JPH11201949A - Ultrasonic inspection method for bonded material - Google Patents

Ultrasonic inspection method for bonded material

Info

Publication number
JPH11201949A
JPH11201949A JP10020213A JP2021398A JPH11201949A JP H11201949 A JPH11201949 A JP H11201949A JP 10020213 A JP10020213 A JP 10020213A JP 2021398 A JP2021398 A JP 2021398A JP H11201949 A JPH11201949 A JP H11201949A
Authority
JP
Japan
Prior art keywords
bonding
ultrasonic
joining
probe
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10020213A
Other languages
Japanese (ja)
Inventor
Koji Horio
浩次 堀尾
Hisao Nakase
久生 中瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP10020213A priority Critical patent/JPH11201949A/en
Priority to EP98124887A priority patent/EP0930502B1/en
Priority to DE69816585T priority patent/DE69816585T2/en
Priority to US09/224,710 priority patent/US6302314B1/en
Priority to NO990201A priority patent/NO990201L/en
Publication of JPH11201949A publication Critical patent/JPH11201949A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2487Directing probes, e.g. angle probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Abstract

PROBLEM TO BE SOLVED: To obtain an ultrasonic inspection method in which bonding characteristic such as strength, toughness or the like of a bonded material to be measured can be estimated nondestructively, by measuring attenuation amount of ultrasonic waves at a time when the ultrasonic waves are transmitted through the bonding interface of the bonded material to be measured. SOLUTION: In a bonded material 1 to be measure, e.g. steel pipes 2, 3 are bonded at their pipe end faces. An ultrasonic oscillating probe 5 and a receiving probe 6 are arranged so as to sandwich a bonding interface 4. The attenuation amount of ultrasonic waves at a time when the ultrasonic waves which are oscillated by the ultrasonic oscillating probe 5 are transmitted through the bonding interface 4 so as to be received by the receiving probe 6 is measured. On the basis of its measured value, bonding characteristic of the bonded material 1 to be measured is inspected by the correlation between the attenuation amount of ultrasonic waves in a standard bonded material bonded by a known bonding condition measured in advance and the bonding characteristic. As a result, the bonding characteristic such as the bonding temperature, the bonding strength or the like of the bonded material 1 to be measured can be estimated with high accuracy. When this method is applied to the inspection of an oil well pipe, a chemical plantpipe or the like, the reliability of a bonding process can be increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、接合材の超音波検
査方法に関し、さらに詳しくは、接合材の接合界面を透
過する超音波の減衰量から、接合材の接合温度、強度等
の接合特性を非破壊で検査する接合材の超音波検査方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic inspection method for a joining material, and more particularly, to a joining characteristic such as a joining temperature and strength of a joining material from an attenuation amount of an ultrasonic wave transmitted through a joining interface of the joining material. The present invention relates to an ultrasonic inspection method for a bonding material for non-destructively inspecting a bonding material.

【0002】[0002]

【従来の技術】金属の接合法は、一つの部材に他の部材
を付加する加工方法であり、局部的にエネルギーを与え
て別個の物体を原子間結合させる冶金的接合法と、鋲
接、ボルト接合などの機械的接合法に大別される。
2. Description of the Related Art A metal joining method is a processing method in which one member is added to another member, and a metallurgical joining method in which energy is locally applied to bond a separate object to each other, It is roughly divided into mechanical joining methods such as bolt joining.

【0003】冶金的接合法は、さらに、融接法、圧接
法、ロウ接法、拡散接合法等に分類される。融接法は、
母材の接合部を溶融状態まで加熱し、必要に応じて溶加
材を加えて融合させる接合方法である。圧接法は、被接
合材に大きな機械的圧力を加えて接合する方法であり、
常温圧接法、摩擦圧接法、爆発圧接法、超音波圧接法等
の他、抵抗溶接法もこの部類に入る。ロウ接法は、被接
合材より融点の低いロウ材を溶融状態で接合部の隙間に
流入させ、凝固させて接合する方法である。
[0003] Metallurgical joining methods are further classified into a fusion welding method, a pressure welding method, a brazing method, a diffusion joining method, and the like. The fusion welding method
This is a joining method in which a joined portion of a base material is heated to a molten state, and a filler material is added and fused as needed. The pressure welding method is a method of joining by applying a large mechanical pressure to the material to be joined,
In addition to room temperature welding, friction welding, explosion welding, ultrasonic welding, etc., resistance welding is also included in this category. The brazing method is a method in which a brazing material having a melting point lower than that of a material to be joined is caused to flow into a gap of a joining portion in a molten state and solidified for joining.

【0004】また、拡散接合法は、被接合材を密着さ
せ、被接合材の融点以下の温度で、塑性変形を生じない
程度に加圧し、接合界面に生じる原子の拡散を利用して
被接合材を接合する方法であり、被接合材を直接密着さ
せ、固相状態を維持したまま元素の拡散を行わせる固相
拡散接合法と、被接合材間に低融点のインサート材を介
挿し、インサート材を一時的に溶融させ、液相中の特定
元素の被接合材中への拡散消失を利用して、等温凝固さ
せて接合を行う液相拡散接合法とがある。
In the diffusion bonding method, the materials to be joined are brought into close contact with each other, pressurized at a temperature equal to or lower than the melting point of the materials to be joined so as not to cause plastic deformation, and utilizing the diffusion of atoms generated at the joining interface. It is a method of joining the materials, the solid-state diffusion bonding method that directly adheres the materials to be joined and diffuses elements while maintaining the solid state, and inserting a low melting point insert material between the materials to be joined, There is a liquid phase diffusion bonding method in which an insert material is temporarily melted, and a specific element in a liquid phase is diffused and disappeared into a material to be bonded, and is solidified isothermally to perform bonding.

【0005】このような、拡散接合法を始めとする冶金
的接合法は、機械的接合法と異なり、材料の節約と工数
の削減が可能であり、接合強度、気密性、耐圧性等に優
れた接合継手が得られるという利点がある。その反面、
接合作業は非可逆的であり、接合後に分離して再接合す
ることは困難である。また、接合界面に発生する種々の
欠陥により強度、靱性等の接合特性が大きく変動し、し
かも、欠陥の発生要因は多岐に渡るという欠点がある。
The metallurgical joining method such as the diffusion joining method, unlike the mechanical joining method, can save materials and reduce man-hours, and is excellent in joining strength, airtightness, pressure resistance and the like. There is an advantage that an improved joint can be obtained. On the other hand,
The joining operation is irreversible, and it is difficult to separate and rejoin after joining. Further, there is a defect that bonding characteristics such as strength and toughness greatly vary due to various defects generated at the bonding interface, and that the causes of the defects are various.

