JP2000074887A - Ultrasonic inspection method for joined material - Google Patents

Ultrasonic inspection method for joined material

Info

Publication number
JP2000074887A
JP2000074887A JP10249243A JP24924398A JP2000074887A JP 2000074887 A JP2000074887 A JP 2000074887A JP 10249243 A JP10249243 A JP 10249243A JP 24924398 A JP24924398 A JP 24924398A JP 2000074887 A JP2000074887 A JP 2000074887A
Authority
JP
Japan
Prior art keywords
bonding
joining
ultrasonic
interface
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10249243A
Other languages
Japanese (ja)
Inventor
Koji Horio
浩次 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP10249243A priority Critical patent/JP2000074887A/en
Priority to EP98124887A priority patent/EP0930502B1/en
Priority to DE69816585T priority patent/DE69816585T2/en
Priority to US09/224,710 priority patent/US6302314B1/en
Priority to NO990201A priority patent/NO990201L/en
Publication of JP2000074887A publication Critical patent/JP2000074887A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2487Directing probes, e.g. angle probes

Abstract

PROBLEM TO BE SOLVED: To nondestructively estimate a joining characteristic of a joined material such as strength and tenacity, and to provide high estimation precision for the joining characteristic. SOLUTION: An angled probe 5 for transmission and an angled probe 6 for reception are arranged in one side of a joined interface 4 of a joined material 1, and the presence of a defect in the interface 4 is judged based on the intensity of a reflected wave reflected by the interface 4. An angled probe 7 for transmission is arranged in one side of the interface 4 of the material 1 where the presence of no defect in the interface 4 is judged, and an angled probe 8 for reception is arranged in the other side to measure an attenuation amount of an ultrasonic wave transmitted through the interface 4. The measured attenuation amount in the joined material 1 is compared with an attenuation amount of an ultrasonic wave transmitted through a joined interface of a standard joined body joined under a known condition, so as to estimate a joining characteristic of the joined material 1 based on a correlation between the preliminarily measured attenuation amount of the ultrasonic wave transmitted through the interface of the standard joined body and a characteristic of the standard joined body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、接合材の超音波検
査方法に関し、さらに詳しくは、接合材の接合界面を透
過する超音波の減衰量から、接合材の接合温度、強度等
の接合特性を非破壊で検査する接合材の超音波検査方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic inspection method for a joining material, and more particularly, to a joining characteristic such as a joining temperature and strength of a joining material from an attenuation amount of an ultrasonic wave transmitted through a joining interface of the joining material. The present invention relates to an ultrasonic inspection method for a bonding material for non-destructively inspecting a bonding material.

【0002】[0002]

【従来の技術】金属の接合法は、一つの部材に他の部材
を付加する加工方法であり、局部的にエネルギーを与え
て別個の物体を原子間結合させる冶金的接合法と、鋲
接、ボルト接合などの機械的接合法に大別される。
2. Description of the Related Art A metal joining method is a processing method in which one member is added to another member, and a metallurgical joining method in which energy is locally applied to bond a separate object to each other, It is roughly divided into mechanical joining methods such as bolt joining.

【0003】冶金的接合法は、さらに、融接法、圧接
法、ロウ接法、拡散接合法等に分類される。融接法は、
母材の接合部を溶融状態まで加熱し、必要に応じて溶加
材を加えて融合させる接合方法である。圧接法は、被接
合材に大きな機械的圧力を加えて接合する方法であり、
常温圧接法、摩擦圧接法、爆発圧接法、超音波圧接法等
の他、抵抗溶接法もこの部類に入る。ロウ接法は、被接
合材より融点の低いロウ材を溶融状態で接合部の隙間に
流入させ、凝固させて接合する方法である。
[0003] Metallurgical joining methods are further classified into a fusion welding method, a pressure welding method, a brazing method, a diffusion joining method, and the like. The fusion welding method
This is a joining method in which a joined portion of a base material is heated to a molten state, and a filler material is added and fused as needed. The pressure welding method is a method of joining by applying a large mechanical pressure to the material to be joined,
In addition to room temperature welding, friction welding, explosion welding, ultrasonic welding, etc., resistance welding is also included in this category. The brazing method is a method in which a brazing material having a melting point lower than that of a material to be joined is caused to flow into a gap of a joining portion in a molten state and solidified for joining.

【0004】また、拡散接合法は、被接合材を密着さ
せ、被接合材の融点以下の温度で、塑性変形を生じない
程度に加圧し、接合界面に生じる原子の拡散を利用して
被接合材を接合する方法であり、被接合材を直接密着さ
せ、固相状態を維持したまま元素の拡散を行わせる固相
拡散接合法と、被接合材間に低融点のインサート材を介
挿し、インサート材を一時的に溶融させ、液相中の特定
元素の被接合材中への拡散消失を利用して、等温凝固さ
せて接合を行う液相拡散接合法とがある。
In the diffusion bonding method, the materials to be joined are brought into close contact with each other, pressurized at a temperature equal to or lower than the melting point of the materials to be joined so as not to cause plastic deformation, and utilizing the diffusion of atoms generated at the joining interface. It is a method of joining the materials, the solid-state diffusion bonding method that directly adheres the materials to be joined and diffuses elements while maintaining the solid state, and inserting a low melting point insert material between the materials to be joined, There is a liquid phase diffusion bonding method in which an insert material is temporarily melted, and a specific element in a liquid phase is diffused and disappeared into a material to be bonded, and is solidified isothermally to perform bonding.

【0005】このような、拡散接合法を始めとする冶金
的接合法は、機械的接合法と異なり、材料の節約と工数
の削減が可能であり、接合強度、気密性、耐圧性等に優
れた接合継手が得られるという利点がある。その反面、
接合作業は非可逆的であり、接合後に分離して再接合す
ることは困難である。また、接合界面に発生する種々の
欠陥により強度、靭性等の接合特性が大きく変動し、し
かも、欠陥の発生要因は多岐に渡るという欠点がある。
The metallurgical joining method such as the diffusion joining method, unlike the mechanical joining method, can save materials and reduce man-hours, and is excellent in joining strength, airtightness, pressure resistance and the like. There is an advantage that an improved joint can be obtained. On the other hand,
The joining operation is irreversible, and it is difficult to separate and rejoin after joining. Further, there is a defect that bonding characteristics such as strength and toughness greatly vary due to various defects generated at the bonding interface, and moreover, the causes of the defects are various.

【0006】そのため、拡散接合法等の冶金的接合法に
おいては、高い信頼性が要求される場合には、接合後に
接合界面に存在する欠陥の有無を検査するために、放射
線透過試験、超音波探傷試験、磁粉探傷試験、浸透探傷
試験等の各種の非破壊検査が接合材に対して行われてい
る。また、同種の接合材が大量生産される場合には、大
量生産された接合材の中から一部を抜き取り、接合材か
ら接合界面を含む試験片を切り出して引張試験等の破壊
検査が行われている。
For this reason, in a metallurgical bonding method such as a diffusion bonding method, when high reliability is required, a radiation transmission test, an ultrasonic wave test, and an ultrasonic Various non-destructive inspections such as a flaw detection test, a magnetic particle flaw detection test, and a penetrant flaw detection test are performed on bonding materials. When the same type of bonding material is mass-produced, a part of the mass-produced bonding material is extracted, a test piece including a bonding interface is cut out from the bonding material, and a destructive inspection such as a tensile test is performed. ing.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、拡散接
合法等の冶金的接合法は、被接合材である金属材料の局
部的な加熱・冷却を伴うために、接合部近傍に組織や機
械的性質が変化した熱影響部が発生する場合がある。そ
のため、各種非破壊検査により接合界面に亀裂、気孔、
接合不良等の欠陥が発見されない場合であっても、接合
強度、靭性等の接合特性が低下している場合がある。
However, a metallurgical joining method such as a diffusion joining method involves local heating and cooling of a metal material to be joined, so that a structure or a mechanical property near a joint is required. In some cases, a heat-affected zone in which the temperature has changed may occur. Therefore, cracks, pores,
Even when no defect such as poor bonding is found, the bonding characteristics such as bonding strength and toughness may be reduced.

【0008】この場合、接合材が大量生産されるような
時には、抜き取り検査による破壊試験が可能であるが、
例えば、プラント製造のような少量生産の時には、抜き
取り検査による破壊試験は不可能である。しかも、実際
に接合された接合材には、亀裂、気孔、接合不良等の欠
陥と、熱影響部の双方が混在しており、このような接合
材の接合特性を高精度で検査する手段がないという問題
があった。
[0008] In this case, when the joining material is mass-produced, a destructive test by sampling inspection is possible.
For example, during small-scale production such as plant manufacturing, a destructive test by sampling inspection is impossible. In addition, the joint material actually joined contains both defects such as cracks, pores, joint failure, and the heat-affected zone, and a means for inspecting the joint characteristics of such a joint material with high accuracy is required. There was no problem.

【0009】この問題を解決するために、例えば、接合
作業をマニュアル化する手段も考えられる。しかし、接
合特性は、継手の設計、精度、清浄度や、接合温度、保
持時間、加圧力等の多くの接合条件に依存することに加
え、屋外で接合作業を行わざるを得ない場合には、気温
等の天候の影響を受け、さらには、接合作業者の技量に
も大きく左右されるものである。そのため、特に高い信
頼性が要求される部位に使用される接合材については、
接合作業の管理のみでは不十分である。
[0009] In order to solve this problem, for example, a means for manualizing the joining operation can be considered. However, in addition to the fact that the joining characteristics depend on many joining conditions such as joint design, accuracy, cleanliness, joining temperature, holding time, pressure, etc., when joining work must be performed outdoors In addition, it is affected by weather such as temperature, temperature, etc., and further greatly depends on the skill of the joining operator. Therefore, especially for bonding materials used in areas where high reliability is required,
It is not enough to just manage the joining operation.

【0010】本発明が解決しようとする課題は、拡散接
合法を始めとする冶金的接合法において、接合材の強
度、靭性等の接合特性を非破壊で推定することが可能で
あり、しかも、接合特性の推定精度の高い接合材の検査
方法を提供することにある。
The problem to be solved by the present invention is that in a metallurgical joining method such as a diffusion joining method, it is possible to non-destructively estimate joining properties such as strength and toughness of a joining material. It is an object of the present invention to provide a method for inspecting a joining material with high estimation accuracy of joining characteristics.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る接合材の超音波検査方法は、接合材の
接合界面の一方の側に1又は2以上の斜角探触子を配置
し、前記斜角探触子より前記接合材の接合界面に向かっ
て超音波を入射させ、前記接合界面から反射される反射
波の強度を測定し、該反射波の強度から前記接合界面に
欠陥が存在するか否かを判断する探傷工程と、該探傷工
程により接合界面に欠陥が存在していないと判断された
前記接合材の接合界面の一方の側には送信用の斜角探触
子を、他方の側には受信用の斜角探触子をそれぞれ配置
し、前記送信用の斜角探触子より送信された超音波が前
記接合界面を透過し、前記受信用の斜角探触子に受信さ
れた時の超音波の減衰量を測定し、その測定値に基づい
て、予め測定される既知の接合条件により接合された標
準接合体の超音波減衰量と接合特性との相関関係より、
前記接合材の接合特性を検査する検査工程とを備えてい
ることを要旨とするものである。
In order to solve the above-mentioned problems, an ultrasonic inspection method for a bonding material according to the present invention comprises: one or more oblique probes on one side of a bonding interface of the bonding material; Is arranged, ultrasonic waves are incident from the oblique probe toward the bonding interface of the bonding material, the intensity of a reflected wave reflected from the bonding interface is measured, and the intensity of the reflected wave is used to determine the bonding interface. A flaw detection step for determining whether or not a defect is present in the bonding material, and a transmission oblique angle probe on one side of the bonding interface of the bonding material determined to have no defect at the bonding interface by the flaw detection step. A probe and a bevel probe for reception are arranged on the other side, respectively, and ultrasonic waves transmitted from the bevel probe for transmission pass through the bonding interface, and the oblique probe for reception is disposed. Measures the amount of attenuation of the ultrasonic wave when it is received by the angular probe, and measures in advance based on the measured value. From correlation between ultrasonic attenuation and the bonding properties of the bonded standard conjugate by known bonding conditions,
And an inspection step of inspecting the joining characteristics of the joining material.

