater than that of the judgment pattern S after passing through the defect portion 30R. , X 50-4 and X 50-1 to X
50-2 (X 40-1 to X 40-2 ), X 50-3 to X 50-3 (X 40-3 to X
40-3 ), [half-width shown in FIG. 5; 20 log (1/2) =
-6.02] is obtained and 1 / of the sum of the half widths 1 and 2 is calculated.
2 is estimated to be the length of the defective portion 30R in the pipe thickness direction.

【0029】次に、本発明者が行った試験について説明
する。
Next, the test conducted by the present inventor will be described.

【0030】(1)試験1 供試体;SUS304Lの管材10と、Ti−5Taの
管材20からなる継手供試体の欠陥部;管内面から接合
境界面に、深さ0.5mm、1.0mm、1.5mm、
2.0mm、2.0mmの人工欠陥部を作った。また軸
方向繰り返し荷重で、管内面から疲労亀裂を進展させ
た。
(1) Test 1 Specimen: Defective part of a joint specimen consisting of SUS304L pipe 10 and Ti-5Ta pipe 20; depths of 0.5 mm and 1.0 mm from the inner surface of the pipe to the joint interface. 1.5 mm,
Artificial defects of 2.0 mm and 2.0 mm were made. Fatigue cracks propagated from the inner surface of the pipe by repeated axial load.

【0031】音速として、 水の音速(Cw)1480m/sec SUS304Lの管材の音速(Cs1 );3260m/
sec Ti−5Taの管材の音速(Cs2 );3010m/s
ec 継手厚み;5mm 焦点距離;25mm を与えて、前記(1)〜(3)式に代入し、 L40=9.42mm θ40=18.7° W40=8.02mm L50=10.62mm θ50=20.3° W50=8.68mm を得た。
As the speed of sound, the speed of sound of water (Cw) is 1480 m / sec. The speed of sound of the pipe material of SUS304L (Cs 1 ); 3260 m /
sec Ti-5Ta sound velocity of pipe material (Cs 2 ); 3010 m / s
ec Joint thickness: 5 mm Focal length: 25 mm is given and substituted into the above formulas (1) to (3), L 40 = 9.42 mm θ 40 = 18.7 ° W 40 = 8.02 mm L 50 = 10. 62 mm θ 50 = 20.3 ° W 50 = 8.68 mm was obtained.

【0032】本発明を実施した試験結果を表1に示す。
なお、疲労亀裂の深さは、断面を切断して判定した。
Table 1 shows the test results of the practice of the present invention.
The depth of the fatigue crack was determined by cutting the cross section.

【0033】[0033]

【表1】 [Table 1]

【0034】表1から明らかなように、半値幅の1/2
の値が欠陥部の大きさ(長さもしくは深さ)に極めて近
似している。
As is clear from Table 1, the half-width is 1/2
The value of is very close to the size (length or depth) of the defect.

【0035】(2)試験2 表2は、図6に示すように、接合界面にインサート材3
0INが有る場合を示す。
(2) Test 2 Table 2 shows that as shown in FIG.
The case where there is 0IN is shown.

【0036】[0036]

【表2】 [Table 2]

【0037】この表2から明らかなように、半値幅の1
/2の値が、欠陥部の大きさ(長さ若しくは深さ)に極
めて近似している。
As is clear from Table 2, the half-value width of 1
The value of / 2 is very close to the size (length or depth) of the defect.

【0038】(3)試験3 表3は、インサート材が無い継手の内部欠陥の欠陥長さ
を検出するために行った試験結果の1例を示す表であ
る。
(3) Test 3 Table 3 is a table showing an example of the result of the test conducted to detect the defect length of the internal defect of the joint having no insert material.

【0039】供試体としては、試験1で用いた継手の接
合時に、接合面に剥離材を挿入し、接合界面の内部に、
直径1.0mm、2.0mmの円形状の人工欠陥を形成
した。他の条件は、試験1の場合と同じである。
As the test piece, at the time of joining the joint used in Test 1, a release material was inserted into the joint surface, and inside the joint interface,
A circular artificial defect having a diameter of 1.0 mm and 2.0 mm was formed. The other conditions are the same as those in Test 1.

【0040】表3は、円形状の人工欠陥の中央断面で判
定した結果である。
Table 3 shows the results of judgment on the central cross section of the circular artificial defect.