【0006】そのため、拡散接合法等の冶金的接合法に
おいては、高い信頼性が要求される場合には、接合後に
接合界面に存在する欠陥の有無を検査するために、放射
線透過試験、超音波探傷試験、磁粉探傷試験、浸透探傷
試験等の各種の非破壊検査が接合材に対して行われてい
る。また、同種の接合材が大量生産される場合には、大
量生産された接合材の中から一部を抜き取り、接合材か
ら接合界面を含む試験片を切り出して引張試験等の破壊
検査が行われている。
For this reason, in a metallurgical bonding method such as a diffusion bonding method, when high reliability is required, a radiation transmission test, an ultrasonic wave test, and an ultrasonic Various non-destructive inspections such as a flaw detection test, a magnetic particle flaw detection test, and a penetrant flaw detection test are performed on bonding materials. When the same type of bonding material is mass-produced, a part of the mass-produced bonding material is extracted, a test piece including a bonding interface is cut out from the bonding material, and a destructive inspection such as a tensile test is performed. ing.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、拡散接
合法等の冶金的接合法は、被接合材である金属材料の局
部的な加熱・冷却を伴うために、接合部近傍に組織や機
械的性質が変化した熱影響部が発生する場合がある。そ
のため、各種非破壊検査により接合界面に亀裂、気孔、
接合不良等の欠陥が発見されない場合であっても、接合
強度、靱性等の接合特性が低下している場合がある。
However, a metallurgical joining method such as a diffusion joining method involves local heating and cooling of a metal material to be joined, so that a structure or a mechanical property near a joint is required. In some cases, a heat-affected zone in which the temperature has changed may occur. Therefore, cracks, pores,
Even when no defect such as poor bonding is found, bonding characteristics such as bonding strength and toughness may be reduced.

【0008】この場合、接合材が大量生産されるような
時には、抜き取り検査による破壊検査が可能であるが、
例えば、プラント製造のような少量生産の時には、抜き
取り検査による破壊試験は不可能であり、実際に接合さ
れた接合材の接合特性を検査する手段がないという問題
があった。
In this case, when the joining material is mass-produced, a destructive inspection by a sampling inspection is possible.
For example, in the case of small-volume production such as plant manufacturing, a destructive test by sampling inspection is impossible, and there is a problem that there is no means for inspecting the joining characteristics of actually joined joining materials.

【0009】この問題を解決するために、例えば、接合
作業をマニュアル化する手段も考えられる。しかし、接
合特性は、継手の設計、精度、清浄度や、接合温度、保
持時間、加圧力等の多くの接合条件に依存することに加
え、屋外で接合作業を行わざるを得ない場合には、気温
等の天候の影響を受け、さらには、接合作業者の技量に
も大きく左右されるものである。そのため、特に高い信
頼性が要求される部位に使用される接合材については、
接合作業の管理のみでは不十分である。
[0009] In order to solve this problem, for example, a means for manualizing the joining operation can be considered. However, in addition to the fact that the joining characteristics depend on many joining conditions such as joint design, accuracy, cleanliness, joining temperature, holding time, pressure, etc., when joining work must be performed outdoors In addition, it is affected by weather such as temperature, temperature, etc., and further greatly depends on the skill of the joining operator. Therefore, especially for bonding materials used in areas where high reliability is required,
It is not enough to just manage the joining operation.

【0010】本発明が解決しようとする課題は、拡散接
合法を始めとする冶金的接合法において、接合材の強
度、靱性等の接合特性を非破壊で推定することを可能と
する接合材の検査方法を提供することにある。
An object of the present invention is to provide a metallurgical bonding method such as a diffusion bonding method, which is capable of non-destructively estimating bonding characteristics such as strength and toughness of a bonding material. An object of the present invention is to provide an inspection method.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る接合材の超音波検査方法は、接合条件
の未知な被測定接合材の接合界面の両側に超音波発振探
触子と受信探触子とを置き、前記超音波発振探触子より
発振された超音波が前記接合界面を透過し、前記受信探
触子に受信された時の超音波の減衰量を測定し、その測
定値に基づいて予め測定される既知の接合条件により接
合された標準接合体の超音波減衰量と接合特性との相関
関係より、前記被測定接合材の接合特性を検査するよう
にしたことを要旨とするものである。
In order to solve the above-mentioned problems, an ultrasonic inspection method for a bonding material according to the present invention uses an ultrasonic oscillation probe on both sides of a bonding interface of a bonding material whose bonding conditions are unknown. The probe and the receiving probe are placed, and the ultrasonic wave oscillated from the ultrasonic oscillation probe transmits through the bonding interface, and measures the attenuation of the ultrasonic wave when the ultrasonic wave is received by the receiving probe. From the correlation between the ultrasonic attenuation and the bonding characteristics of the standard bonded body bonded under known bonding conditions measured in advance based on the measured values, the bonding characteristics of the bonding material to be measured are inspected. The gist is that.

【0012】ここで、接合特性とは、接合材の機械的特
性に影響するあらゆる特性であって、接合界面に形成さ
れた亀裂、気孔、接合不良等の欠陥以外のものを意味す
る。具体的には、接合温度、冷却速度、熱処理温度等の
接合条件や、接合強度、降伏応力、硬度、靱性等の機械
的特性、さらには組成、結晶粒度等の材料特性が挙げら
れる。特に、応力が作用する構造物においては、接合強
度が最も重要な評価項目であり、しかも、接合強度に最
も影響を及ぼすのが接合温度であることから、接合特性
として、接合温度又は接合強度を選択することが望まし
い。
The term "joining characteristics" as used herein refers to any characteristics that affect the mechanical properties of the joining material, and include defects other than defects such as cracks, pores, and poor joining formed at the joining interface. Specific examples include joining conditions such as joining temperature, cooling rate, and heat treatment temperature, mechanical properties such as joining strength, yield stress, hardness, and toughness, and material properties such as composition and crystal grain size. In particular, in structures where stress is applied, the bonding strength is the most important evaluation item, and since the bonding temperature has the greatest effect on the bonding strength, the bonding characteristics include the bonding temperature or the bonding strength. It is desirable to choose.

【0013】また、材料中に入射した超音波は、縦波、
横波、表面波、板波など種々の様式で伝搬するが、接合
体内部の情報を得るには、縦波又は横波を用いるのがよ
い。特に、縦波モードの超音波は、詳細は不明である
が、接合界面を透過する超音波の減衰量が、接合特性の
変化に伴って大きく変動し、接合特性の検査結果の信頼
性を高めることが可能となるので好適である。
[0013] Ultrasonic waves incident on the material are longitudinal waves,
It propagates in various modes such as a shear wave, a surface wave, and a plate wave, but it is preferable to use a longitudinal wave or a shear wave to obtain information inside the joined body. In particular, although the details of the longitudinal wave mode ultrasonic wave are unknown, the attenuation of the ultrasonic wave transmitted through the bonding interface greatly fluctuates with the change in the bonding characteristics, thereby improving the reliability of the bonding characteristics inspection results. This is preferable because it becomes possible.

【0014】但し、縦波モードの超音波を用いる場合に
は、屈折角が17゜〜30゜となるように接合材に入射
させる必要がある。屈折角が17゜未満では、ノイズが
大きくなってS/N比が低下し、又、屈折角が30゜を
越えると、横波が混入する割合が大きくなり、いずれも
測定感度を低下させるので好ましくない。
However, in the case of using a longitudinal wave mode ultrasonic wave, it is necessary to make it incident on the bonding material so that the refraction angle is 17 ° to 30 °. If the angle of refraction is less than 17 °, noise increases and the S / N ratio decreases. If the angle of refraction exceeds 30 °, the rate of mixing of the transverse wave increases, and the sensitivity decreases. Absent.