【0012】ここで、接合特性とは、接合材の機械的特
性に影響するあらゆる特性であって、接合界面に形成さ
れた亀裂、気孔、接合不良等の欠陥以外のものを意味す
る。具体的には、接合温度、冷却速度、熱処理温度等の
接合条件や、接合強度、降伏応力、硬度、靭性等の機械
的特性、さらには組成、結晶粒度等の材料特性が挙げら
れる。特に、応力が作用する構造物においては、接合強
度が最も重要な評価項目であり、しかも、接合強度に最
も影響を及ぼすのが接合温度であることから、接合特性
として、接合温度又は接合強度を選択することが望まし
い。
The term "joining characteristics" as used herein refers to any characteristics that affect the mechanical properties of the joining material, and include defects other than defects such as cracks, pores, and poor joining formed at the joining interface. Specific examples include joining conditions such as joining temperature, cooling rate, and heat treatment temperature, mechanical properties such as joining strength, yield stress, hardness, and toughness, and material properties such as composition and crystal grain size. In particular, in structures where stress is applied, the bonding strength is the most important evaluation item, and since the bonding temperature has the greatest effect on the bonding strength, the bonding characteristics include the bonding temperature or the bonding strength. It is desirable to choose.

【0013】また、前記探傷工程により接合界面に欠陥
が存在していないと判断された前記接合材に対し、前記
検査工程を適用し、前記接合材の接合特性を推定するよ
うにしても良いが、前記探傷工程による欠陥の有無の判
断と、前記検査工程による接合特性の推定とを同時に行
うようにしてもよい。
Further, the inspection step may be applied to the bonding material determined to have no defect at the bonding interface in the flaw detection step, and the bonding characteristics of the bonding material may be estimated. The determination of the presence or absence of a defect in the flaw detection step and the estimation of the bonding characteristics in the inspection step may be performed simultaneously.

【0014】上記構成を有する本発明に係る接合材の超
音波検査方法によれば、接合界面の一方の側に配置され
た1又は2以上の斜角探触子を用いて、接合界面から反
射される超音波の強度を測定することにより、接合界面
における欠陥の有無が判別される。次いで、欠陥が存在
していないと判断された接合材の接合界面の一方の側に
送信用の斜角探触子を、他方の側に受信用の斜角探触子
を配置し、接合界面を透過する超音波の減衰量が測定さ
れる。
According to the ultrasonic inspection method for a bonding material according to the present invention having the above-described structure, one or more oblique probes arranged on one side of the bonding interface are used to reflect light from the bonding interface. The presence or absence of a defect at the bonding interface is determined by measuring the intensity of the ultrasonic wave to be applied. Next, a transmission angle beam probe is arranged on one side of the bonding interface of the bonding material determined to have no defect, and a reception angle beam probe is arranged on the other side of the bonding material. The attenuation of the ultrasonic wave passing through is measured.

【0015】接合材を透過する超音波の減衰量は、接合
界面近傍の接合特性の変化の影響を受けるので、熱履歴
の変動により接合特性が変化した場合には、接合界面を
透過する超音波の減衰量の増減として検出される。
Since the attenuation of the ultrasonic wave transmitted through the bonding material is affected by the change in the bonding characteristics near the bonding interface, if the bonding characteristics change due to a change in the thermal history, the ultrasonic wave transmitted through the bonding interface will change. Is detected as an increase or decrease in the amount of attenuation.

【0016】そのため、実際に接合された接合体の接合
界面を透過する超音波の減衰量と、接合条件が既知であ
る標準接合体の接合界面を透過する超音波の減衰量とを
対比すれば、予め測定された標準接合体の減衰量と接合
特性との相関関係に基づき、実際に接合された接合材の
接合特性を推定することができる。
Therefore, when comparing the attenuation of the ultrasonic wave transmitted through the bonding interface of the actually bonded bonded body with the attenuation of the ultrasonic wave transmitted through the bonding interface of the standard bonded body having known bonding conditions, The joining characteristics of the actually joined joining materials can be estimated based on the correlation between the attenuation of the standard joined body measured in advance and the joining characteristics.

【0017】また、接合界面に亀裂、気孔等の欠陥が存
在する状態で透過波の減衰量を測定した場合には、欠陥
で超音波が反射される。そのため、欠陥等が存在しない
場合に比較して、透過波の減衰量が大きくなり、接合特
性の推定精度が低下する。しかしながら、本発明では、
透過波の減衰量を測定する前に、探傷工程において欠陥
の有無が判別され、欠陥がないと判断された接合材に対
して透過波の減衰量の測定が行われるので、接合特性の
変化を高精度で推定することが可能となる。
Further, when the attenuation of the transmitted wave is measured in a state where a defect such as a crack or a pore exists at the joint interface, the ultrasonic wave is reflected by the defect. Therefore, as compared with the case where there is no defect or the like, the attenuation of the transmitted wave increases, and the accuracy of estimating the bonding characteristics decreases. However, in the present invention,
Before measuring the attenuation of the transmitted wave, the presence or absence of a defect is determined in the flaw detection process, and the attenuation of the transmitted wave is measured for the bonding material determined to be free of defects, so that the change in the bonding characteristics It is possible to estimate with high accuracy.

【0018】さらに、超音波は、指向性が高いので、斜
角探触子の間隔が適正であれば、複数の斜角探触子から
送信される超音波が干渉し合うことはない。そのため、
反射波を測定するための斜角探触子と、透過波を測定す
るための斜角探触子を接合材に配置し、欠陥の検出と接
合特性の推定とを同時に行うこともできる。これによ
り、検査時間が短縮され、接合工程の高能率化が図られ
る。
Further, since the ultrasonic waves have high directivity, if the interval between the oblique probes is proper, the ultrasonic waves transmitted from the plurality of oblique probes will not interfere with each other. for that reason,
An oblique probe for measuring a reflected wave and an oblique probe for measuring a transmitted wave can be arranged on a bonding material, and the detection of a defect and the estimation of the bonding characteristics can be performed simultaneously. Thereby, the inspection time is shortened, and the efficiency of the bonding process is improved.

【0019】[0019]

【発明の実施の形態】以下に、本発明の一実施の形態に
ついて詳細に説明する。本発明に係る接合材の超音波検
査方法は、探傷工程と検査工程とを備えている。図1
は、探傷工程の一例を示す概略構成図である。図1にお
いて、接合材1は、鋼管2、3が管端面において接合さ
れたものであり、接合界面4の一方の側に、送信探触子
5と受信探触子6が配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail. An ultrasonic inspection method for a bonding material according to the present invention includes a flaw detection step and an inspection step. FIG.
FIG. 3 is a schematic configuration diagram illustrating an example of a flaw detection process. In FIG. 1, a joining material 1 is formed by joining steel pipes 2 and 3 at pipe end faces. A transmitting probe 5 and a receiving probe 6 are arranged on one side of a joining interface 4.

【0020】送信探触子5は、図2に示すように、アク
リル等の合成樹脂製のくさび10に振動子11を張り付
けた、いわゆる斜角探触子であり、振動子11は、水
晶、ニオブ酸鉛、ジルコンチタン酸鉛等の圧電材料から
なる薄板の両面に電極を張り付けたものである。また、
くさび10には、吸音材12が張り付けられ、送信探触
子5と接合材1との接触面で反射した超音波を吸収でき
るようになっている。
As shown in FIG. 2, the transmission probe 5 is a so-called angle probe in which a vibrator 11 is attached to a wedge 10 made of a synthetic resin such as acrylic. Electrodes are attached to both surfaces of a thin plate made of a piezoelectric material such as lead niobate or lead zircon titanate. Also,
A sound absorbing material 12 is attached to the wedge 10 so that the ultrasonic wave reflected on the contact surface between the transmitting probe 5 and the bonding material 1 can be absorbed.

【0021】送信探触子5の底面の形状は、板状の接合
材を検査する場合には、平坦であることが望ましいが、
図1に示すように、鋼管等の曲面を有する接合材1を検
査する場合には、接合材1の曲率にあわせて、送信探触
子5の底面の形状を曲面とするのがよい。なお、受信探
触子6は、図示はしないが、送信探触子5と同一の構造
を有するものである。
The shape of the bottom surface of the transmission probe 5 is desirably flat when inspecting a plate-like bonding material.
As shown in FIG. 1, when inspecting a bonding material 1 having a curved surface such as a steel pipe, the shape of the bottom surface of the transmission probe 5 may be a curved surface according to the curvature of the bonding material 1. Although not shown, the receiving probe 6 has the same structure as the transmitting probe 5.

【0022】また、送信探触子5及び受信探触子6と接
合材1との隙間には、接触媒質を介在させる必要があ
る。送信探触子5又は受信探触子6と接合材1との間に
隙間があると、超音波の送受信が効率よく行われないか
らである。接触媒質は、超音波を効率よく伝搬可能なも
のであれば良く、必要に応じて種々の接触媒質を使い分
ければよい。接触媒質としては、例えば、水、油、グリ
セリン等がある。
In addition, it is necessary to interpose a couplant in the gap between the transmitting probe 5 and the receiving probe 6 and the bonding material 1. This is because if there is a gap between the transmission probe 5 or the reception probe 6 and the bonding material 1, transmission and reception of ultrasonic waves are not performed efficiently. The couplant may be any one that can efficiently transmit ultrasonic waves, and various couplants may be used as needed. Examples of the couplant include water, oil, and glycerin.

【0023】さらに、送信探触子5から鋼管2に入射
し、接合界面4に存在する欠陥で反射された超音波を受
信探触子6でとらえるためには、送信探触子5及び受信
探触子6の相対位置を正確にセットする必要がある。送
信探触子5から鋼管2に入射し、欠陥で反射された超音
波は、鋼管2の外周面及び内周面で全反射を繰り返しな
がら伝搬していくので、受信探触子6は、鋼管2の内周
面で全反射した超音波が鋼管2の外周面に到達する位置
又は、鋼管2の外周面で全反射した超音波が鋼管2の内
周面に到達する位置に置く必要がある。
Further, in order for the receiving probe 6 to catch the ultrasonic wave that has entered the steel pipe 2 from the transmitting probe 5 and is reflected by a defect existing at the joint interface 4, the transmitting probe 5 and the receiving probe It is necessary to set the relative position of the contact 6 accurately. The ultrasonic wave incident on the steel tube 2 from the transmission probe 5 and reflected by the defect propagates while repeating total reflection on the outer and inner peripheral surfaces of the steel tube 2. 2 must be placed at a position where the ultrasonic wave totally reflected on the inner peripheral surface of the steel pipe 2 reaches the outer peripheral surface of the steel pipe 2 or at a position where the ultrasonic wave totally reflected on the outer peripheral surface of the steel pipe 2 reaches the inner peripheral surface of the steel pipe 2. .