【0041】[0041]

【表3】 [Table 3]

【0042】この表3から明らかなように、本発明は、
継手の内部欠陥の大きさも知ることができる。
As is apparent from Table 3, the present invention is
The size of the internal defect of the joint can also be known.

【0043】ところで、上述方法によって、継手の内部
欠陥を接合面の全体についてくまなく探傷しようとする
と、接合面に直角な方向で往復動させながら、接合面に
沿って少しずつ移動させることになり、深触子を移動さ
せる距離が長くなり、探知に要する時間が長くなる。と
ころで、欠陥の内で重要なものは表面に至る欠陥であ
り、この欠陥を簡単に探知し、欠陥の位置で接合面に直
角な方向に移動させて、欠陥の表面からの長さを特定す
ることが有効である。
By the way, if the internal defects of the joint are to be thoroughly inspected for the entire joint surface by the above-mentioned method, the joint surface is gradually moved along the joint surface while reciprocating in the direction perpendicular to the joint surface. , The distance to move the deep probe becomes long, and the time required for detection becomes long. By the way, the most important defect is a defect that reaches the surface, and this defect is easily detected, and the length from the surface of the defect is specified by moving the defect in the direction perpendicular to the bonding surface at the position of the defect. Is effective.

【0044】このような知見に基づいて、図1における
深触子40を入射及び受信兼用として、これ単独で反射
法による欠陥探知が可能な構成にする。その具体例を図
7に示す、第1深触子140と第2深触子150との配
置関係は図1と同じであり、第1、第2深触子140,
150の姿勢と間隔の選定は図1で説明したものと同様
になっている。ただ、第1深触子140が入射及び受信
兼用であって、反射法で表面に至る欠陥を検出できるよ
うになっている点が異なる。すなわち、第1深触子14
0を入射用に切替え、第2深触子150を受信用に切り
替えると(第1モード)、図1の透過法探傷が可能であ
り、第1深触子140を入射及び受信用に切替え、第2
深触子150をオフに切り換えると(第2モード)、第
1深触子140による反射法探傷が可能になる。
Based on such knowledge, the deep probe 40 in FIG. 1 is used for both incidence and reception, and a structure capable of detecting a defect by the reflection method by itself is constructed. A specific example thereof is shown in FIG. 7, in which the positional relationship between the first deep probe 140 and the second deep probe 150 is the same as in FIG. 1, and the first and second deep probe 140,
The selection of the posture and interval of 150 is similar to that described in FIG. However, it is different in that the first deep contactor 140 is used for both incidence and reception and is capable of detecting a defect reaching the surface by a reflection method. That is, the first deep contactor 14
When 0 is switched for incidence and the second deep probe 150 is switched for reception (first mode), the transmission method flaw detection in FIG. 1 is possible, and the first deep probe 140 is switched for incidence and reception. Second
When the deep probe 150 is switched off (second mode), the reflection method flaw detection by the first deep probe 140 becomes possible.

【0045】図7の第1、第2深触子140,150を
上述した第2モードに切替え、管材10の接合面30に
沿って図示の矢印α(管材の周方向)のように回転させ
ると、表面に至る欠陥30Rを検出することができる。
その状態を図8に示す。角度α1→α2の範囲には欠陥
がなく、角度α2→α3→α4の範囲で欠陥があり、角
度α4→α5の範囲には欠陥がないとする。欠陥がない
範囲では、第1深触子140で受信する反射波の強度は
図9のSのように略一定で変化がない。欠陥がある範囲
では、第1深触子140で受信する反射波の強度は図1
0ののように突出部分Qが検出され、この突出部分Qの
存在で表面に至る欠陥の存在が特定できる。すると、突
出部Fが検出された位置(図8の角度α2→α3→α4
の範囲)で、第1、第2深触子140,150を上述し
た第1モードに切替え、第2図のように、接合面30と
直角な方向に第1、第2深触子140,150を必要に
応じて数回往復移動させると、図8の欠陥30Rの表面
からの長さを特定することができる。
The first and second deep contactors 140 and 150 in FIG. 7 are switched to the above-described second mode and rotated along the joint surface 30 of the pipe material 10 as shown by an arrow α (circumferential direction of the pipe material). Then, the defect 30R reaching the surface can be detected.
The state is shown in FIG. It is assumed that there is no defect in the range of angle α1 → α2, there is a defect in the range of angle α2 → α3 → α4, and there is no defect in the range of angle α4 → α5. In the range where there is no defect, the intensity of the reflected wave received by the first deep probe 140 is substantially constant and does not change as shown by S in FIG. In the range where there is a defect, the intensity of the reflected wave received by the first deep probe 140 is as shown in FIG.
The protruding portion Q is detected like 0, and the existence of a defect reaching the surface can be specified by the existence of the protruding portion Q. Then, the position where the protrusion F is detected (angle α2 → α3 → α4 in FIG. 8) is detected.
Range), the first and second deep contactors 140, 150 are switched to the above-mentioned first mode, and as shown in FIG. 2, the first and second deep contactors 140, When the 150 is moved back and forth several times as necessary, the length from the surface of the defect 30R in FIG. 8 can be specified.