【0015】また、検査に用いる超音波の周波数は、4
MHz以上10MHz以下であることが好ましい。周波
数が4MHz未満では、超音波の波長が長くなり、それ
に伴い指向角が大きくなって指向性が低下する。周波数
が高くなるほど超音波の波長が短くなり、それに伴い指
向性が向上して測定感度は向上するが、周波数が10M
Hzを越えると、接合体内部での超音波の減衰量が大き
くなり過ぎ、かえって測定感度が低下するので好ましく
ない。
The frequency of the ultrasonic wave used for the inspection is 4
It is preferable that the frequency is not less than 10 MHz and not more than 10 MHz. If the frequency is less than 4 MHz, the wavelength of the ultrasonic wave becomes longer, and accordingly, the directional angle becomes larger and the directivity decreases. The higher the frequency is, the shorter the wavelength of the ultrasonic wave is, the more the directivity is improved and the measurement sensitivity is improved.
If it exceeds Hz, the amount of attenuation of the ultrasonic wave inside the joined body becomes too large, and the measurement sensitivity is undesirably lowered.

【0016】また、検査に用いる探触子は、一辺が8m
m以上15mm以下の角形探触子を用いることが好まし
い。同一面積で比較すると、丸形探触子よりも角形探触
子の方が指向性が向上し、測定感度が向上するためであ
る。また、探触子の一辺が8mm未満では、指向角が大
きくなって指向性が低下するので好ましくない。探触子
が大きくなるほど指向角が小さくなり、指向性は向上す
るが、一辺の長さが15mmを越えると、近距離音場限
界距離が長くなると共に、近距離音場内で強い干渉現象
が生じ、ノイズが大きくなるので好ましくない。
The probe used for inspection is 8 m on a side.
It is preferable to use a square probe having a length of not less than m and not more than 15 mm. This is because, when compared with the same area, the square probe has better directivity and the measurement sensitivity is better than the round probe. On the other hand, if the length of one side of the probe is less than 8 mm, the directivity angle is increased and the directivity is reduced, which is not preferable. The larger the probe, the smaller the directivity angle and the better the directivity.However, if the length of one side exceeds 15 mm, the limit distance of the short-range sound field increases and a strong interference phenomenon occurs in the short-range sound field. This is not preferable because noise increases.

【0017】さらに、検査に供する接合材は、特に限定
されるものではないが、被接合材が2種以上の相を含む
二相鋼からなるものが好適である。二相鋼を被接合材に
用いた場合、接合条件の変動に伴い、接合界面近傍の相
の分布状態が変化することがあるが、相境界は、透過す
る超音波を散乱・減衰させる原因の一つとなるものであ
り、相の分布状態に応じて超音波が散乱される割合が変
化する。
Further, the joining material to be subjected to the inspection is not particularly limited, but the joining material is preferably made of a duplex stainless steel containing two or more phases. When duplex stainless steel is used as the material to be joined, the distribution of phases near the joint interface may change due to changes in joining conditions, but the phase boundary is a cause of scattering and attenuation of transmitted ultrasonic waves. That is, the ratio at which the ultrasonic waves are scattered changes according to the distribution state of the phase.

【0018】そのため、このような接合材に対して本発
明を適用すれば、接合条件の変動に起因する接合特性の
変化が超音波の減衰量の変化として顕著に表れ、信頼性
の高い検査が可能となる。2種以上の相を含む二相鋼と
しては、具体的には、フェライト地に超音波の減衰量が
大きいオーステナイトが1:1の比率で分散した組織を
呈する二相ステンレス鋼や、該二相ステンレス鋼をベー
スとする析出硬化型ステンレス鋼等が一例として挙げら
れる。
Therefore, if the present invention is applied to such a bonding material, a change in bonding characteristics due to a change in bonding conditions will be conspicuously expressed as a change in attenuation of ultrasonic waves, and a highly reliable inspection will be performed. It becomes possible. Specific examples of the duplex stainless steel containing two or more phases include duplex stainless steel having a structure in which austenite having a large amount of ultrasonic attenuation is dispersed in a ferrite ground at a ratio of 1: 1. One example is a precipitation hardening stainless steel based on stainless steel.

【0019】[0019]

【発明の実施の形態】以下に、本発明の一実施の形態に
ついて詳細に説明する。図1に示す接合材1は、鋼管
2、3が管端面において接合されたものであり、接合界
面4を挟んで、超音波発振探触子5及び受信探触子6が
配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail. The joining material 1 shown in FIG. 1 is formed by joining steel pipes 2 and 3 at the pipe end faces. An ultrasonic oscillation probe 5 and a receiving probe 6 are arranged with a joining interface 4 interposed therebetween.

【0020】超音波発振探触子5は、図2に示すよう
に、アクリル等の合成樹脂製のくさび10に振動子11
を張り付けたものからなり、振動子11は、水晶、ニオ
ブ酸鉛、ジルコンチタン酸鉛等の圧電材料からなる薄板
の両面に電極を張り付けたものである。また、くさび1
0には、吸音材12が張り付けられ、超音波発振探触子
5と接合材1との接触面で反射した超音波を吸収できる
ようになっている。
As shown in FIG. 2, the ultrasonic oscillation probe 5 has a vibrator 11 attached to a wedge 10 made of synthetic resin such as acrylic.
The vibrator 11 has a structure in which electrodes are attached to both surfaces of a thin plate made of a piezoelectric material such as quartz, lead niobate, or lead zircon titanate. In addition, wedge 1
At 0, a sound absorbing material 12 is attached so that the ultrasonic wave reflected on the contact surface between the ultrasonic oscillation probe 5 and the bonding material 1 can be absorbed.

【0021】超音波発振探触子5の底面の形状は、板状
の接合材を検査する場合には、平坦であることが望まし
いが、図1に示すように、鋼管等の曲面を有する接合材
1を検査する場合には、接合材1の曲率にあわせて、超
音波発振探触子5の底面の形状を曲面とするのがよい。
なお、受信探触子6は、図示はしないが、超音波発振探
触子5と同一の構造を有するものである。
The shape of the bottom surface of the ultrasonic oscillation probe 5 is desirably flat when inspecting a plate-like joining material. However, as shown in FIG. When inspecting the material 1, it is preferable that the shape of the bottom surface of the ultrasonic oscillation probe 5 be a curved surface in accordance with the curvature of the bonding material 1.
Although not shown, the receiving probe 6 has the same structure as the ultrasonic oscillation probe 5.

【0022】また、超音波発振探触子5及び受信探触子
6と接合材1との隙間には、接触媒質を介在させる必要
がある。超音波発振探触子5又は受信探触子6と接合材
1との間に隙間があると、超音波の送受信が効率よく行
われないからである。接触媒質は、超音波を効率よく伝
搬可能なものであれば良く、必要に応じて種々の接触媒
質を使い分ければよい。接触媒質としては、例えば、
水、脂、グリセリン等がある。
In addition, it is necessary to interpose a couplant in the gap between the ultrasonic oscillation probe 5 and the reception probe 6 and the bonding material 1. This is because if there is a gap between the ultrasonic oscillation probe 5 or the reception probe 6 and the bonding material 1, transmission and reception of ultrasonic waves are not performed efficiently. The couplant may be any one that can efficiently transmit ultrasonic waves, and various couplants may be used as needed. As the couplant, for example,
There are water, fat, glycerin and the like.