【0024】鋼管2の外周面で全反射した超音波が鋼管
2の内周面で全反射し、再度、鋼管2の外周面に到達す
るまでの水平距離を1スキップとすると、何スキップ目
に受信探触子6を配置するかは、検査する接合材1の形
状や測定条件に応じて適宜選択すればよい。図1の場
合、受信探触子6は、接合界面4に存在する欠陥で反射
された超音波が鋼管2の外周面で最初に全反射した位置
から3スキップ目の位置に配置されている。
The ultrasonic wave totally reflected on the outer peripheral surface of the steel pipe 2 is totally reflected on the inner peripheral surface of the steel pipe 2, and the horizontal distance until reaching the outer peripheral surface of the steel pipe 2 again is one skip. Whether to arrange the receiving probe 6 may be appropriately selected according to the shape of the bonding material 1 to be inspected and measurement conditions. In the case of FIG. 1, the receiving probe 6 is arranged at a position of the third skip from the position where the ultrasonic wave reflected by the defect existing at the joint interface 4 is first totally reflected on the outer peripheral surface of the steel pipe 2.

【0025】次に、接合材1の接合界面4に存在する欠
陥の探傷方法について説明する。まず、図示しない同期
制御部において高周波パルスを発生させ、この高周波パ
ルスを高周波ケーブルを介して送信探触子5に送る。送
信探触子5に送られた高周波パルスは、振動子11の両
面に張り付けられた電極に印加され、これにより振動子
11が厚さ方向に伸縮し、超音波が発生する。
Next, a method for detecting a defect existing at the bonding interface 4 of the bonding material 1 will be described. First, a synchronization controller (not shown) generates a high-frequency pulse, and sends the high-frequency pulse to the transmission probe 5 via a high-frequency cable. The high-frequency pulse sent to the transmission probe 5 is applied to electrodes attached to both surfaces of the vibrator 11, whereby the vibrator 11 expands and contracts in the thickness direction, and generates ultrasonic waves.

【0026】発生した超音波は、くさび10を通って鋼
管2に入射し、鋼管2の内周面で1回全反射した後、接
合界面4に入射する。接合界面4に欠陥が存在しない場
合には、超音波は、そのまま接合界面4を透過するが、
亀裂、気孔等の欠陥が存在している場合には、超音波は
欠陥で全反射し、鋼管2の外周面に達する。
The generated ultrasonic waves enter the steel pipe 2 through the wedge 10, are totally reflected once on the inner peripheral surface of the steel pipe 2, and then enter the bonding interface 4. When there is no defect in the bonding interface 4, the ultrasonic wave passes through the bonding interface 4 as it is,
When a defect such as a crack or a pore exists, the ultrasonic wave is totally reflected by the defect and reaches the outer peripheral surface of the steel pipe 2.

【0027】鋼管2の外周面に達した超音波は、さら
に、鋼管2の内周面及び外周面で全反射を繰り返しなが
ら、鋼管2上に配置された受信探触子6に向かって伝搬
し、受信探触子6により接合界面4で反射された超音波
が受信される。
The ultrasonic wave that has reached the outer peripheral surface of the steel pipe 2 further propagates toward the receiving probe 6 arranged on the steel pipe 2 while repeating total reflection on the inner and outer peripheral surfaces of the steel pipe 2. Then, the ultrasonic wave reflected at the bonding interface 4 by the receiving probe 6 is received.

【0028】受信された超音波は、受信探触子6に備え
られた振動子に伝えられ、振動子を厚さ方向に伸縮させ
る。この機械的振動は、該振動子により電気信号に変換
され、高周波ケーブルを介して図示しない検査装置の受
信部に送られる。そして、受信探触子6により受信され
た電気エネルギーの大きさから反射波の強度が求められ
るものである。
The received ultrasonic wave is transmitted to the transducer provided on the receiving probe 6, and expands and contracts the transducer in the thickness direction. The mechanical vibration is converted into an electric signal by the vibrator and sent to a receiving unit of an inspection device (not shown) via a high-frequency cable. Then, the intensity of the reflected wave is obtained from the magnitude of the electric energy received by the receiving probe 6.

【0029】この時、送信探触子5と受信探触子6との
距離を一定の距離(例えば3スキップに相当する距離)
に保ったまま前後左右に走査させると、超音波が透過す
る位置が変わるので、接合界面4全面について、欠陥の
有無を調べることができる。走査方法は、ジグザグ走
査、前後走査、左右走査等、種々の方法があり、特に限
定されるものではなく、接合材1の形状等に応じて適宜
選択すればよい。
At this time, the distance between the transmitting probe 5 and the receiving probe 6 is set to a fixed distance (for example, a distance corresponding to 3 skips).
If it is scanned back and forth and left and right while maintaining the position, the position through which the ultrasonic wave is transmitted changes, so that the presence or absence of a defect can be checked on the entire bonding interface 4. The scanning method includes various methods such as zigzag scanning, front / rear scanning, left / right scanning, and is not particularly limited, and may be appropriately selected according to the shape of the bonding material 1 or the like.

【0030】走査させる距離は、接合界面4の全面をカ
バーできればよいので、接合界面4に垂直な方向につい
ては、少なくとも0.5スキップに相当する距離だけ走
査させればよい。また、接合界面4に平行な方向につい
ては、板状の接合材にあっては少なくとも接合界面4の
横幅に相当する距離、図1のような管状の接合材にあっ
ては少なくとも管円周に相当する距離だけ走査させれば
よい。
Since the scanning distance only needs to cover the entire surface of the bonding interface 4, in the direction perpendicular to the bonding interface 4, the scanning may be performed by a distance corresponding to at least 0.5 skips. The direction parallel to the joining interface 4 is at least a distance corresponding to the width of the joining interface 4 in the case of a plate-like joining material, and at least the pipe circumference in the case of a tubular joining material as shown in FIG. What is necessary is just to scan by a corresponding distance.

【0031】そして、反射波の強度がノイズエコーレベ
ルである場合には、接合界面4に欠陥がないと判断し、
次の検査工程に進む。一方、反射波の強度がノイズエコ
ーレベルを超えている場合には、接合界面4に欠陥が存
在している可能性が高いので、検査を中断し、他の非破
壊検査の実施等の措置がとられることになる。
If the intensity of the reflected wave is at the level of the noise echo, it is determined that there is no defect in the bonding interface 4 and
Proceed to the next inspection step. On the other hand, if the intensity of the reflected wave exceeds the noise echo level, there is a high possibility that a defect exists at the bonding interface 4, and the inspection is interrupted, and other measures such as performing non-destructive inspection are taken. Will be taken.

【0032】なお、探傷工程においては、横波モードの
超音波を用いるの好ましいが、超音波の減衰が大きい材
料からなる接合材1について探傷を行う場合には、縦波
モードの超音波を用いても良い。
In the flaw detection step, it is preferable to use ultrasonic waves in the transverse wave mode. However, when flaw detection is performed on the bonding material 1 made of a material having a large attenuation of the ultrasonic waves, ultrasonic waves in the longitudinal wave mode are used. Is also good.

【0033】また、送信探触子5から鋼管2に入射する
超音波の屈折角、周波数、並びに送信探触子5及び受信
探触子6の大きさ等は、測定される接合材1の形状、物
性等に応じて最適な値を選択すればよい。また、図1に
示す例では、二つの斜角探触子を用いた探傷工程につい
て示したが、送信探触子5から直接欠陥をねらって超音
波を入射させ、送信探触子5で反射波を捕らえる一探触
子法を用いて欠陥の探傷を行っても良い。
The refraction angle and frequency of the ultrasonic wave incident on the steel pipe 2 from the transmission probe 5 and the sizes of the transmission probe 5 and the reception probe 6 are determined by the shape of the joint material 1 to be measured. The optimum value may be selected according to the physical properties and the like. Also, in the example shown in FIG. 1, the flaw detection process using two oblique probes is shown. However, ultrasonic waves are incident on the defect directly from the transmission probe 5 and reflected by the transmission probe 5. Defect detection may be performed using a single probe method that captures waves.

【0034】さらに、送信探触子5と受信探触子6とを
各2個以上配置しても良い。超音波は、指向性が良いの
で、送信探触子5の間隔が適正であれば、各送信探触子
5から入射する超音波が干渉し合うことはない。そのた
め、接合界面4の面積が大きい接合材の欠陥を探傷する
場合等には、双方の探触子を各2個以上配置すれば、走
査距離が短くなり、探傷時間を短縮させることができ
る。
Further, two or more transmission probes 5 and two or more reception probes 6 may be arranged. Since the ultrasonic waves have good directivity, if the intervals between the transmission probes 5 are appropriate, the ultrasonic waves incident from each transmission probe 5 will not interfere with each other. Therefore, when flaws are detected in a bonding material having a large area of the bonding interface 4, if two or more probes are provided, the scanning distance becomes shorter and the flaw detection time can be shortened.

【0035】次に、検査工程について説明する。図3
は、検査工程の一例を示す概略構成図である。図3にお
いて、接合材1は、上述の探傷工程において、接合界面
4に欠陥が存在していないと判断されたものである。ま
た、接合材1の接合界面4を挟んで、送信探触子7及び
受信探触子8が配置されている。
Next, the inspection process will be described. FIG.
FIG. 2 is a schematic configuration diagram illustrating an example of an inspection process. In FIG. 3, the bonding material 1 is determined to have no defect at the bonding interface 4 in the above-described flaw detection process. Further, a transmission probe 7 and a reception probe 8 are arranged with the bonding interface 4 of the bonding material 1 interposed therebetween.

【0036】ここで、送信探触子7及び受信探触子8
は、図2に示す送信探触子5と同様の構成を有する斜角
探触子であるので、詳細な説明は省略するが、検査工程
に用いられる送信探触子7及び受信探触子8は、一辺が
8mm以上15mm以下の角形探触子を用いることが好
ましい。
Here, the transmission probe 7 and the reception probe 8
Is an oblique probe having a configuration similar to that of the transmission probe 5 shown in FIG. 2, and thus detailed description is omitted, but the transmission probe 7 and the reception probe 8 used in the inspection process are omitted. It is preferable to use a square probe having one side of 8 mm or more and 15 mm or less.

【0037】これは、同一面積で比較すると、丸形探触
子よりも角形探触子の方が指向性が向上し、測定感度が
向上するためである。また、角形探触子の一辺が8mm
未満では、指向角が大きくなって指向性が低下するので
好ましくない。探触子が大きくなるほど指向角が小さく
なり、指向性は向上するが、一辺の長さが15mmを越
えると、近距離音場限界距離が長くなると共に、近距離
音場内で強い干渉現象が生じ、ノイズが大きくなるので
好ましくない。
This is because, when compared with the same area, the square probe has better directivity and the measurement sensitivity is better than the round probe. In addition, one side of the square probe is 8 mm
If it is less than 1, the directivity angle increases and the directivity decreases, which is not preferable. The larger the probe, the smaller the directivity angle and the better the directivity.However, if the length of one side exceeds 15 mm, the limit distance of the short-range sound field increases and a strong interference phenomenon occurs in the short-range sound field. This is not preferable because noise increases.