【0046】このように、深触子一個の反射法と深触子
二個の透過法とを切り換えて用いると、まず、深触子一
個の反射法で接合面に沿って(管材であると周方向)探
傷し、欠陥を検出した位置で深触子二個の透過法に切替
え、接合面に垂直に(管材であると軸方向)探傷するこ
とで、反射法で特定不可能な長い欠陥の長さを透過法で
特定できる。この場合、深触子の移動は、接合面に沿っ
た移動と部分的な接合面に垂直な移動との組み合わせに
なって、深触子が移動すべき距離を短くし、欠陥の探傷
に要する時間を短縮させることができる。
As described above, when the reflection method using one deep contact element and the transmission method using two deep contact elements are switched and used, first, the reflection method using one deep contact element along the joint surface ( Long flaws that cannot be identified by the reflection method by performing flaw detection in the circumferential direction and switching to the penetration method with two deep probes at the position where the flaw is detected, and by flaw detection perpendicular to the joint surface (axial direction when it is a pipe material). Can be specified by the transmission method. In this case, the movement of the deep probe is a combination of the movement along the joint surface and the movement perpendicular to the partial joint surface, which shortens the distance that the deep probe must move and is required for flaw detection. The time can be shortened.

【0047】ところで、図10の反射波強度の変化で欠
陥の有無は検出できるが、欠陥の表面からの長さは特定
できない。この長さを透過法で行うわけであるが、透過
法にも欠点があることが判明した。透過法では厚み方向
の欠陥長さを検出するのに適しているが、表面に至る短
い欠陥の場合、その長さを特定することが困難である
る。逆に、表面に至る短い欠陥を上述した反射法で検出
することができることが判明した。
By the way, the presence or absence of a defect can be detected by the change in the intensity of the reflected wave in FIG. 10, but the length from the surface of the defect cannot be specified. Although this length is determined by the transmission method, it has been found that the transmission method also has drawbacks. The transmission method is suitable for detecting the defect length in the thickness direction, but in the case of a short defect reaching the surface, it is difficult to specify the length. On the contrary, it was found that short defects reaching the surface can be detected by the above-mentioned reflection method.

【0048】反射法で欠陥長さを特定するためには、同
じ形状のサンプルを用いて健全部の反射波の平均強度S
を測定し、この平均強度Sに対する被測定物の反射波強
度Qの比を算出する。すると、図11のように、欠陥深
さDが表面部分から短い場合には、D=a・Q/S+b
の一次式で欠陥深さDを検出できる測定可能範囲が存在
することが判る。
In order to specify the defect length by the reflection method, a sample having the same shape is used, and the average intensity S of the reflected wave in the sound portion is used.
Is measured, and the ratio of the reflected wave intensity Q of the measured object to the average intensity S is calculated. Then, as shown in FIG. 11, when the defect depth D is shorter than the surface portion, D = a · Q / S + b
It can be seen that there is a measurable range in which the defect depth D can be detected by the linear expression.

【0049】すなわち、第1深触子140を入射・受信
として用い、反射波で欠陥が検出されると、接合面に欠
陥かない継手で計測した反射波の平均強度と比較し、所
定の測定可能範囲にある欠陥深さ(表面からの長さ)を
特定できる。しかし、所定の測定可能範囲を越えると、
反射法での欠陥深さの特定ができなくなる(図11のよ
うに急激な立ち上がりになっているため)。
That is, when the first deep contactor 140 is used for incidence / reception and a defect is detected in the reflected wave, it is compared with the average intensity of the reflected wave measured in the joint having no defect on the joint surface, and a predetermined measurement can be performed. The defect depth (length from the surface) within the range can be specified. However, if it exceeds the predetermined measurable range,
It becomes impossible to specify the defect depth by the reflection method (because of the sharp rise as shown in FIG. 11).