【0023】さらに、超音波発振探触子5から接合材1
に入射した超音波を受信探触子6でとらえるためには、
超音波発振探触子5及び受信探触子6の相対位置を正確
にセットする必要がある。超音波発振探触子5から接合
材1に入射した超音波は、接合材1の外周面及び内周面
で全反射を繰り返しながら伝搬していくので、受信探触
子6は、接合材1の内周面で全反射した超音波が接合材
1の外周面に到達する位置又は、接合材1の外周面で全
反射した超音波が接合材1の内周面に到達する位置に置
く必要がある。
Further, from the ultrasonic oscillation probe 5 to the bonding material 1
In order to catch the ultrasonic wave incident on the receiving probe 6,
It is necessary to accurately set the relative positions of the ultrasonic oscillation probe 5 and the reception probe 6. The ultrasonic wave incident on the bonding material 1 from the ultrasonic oscillation probe 5 propagates while repeating total reflection on the outer peripheral surface and the inner peripheral surface of the bonding material 1. It is necessary to place the ultrasonic wave totally reflected on the inner peripheral surface of the bonding material 1 at the position where the ultrasonic wave totally reflected on the outer peripheral surface of the bonding material 1 reaches the inner peripheral surface of the bonding material 1. There is.

【0024】接合材1の外周面に配置された超音波発振
探触子5から接合材1に入射した超音波が接合材1の内
周面で全反射し、接合材1の外周面に到達するまでの水
平距離を1スキップとすると、何スキップ目に受信探触
子6を配置するかは、検査する接合材1の形状や測定条
件に応じて適宜選択すればよい。図1の場合、受信探触
子6は、超音波発振探触子5から4スキップ目の位置に
配置されている。
Ultrasonic waves incident on the bonding material 1 from the ultrasonic oscillation probe 5 arranged on the outer circumference of the bonding material 1 are totally reflected on the inner circumference of the bonding material 1 and reach the outer circumference of the bonding material 1. Assuming that the horizontal distance up to one step is one skip, the skip position at which the receiving probe 6 is arranged may be appropriately selected according to the shape of the bonding material 1 to be inspected and the measurement conditions. In the case of FIG. 1, the receiving probe 6 is arranged at the fourth skip position from the ultrasonic oscillation probe 5.

【0025】次に、接合材の接合界面を透過する超音波
の減衰量を測定する方法について説明する。まず、図示
しない同期制御部において高周波パルスを発生させ、こ
の高周波パルスを高周波ケーブルを介して超音波発振探
触子5に送る。超音波発振探触子5に送られた高周波パ
ルスは、振動子11の両面に張り付けられた電極に印加
され、これにより振動子11が厚さ方向に伸縮し、超音
波が発生する。
Next, a method for measuring the attenuation of the ultrasonic wave transmitted through the bonding interface of the bonding material will be described. First, a high-frequency pulse is generated in a synchronization control unit (not shown), and the high-frequency pulse is sent to the ultrasonic oscillation probe 5 via a high-frequency cable. The high-frequency pulse sent to the ultrasonic oscillation probe 5 is applied to electrodes attached to both surfaces of the vibrator 11, whereby the vibrator 11 expands and contracts in the thickness direction, and generates ultrasonic waves.

【0026】発生した超音波は、くさび10を通って鋼
管3に入射し、鋼管3の内周面及び外周面で全反射を繰
り返しながら、鋼管2に向かって伝搬する。その過程
で、超音波は、接合界面4を透過することになる。予め
定められた回数の反射が行われたところで、鋼管2上に
配置された受信探触子6に超音波が受信される。
The generated ultrasonic wave enters the steel pipe 3 through the wedge 10 and propagates toward the steel pipe 2 while repeating total reflection on the inner and outer peripheral surfaces of the steel pipe 3. In the process, the ultrasonic waves pass through the bonding interface 4. After the predetermined number of reflections have been performed, the receiving probe 6 arranged on the steel pipe 2 receives the ultrasonic wave.

【0027】受信された超音波は、受信探触子6に備え
られた振動子に伝えられ、振動子を厚さ方向に伸縮させ
る。この機械的振動は、該振動子により電気信号に変換
され、高周波ケーブルを介して図示しない検査装置の受
信部に送られる。そして、超音波発振探触子5に投入し
た電気エネルギーに対する受信探触子6により受信され
た電気エネルギーの比から超音波の減衰量が求められる
ものである。
The received ultrasonic wave is transmitted to the transducer provided on the receiving probe 6, and expands and contracts the transducer in the thickness direction. The mechanical vibration is converted into an electric signal by the vibrator and sent to a receiving unit of an inspection device (not shown) via a high-frequency cable. Then, the attenuation amount of the ultrasonic wave is obtained from the ratio of the electric energy received by the receiving probe 6 to the electric energy input to the ultrasonic oscillation probe 5.

【0028】この時、超音波発振探触子5と受信探触子
6との距離を一定の距離(例えば4スキップに相当する
距離)に保ったまま前後左右に走査させると、超音波が
透過する位置が変わるので、接合界面4全面の2次元情
報を得ることができる。通常、接合界面4を透過する超
音波の減衰量としては、接合界面4の各位置で測定され
た減衰量の平均値が用いられる。
At this time, if the scanning is performed back and forth and left and right while keeping the distance between the ultrasonic oscillation probe 5 and the reception probe 6 at a fixed distance (for example, a distance corresponding to 4 skips), the ultrasonic wave is transmitted. Since the position to be changed is changed, two-dimensional information on the entire surface of the bonding interface 4 can be obtained. Normally, as an attenuation amount of the ultrasonic wave transmitted through the bonding interface 4, an average value of the attenuation amounts measured at each position of the bonding interface 4 is used.

【0029】なお、走査方法は、ジグザグ走査、前後走
査、左右走査等、種々の方法があり、特に限定されるも
のではなく、接合材1の形状等に応じて適宜選択すれば
よい。また、走査させる距離は、接合界面4の全面をカ
バーできればよいので、接合界面4に垂直な方向につい
ては、少なくとも0.5スキップに相当する距離だけ走
査させればよい。また、接合界面4に平行な方向につい
ては、板状の接合材にあっては少なくとも接合界面4の
横幅に相当する距離、図1のような管状の接合材にあっ
ては少なくとも管円周に相当する距離だけ走査させれば
よい。
The scanning method includes various methods such as zigzag scanning, forward / backward scanning, left / right scanning, and is not particularly limited, and may be appropriately selected according to the shape of the bonding material 1 or the like. The scanning distance only needs to cover the entire surface of the bonding interface 4, and therefore, in the direction perpendicular to the bonding interface 4, the scanning may be performed by a distance corresponding to at least 0.5 skips. The direction parallel to the joining interface 4 is at least a distance corresponding to the width of the joining interface 4 in the case of a plate-like joining material, and at least the pipe circumference in the case of a tubular joining material as shown in FIG. What is necessary is just to scan by a corresponding distance.

【0030】また、図1においては、接合界面4を挟ん
で超音波発振探触子5と受信探触子6とを各1個づつ配
置しているが、受信探触子6を2個以上配置しても良
い。受信探触子6を2個以上配置すると、一つの受信探
触子6からもう一つの受信探触子6に至るまでの超音波
の減衰量を測定できるので、接合界面4を透過する超音
波の減衰量のみならず、接合界面4を挟んで左右に広が
る熱影響部を透過する超音波の減衰量を測定することも
可能となる。
In FIG. 1, one ultrasonic oscillation probe 5 and one reception probe 6 are arranged with the bonding interface 4 interposed therebetween, but two or more reception probes 6 are provided. It may be arranged. When two or more receiving probes 6 are arranged, the amount of attenuation of the ultrasonic waves from one receiving probe 6 to another receiving probe 6 can be measured, so that the ultrasonic waves transmitted through the bonding interface 4 can be measured. In addition to the above attenuation, it is also possible to measure the attenuation of the ultrasonic wave transmitted through the heat-affected zone that spreads right and left across the bonding interface 4.