【0038】また、材料中に入射した超音波は、縦波、
横波、表面波、板波など種々の様式で伝搬するが、検査
工程においては、縦波を用いるのが好ましい。縦波モー
ドの超音波は、接合界面4を透過する超音波の減衰量
が、接合特性の変化に伴って大きく変動し、接合特性の
検査結果の信頼性を高めることが可能となるからであ
る。
The ultrasonic waves incident on the material are longitudinal waves,
Although it propagates in various modes such as a shear wave, a surface wave, and a plate wave, it is preferable to use a longitudinal wave in the inspection process. This is because, in the ultrasonic wave in the longitudinal wave mode, the attenuation of the ultrasonic wave transmitted through the bonding interface 4 greatly changes with the change in the bonding characteristics, and the reliability of the inspection result of the bonding characteristics can be improved. .

【0039】但し、縦波モードの超音波を用いる場合に
は、屈折角が17゜〜30゜となるように接合材1に入
射させる必要がある。屈折角が17゜未満では、ノイズ
が大きくなってS/N比が低下し、又、屈折角が30゜
を越えると、横波が混入する割合が大きくなり、いずれ
も測定感度を低下させるので好ましくない。
However, in the case of using the ultrasonic wave of the longitudinal wave mode, it is necessary to enter the bonding material 1 so that the refraction angle is 17 ° to 30 °. If the angle of refraction is less than 17 °, noise increases and the S / N ratio decreases. If the angle of refraction exceeds 30 °, the rate of mixing of the transverse wave increases, and the sensitivity decreases. Absent.

【0040】また、検査に用いる超音波の周波数は、4
MHz以上10MHz以下であることが好ましい。周波
数が4MHz未満では、超音波の波長が長くなり、それ
に伴い指向角が大きくなって指向性が低下する。周波数
が高くなるほど超音波の波長が短くなり、それに伴い指
向性が向上して測定感度は向上するが、周波数が10M
Hzを越えると、接合体内部での超音波の減衰量が大き
くなり過ぎ、かえって測定感度が低下するので好ましく
ない。
The frequency of the ultrasonic wave used for the inspection is 4
It is preferable that the frequency is not less than 10 MHz and not more than 10 MHz. If the frequency is less than 4 MHz, the wavelength of the ultrasonic wave becomes longer, and accordingly, the directional angle becomes larger and the directivity decreases. The higher the frequency is, the shorter the wavelength of the ultrasonic wave is, the more the directivity is improved and the measurement sensitivity is improved.
If it exceeds Hz, the amount of attenuation of the ultrasonic wave inside the joined body becomes too large, and the measurement sensitivity is undesirably lowered.

【0041】さらに、送信探触子7から接合材1に入射
し、接合界面4を透過した超音波を受信探触子8でとら
えるためには、送信探触子7及び受信探触子8の相対位
置を正確にセットする必要がある。送信振探触子8から
接合材1に入射した超音波は、接合材1の外周面及び内
周面で全反射を繰り返しながら伝搬していくので、受信
探触子8は、接合材1の内周面で全反射した超音波が接
合材1の外周面に到達する位置又は、接合材1の外周面
で全反射した超音波が接合材1の内周面に到達する位置
に置く必要がある。
Furthermore, in order for the receiving probe 8 to catch the ultrasonic wave that has entered the bonding material 1 from the transmitting probe 7 and transmitted through the bonding interface 4, the transmitting probe 7 and the receiving probe 8 It is necessary to set the relative position accurately. The ultrasonic wave incident on the bonding material 1 from the transmission vibration probe 8 propagates while repeating total reflection on the outer peripheral surface and the inner peripheral surface of the bonding material 1. It is necessary to place the ultrasonic wave totally reflected on the inner peripheral surface to reach the outer peripheral surface of the bonding material 1 or the ultrasonic wave totally reflected on the outer peripheral surface of the bonding material 1 reaches the inner peripheral surface of the bonding material 1. is there.

【0042】接合材1の外周面に配置された送信探触子
7から接合材1に入射した超音波が接合材1の内周面で
全反射し、接合材1の外周面に到達するまでの水平距離
を1スキップとすると、何スキップ目に受信探触子8を
配置するかは、検査する接合材1の形状や測定条件に応
じて適宜選択すればよい。図3の場合、受信探触子8
は、送信探触子7から4スキップ目の位置に配置されて
いる。
The ultrasonic wave incident on the bonding material 1 from the transmitting probe 7 arranged on the outer circumference of the bonding material 1 is totally reflected on the inner circumference of the bonding material 1 and reaches the outer circumference of the bonding material 1. Assuming that the horizontal distance is 1 skip, the skip position at which the receiving probe 8 is arranged may be appropriately selected according to the shape of the bonding material 1 to be inspected and the measurement conditions. In the case of FIG. 3, the receiving probe 8
Is arranged at the position of the fourth skip from the transmission probe 7.

【0043】次に、接合材1の接合界面4を透過する超
音波の減衰量を測定する方法について説明する。上述の
探傷工程と同様の手順に従い、送信探触子7から接合材
1に超音波を入射させると、入射した超音波は、鋼管2
の内周面及び外周面で全反射を繰り返しながら、鋼管3
に向かって伝搬する。その過程で、超音波は、接合界面
4を透過することになる。予め定められた回数の反射が
行われたところで、鋼管3上に配置された受信探触子8
に超音波が受信される。
Next, a method for measuring the attenuation of the ultrasonic wave transmitted through the bonding interface 4 of the bonding material 1 will be described. In accordance with the same procedure as the above-described flaw detection process, when ultrasonic waves are incident on the bonding material 1 from the transmission probe 7, the incident ultrasonic waves are reflected on the steel pipe 2.
While repeating total internal reflection on the inner and outer peripheral surfaces of
Propagating towards. In the process, the ultrasonic waves pass through the bonding interface 4. When a predetermined number of reflections have been performed, the receiving probe 8 placed on the steel pipe 3
The ultrasonic waves are received.

【0044】受信された超音波は、受信探触子8に備え
られた振動子により電気信号に変換され、高周波ケーブ
ルを介して図示しない検査装置の受信部に送られる。そ
して、送信探触子7に投入した電気エネルギーに対する
受信探触子8により受信された電気エネルギーの比から
超音波の減衰量が求められるものである。
The received ultrasonic wave is converted into an electric signal by a vibrator provided on the receiving probe 8 and sent to a receiving section of an inspection device (not shown) via a high-frequency cable. Then, the attenuation amount of the ultrasonic wave is obtained from the ratio of the electric energy received by the receiving probe 8 to the electric energy input to the transmitting probe 7.

【0045】なお、送信探触子7と受信探触子8との距
離を一定の距離(例えば4スキップに相当する距離)に
保ったまま前後左右に走査させれば、接合界面4全面の
2次元情報を得ることができる点は、上述の探傷工程と
同様である。この場合、接合界面4を透過する超音波の
減衰量としては、接合界面4の各位置で測定された減衰
量の平均値を用いるとよい。
It should be noted that if the scanning between the transmitting probe 7 and the receiving probe 8 is made to move forward, backward, left and right while maintaining a constant distance (for example, a distance corresponding to four skips), the entire surface of the joint interface 4 can be scanned. The point that dimensional information can be obtained is the same as in the flaw detection process described above. In this case, the average value of the attenuation measured at each position of the bonding interface 4 may be used as the attenuation of the ultrasonic wave transmitted through the bonding interface 4.

【0046】また、走査方法としては、ジグザグ走査、
前後走査、左右走査等、種々の方法を用いることができ
る点、走査させる距離は、接合界面4に垂直な方向につ
いては、少なくとも0.5スキップに相当する距離、接
合界面4に平行な方向については、接合界面4の横幅あ
るいは管円周に相当する距離だけ走査させればよい点、
送信探触子7と受信探触子8とを各2個以上配置すれ
ば、操作距離が短くなり、検査時間を短縮させることが
できる点も上述の探傷工程と同様である。
As the scanning method, zigzag scanning,
The point that various methods such as front-back scanning, left-right scanning and the like can be used, and the scanning distance is at least a distance equivalent to 0.5 skips in the direction perpendicular to the bonding interface 4 and in the direction parallel to the bonding interface 4 Is that the scanning may be performed by a distance corresponding to the width of the bonding interface 4 or the circumference of the tube.
If two or more transmission probes 7 and two or more reception probes 8 are arranged, the operation distance is shortened, and the inspection time can be shortened in the same manner as in the above-described flaw detection process.

【0047】さらに、図3においては、接合界面4を挟
んで送信探触子7と受信探触子8とを各1個づつ配置し
ているが、受信探触子8を2個以上配置しても良い。受
信探触子8を2個以上配置すると、一つの受信探触子8
からもう一つの受信探触子8に至るまでの超音波の減衰
量を測定できるので、接合界面4を透過する超音波の減
衰量のみならず、接合界面4を挟んで左右に広がる熱影
響部を透過する超音波の減衰量を測定することも可能と
なる。
Further, in FIG. 3, the transmission probe 7 and the reception probe 8 are arranged one by one with the bonding interface 4 interposed therebetween, but two or more reception probes 8 are arranged. May be. When two or more receiving probes 8 are arranged, one receiving probe 8
The attenuation of the ultrasonic wave from one to the other receiving probe 8 can be measured, so that not only the attenuation of the ultrasonic wave transmitted through the bonding interface 4 but also the heat-affected zone extending right and left across the bonding interface 4 It is also possible to measure the amount of attenuation of the ultrasonic wave transmitted through.

【0048】次に、本発明に係る接合材の超音波検査法
により、どのように接合特性を推定するかについて説明
する。超音波の減衰は、接合体中を伝搬する超音波の一
部が伝搬途中で散乱することによって生ずるものであ
る。超音波の散乱は、種々の原因により生ずることが知
られており、例えば、結晶粒界、内部摩擦、転位の運
動、音響インピーダンスの異なる相境界等がその原因と
なる。
Next, how to estimate the bonding characteristics by the ultrasonic inspection method of the bonding material according to the present invention will be described. The attenuation of the ultrasonic waves is caused by a part of the ultrasonic waves propagating in the joined body being scattered during the propagation. It is known that scattering of ultrasonic waves is caused by various causes, for example, crystal grain boundaries, internal friction, dislocation motion, phase boundaries having different acoustic impedances, and the like.

【0049】ところで、冶金的接合法は、接合過程にお
いて加熱を伴うので、加熱により被接合材中で元素の拡
散、相変態、粒成長等が生じ、接合界面近傍の性状が接
合前後で変化する場合がある。特に、接合界面近傍の性
状が熱履歴に敏感である場合には、接合条件の僅かな変
動によって接合界面近傍の性状が大きく変化し、接合界
面を透過する超音波の減衰量の変化として顕著に現れる
ことになる。
Incidentally, since the metallurgical joining method involves heating in the joining process, the heating causes diffusion of elements, phase transformation, grain growth, etc. in the material to be joined, and the properties near the joining interface change before and after joining. There are cases. In particular, when the properties near the bonding interface are sensitive to the thermal history, the properties near the bonding interface greatly change due to slight fluctuations in the bonding conditions, and the attenuation of the ultrasonic wave transmitted through the bonding interface changes significantly. Will appear.