【0050】そこで、反射法で検出された欠陥が所定長
さを越えると、図7の第1、第2深触子140,150
を第1モードに切替え、図1の状態にする。そして、欠
陥の付近で図2のように第1、第2深触子140,15
0を接合面に垂直な方向に移動させて欠陥深さを特定す
る。このように、欠陥深さが短い場合は第2モードの反
射法で欠陥位置と欠陥長さを特定し、欠陥深さが長い場
合は第1モードの透過法で欠陥長さを特定すると、広範
囲にわたる欠陥の有無とその長さを短時間で検出でき
る。
Therefore, when the defect detected by the reflection method exceeds a predetermined length, the first and second deep contactors 140, 150 of FIG.
Is switched to the first mode and brought into the state shown in FIG. Then, in the vicinity of the defect, as shown in FIG. 2, the first and second deep contactors 140, 15
The defect depth is specified by moving 0 in the direction perpendicular to the joint surface. As described above, when the defect depth is short, the defect position and the defect length are specified by the second mode reflection method, and when the defect depth is long, the defect length and the defect length are specified by the first mode transmission method. It is possible to detect the presence or absence of defects and their length in a short time.

【0051】次に、本発明者が第1、第2深触子14
0,150を第2モードの反射法にして欠陥検出を行っ
た試験について説明する。
Next, the present inventor has made the first and second deep contactors 14
A test in which 0 and 150 are used as the second mode reflection method to detect defects will be described.

【0052】(3)試験3 供試体;SUS304Lの管材10と、Ti−5Taの
管材20からなる継手を用いた 供試体の欠陥部;管内面から接合境界面に、深さ0.5
mm、1.0mm、1.5mm、2.0mmの半円状の
人工欠陥部を作った。 超音波入射側管材;SUS304L(Ti−5Taより
音響インピーダンス小であるため)
(3) Test 3 Specimen: Specimen using a joint composed of SUS304L pipe 10 and Ti-5Ta pipe 20 Defective part of the test specimen;
Semicircular artificial defect portions of mm, 1.0 mm, 1.5 mm, and 2.0 mm were made. Ultrasonic wave incident side tube material: SUS304L (because of smaller acoustic impedance than Ti-5Ta)

【0053】音速として、 水の音速(Cw)1480m/sec SUS304Lの管材の音速(Cs1 );3260m/
sec Ti−5Taの管材の音速(Cs2 );3010m/s
ec 継手厚み;5mm 焦点距離;25mm を与えて、前記(1)〜(2)式に代入し、 L40=9.42mm θ40=18.7° W40=8.02mm を得た。
As the speed of sound, the speed of sound of water (Cw) is 1480 m / sec. The speed of sound of the pipe material of SUS304L (Cs 1 ); 3260 m /
sec Ti-5Ta sound velocity of pipe material (Cs 2 ); 3010 m / s
ec Joint thickness: 5 mm Focal length: 25 mm was given and substituted into the above formulas (1) to (2) to obtain L 40 = 9.42 mm θ 40 = 18.7 ° W 40 = 8.02 mm.

【0054】はじめに、第2モードで反射法による探傷
を行ったところ平均反射強度Sより反射強度Qが高くな
る部位が検出された。反射強度が高い角度範囲Δαか
ら、それぞれの位置における欠陥の幅(管最内面)Wn
を求め、測定後に界面部の切断面から測定した欠陥幅と
比較した。その結果を表4に示す。
First, when flaw detection was performed by the reflection method in the second mode, a portion where the reflection intensity Q was higher than the average reflection intensity S was detected. From the angular range Δα where the reflection intensity is high, the width of the defect at each position (innermost surface of the tube) Wn
Was measured and compared with the defect width measured from the cut surface of the interface after the measurement. The results are shown in Table 4.

【0055】[0055]

【表4】 [Table 4]

【0056】表4から明らかなように、第2モードの入
射・受信(送受信)兼用の深触子を、管周方向に駆動さ
せながら反射波を測定するだけで、管内面部の界面欠陥
を簡便に測定できることが確認された。
As is clear from Table 4, the interface defect on the inner surface of the tube can be simply measured by measuring the reflected wave while driving the deep contact element for both incident / reception (transmission / reception) of the second mode in the tube circumferential direction. It was confirmed that it can be measured.