【0031】さらに、超音波発振探触子5と受信探触子
6とを各2個以上配置しても良い。超音波は、指向性が
良いので、超音波発振探触子5の間隔が適正であれば、
各超音波発振探触子5から入射する超音波が干渉し合う
ことはない。そのため、接合界面4の面積が大きい接合
材を検査する場合等には、双方の探触子を各2個以上配
置すれば、走査距離が短くなり、検査時間を短縮させる
ことが可能となる。
Further, two or more ultrasonic oscillation probes 5 and two or more reception probes 6 may be arranged. Since ultrasonic waves have good directivity, if the interval between the ultrasonic oscillation probes 5 is appropriate,
Ultrasonic waves incident from each ultrasonic oscillation probe 5 do not interfere with each other. Therefore, in the case of inspecting a bonding material having a large area of the bonding interface 4, if two or more probes are arranged, the scanning distance is shortened and the inspection time can be shortened.

【0032】次に、本発明に係る接合材の超音波検査法
により、どのように接合特性を推定するかについて説明
する。超音波の減衰は、接合体中を伝搬する超音波の一
部が伝搬途中で散乱することによって生ずるものであ
る。超音波の散乱は、種々の原因により生ずることが知
られており、例えば、結晶粒界、内部摩擦、転位の運
動、音響インピーダンスの異なる相境界等がその原因と
なる。
Next, how to estimate the bonding characteristics by the ultrasonic inspection method of the bonding material according to the present invention will be described. The attenuation of the ultrasonic waves is caused by a part of the ultrasonic waves propagating in the joined body being scattered during the propagation. It is known that scattering of ultrasonic waves is caused by various causes, for example, crystal grain boundaries, internal friction, dislocation motion, phase boundaries having different acoustic impedances, and the like.

【0033】ところで、冶金的接合法は、接合過程にお
いて加熱を伴うので、加熱により被接合材中で元素の拡
散、相変態、粒成長等が生じ、接合界面近傍の性状が接
合前後で変化する場合がある。特に、接合界面近傍の性
状が熱履歴に敏感である場合には、接合条件の僅かな変
動によって接合界面近傍の性状が大きく変化し、接合界
面を透過する超音波の減衰量の変化として顕著に現れる
ことになる。
Since the metallurgical joining method involves heating in the joining process, the heating causes diffusion of elements, phase transformation, grain growth, etc. in the material to be joined, and the properties near the joining interface change before and after joining. There are cases. In particular, when the properties near the bonding interface are sensitive to the thermal history, the properties near the bonding interface greatly change due to slight fluctuations in the bonding conditions, and the attenuation of the ultrasonic wave transmitted through the bonding interface changes significantly. Will appear.

【0034】また、接合材の接合界面近傍の性状が熱履
歴に対して敏感であると同時に、被接合材の機械的性質
もまた、熱履歴に対して敏感である場合には、接合条件
の僅かな変動によって接合材の機械的性質が大きく変動
することになる。従って、このような系においては、超
音波の減衰量の変化と接合条件あるいは機械的性質の変
化とが一対一に対応し、超音波の減衰量から接合条件、
機械的性質等の接合特性の変動を推定することが可能と
なる。
If the properties of the joining material near the joining interface are sensitive to the thermal history and the mechanical properties of the joining material are also sensitive to the thermal history, the joining conditions A slight change causes a large change in the mechanical properties of the bonding material. Therefore, in such a system, the change in the amount of ultrasonic attenuation and the change in the joining conditions or mechanical properties correspond one-to-one, and the joining conditions,
It is possible to estimate a change in the joining characteristics such as mechanical properties.

【0035】上述の趣旨から、本発明に係る接合材の超
音波検査方法は、接合条件の変動によって超音波の減衰
量及び機械的性質が変動する系であれば適用可能であ
り、変動量が大きい系ほど検査精度は高くなる。例え
ば、接合方法の点から言えば、拡散接合法が特に好適で
ある。拡散接合法は、被接合材の融点の9割前後の温度
で接合が行われ、接合界面において元素の拡散を積極的
に行わせるために、接合条件の変動に伴う超音波の減衰
量の変動が顕著に現れるからである。
From the above-mentioned point, the ultrasonic inspection method of the bonding material according to the present invention can be applied to any system in which the attenuation and mechanical properties of the ultrasonic wave fluctuate due to the fluctuation of the bonding conditions. The larger the system, the higher the inspection accuracy. For example, from the viewpoint of the joining method, the diffusion joining method is particularly preferable. In the diffusion bonding method, bonding is performed at a temperature of about 90% of the melting point of a material to be bonded, and fluctuations in ultrasonic attenuation due to fluctuations in bonding conditions in order to actively diffuse elements at the bonding interface. This is because remarkably appears.

【0036】また、被接合材の材質の点から言えば、鉄
系材料では、例えば、フェライト地にオーステナイトが
1:1の比率で分散した組織を呈する二相ステンレス鋼
や、該二相ステンレス鋼をベースとする析出硬化型ステ
ンレス鋼が特に好適である。オーステナイトは、接合過
程において結晶粒が粗大化しやすく、しかも結晶粒界に
おける超音波の散乱が大きいために、接合条件の変動に
より接合界面近傍のオーステナイトの性状が変化する
と、超音波の減衰量の変化として顕著に現れるからであ
る。
In terms of the material of the material to be joined, the iron-based materials include, for example, a duplex stainless steel having a structure in which austenite is dispersed at a ratio of 1: 1 in a ferrite ground, and the duplex stainless steel. Particularly preferred are precipitation hardening stainless steels based on. Austenitic crystal grains tend to be coarsened during the bonding process, and the scattering of ultrasonic waves at the crystal grain boundaries is large, so if the properties of austenite near the bonding interface change due to fluctuations in bonding conditions, the attenuation of ultrasonic waves will change. This is because it appears remarkably.

【0037】接合材の超音波検査は、具体的には、以下
の手順に従って行われる。まず、接合特性と接合界面を
透過する超音波の減衰量との対応関係を予め調べるため
の標準接合体を作製する。標準接合体の作製に用いる被
接合材は、少なくとも実際の接合材に使用される被接合
材と同一材質であることを要するが、接合特性の推定精
度を上げるためには、その形状も同一にすることが望ま
しい。
The ultrasonic inspection of the bonding material is specifically performed according to the following procedure. First, a standard joined body for examining in advance the correspondence between the joining characteristics and the attenuation of the ultrasonic wave transmitted through the joining interface is prepared. The material to be used for the production of the standard bonded body must be at least the same material as the material to be used for the actual bonding material, but the shape must be the same in order to increase the estimation accuracy of the bonding characteristics. It is desirable to do.

【0038】次いで、評価したい接合特性を故意に変え
て、種々の条件で標準接合体の接合を行う。例えば、応
力が作用する構造物に使用される接合材の場合には、接
合強度が最も重要な評価項目であり、接合強度は、接合
温度に最も影響を受けるものである。そこで、このよう
な場合には、接合特性として接合温度を選択し、推奨す
る接合温度を中心として、種々の接合温度で標準接合体
を作製すればよい。
Next, a standard bonded body is bonded under various conditions while intentionally changing the bonding characteristics to be evaluated. For example, in the case of a joining material used for a structure on which a stress acts, the joining strength is the most important evaluation item, and the joining strength is most affected by the joining temperature. Therefore, in such a case, the bonding temperature may be selected as the bonding characteristic, and standard bonded bodies may be manufactured at various bonding temperatures around the recommended bonding temperature.