【0050】また、接合材の接合界面近傍の性状が熱履
歴に対して敏感であると同時に、被接合材の機械的性質
もまた、熱履歴に対して敏感である場合には、接合条件
の僅かな変動によって接合材の機械的性質が大きく変動
することになる。従って、このような系においては、超
音波の減衰量の変化と接合条件あるいは機械的性質の変
化とが一対一に対応し、超音波の減衰量から接合条件、
機械的性質等の接合特性の変動を推定することが可能と
なる。
If the properties of the joining material near the joining interface are sensitive to the thermal history, and the mechanical properties of the joining material are also sensitive to the thermal history, the joining conditions A slight change causes a large change in the mechanical properties of the bonding material. Therefore, in such a system, the change in the amount of ultrasonic attenuation and the change in the joining conditions or mechanical properties correspond one-to-one, and the joining conditions,
It is possible to estimate a change in the joining characteristics such as mechanical properties.

【0051】上述の趣旨から、本発明に係る接合材の超
音波検査方法は、接合条件の変動によって超音波の減衰
量及び機械的性質が変動する系であれば適用可能であ
り、変動量が大きい系ほど検査精度は高くなる。例え
ば、接合方法の点から言えば、拡散接合法が特に好適で
ある。拡散接合法は、被接合材の融点の9割前後の温度
で接合が行われ、接合界面において元素の拡散を積極的
に行わせるために、接合条件の変動に伴う超音波の減衰
量の変動が顕著に現れるからである。
From the above-mentioned point, the ultrasonic inspection method for the bonding material according to the present invention can be applied to any system in which the attenuation and mechanical properties of the ultrasonic wave fluctuate due to the fluctuation of the bonding conditions. The larger the system, the higher the inspection accuracy. For example, from the viewpoint of the joining method, the diffusion joining method is particularly preferable. In the diffusion bonding method, bonding is performed at a temperature of about 90% of the melting point of a material to be bonded, and fluctuations in ultrasonic attenuation due to fluctuations in bonding conditions in order to actively diffuse elements at the bonding interface. This is because remarkably appears.

【0052】また、被接合材の材質の点から言えば、鉄
系材料では、例えば、フェライト地にオーステナイトが
1:1の比率で分散した組織を呈する二相ステンレス鋼
や、該二相ステンレス鋼をベースとする析出硬化型ステ
ンレス鋼が特に好適である。オーステナイトは、接合過
程において結晶粒が粗大化しやすく、しかも結晶粒界に
おける超音波の散乱が大きいために、接合条件の変動に
より接合界面近傍のオーステナイトの性状が変化する
と、超音波の減衰量の変化として顕著に現れるからであ
る。
In terms of the material of the material to be joined, the iron-based materials include, for example, a duplex stainless steel having a structure in which austenite is dispersed at a ratio of 1: 1 in ferrite ground, Particularly preferred are precipitation hardening stainless steels based on. Austenitic crystal grains tend to be coarsened during the bonding process, and the scattering of ultrasonic waves at the crystal grain boundaries is large, so if the properties of austenite near the bonding interface change due to fluctuations in bonding conditions, the attenuation of ultrasonic waves will change. This is because it appears remarkably.

【0053】一方、接合界面4に亀裂、気孔等の欠陥が
存在する場合には、欠陥で超音波が反射されるために、
接合界面4を透過する超音波の減衰量が増大する。従っ
て、超音波の減衰量が大きくなるほど接合特性が良好と
判断される系においては、接合界面4に欠陥が存在して
いる接合材1に対して検査工程をそのまま実施すると、
大きな減衰量が計測され、接合特性が良好であると誤っ
て判断することになる。
On the other hand, when a defect such as a crack or a pore is present at the bonding interface 4, the ultrasonic wave is reflected by the defect.
The attenuation of the ultrasonic wave transmitted through the bonding interface 4 increases. Therefore, in a system in which the larger the attenuation of the ultrasonic wave is, the better the bonding characteristics are, if the inspection process is directly performed on the bonding material 1 in which the bonding interface 4 has a defect,
A large amount of attenuation is measured, and it is erroneously determined that the bonding characteristics are good.

【0054】しかしながら、本発明では、検査工程によ
り超音波の減衰量を測定する前に、探傷工程において欠
陥の有無が判定されるので、検査工程において欠陥に起
因する減衰量の増大が計測されることはない。そのた
め、欠陥のある接合材1の接合特性を良好であると誤っ
て判断する事態が回避できる。また、超音波の減衰量が
正確に計測されるので、接合特性の推定精度も向上す
る。
However, according to the present invention, the presence or absence of a defect is determined in the flaw detection process before measuring the attenuation of the ultrasonic wave in the inspection process, so that the increase in the attenuation caused by the defect is measured in the inspection process. Never. Therefore, it is possible to avoid a situation in which the joining characteristics of the joining material 1 having a defect are erroneously determined to be good. In addition, since the amount of attenuation of the ultrasonic wave is accurately measured, the accuracy of estimating the bonding characteristics is also improved.

【0055】次に、本発明に係る接合材の超音波検査方
法の具体的手順について説明する。まず、接合特性と接
合界面を透過する超音波の減衰量との対応関係を予め調
べるための標準接合体を作製する。標準接合体の作製に
用いる被接合材は、少なくとも実際の接合材に使用され
る被接合材と同一材質であることを要するが、接合特性
の推定精度を上げるためには、その形状も同一にするこ
とが望ましい。
Next, a specific procedure of the ultrasonic inspection method for a bonding material according to the present invention will be described. First, a standard joined body for examining in advance the correspondence between the joining characteristics and the attenuation of the ultrasonic wave transmitted through the joining interface is prepared. The material to be used for the production of the standard bonded body must be at least the same material as the material to be used for the actual bonding material, but the shape must be the same in order to increase the estimation accuracy of the bonding characteristics. It is desirable to do.

【0056】次いで、評価したい接合特性を故意に変え
て、種々の条件で標準接合体の接合を行う。例えば、応
力が作用する構造物に使用される接合材の場合には、接
合強度が最も重要な評価項目であり、接合強度は、接合
温度に最も影響を受けるものである。そこで、このよう
な場合には、接合特性として接合温度を選択し、推奨す
る接合温度を中心として、種々の接合温度で標準接合体
を作製すればよい。
Next, the bonding of the standard bonded body is performed under various conditions while intentionally changing the bonding characteristics to be evaluated. For example, in the case of a joining material used for a structure on which a stress acts, the joining strength is the most important evaluation item, and the joining strength is most affected by the joining temperature. Therefore, in such a case, the bonding temperature may be selected as the bonding characteristic, and standard bonded bodies may be manufactured at various bonding temperatures around the recommended bonding temperature.

【0057】また、例えば、接合後に行われる熱処理に
より接合界面近傍の強度、靭性等が大きく変動する系の
場合には、実際の接合作業において変動が予想される熱
処理条件、例えば、熱処理温度、保持時間、冷却速度等
を故意に変えて標準接合体を作製すればよい。
Further, for example, in the case of a system in which the strength, toughness, etc. near the bonding interface fluctuates greatly due to the heat treatment performed after the bonding, heat treatment conditions that are expected to fluctuate in the actual bonding operation, for example, heat treatment temperature, holding temperature A standard bonded body may be produced by intentionally changing the time, cooling rate, and the like.

【0058】次に、このようにして作製された標準接合
体について、図1に示すような探傷工程、あるいは他の
非破壊検査を用いて、接合界面4に欠陥がないことを確
認した後、図3に示すように、接合界面4を挟んで送信
探触子7及び受信探触子8を配置し、送信探触子7と受
信探触子8との距離を一定に保った状態を維持しながら
前後左右に走査させ、接合界面4の各位置を透過する超
音波の減衰量を逐次測定し、その平均値を算出する。
Next, with respect to the standard bonded body thus manufactured, after confirming that there is no defect in the bonding interface 4 by using a flaw detection process as shown in FIG. 1 or another non-destructive inspection, As shown in FIG. 3, the transmission probe 7 and the reception probe 8 are arranged with the bonding interface 4 interposed therebetween, and the state where the distance between the transmission probe 7 and the reception probe 8 is kept constant is maintained. While scanning back and forth and right and left, the attenuation of the ultrasonic wave transmitted through each position of the bonding interface 4 is sequentially measured, and the average value is calculated.

【0059】評価すべき接合特性が接合温度等の接合条
件である場合には、そのまま、得られた超音波の減衰量
と接合条件とを対比し、両者の相関を求めればよい。通
常は、減衰量及び接合温度等の接合条件の内、一方を横
軸に、他方を縦軸に取って測定データをプロットし、回
帰分析が行われる。一方の変化に対して他方が直線的に
変化する場合には、単回帰を行い、一方の変化に対して
他方が曲線的に変化する場合には、多項式回帰を行えば
よい。
When the bonding characteristics to be evaluated are the bonding conditions such as the bonding temperature, the obtained attenuation amount of the ultrasonic wave is compared with the bonding conditions, and the correlation between the two may be obtained. Normally, one of the joining conditions such as the amount of attenuation and the joining temperature is plotted on the horizontal axis and the other is plotted on the vertical axis, and the measured data is plotted to perform a regression analysis. If one changes linearly with respect to one change, simple regression may be performed, and if the other changes linearly with one change, polynomial regression may be performed.

【0060】また、評価すべき接合特性が引張強度等の
機械的特性である場合には、標準接合体の超音波検査が
終了後、各標準接合体から試験片を切り出し、引張試験
等の破壊試験を行えばよい。そして、得られた減衰量と
破壊試験のデータから、上述と同様の手順に従い、回帰
分析等により両者の相関を求める。
When the bonding characteristics to be evaluated are mechanical characteristics such as tensile strength, a test piece is cut out from each of the standard bonded bodies after the ultrasonic inspection of the standard bonded bodies is completed, and a fracture such as a tensile test is performed. A test may be performed. Then, from the obtained attenuation and the data of the destructive test, a correlation between the two is obtained by regression analysis or the like according to the same procedure as described above.

【0061】そして、求められた標準接合体の超音波減
衰量と接合特性との相関に基づき、各測定データのバラ
ツキを考慮して、合否判定のための判定基準を作成す
る。なお、判定基準は、接合材に要求される信頼性の高
さ、要求特性、測定される超音波減衰量のバラツキの大
きさ等を考慮して適宜決定すればよい。
Then, based on the correlation between the obtained ultrasonic attenuation of the standard joined body and the joining characteristics, a criterion for making a pass / fail judgment is created in consideration of the variation of each measurement data. The criterion may be appropriately determined in consideration of the reliability required for the bonding material, the required characteristics, the variation in the measured ultrasonic attenuation, and the like.

【0062】次に、実際に接合された接合特性が未知で
ある接合材(以下、これを「未知接合材」という)に対
し、図1に示すように、接合界面4の一方の側に送信探
触子5及び受信探触子6を配置し、反射波の強度を測定
する。
Next, as shown in FIG. 1, a bonding material that is actually bonded and whose bonding characteristics are unknown (hereinafter referred to as “unknown bonding material”) is transmitted to one side of the bonding interface 4 as shown in FIG. The probe 5 and the receiving probe 6 are arranged, and the intensity of the reflected wave is measured.

【0063】反射波の強度がノイズエコーレベルである
場合には、接合界面4に欠陥がないと判断されるので、
次に、図3に示すように、接合界面の両側に送信探触子
7及び受信探触子6を配置し、標準接合体と同一条件下
で超音波の減衰量を計測する。そして、測定された減衰
量と、標準接合体の減衰量とを対比し、回帰分析等によ
り求められた標準接合体の超音波減衰量と接合特性との
相関から、未知接合材の接合特性を推定する。
When the intensity of the reflected wave is at the level of the noise echo, it is determined that there is no defect in the bonding interface 4.
Next, as shown in FIG. 3, the transmitting probe 7 and the receiving probe 6 are arranged on both sides of the bonding interface, and the attenuation of the ultrasonic wave is measured under the same conditions as the standard bonded body. Then, the measured attenuation and the attenuation of the standard joint are compared, and from the correlation between the ultrasonic attenuation of the standard joint and the joining characteristics obtained by regression analysis, etc., the joining characteristics of the unknown joining material are determined. presume.