【0057】さらに、上記欠陥部について、第1モード
に切り替え、入射用深触子と受信用深触子と透過法で欠
陥深さを求めた結果を表5に示す。
Further, with respect to the above-mentioned defective portion, Table 5 shows the results obtained by switching the mode to the first mode, and determining the defect depth by the incident deep probe, the deep probe for reception and the transmission method.

【0058】[0058]

【表5】 [Table 5]

【0059】表5から明らかなように、欠陥部分につい
て第1モードによる探傷を行い、半値幅1/2を適用す
ることで、欠陥深さを精度良く測定することができる。
As is clear from Table 5, the defect depth can be accurately measured by performing flaw detection in the first mode on the defect portion and applying the half-width ½.

【0060】(4)試験4 図6に示すように、接合界面にインサート材301Nが
ある場合も上記試験1と同様の結果が得られる。また、
予め他の接合管継手を用い、図11に示した検定曲線か
ら、欠陥深さDに関する下記の式がこの実験例で成り立
つことを確かめた。 D=0.87×(Q/S)+0.65 この式を用いて得られた測定欠陥深さと人工欠陥深さ
(断面切断後実測)を表6に示した。
(4) Test 4 As shown in FIG. 6, the same results as in Test 1 can be obtained when the insert material 301N is present at the joint interface. Also,
It was confirmed in advance that the following equation relating to the defect depth D was established in this experimental example from the verification curve shown in FIG. 11 using other jointed pipe joints. D = 0.87 × (Q / S) +0.65 Table 6 shows the measured defect depth and the artificial defect depth (measured after cross-section cutting) obtained by using this formula.

【0061】[0061]

【表6】 [Table 6]

【0062】この表6から明らかなように、図11に示
した所定の測定可能範囲であれば、反射法による超音波
探傷によって欠陥深さを測定することができる。
As is clear from Table 6, the defect depth can be measured by ultrasonic flaw detection by the reflection method within the predetermined measurable range shown in FIG.

【0063】[0063]

【発明の効果】請求項1〜3記載の発明は以上説明した
通り、強度判定パターンを用い、計測した透過波強度を
当該強度判定パターンと比較し、比較結果をデータ処理
して、欠陥部の有無と大きさを検知するが、実欠陥部の
大きさに極めて近似した値を得ることができる。しか
も、入射用の深触子の姿勢および間隔を特定の姿勢・間
隔に保持して移動させるので、深触子の駆動系は、簡便
で実用的な駆動系で済む利点がある。
As described above, the invention according to claims 1 to 3 uses the intensity determination pattern, compares the measured transmitted wave intensity with the intensity determination pattern, and processes the comparison result to process the defective portion. Although the presence and the size are detected, a value extremely close to the size of the actual defect portion can be obtained. Moreover, since the attitude and the interval of the deep probe for incidence are moved while maintaining the specific attitude and interval, the drive system of the deep probe has the advantage of being a simple and practical drive system.

【0064】請求項4記載の発明は以上説明した通り、
第1及び第2深触子を反射法及び透過法に切り替え可能
に設け、接合面に沿って第1及び第2深触子を移動させ
反射法によって欠陥の位置を特定し、その欠陥がある
と、接合面と垂直に第1及び第2深触子を移動させ透過
法によって欠陥の大きさを特定し、第1及び第2深触子
を移動を最小限にして短時間に精度良く欠陥を検出でき
るという利点がある。
The invention according to claim 4 is as described above.
The first and second deep contactors are provided so as to be switchable between the reflection method and the transmission method, the first and second deep contactors are moved along the bonding surface, and the position of the defect is specified by the reflection method. Then, the first and second deep contactors are moved perpendicularly to the joint surface, the size of the defect is specified by the transmission method, and the movement of the first and second deep contactors is minimized to accurately detect the defect in a short time. Can be detected.

【0065】請求項4記載の発明は以上説明した通り、
反射法で表面欠陥の大きさを特定できることに鑑み、表
面の小さい欠陥の大きさを反射法で検出し、表面から内
部に至る大きな欠陥の大きさを透過法で検出し、表面か
らの短い欠陥から長い欠陥に至るまでの広範囲の欠陥を
精度良く検出できるという利点がある。
The invention according to claim 4 is as described above.
In view of the fact that the size of surface defects can be specified by the reflection method, the size of small defects on the surface is detected by the reflection method, the size of large defects from the surface to the inside is detected by the transmission method, and short defects from the surface are detected. There is an advantage that a wide range of defects ranging from to long defects can be accurately detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に用いられる深触子の姿勢・間隔
を示す図である。
FIG. 1 is a diagram showing postures and intervals of deep contactors used for implementing the present invention.