【0039】また、例えば、接合後に行われる熱処理に
より接合界面近傍の強度、靱性等が大きく変動する系の
場合には、実際の接合作業において変動が予想される熱
処理条件、例えば、熱処理温度、保持時間、冷却速度等
を故意に変えて標準接合体を作製すればよい。
Further, for example, in the case of a system in which the strength, toughness, etc. near the bonding interface fluctuates greatly due to the heat treatment performed after the bonding, heat treatment conditions that are expected to fluctuate in the actual bonding operation, for example, the heat treatment temperature, A standard bonded body may be produced by intentionally changing the time, cooling rate, and the like.

【0040】次に、このようにして作製された標準接合
体について、図1に示すように、接合界面を挟んで超音
波発振探触子5及び受信探触子6を配置し、超音波発振
探触子5と受信探触子6との距離を一定に保った状態を
維持しながら前後左右に走査させ、接合界面4の各位置
を透過する超音波の減衰量を逐次測定し、その平均値を
算出する。
Next, as shown in FIG. 1, the ultrasonic oscillating probe 5 and the receiving probe 6 are disposed on the standard bonded body thus manufactured with the bonding interface therebetween, and While maintaining the state where the distance between the probe 5 and the receiving probe 6 is kept constant, scanning is performed back and forth and left and right, the attenuation of the ultrasonic wave transmitted through each position of the bonding interface 4 is sequentially measured, and the average is measured. Calculate the value.

【0041】評価すべき接合特性が接合温度等の接合条
件である場合には、そのまま、得られた超音波の減衰量
と接合条件とを対比し、両者の相関を求めればよい。通
常は、減衰量及び接合温度等の接合条件の内、一方を横
軸に、他方を縦軸に取って測定データをプロットし、回
帰分析が行われる。一方の変化に対して他方が直線的に
変化する場合には、単回帰を行い、一方の変化に対して
他方が曲線的に変化する場合には、多項式回帰を行えば
よい。
When the bonding characteristics to be evaluated are the bonding conditions such as the bonding temperature, the obtained attenuation amount of the ultrasonic wave is compared with the bonding conditions, and the correlation between the two may be obtained. Normally, one of the joining conditions such as the amount of attenuation and the joining temperature is plotted on the horizontal axis and the other is plotted on the vertical axis, and the measured data is plotted to perform a regression analysis. If one changes linearly with respect to one change, simple regression may be performed, and if the other changes linearly with one change, polynomial regression may be performed.

【0042】また、評価すべき接合特性が引張強度等の
機械的特性である場合には、標準接合体の超音波検査が
終了後、各標準接合体から試験片を切り出し、引張試験
等の破壊試験を行えばよい。そして、得られた減衰量と
破壊試験のデータから、上述と同様の手順に従い、回帰
分析等により両者の相関を求める。
If the bonding characteristics to be evaluated are mechanical characteristics such as tensile strength, a test piece is cut out from each standard bonded body after the ultrasonic inspection of the standard bonded body is completed, and a fracture test such as a tensile test is performed. A test may be performed. Then, from the obtained attenuation and the data of the destructive test, a correlation between the two is obtained by regression analysis or the like according to the same procedure as described above.

【0043】そして、求められた標準接合体の超音波減
衰量と接合特性との相関に基づき、各測定データのバラ
ツキを考慮して、合否判定のための判定基準を作成す
る。なお、判定基準は、接合材に要求される信頼性の高
さ、要求特性、測定される超音波減衰量のバラツキの大
きさ等を考慮して適宜決定すればよい。
Then, based on the correlation between the obtained ultrasonic attenuation of the standard joined body and the joining characteristics, a judgment criterion for pass / fail judgment is created in consideration of the variation of each measurement data. The criterion may be appropriately determined in consideration of the reliability required for the bonding material, the required characteristics, the variation in the measured ultrasonic attenuation, and the like.

【0044】次に、実際に接合された接合特性が未知で
ある接合材(被測定接合材)に対し、標準接合体と同一
条件下で超音波の減衰量を計測し、回帰分析等により求
められた標準接合体の超音波減衰量と接合特性との相関
から、被測定接合材の接合特性を推定する。
Next, the attenuation of the ultrasonic wave was measured under the same conditions as the standard bonded body for the bonding material (bonded material to be measured) for which the bonding characteristics were actually unknown, and were obtained by regression analysis or the like. From the correlation between the ultrasonic attenuation of the standard joined body and the joining characteristics, the joining characteristics of the joining material to be measured are estimated.

【0045】例えば、単回帰を行った場合において、相
関係数が1に近い場合には、接合特性に対する超音波減
衰量の回帰直線と、超音波減衰量に対する接合特性の回
帰直線とはほぼ一致するので、標準接合体について求め
た回帰直線に被測定接合材で測定された超音波減衰量を
代入し、被測定接合材の接合特性を逆算する。そして、
その逆算された接合特性が予め定められた判定基準内で
ある場合には合格とし、判定基準外にある場合には不合
格とすればよい。
For example, when the simple regression is performed and the correlation coefficient is close to 1, the regression line of the ultrasonic attenuation with respect to the joint characteristics substantially coincides with the regression line of the ultrasonic characteristics with respect to the ultrasonic attenuation. Therefore, the ultrasonic attenuation measured with the material to be measured is substituted into the regression line obtained for the standard bonded body, and the joining characteristics of the material to be measured are calculated backward. And
If the back calculated joining characteristic is within a predetermined criterion, it may be judged as pass, and if it is outside the criterion, it may be judged as fail.

【0046】あるいは、標準接合体に対して求められた
回帰直線の回帰係数が十分大きい場合には、測定された
被測定接合材の超音波減衰量を用いて所定の棄却率で接
合特性の区間推定を行い、推定された接合特性が予め定
められた判定基準内である場合には合格とし、判定基準
外にある場合には不合格とすればよい。なお、棄却率
は、接合材に要求される信頼性に応じて適宜選択すれば
よい。
Alternatively, when the regression coefficient of the regression line obtained for the standard joint is sufficiently large, the section of the joining characteristics at a predetermined rejection rate using the measured ultrasonic attenuation of the joint material to be measured. Estimation is performed, and if the estimated joining characteristics are within a predetermined criterion, it is determined to be acceptable, and if it is outside the criterion, it is determined to be unacceptable. The rejection rate may be appropriately selected according to the reliability required for the joining material.

【0047】そして、実際に接合された被測定接合材
が、作業マニュアル通りに接合されている場合には、被
測定接合材の接合界面の性状は、必要とされる接合特性
を満足している標準接合体の接合界面とほぼ同一の性状
を有している可能性が高いので、測定された超音波の減
衰量も上述の判定基準内に収まる可能性が高い。
When the actually joined materials to be measured are joined according to the operation manual, the properties of the joining interface of the measured materials satisfy the required joining characteristics. Since there is a high possibility that it has almost the same properties as the bonding interface of the standard bonded body, the measured attenuation of the ultrasonic wave is also likely to fall within the above-described criteria.