【0064】例えば、単回帰を行った場合において、相
関係数が1に近い場合には、接合特性に対する超音波減
衰量の回帰直線と、超音波減衰量に対する接合特性の回
帰直線とはほぼ一致するので、標準接合体について求め
た回帰直線に未知接合材で測定された超音波減衰量を代
入し、未知接合材の接合特性を逆算する。そして、その
逆算された接合特性が予め定められた判定基準内である
場合には合格とし、判定基準外にある場合には不合格と
すればよい。
For example, when the simple regression is performed and the correlation coefficient is close to 1, the regression line of the ultrasonic attenuation for the joint characteristics substantially coincides with the regression line of the ultrasonic characteristics for the ultrasonic attenuation. Therefore, the ultrasonic attenuation measured for the unknown joining material is substituted into the regression line obtained for the standard joined body, and the joining characteristics of the unknown joining material are calculated backward. Then, if the back-calculated bonding characteristic is within a predetermined criterion, it is determined to pass, and if it is out of the criterion, it is rejected.

【0065】あるいは、標準接合体に対して求められた
回帰直線の回帰係数が十分大きい場合には、測定された
未知接合材の超音波減衰量を用いて所定の棄却率で接合
特性の区間推定を行い、推定された接合特性が予め定め
られた判定基準内である場合には合格とし、判定基準外
にある場合には不合格とすればよい。なお、棄却率は、
接合材に要求される信頼性に応じて適宜選択すればよ
い。
Alternatively, if the regression coefficient of the regression line obtained for the standard joint is sufficiently large, the section estimation of the joining characteristics at a predetermined rejection rate using the measured ultrasonic attenuation of the unknown joining material. May be performed, and if the estimated joining characteristics are within the predetermined criteria, it may be judged as pass, and if not, the test may be rejected. The rejection rate is
What is necessary is just to select suitably according to the reliability required of a joining material.

【0066】そして、実際に接合された未知接合材が、
作業マニュアル通りに接合されている場合には、未知接
合材の接合界面の性状は、必要とされる接合特性を満足
している標準接合体の接合界面とほぼ同一の性状を有し
ている可能性が高いので、測定された超音波の減衰量も
上述の判定基準内に収まる可能性が高い。
Then, the unknown joining material actually joined is
When joined according to the operation manual, the properties of the joining interface of the unknown joining material can be almost the same as the joining interface of the standard joint that satisfies the required joining characteristics Therefore, there is a high possibility that the measured attenuation amount of the ultrasonic wave falls within the above-described criterion.

【0067】一方、不可抗力により作業マニュアル通り
に接合作業が行われず、接合条件が変動している場合に
は、接合特性が変化しているので、それに応じて超音波
の減衰量も上述の判定基準外の値が検出され、不合格判
定がなされることになる。なお、探傷工程において欠陥
有りと判断された未知接合材、及び検査工程において不
合格判定がなされた未知接合材に対しては、必要に応じ
て、接合部を切除し、再接合する等の処置が取られるこ
とになる。
On the other hand, when the joining operation is not performed according to the operation manual due to the force majeure and the joining conditions are fluctuating, the joining characteristics are changed. Outside values will be detected and a reject decision will be made. In addition, for the unknown joining material that was determined to be defective in the flaw detection process and for the unknown joining material that was determined to be rejected in the inspection process, measures such as cutting off the joint and rejoining as necessary Will be taken.

【0068】(実施例1)以下に、二相ステンレス鋼管
を被接合材に用いて液相拡散接合法により接合した接合
材に対し、本発明に係る接合材の超音波検査方法を適用
した例について説明する。
(Example 1) An example in which the ultrasonic inspection method for a joining material according to the present invention is applied to a joining material obtained by joining a duplex stainless steel pipe as a material to be joined by a liquid phase diffusion joining method. Will be described.

【0069】初めに、標準接合体を以下の手順により作
製した。すなわち、被接合材には、二相ステンレス鋼S
US329J1からなる外径150mm、内径120m
mの鋼管を用い、接合界面は、表面粗さがRmax30
μm以下となるように仕上げた。また、インサート材に
は、融点が1040℃である厚さ40μmのNi系合金
箔を用いた。
First, a standard joined body was prepared according to the following procedure. That is, the material to be joined is a duplex stainless steel S
US329J1 outer diameter 150mm, inner diameter 120m
m, and the joint interface has a surface roughness of Rmax30.
It was finished to be less than μm. Also, a Ni-based alloy foil having a melting point of 1040 ° C. and a thickness of 40 μm was used as the insert material.

【0070】この2本の二相ステンレス鋼管の間にイン
サート材を介挿し、接合界面に4MPaの加圧力を印加
し、Arガス雰囲気下、1150℃〜1300℃の温度
に60秒間保持することにより、二相ステンレス鋼管の
液相拡散接合を行った。
An insert material is inserted between the two duplex stainless steel tubes, a pressure of 4 MPa is applied to the joint interface, and the temperature is maintained at 1150 ° C. to 1300 ° C. for 60 seconds in an Ar gas atmosphere. And liquid phase diffusion bonding of a duplex stainless steel tube.

【0071】得られた接合材に対し、図1に示すよう
に、接合界面4の一方の側に送信探触子5及び受信探触
子6を配置し、接合界面4から反射される超音波の強度
を測定した。なお、反射波の測定には、横波を用いた。
As shown in FIG. 1, a transmitting probe 5 and a receiving probe 6 are arranged on one side of the bonding interface 4 with respect to the obtained bonding material. Was measured for strength. Note that a transverse wave was used for measuring the reflected wave.

【0072】次いで、作製された全ての接合材に対し、
図3に示すように、接合界面4を挟んで送信探触子7及
び受信探触子8を配置し、接合界面4を透過する超音波
の減衰量(相対比超音波強度)を測定した。なお、送信
探触子7及び受信探触子8には、振動子がジルコンチタ
ン酸鉛からなる10mm角の角形探触子を用い、減衰量
の測定は、周波数5MHzの縦波を屈折角20゜で接合
材に入射させることにより行った。また、送信探触子7
と受信探触子8との距離は、4スキップとした。
Next, for all of the produced bonding materials,
As shown in FIG. 3, the transmission probe 7 and the reception probe 8 were arranged with the joint interface 4 interposed therebetween, and the attenuation (relative relative ultrasonic intensity) of the ultrasonic wave transmitted through the joint interface 4 was measured. The transmitting probe 7 and the receiving probe 8 are 10 mm square transducers made of lead zircon titanate, and the attenuation is measured by measuring a longitudinal wave having a frequency of 5 MHz using a refraction angle of 20 mm. This was performed by making the light incident on the joining material in ゜. In addition, the transmission probe 7
And the distance between the receiving probe 8 and the receiving probe 8 was 4 skips.

【0073】得られた接合界面4を透過する超音波の減
衰量(相対比超音波強度)と接合温度の関係を図4及び
図5に示す。なお、図4は、探傷工程において反射波の
強度がノイズエコーレベルであると判断された接合材の
みについて得られた、相対比超音波強度と接合温度の関
係を示し、図5は、作製された全ての接合材について得
られた相対比超音波強度と接合温度の関係を示す。
FIGS. 4 and 5 show the relationship between the obtained attenuation amount (relative ratio ultrasonic intensity) of the ultrasonic wave transmitted through the bonding interface 4 and the bonding temperature. FIG. 4 shows the relationship between the relative specific ultrasonic intensity and the joining temperature obtained only for the joining material whose intensity of the reflected wave was determined to be the noise echo level in the flaw detection process, and FIG. The relationship between the relative ultrasonic strength and the bonding temperature obtained for all the bonding materials obtained is shown.

【0074】作製された全ての接合材について測定され
た相対比超音波強度を用いて、接合温度との相関を求め
た場合、図5に示すように、回帰直線(図5中、実線で
表示)の周囲に測定データが点在しており、相対比超音
波強度と接合温度の間に弱い相関が認められることがわ
かる。図5の場合、超音波相対比強度と接合温度の相関
係数は、−0.66であった。
When the correlation with the joining temperature was obtained using the relative ratio ultrasonic intensity measured for all the produced joining materials, a regression line (shown by a solid line in FIG. 5) was obtained as shown in FIG. The measurement data is scattered around ()), and it can be seen that a weak correlation is observed between the relative specific ultrasonic intensity and the bonding temperature. In the case of FIG. 5, the correlation coefficient between the ultrasonic relative specific strength and the bonding temperature was -0.66.

【0075】これに対し、探傷工程において反射波の強
度がノイズエコーレベルであると判断された接合材のみ
について測定された相対比超音波強度を用いて、接合温
度との相関を求めた場合、図4に示すように、回帰直線
(図4中、実線で表示)近傍に測定データが集中してお
り、相対比超音波強度と接合温度の間に強い相関が認め
られることがわかる。図4の場合、超音波相対比強度と
接合温度の相関係数は、−0.92であった。
On the other hand, when the correlation with the joining temperature is obtained by using the relative ratio ultrasonic intensity measured only for the joining material whose intensity of the reflected wave is determined to be the noise echo level in the flaw detection process, As shown in FIG. 4, the measurement data is concentrated near the regression line (indicated by the solid line in FIG. 4), and it can be seen that a strong correlation is observed between the relative specific ultrasonic intensity and the bonding temperature. In the case of FIG. 4, the correlation coefficient between the relative intensity of the ultrasonic waves and the bonding temperature was -0.92.

【0076】次に、得られた全ての接合材から引張試験
片(JIS Z 3121 4号試験片)を切り出し、
クロスヘッドスピード1mm/minで引張試験を行っ
た。得られた接合界面4を透過する超音波の減衰量(相
対比超音波強度)と接合温度の関係を図6及び図7に示
す。
Next, a tensile test piece (JIS Z 3124 No. 4 test piece) was cut out from all the obtained joining materials.
A tensile test was performed at a crosshead speed of 1 mm / min. FIGS. 6 and 7 show the relationship between the obtained attenuation amount (relative ratio ultrasonic intensity) of the ultrasonic wave transmitted through the bonding interface 4 and the bonding temperature.

【0077】なお、図6は、探傷工程において反射波の
強度がノイズエコーレベルであると判断された接合材の
みについて得られた、相対比超音波強度と引張強さの関
係を示し、図7は、作製された全ての接合材について得
られた相対比超音波強度と引張強さの関係を示す。
FIG. 6 shows the relationship between the relative specific ultrasonic intensity and the tensile strength obtained only for the bonding material whose intensity of the reflected wave was determined to be the noise echo level in the flaw detection process. Shows the relationship between the relative strength ultrasonic strength and the tensile strength obtained for all of the manufactured joining materials.