【図2】本発明を説明するための超音波の入射波・透過
波を示す図である。
FIG. 2 is a diagram showing incident waves and transmitted waves of ultrasonic waves for explaining the present invention.

【図3】本発明における判定方法を示す図である。FIG. 3 is a diagram showing a determination method according to the present invention.

【図4】本発明における強度判定パターンの1例を示す
図である。
FIG. 4 is a diagram showing an example of a strength determination pattern in the present invention.

【図5】欠陥部の大きさを求める手法を説明するための
図である。
FIG. 5 is a diagram for explaining a method for obtaining the size of a defective portion.

【図6】接合面にインサート材がある場合の継手と深触
子の姿勢・間隔を示す図である。
FIG. 6 is a diagram showing postures and intervals of a joint and a deep contactor when an insert material is present on a joint surface.

【図7】他の本発明実施に用いられる深触子の姿勢・間
隔を示す図である。
FIG. 7 is a diagram showing postures and intervals of deep contactors used in another embodiment of the present invention.

【図8】他の本発明における超音波の入射波・反射波を
示す図である。
FIG. 8 is a diagram showing an incident wave / reflected wave of an ultrasonic wave in another invention.

【図9】他の本発明における欠陥なしの反射強度を示す
グラフ図である。
FIG. 9 is a graph showing another reflection intensity without defects in the present invention.

【図10】他の本発明における欠陥ありの反射強度を示
すグラフ図である。
FIG. 10 is a graph showing another reflection intensity with defects in the present invention.

【図11】他の本発明における欠陥深さDの計算のため
のグラフ図である。
FIG. 11 is a graph for calculating a defect depth D according to another embodiment of the present invention.

【図12】従来の透過法による超音波深傷を説明するた
めの図である。
FIG. 12 is a diagram for explaining ultrasonic deep scratches by a conventional transmission method.

【符号の説明】 10、20 管材 30 接合面 30IN インサート材 40 入射用深触子 50 受信用深触子 60 超音波伝播媒体 140 第1深触子(入射・受信兼用) 150 第2深触子(受信)[Explanation of Codes] 10, 20 Tubular Material 30 Joining Surface 30IN Insert Material 40 Injecting Deep Touch Element 50 Receiving Deep Touch Element 60 Ultrasonic Propagation Medium 140 First Deep Contact Element (Injection / Receiving) 150 Second Deep Contact Element (Receive)

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年4月4日[Submission date] April 4, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Name of item to be amended] Title of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の名称】 異種材を接合した継手の内部欠
陥超音波傷方法
Internal defects of the joint formed by joining dissimilar materials [Title of Invention] Ultrasonic methods