【0048】一方、不可抗力により作業マニュアル通り
に接合作業が行われず、接合条件が変動している場合に
は、接合特性が変化しているので、それに応じて超音波
の減衰量も上述の判定基準外の値が検出され、不合格判
定がなされることになる。なお、不合格判定がなされた
接合材に対しては、必要に応じて、接合部を接合温度に
再加熱したり、放射線透過試験法等の他の非破壊検査を
行う等の処置が取られることになる。
On the other hand, if the joining operation is not performed according to the operation manual due to the force majeure and the joining conditions are fluctuating, the joining characteristics are changed. Outside values will be detected and a reject decision will be made. In addition, for the bonding material for which rejection has been made, measures such as reheating the bonding portion to the bonding temperature or performing other non-destructive inspection such as a radiation transmission test method are taken as necessary. Will be.

【0049】(実施例1)以下に、二相ステンレス鋼管
を被接合材に用いて液相拡散接合法により接合した接合
材に対し、本発明に係る接合材の超音波検査方法を適用
した例について説明する。
(Example 1) An example in which the ultrasonic inspection method for a joining material according to the present invention is applied to a joining material joined by a liquid phase diffusion joining method using a duplex stainless steel pipe as a material to be joined. Will be described.

【0050】初めに、標準接合体を以下の手順により作
製した。すなわち、被接合材は、二相ステンレス鋼SU
S329J1からなる外径150mm、内径120mm
の鋼管とし、接合界面は、表面粗さがRmax30μm
以下となるように仕上げた。また、インサート材は、融
点が1040℃である厚さ40μmのNi系合金箔を用
いた。
First, a standard joined body was prepared according to the following procedure. That is, the material to be joined is a duplex stainless steel SU.
Outer diameter 150mm, inner diameter 120mm made of S329J1
And the joint interface has a surface roughness of Rmax 30 μm
Finished as follows. The insert material used was a Ni-based alloy foil having a melting point of 1040 ° C. and a thickness of 40 μm.

【0051】この2本の二相ステンレス鋼管の間にイン
サート材を介挿し、接合界面に4MPaの加圧力を印加
し、Arガス雰囲気下、1150℃〜1300℃の温度
に60秒間保持することにより、二相ステンレス鋼管の
液相拡散接合を行った。得られた接合材に対し、図1に
示すように、接合界面4を挟んで超音波発振探触子5及
び受信探触子6を配置し、接合界面4を透過する超音波
の減衰量(超音波相対比強度)を測定した。なお、超音
波発振探触子5と受信探触子6との距離は、4スキップ
とし、検査には、縦波を用いた。
An insert material is interposed between the two duplex stainless steel pipes, a pressure of 4 MPa is applied to the joint interface, and the temperature is maintained at 1150 ° C. to 1300 ° C. for 60 seconds in an Ar gas atmosphere. And liquid phase diffusion bonding of a duplex stainless steel tube. As shown in FIG. 1, an ultrasonic oscillation probe 5 and a receiving probe 6 are arranged on the obtained bonding material with the bonding interface 4 interposed therebetween, and the attenuation amount of the ultrasonic wave transmitted through the bonding interface 4 ( Ultrasonic relative specific intensity) was measured. The distance between the ultrasonic oscillation probe 5 and the reception probe 6 was set to 4 skips, and a longitudinal wave was used for the inspection.

【0052】初めに、接合温度を1290℃とした接合
材に対し、縦波を種々の屈折角で入射させたときの超音
波相対比強度の変化を調べた。使用した探触子は、1辺
が10mmの角形探触子とし、超音波の周波数は5MH
zとした。図3において、屈折角を20゜とした場合が
最も超音波相対比強度が高く、−19dBを示した。屈
折角が小さくなるに伴い超音波相対比強度は急激に低下
し、屈折角を16゜とした場合には、−34dBまで低
下した。
First, changes in the relative intensity of ultrasonic waves when longitudinal waves were incident at various refraction angles on a bonding material having a bonding temperature of 1290 ° C. were examined. The probe used was a square probe with a side of 10 mm, and the frequency of the ultrasonic wave was 5 MHz.
z. In FIG. 3, when the refraction angle is set to 20 °, the relative intensity of the ultrasonic wave is the highest, showing −19 dB. As the angle of refraction became smaller, the relative intensity of the ultrasonic wave sharply decreased, and when the angle of refraction was set to 16 °, the intensity decreased to -34 dB.

【0053】また、屈折角が20゜を越えると、屈折角
が大きくなるに伴い超音波相対比強度は低下し、屈折角
が25゜では−29dBとなった。屈折角を30゜とし
た場合には、超音波相対比強度は−30dBとなり、屈
折角を25゜とした場合とほぼ同等であったが、横波の
混入に起因するノイズが増加した。さらに、屈折角が3
0゜を越えた場合には、横波の混入のために測定が困難
となった。
When the refraction angle exceeds 20 °, the relative intensity of the ultrasonic wave decreases as the refraction angle increases, and becomes −29 dB at the refraction angle of 25 °. When the refraction angle was set to 30 °, the relative intensity of the ultrasonic wave was −30 dB, which was almost the same as when the refraction angle was set to 25 °, but the noise due to the mixing of the transverse wave increased. Furthermore, the refraction angle is 3
When the angle exceeds 0 °, the measurement becomes difficult due to the mixing of a transverse wave.

【0054】次に、接合温度を1150℃及び1290
℃とした接合材に対し、周波数の異なる縦波を入射させ
たときの超音波相対比強度の変化を調べた。探触子は、
1辺が10mmの角形探触子とし、屈折角は20゜とし
た。図4において、周波数が2MHzの縦波を用いた場
合には、接合温度を1150℃とした接合材の超音波相
対比強度と接合温度を1290℃とした接合材の超音波
相対比強度の差は、約6dBであった。
Next, the joining temperature was set to 1150 ° C. and 1290 ° C.
The change in the relative intensity of ultrasonic waves when longitudinal waves having different frequencies were incident on the joining material set to ° C was examined. The transducer is
A rectangular probe having one side of 10 mm was used, and the refraction angle was 20 °. In FIG. 4, when a longitudinal wave having a frequency of 2 MHz is used, the difference between the ultrasonic relative specific intensity of the bonding material at a bonding temperature of 1150 ° C. and the ultrasonic relative specific intensity of the bonding material at a bonding temperature of 1290 ° C. Was about 6 dB.

【0055】周波数の増加に伴い、超音波相対比強度の
差は拡大し、周波数が5MHzである縦波を用いた場合
で約11dBとなった。さらに、周波数が10MHzで
ある縦波を用いた場合には、超音波相対比強度の差は1
4dBに拡大したが、超音波相対比強度の値自体は−3
0dB前後となり、測定感度は低下した。なお、周波数
が12MHz以上の縦波を用いた場合には、ノイズが大
きくなったため、測定は困難であった。
As the frequency increases, the difference between the relative intensities of the ultrasonic waves increases, and reaches about 11 dB when a longitudinal wave having a frequency of 5 MHz is used. Further, when a longitudinal wave having a frequency of 10 MHz is used, the difference between the ultrasonic relative specific intensities is 1
Although it was enlarged to 4 dB, the value of the ultrasonic relative specific intensity itself was -3.
It was around 0 dB, and the measurement sensitivity was reduced. When a longitudinal wave having a frequency of 12 MHz or more was used, the measurement was difficult due to increased noise.