【0078】作製された全ての接合材について測定され
た相対比超音波強度を用いて、引張強さとの相関を求め
た場合、図7に示すように、回帰直線(図7中、実線で
表示)の周囲に測定データが点在しており、相対比超音
波強度と引張強さの間に弱い相関が認められることがわ
かる。図7の場合、超音波相対比強度と引張強度の相関
係数は、−0.53であった。
When the correlation with the tensile strength was obtained using the relative ratio ultrasonic intensity measured for all the produced bonding materials, a regression line (shown by a solid line in FIG. 7) was obtained as shown in FIG. The measurement data is scattered around ()), and it can be seen that a weak correlation is observed between the relative specific ultrasonic intensity and the tensile strength. In the case of FIG. 7, the correlation coefficient between the ultrasonic relative specific strength and the tensile strength was -0.53.

【0079】これに対し、探傷工程において反射波の強
度がノイズエコーレベルであると判断された接合材のみ
について測定された相対比超音波強度を用いて、引張強
さとの相関を求めた場合、図6に示すように、回帰直線
(図6中、実線で表示)近傍に測定データが集中してお
り、相対比超音波強度と引張強さの間に強い相関が認め
られることがわかる。図6の場合、超音波相対比強度と
引張強度の相関係数は、−0.91に向上した。
On the other hand, when the correlation with the tensile strength was obtained using the relative ratio ultrasonic intensity measured only for the bonding material whose intensity of the reflected wave was determined to be the noise echo level in the flaw detection process, As shown in FIG. 6, the measurement data is concentrated near the regression line (indicated by a solid line in FIG. 6), and it can be seen that a strong correlation is observed between the relative specific ultrasonic intensity and the tensile strength. In the case of FIG. 6, the correlation coefficient between the ultrasonic relative specific strength and the tensile strength was improved to -0.91.

【0080】なお、探傷工程において反射波の強度がノ
イズエコーレベルを超えたと判断された接合材から切り
出された引張試験片の破断面には、いずれも、未接合部
が認められた。従って、図5及び図7における相関係数
の低下は、未接合部により超音波が反射され、減衰量が
通常よりも増加しているデータが含まれていたためと考
えられる。
In the flaw detection step, an unbonded portion was observed in each of the fractured surfaces of the tensile test pieces cut out from the bonding material whose intensity of the reflected wave exceeded the noise echo level. Therefore, the decrease in the correlation coefficient in FIG. 5 and FIG. 7 is considered to be due to the fact that the ultrasonic wave was reflected by the unjoined portion, and the data in which the attenuation increased more than usual was included.

【0081】次に、標準接合体で得られた結果に基づい
て、接合特性の異なる接合材の接合特性を実際に推定で
きるか否かを確認する試験を行った。まず、図4及び図
6で得られた実験データについて単回帰を行い、次の回
帰式を得た。 超音波相対比強度=−0.083x(接合温度)+91 ・・・(1) 引張強さ=−40x(超音波相対比強度)+150 ・・・(2)
Next, a test was conducted to confirm whether or not the joining characteristics of joining materials having different joining characteristics could be actually estimated based on the results obtained with the standard joined body. First, simple regression was performed on the experimental data obtained in FIGS. 4 and 6, and the following regression equation was obtained. Ultrasonic relative specific strength = −0.083 × (joining temperature) +91 (1) Tensile strength = −40 × (ultrasonic relative specific strength) +150 (2)

【0082】次に、前述の標準接合体と同様の手順に従
い、接合温度を1300℃とした接合材を10個、及び
接合温度を1150℃とした接合材を10個作製した。
次いで、各接合材の履歴を伏せた状態で、接合界面4か
ら反射される超音波の強度を計測し、反射波の強度がノ
イズエコーレベルである接合材と、反射波の強度がノイ
ズエコーレベルを超える接合材に分類した。
Next, according to the same procedure as that of the above-mentioned standard bonded body, ten bonding materials having a bonding temperature of 1300 ° C. and ten bonding materials having a bonding temperature of 1150 ° C. were produced.
Next, the strength of the ultrasonic wave reflected from the bonding interface 4 is measured in a state where the history of each bonding material is turned down, and the bonding material whose reflected wave intensity is the noise echo level and the reflected wave intensity is the noise echo level It classified into more than joining materials.

【0083】次に、接合界面4から反射される超音波の
強度がノイズエコーレベルであると判断された接合材の
みについて、1辺が10mmの角形探触子を用い、周波
数が5MHzの縦波を屈折角20゜で入射させることに
より、接合界面4を透過する超音波の減衰量を測定し、
接合材の接合温度の推定を行った。なお、判定基準は、
(1)の回帰式に基づき、超音波相対比強度が−10d
B以上(接合温度1200℃以下に相当)を不合格とし
た。その結果、接合温度を1300℃とした接合材を全
数検出・選別することができた。
Next, only the joining material judged to have the intensity of the ultrasonic wave reflected from the joining interface 4 at the noise echo level was measured by using a rectangular probe having a side of 10 mm and a longitudinal wave having a frequency of 5 MHz. At an angle of refraction of 20 ° to measure the attenuation of the ultrasonic wave transmitted through the bonding interface 4,
The joining temperature of the joining material was estimated. The criterion is
Based on the regression equation of (1), the relative intensity of the ultrasonic wave is −10 d.
B or more (corresponding to a joining temperature of 1200 ° C. or less) was rejected. As a result, it was possible to detect and sort all the joining materials having the joining temperature of 1300 ° C.

【0084】また、測定された超音波の減衰量から
(2)の回帰式を用いて逆算された引張強さは、接合温
度を1300℃とした接合材で826MPa、接合温度
を1150℃とした接合材で328MPaであった。一
方、選別された1300℃で接合された鋼管及び115
0℃で接合された鋼管からそれぞれ実際に試験片を切り
出し、引張強さを測定したところ、それぞれ、835M
Pa及び360MPaとなり、(2)の回帰式から推定
した結果と良く一致した。
The tensile strength calculated back from the measured ultrasonic attenuation using the regression equation (2) was 826 MPa for a joining material with a joining temperature of 1300 ° C., and the joining temperature was 1150 ° C. It was 328 MPa for the bonding material. On the other hand, the selected steel pipe joined at 1300 ° C. and 115
A test piece was actually cut out from each of the steel pipes joined at 0 ° C., and the tensile strength was measured.
Pa and 360 MPa were in good agreement with the results estimated from the regression equation of (2).

【0085】以上の結果から、接合界面を透過する超音
波の減衰量を測定すれば、接合温度、接合強度等の接合
特性を推定できることがわかった。また、接合界面を透
過する超音波の減衰量を測定する前に、探傷工程により
欠陥の探傷を行うと、接合特性を高い精度で推定できる
ことがわかった。
From the above results, it was found that by measuring the attenuation of the ultrasonic wave transmitted through the bonding interface, the bonding characteristics such as bonding temperature and bonding strength can be estimated. In addition, it was found that if defects were detected by a flaw detection process before measuring the attenuation of the ultrasonic wave transmitted through the bonding interface, the bonding characteristics could be estimated with high accuracy.

【0086】以上、本発明の実施の形態について詳細に
説明したが、本発明は上記実施の形態に何ら限定される
ものではなく、本発明の要旨を逸脱しない範囲で種々の
改変が可能である。
Although the embodiments of the present invention have been described in detail, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention. .

【0087】例えば、上記実施例では、接合界面から反
射される超音波の強度を測定する探傷工程を行った後、
接合界面を透過する超音波の減衰量を測定する検査工程
を行っているが、反射波の強度を測定するための送信探
触子及び受信探触子、並びに透過波の減衰量を測定する
ための送信探触子及び受信探触子を所定の間隔を置いて
接合材上に配置し、反射波の強度の測定と、透過波の減
衰量の測定とを同時に行っても良い。
For example, in the above embodiment, after performing the flaw detection step of measuring the intensity of the ultrasonic wave reflected from the bonding interface,
Performs an inspection process to measure the attenuation of ultrasonic waves transmitted through the bonding interface, but to measure the transmission and reception probes for measuring the intensity of reflected waves, and to measure the attenuation of transmitted waves The transmission probe and the reception probe may be arranged on the bonding material at predetermined intervals, and the measurement of the intensity of the reflected wave and the measurement of the attenuation of the transmitted wave may be performed simultaneously.

【0088】これにより、1回の走査で反射波の強度と
透過波の減衰量とを同時に測定できるので、反射波の強
度と透過波の減衰量とを個別に測定する場合に比して、
走査時間を半分にすることができる。
Thus, the intensity of the reflected wave and the attenuation of the transmitted wave can be simultaneously measured in one scan, so that the intensity of the reflected wave and the attenuation of the transmitted wave can be measured separately.
The scanning time can be halved.

【0089】また、上記実施例では、鋼管同志の接合材
に対して本発明を適用しているが、鋼管に限らず、板状
の接合材に対しても本発明を適用できる。また、上記実
施の形態では、Ni系合金をインサート材として二相ス
テンレス鋼を液相拡散接合法により接合した接合材に対
して本発明を適用しているが、二相ステンレス鋼を固相
拡散接合法、融接法、圧接法等により接合した接合材に
対しても本発明を適用でき、上記実施例と同様の効果を
得ることができる。
Further, in the above embodiment, the present invention is applied to the joining material of steel pipes. However, the present invention can be applied not only to the steel pipe but also to a plate-like joining material. In the above embodiment, the present invention is applied to a joining material obtained by joining a duplex stainless steel by a liquid phase diffusion joining method using a Ni-based alloy as an insert material. The present invention can be applied to a joining material joined by a joining method, a fusion welding method, a pressure welding method, or the like, and the same effects as those of the above embodiment can be obtained.

【0090】さらに、被接合材は、二相ステンレス鋼あ
るいは二相ステンレス鋼をベースとする析出硬化型ステ
ンレス鋼に限定されるものではなく、接合条件等の変動
によって超音波減衰量が大きく変動する性質を有する材
料を被接合材とする接合材であれば、あらゆる接合材に
対して本発明を適用できる。
Further, the material to be joined is not limited to the duplex stainless steel or the precipitation hardening stainless steel based on the duplex stainless steel, but the ultrasonic attenuation greatly varies depending on the variation of the joining conditions and the like. The present invention can be applied to any joining material as long as the joining material is a material having properties.

【0091】例えば、パーライトは、フェライトとセメ
ンタイトの層状構造のため、超音波の減衰量は大きくな
るが、マルテンサイトや中間組織では、超音波の減衰量
は小さくなる傾向がある。そのため、パーライトを含む
鋼材を接合し、接合部を急冷してマルテンサイトを生成
させた場合や、マルテンサイト又は中間組織を含む鋼材
を接合し、接合部を徐冷してパーライトを生成させた場
合には、接合界面を透過する超音波減衰量の変化として
検出することができ、超音波減衰量から接合特性を推定
することが可能となる。
For example, since pearlite has a layered structure of ferrite and cementite, the attenuation of ultrasonic waves increases, but the attenuation of ultrasonic waves tends to decrease in martensite or an intermediate structure. Therefore, when joining steel materials containing pearlite and rapidly cooling the joint to generate martensite, or when joining steel materials containing martensite or an intermediate structure and gradually cooling the joint to produce pearlite In this case, it is possible to detect the change in the amount of attenuation of the ultrasonic wave transmitted through the bonding interface, and it is possible to estimate the bonding characteristics from the amount of ultrasonic attenuation.