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 異種材料からなる部材相互を接合した継
手の表面から超音波伝播媒体を介し超音波を入射し上記
接合面を透過した透過波を上記超音波伝播媒体を介し受
信し、その透過波の強度から上記継手の欠陥部を深傷す
る超音波深傷において、(a)入射用の深触子と受信用
の深触子をそれぞれ所定の姿勢にかつ両深触子相互を所
定間隔に保持して上記接合面に対し直角方向に移動させ
ながら深傷し、(b)受信した透過波の強度を、接合面
に欠陥の無い継手で計測した透過波強度に基づき作成し
た強度判定パターンの強度と比較し、(c)上記計測し
た透過波の強度が上記強度判定パターンの強度以下とな
る深触子位置の間隔に基づき上記欠陥部の大きさを検出
することを特徴とする異種材を接合した継手の内部欠陥
超音波深傷方法。
1. An ultrasonic wave is incident from a surface of a joint in which members made of different kinds of materials are joined to each other through an ultrasonic wave propagation medium, a transmitted wave transmitted through the joint surface is received through the ultrasonic wave propagation medium, and is transmitted therethrough. In the ultrasonic wave deep damage to the defective part of the joint due to the wave intensity, (a) the deep probe for incidence and the deep probe for reception are each in a predetermined posture, and both deep probes are spaced at a predetermined distance. Strength judgment pattern created based on the intensity of the transmitted wave measured by a joint having no defect on the joint surface. (C) The size of the defective portion is detected based on the distance between the deep contact positions where the intensity of the measured transmitted wave is equal to or less than the intensity of the intensity determination pattern. Internal flaw ultrasonic deep scratching method for joints joined together.
【請求項2】 所定の姿勢は、両部材の音速と超音波伝
播媒体の音速に基づき求めた姿勢であり、所定の間隔
は、上記両部材の音速、超音波伝播媒体の音速、深触子
の焦点距離および継手板厚に基づき求めた間隔であるこ
とを特徴とする請求項1記載の異種材を接合した継手の
内部欠陥超音波深傷方法。
2. The predetermined posture is a posture obtained based on the sound velocity of both members and the sound velocity of the ultrasonic propagation medium, and the predetermined intervals are the sound velocity of both members, the sound velocity of the ultrasonic propagation medium, and the deep contact. The method of claim 1, wherein the distance is determined based on the focal length and the joint plate thickness of the joint.
【請求項3】 強度判定パターンの強度は、接合面に欠
陥の無い継手で計測した透過波強度の1/2であること
を特徴とする請求項1記載の異種材を接合した継手の内
部欠陥超音波深傷方法。
3. The internal defect of the joint in which dissimilar materials are joined according to claim 1, wherein the strength of the strength judgment pattern is 1/2 of the transmitted wave intensity measured in the joint having no defect in the joint surface. Ultrasonic deep trauma method.
【請求項4】 異種材料からなる部材相互を接合した継
手の表面から超音波伝播媒体を介し超音波を入射し次い
で上記超音波伝播媒体を介し受信して上記継手の欠陥部
を深傷する超音波深傷であって、 入射及び受信兼用の第1深触子と受信用の第2深触子を
それぞれ所定の姿勢にかつ両深触子相互を所定間隔に保
持し、(a)上記第1、第2深触子を上記接合面と平行
に移動させ、上記第1深触子で入射した超音波の反射波
を同じ上記第1深触子で受信し、上記反射波の強度から
欠陥の有無を検出し、(b)欠陥が検出されると、上記
第1、第2深触子を上記接合面に対し直角方向に移動さ
せ、上記第1深触子で入射した超音波の透過波を上記第
2深触子で受信し、上記透過波の強度から上記欠陥深さ
の大きさを検出することを特徴とする異種材を接合した
継手の内部欠陥超音波深傷方法。
4. An ultrasonic wave which injects an ultrasonic wave from the surface of a joint in which members made of different materials are joined to each other through an ultrasonic wave propagation medium and then receives the ultrasonic wave through the ultrasonic wave propagation medium to deeply scratch a defective portion of the joint. Sonic deep scars, in which the first deep contactor for both incidence and reception and the second deep contactor for reception are kept in predetermined postures and both deep contactors are held at predetermined intervals, and (a) the above 1. The first and second deep contactors are moved in parallel with the joint surface, the reflected waves of the ultrasonic waves incident on the first deep contactor are received by the same first deep contactor, and the intensity of the reflected wave causes a defect. (B) When a defect is detected, the first and second deep contactors are moved in a direction perpendicular to the joint surface to transmit the ultrasonic waves incident on the first deep contactor. A wave is received by the second deep probe and the magnitude of the defect depth is detected from the intensity of the transmitted wave. Internal defects ultrasonic Fukakizu method of the joint formed by joining wood.
【請求項5】 異種材料からなる部材相互を接合した継
手の表面から超音波伝播媒体を介し超音波を入射し次い
で上記超音波伝播媒体を介し受信して上記継手の欠陥部
を深傷する超音波深傷であって、 入射及び受信兼用の第1深触子と受信用の第2深触子を
それぞれ所定の姿勢にかつ両深触子相互を所定間隔に保
持し、(a)上記第1、第2深触子を上記接合面と平行
に移動させ、上記第1深触子で入射した超音波の反射波
を同じ上記第1深触子で受信し、上記反射波の強度から
欠陥の有無を検出し、(b)欠陥が検出されると、接合
面に欠陥が無い継手で計測した反射波と比較して表面か
らの欠陥深さを検出し、(c)上記欠陥深さが所定値を
越えると、上記第1、第2深触子を上記接合面に対し直
角方向に移動させ、上記第1深触子で入射した超音波の
透過波を上記第2深触子で受信し、上記透過波の強度か
ら上記欠陥深さの大きさを検出することを特徴とする異
種材を接合した継手の内部欠陥超音波深傷方法。
5. An ultrasonic wave which injects an ultrasonic wave from the surface of a joint in which members made of different materials are joined to each other through an ultrasonic wave propagation medium and then receives the ultrasonic wave through the ultrasonic wave propagation medium to deeply scratch a defective portion of the joint. Sonic deep scars, in which the first deep contactor for both incidence and reception and the second deep contactor for reception are kept in predetermined postures and both deep contactors are held at predetermined intervals, and (a) the above 1. The first and second deep contactors are moved in parallel with the joint surface, the reflected waves of the ultrasonic waves incident on the first deep contactor are received by the same first deep contactor, and the intensity of the reflected wave causes a defect. And (b) when a defect is detected, the defect depth from the surface is detected by comparing with the reflected wave measured at the joint where the joint surface has no defect. When the value exceeds a predetermined value, the first and second deep contactors are moved in a direction perpendicular to the joint surface, and the first deep contactor is inserted. The internal depth of ultrasonic wave of a joint in which dissimilar materials are joined is characterized in that the transmitted wave of the ultrasonic wave is received by the second deep probe and the magnitude of the defect depth is detected from the intensity of the transmitted wave. How to scratch.
JP6339100A 1993-12-28 1994-12-28 Internal defect ultrasonic flaw detecting method for joint connected with different type material Pending JPH07253413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6339100A JPH07253413A (en) 1993-12-28 1994-12-28 Internal defect ultrasonic flaw detecting method for joint connected with different type material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33609993 1993-12-28
JP5-336099 1993-12-28
JP6339100A JPH07253413A (en) 1993-12-28 1994-12-28 Internal defect ultrasonic flaw detecting method for joint connected with different type material

Publications (1)

Publication Number Publication Date
JPH07253413A true JPH07253413A (en) 1995-10-03

Family

ID=26575358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6339100A Pending JPH07253413A (en) 1993-12-28 1994-12-28 Internal defect ultrasonic flaw detecting method for joint connected with different type material

Country Status (1)

Country Link
JP (1) JPH07253413A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101358343B1 (en) * 2013-09-17 2014-02-06 한국기계연구원 Diagnosing device and method of layer strurcure including various material of inner layer
CN104777226A (en) * 2015-04-30 2015-07-15 南京迪威尔高端制造股份有限公司 Ultrasonic wave A scanning and recognizing method for internal defect in forged piece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101358343B1 (en) * 2013-09-17 2014-02-06 한국기계연구원 Diagnosing device and method of layer strurcure including various material of inner layer
CN104777226A (en) * 2015-04-30 2015-07-15 南京迪威尔高端制造股份有限公司 Ultrasonic wave A scanning and recognizing method for internal defect in forged piece

Similar Documents

Publication Publication Date Title
US7168322B2 (en) Method for ultrasonic control of weld joints
JP4816731B2 (en) Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus
NL2003213C2 (en) ULTRASONIC INSPECTION METHOD AND DEVICE FOR PLASTICS WALLS.
AU2003254189B2 (en) Configurations and methods for ultrasonic time of flight diffraction analysis
EP3489674B1 (en) Ultrasonic inspection of a structure with a ramp
AU2004288099C1 (en) Method for checking a weld between two metal pipelines
JPH07253413A (en) Internal defect ultrasonic flaw detecting method for joint connected with different type material
Hagglund et al. Development of phased array ultrasonic inspection techniques for testing welded joints in plastic (PE) pipes
EP1882923A3 (en) Method and apparatus for ultrasonic inspection of steel pipes
JP2000146928A (en) Method for inspecting spot welding
CN110988127B (en) Signal identification method for detecting defects on surface and near surface of round bar by rotary ultrasonic
JP2003262621A (en) Ultrasonic inspection method
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP2001330594A (en) Inspection method of metal pipe bonded body
JPH1144675A (en) Ultrasonic measuring method for assembled and welded part in wheel
JP4636967B2 (en) Ultrasonic flaw detection method
RU2191376C2 (en) Method measuring sizes of defects in process of ultrasonic inspection of articles
Murri et al. Defects in thick composites and some methods to locate them
JPH07325070A (en) Ultrasonic method for measuring depth of defect
JPS63298054A (en) Ultrasonic flaw detecting method for screw joint part of pipe
Hesse et al. Defect detection in rails using ultrasonic surface waves
JP2000074887A (en) Ultrasonic inspection method for joined material
Lopez Weld inspection with EMAT using guided waves
JPH10246722A (en) Method for inspecting weld-bonded part of plastic tube
Shahriari et al. Development of an Expert Engineering Module for Determination of Ultrasonic Probe Position on the Weld Joint of Plate