【0092】[0092]

【発明の効果】本発明は、既知の条件下で接合した標準
接合体の接合界面を透過する超音波の減衰量と接合特性
との相関を予め求め、未知の条件下で接合した被測定接
合材の接合特性を、被測定接合材の界面を透過する超音
波の減衰量から推定するようにしたので、接合温度、接
合強度等の接合特性を非破壊で推定することが可能とな
るという効果がある。
As described above, according to the present invention, the correlation between the attenuation of the ultrasonic wave transmitted through the bonding interface of the standard bonded body bonded under known conditions and the bonding characteristics is determined in advance, and the measured bond bonded under unknown conditions is determined. Since the joining characteristics of the material are estimated from the attenuation of the ultrasonic wave transmitted through the interface of the material to be measured, the joining characteristics such as joining temperature and joining strength can be estimated nondestructively. There is.

【0093】また、超音波の減衰量を測定するに先だっ
て、接合界面から反射される反射波の強度を測定するこ
とにより、接合界面における欠陥の有無を判断するよう
にすれば、接合界面を透過する超音波の減衰量の測定精
度が向上し、これにより接合特性の推定精度が向上する
という効果がある。
Before measuring the amount of attenuation of the ultrasonic wave, the presence or absence of a defect at the joint interface is determined by measuring the intensity of the reflected wave reflected from the joint interface. This has the effect of improving the accuracy of measuring the amount of attenuation of the ultrasonic wave, thereby improving the accuracy of estimating the bonding characteristics.

【0094】さらに、接合界面から反射される超音波の
強度と、接合界面を透過する超音波の減衰量とを同時に
測定すれば、検査時間が短縮され、接合作業の高能率化
を図ることができるという効果がある。
Further, by simultaneously measuring the intensity of the ultrasonic wave reflected from the bonding interface and the attenuation of the ultrasonic wave transmitted through the bonding interface, the inspection time can be reduced and the efficiency of the bonding operation can be improved. There is an effect that can be.

【0095】以上のように、本発明に係る接合材の超音
波検査方法によれば、抜き取り検査が不可能な接合材で
あっても高い精度で、接合温度、接合強度等の接合特性
を推定することができるので、これを例えば、油井管や
化学プラントの配管等の検査に応用すれば、接合工程の
信頼性を高めることが可能となるものであり、産業上そ
の効果の極めて大きい発明である。
As described above, according to the ultrasonic inspection method of the bonding material according to the present invention, the bonding characteristics such as the bonding temperature and the bonding strength can be estimated with high accuracy even if the bonding material cannot be sampled. Therefore, if this is applied to, for example, inspection of oil well pipes and pipes of chemical plants, it is possible to increase the reliability of the joining process. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る超音波検査方法の探傷工程を示す
概略構成図である。
FIG. 1 is a schematic configuration diagram showing a flaw detection step of an ultrasonic inspection method according to the present invention.

【図2】本発明に係る超音波検査方法に用いられる探触
子の断面図である。
FIG. 2 is a cross-sectional view of a probe used in the ultrasonic inspection method according to the present invention.

【図3】本発明に係る超音波検査方法の検査工程を示す
概略構成図である。
FIG. 3 is a schematic configuration diagram showing an inspection process of the ultrasonic inspection method according to the present invention.

【図4】探傷工程を経た接合材の相対比超音波強度と接
合温度との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the relative ultrasonic strength of the bonding material subjected to the flaw detection step and the bonding temperature.

【図5】探傷工程を経ない接合材の相対比超音波強度と
接合温度との関係を示す図である。
FIG. 5 is a diagram showing a relationship between a relative specific ultrasonic intensity of a bonding material that has not undergone a flaw detection step and a bonding temperature.

【図6】探傷工程を経た接合材の相対比超音波強度と引
張強さとの関係を示す図である。
FIG. 6 is a diagram showing the relationship between the relative specific ultrasonic strength and the tensile strength of a bonding material that has undergone a flaw detection process.

【図7】探傷工程を経ない接合材の相対比超音波強度と
引張強さとの関係を示す図である。
FIG. 7 is a diagram showing the relationship between the relative specific ultrasonic strength and the tensile strength of a bonding material that has not undergone a flaw detection step.

【符号の説明】[Explanation of symbols]

1 接合材 2、3 鋼管 4 接合界面 5、7 送信探触子 6、8 受信探触子 DESCRIPTION OF SYMBOLS 1 Joining material 2, 3 Steel pipe 4 Joining interface 5, 7 Transmission probe 6, 8 Receiving probe

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 接合材の接合界面の一方の側に1又は2
以上の斜角探触子を配置し、前記斜角探触子より前記接
合材の接合界面に向かって超音波を入射させ、前記接合
界面から反射される反射波の強度を測定し、該反射波の
強度から前記接合界面に欠陥が存在するか否かを判断す
る探傷工程と、 該探傷工程により接合界面に欠陥が存在していないと判
断された前記接合材の接合界面の一方の側には送信用の
斜角探触子を、他方の側には受信用の斜角探触子をそれ
ぞれ配置し、前記送信用の斜角探触子より送信された超
音波が前記接合界面を透過し、前記受信用の斜角探触子
に受信された時の超音波の減衰量を測定し、 その測定値に基づいて、予め測定される既知の接合条件
により接合された標準接合体の超音波減衰量と接合特性
との相関関係より、前記接合材の接合特性を検査する検
査工程とを備えていることを特徴とする接合材の超音波
検査方法。
1 or 2 on one side of a bonding interface of a bonding material.
The above-described angle beam probe is arranged, ultrasonic waves are incident from the angle beam probe toward the bonding interface of the bonding material, and the intensity of the reflected wave reflected from the bonding interface is measured. A flaw detection step of judging whether or not a defect exists at the bonding interface based on the intensity of the wave; and one side of the bonding interface of the bonding material determined to have no defect at the bonding interface by the flaw detection step. Is a transmission angle beam probe, and the other side is a reception angle beam probe, and the ultrasonic wave transmitted from the transmission angle beam is transmitted through the bonding interface. Then, the amount of attenuation of the ultrasonic wave when the ultrasonic wave is received by the receiving angle beam probe is measured, and based on the measured value, the supersonic wave of the standard bonded body that is bonded under known bonding conditions measured in advance is measured. An inspection step of inspecting the bonding characteristics of the bonding material from the correlation between the sound attenuation and the bonding characteristics. Ultrasonic inspection method of the bonding material, characterized by that example.
【請求項2】 前記接合特性が、接合温度であることを
特徴とする請求項1に記載の接合材の超音波検査方法。
2. The ultrasonic inspection method for a bonding material according to claim 1, wherein the bonding characteristic is a bonding temperature.
【請求項3】 前記接合特性が、接合強度であることを
特徴とする請求項1に記載の接合材の超音波検査方法。
3. The ultrasonic inspection method for a bonding material according to claim 1, wherein the bonding characteristic is bonding strength.
【請求項4】 前記接合材に対し、前記探傷工程による
欠陥の有無の判断と、前記検査工程による接合特性の推
定とを同時に行うことを特徴とする請求項1に記載の接
合材の超音波検査方法。
4. The ultrasonic wave according to claim 1, wherein the determination of the presence or absence of a defect by the flaw detection step and the estimation of the bonding characteristics by the inspection step are performed on the bonding material at the same time. Inspection methods.
【請求項5】 前記接合特性が、接合温度であることを
特徴とする請求項4に記載の接合材の超音波検査方法。
5. The ultrasonic inspection method for a bonding material according to claim 4, wherein the bonding characteristic is a bonding temperature.
【請求項6】 前記接合特性が、接合強度であることを
特徴とする請求項4に記載の接合材の超音波検査方法。
6. The ultrasonic inspection method for a bonding material according to claim 4, wherein the bonding characteristic is bonding strength.
JP10249243A 1998-01-16 1998-09-03 Ultrasonic inspection method for joined material Pending JP2000074887A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10249243A JP2000074887A (en) 1998-09-03 1998-09-03 Ultrasonic inspection method for joined material
EP98124887A EP0930502B1 (en) 1998-01-16 1998-12-30 A method for examining bonded-metal by ultrasonic examination
DE69816585T DE69816585T2 (en) 1998-01-16 1998-12-30 Method for examining metal composites using ultrasound
US09/224,710 US6302314B1 (en) 1998-01-16 1998-12-31 Method for examining bonded-metal by ultrasonic examination
NO990201A NO990201L (en) 1998-01-16 1999-01-15 Method of examining fused metal using ultrasound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10249243A JP2000074887A (en) 1998-09-03 1998-09-03 Ultrasonic inspection method for joined material

Publications (1)

Publication Number Publication Date
JP2000074887A true JP2000074887A (en) 2000-03-14

Family

ID=17190064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10249243A Pending JP2000074887A (en) 1998-01-16 1998-09-03 Ultrasonic inspection method for joined material

Country Status (1)

Country Link
JP (1) JP2000074887A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305111A (en) * 2000-04-20 2001-10-31 Tokimec Inc Ultrasonic rail flaw detector
KR101291619B1 (en) 2013-05-02 2013-08-01 한국기계연구원 A diagnosis device for joint of sheet metal using and method checking up joint of sheet metal use of it
US20230294214A1 (en) * 2022-03-18 2023-09-21 Kabushiki Kaisha Toshiba Ultrasonic welding diagnostic method, joining method of welding member, and inspection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305111A (en) * 2000-04-20 2001-10-31 Tokimec Inc Ultrasonic rail flaw detector
JP4527238B2 (en) * 2000-04-20 2010-08-18 東京計器株式会社 Ultrasonic rail flaw detector
KR101291619B1 (en) 2013-05-02 2013-08-01 한국기계연구원 A diagnosis device for joint of sheet metal using and method checking up joint of sheet metal use of it
US20230294214A1 (en) * 2022-03-18 2023-09-21 Kabushiki Kaisha Toshiba Ultrasonic welding diagnostic method, joining method of welding member, and inspection device

Similar Documents

Publication Publication Date Title
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
US6592154B2 (en) Metal-pipe bonded body, pipe expansion method of metal-pipe bonded body, and method for inspecting metal-pipe bonded body
JP5003275B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body
JP2007163470A (en) Apparatus and method for ultrasonically detecting flaw of tube
EP1839050A1 (en) Ultrasound phased array devices and methods for use with stainless steel
EP3489674B1 (en) Ultrasonic inspection of a structure with a ramp
AU2004288099C1 (en) Method for checking a weld between two metal pipelines
Carreón et al. Relation between hardness and ultrasonic velocity on pipeline steel welded joints
US6302314B1 (en) Method for examining bonded-metal by ultrasonic examination
JP2000074887A (en) Ultrasonic inspection method for joined material
Aleshin et al. On the possibility of using ultrasonic surface and head waves in nondestructive quality checks of additive manufactured products
JPH11201949A (en) Ultrasonic inspection method for bonded material
JP2003262621A (en) Ultrasonic inspection method
卜阳光 et al. Research on ultrasonic phased array multi-mode total focusing inspection technology for nozzle fillet welds
Chang et al. Development of non-contact air coupled ultrasonic testing system for reinforced concrete structure
JP2001330594A (en) Inspection method of metal pipe bonded body
US8375795B2 (en) Non-destructive inspection of high-pressure lines
Hörchens et al. Adaptive ultrasonic imaging of electric resistance welded pipeline seams
JP6808682B2 (en) Inspection device and inspection method for joint members
JP2001183351A (en) Inspection method for jointed quality of metal pipe
JP2024055188A (en) Ultrasonic inspection method
JPH10246722A (en) Method for inspecting weld-bonded part of plastic tube
JP3623486B2 (en) Inspection method of seismic isolation damper
JP4552126B2 (en) Ultrasonic flaw detection method
Iizuka et al. Ultrasonic inspection for scattered oxides in ERW pipe welds.