【0056】次に、接合温度を1150℃から1300
℃まで変化させた各接合材に対し、振動子の大きさを変
えて縦波を入射させたときの超音波相対比強度の変化を
調べた。使用した超音波の周波数は、5MHzとし、屈
折角は20゜とした。図5において、1辺が5mmであ
る角形振動子を用いた場合には、接合温度を1150℃
とした接合材と接合温度を1300℃とした接合材との
超音波相対比強度の差の平均値は、10dB以下であっ
た。
Next, the joining temperature is increased from 1150 ° C. to 1300 ° C.
A change in the relative intensity of the ultrasonic wave when a longitudinal wave was applied to each of the bonding materials changed to ° C while changing the size of the vibrator was examined. The frequency of the used ultrasonic wave was 5 MHz, and the refraction angle was 20 °. In FIG. 5, when a rectangular oscillator having a side of 5 mm is used, the joining temperature is set to 1150 ° C.
The average value of the difference in the relative intensity of ultrasonic waves between the bonding material having the bonding temperature of 1300 ° C. and the bonding material having the bonding temperature of 1300 ° C. was 10 dB or less.

【0057】一方、1辺が10mmである角形振動子を
用いた場合には、接合温度を1150℃とした接合材と
接合温度を1300℃とした接合材との超音波相対比強
度の差の平均値は、約20dB程度となり、1辺が5m
mである角形振動子を用いた場合よりも超音波相対比強
度の変化量が増大した。
On the other hand, when a rectangular vibrator having a side of 10 mm is used, the difference in the relative intensity of the ultrasonic waves between the joining material at a joining temperature of 1150 ° C. and the joining material at a joining temperature of 1300 ° C. The average value is about 20 dB and one side is 5 m
The amount of change in the relative intensity of the ultrasonic wave was larger than that in the case where the square vibrator m was used.

【0058】以上の結果から、検査に使用する超音波の
屈折角、周波数及び振動子寸法を適正範囲内とすれば、
接合材を透過する超音波の検出感度を高く維持したま
ま、接合温度の変化を、接合界面を透過する超音波の減
衰量(超音波相対比強度)の変化として検出できること
がわかった。
From the above results, if the refraction angle, frequency, and transducer dimensions of the ultrasonic wave used for the inspection are within appropriate ranges,
It was found that a change in the bonding temperature can be detected as a change in the attenuation (ultrasonic relative specific intensity) of the ultrasonic wave transmitted through the bonding interface while maintaining the detection sensitivity of the ultrasonic wave transmitted through the bonding material high.

【0059】図5の白丸で示したように、1辺が10m
mの角形探触子を用い、周波数が5MHzの縦波を屈折
角20゜で入射させた場合について、単回帰を行ったと
ころ、次の回帰式を得た。 超音波相対比強度=−0.083x(接合温度)+91 ・・・(1)
As shown by a white circle in FIG. 5, one side is 10 m.
A simple regression was performed on a case where a longitudinal wave having a frequency of 5 MHz was incident at a refraction angle of 20 ° using a square probe of m, and the following regression equation was obtained. Ultrasonic relative specific strength = −0.083 × (joining temperature) +91 (1)

【0060】また、超音波検査後の各標準接合体から引
張試験片(JIS Z 31214号試験片)を切り出
し、クロスヘッドスピード1mm/minで引張試験を
行った。得られた引張強さと、接合温度の関係を図6に
示す。図6より、接合温度が高くなるほど引張強さが高
くなり、接合温度と引張強さとは、1:1に対応してい
ることがわかる。図7に示すように、標準接合体の超音
波相対比強度を引張強さに対してプロットし、単回帰を
行ったところ、次の回帰式を得た。 引張強さ=−40x(超音波相対比強度)+150 ・・・(2)
Further, a tensile test piece (JIS Z 31214 test piece) was cut out from each of the standard joined bodies after the ultrasonic inspection, and a tensile test was performed at a crosshead speed of 1 mm / min. FIG. 6 shows the relationship between the obtained tensile strength and the joining temperature. FIG. 6 shows that the higher the bonding temperature, the higher the tensile strength, and the bonding temperature and the tensile strength correspond to 1: 1. As shown in FIG. 7, when the ultrasonic relative specific strength of the standard joined body was plotted against the tensile strength and simple regression was performed, the following regression equation was obtained. Tensile strength = −40 × (ultrasonic relative specific strength) +150 (2)

【0061】次に、(1)及び(2)の回帰式を用い
て、接合特性の異なる接合材を実際に選別できるか否か
を確認する試験を行った。前述と同様の手順に従い、接
合温度を1300℃とした接合材を10個、及び接合温
度を1150℃とした接合材を10個作製し、各接合材
について浸透探傷試験及びX線透過試験により、亀裂、
未接合部等の欠陥がないことを予め確認した。
Next, using the regression formulas (1) and (2), a test was conducted to confirm whether or not bonding materials having different bonding characteristics could be actually selected. According to the same procedure as described above, ten bonding materials having a bonding temperature of 1300 ° C. and ten bonding materials having a bonding temperature of 1150 ° C. were prepared, and a penetrant test and an X-ray transmission test were performed on each bonding material. crack,
It was previously confirmed that there was no defect such as an unbonded portion.

【0062】次いで、各接合材の履歴を伏せた状態で、
1辺が10mmの角形探触子を用い、周波数が5MHz
の縦波を屈折角20゜で入射させることにより、接合材
の全数検査を行った。なお、判定基準は、(1)の回帰
式に基づき、超音波相対比強度が−10dB以上(接合
温度1200℃以下に相当)を不合格とした。その結
果、接合温度を1300℃とした接合材を全数検出・選
別することができた。
Next, with the history of each joining material turned down,
Using a square probe with one side of 10mm, frequency is 5MHz
By injecting the longitudinal wave at a refraction angle of 20 °, a total inspection of the bonding material was performed. As a criterion, based on the regression equation of (1), an ultrasonic relative specific strength of -10 dB or more (corresponding to a joining temperature of 1200 ° C. or less) was rejected. As a result, it was possible to detect and sort all the joining materials having the joining temperature of 1300 ° C.

【0063】また、測定された超音波の減衰量から
(2)の回帰式を用いて逆算された引張強さは、接合温
度を1300℃とした接合材で826MPa、接合温度
を1150℃とした接合材で328MPaであった。一
方、選別された1300℃で接合された鋼管及び115
0℃で接合された鋼管からそれぞれ実際に試験片を切り
出し、引張強さを測定したところ、それぞれ、835M
Pa及び360MPaとなり、(2)の回帰式から推定
した結果と良く一致した。
The tensile strength calculated back from the measured ultrasonic attenuation using the regression equation (2) was 826 MPa for a joining material with a joining temperature of 1300 ° C., and the joining temperature was 1150 ° C. It was 328 MPa for the bonding material. On the other hand, the selected steel pipe joined at 1300 ° C. and 115
A test piece was actually cut out from each of the steel pipes joined at 0 ° C., and the tensile strength was measured.
Pa and 360 MPa were in good agreement with the results estimated from the regression equation of (2).

【0064】(実施例2)実施例1と同様の手順に従
い、接合温度を変えて二相ステンレス鋼管の接合を行っ
た。次いで、横波を用いて接合界面を透過する超音波の
減衰量を測定した。探触子は、1辺が10mmの角形探
触子とした。
(Example 2) According to the same procedure as in Example 1, the joining of the duplex stainless steel pipe was performed while changing the joining temperature. Next, the attenuation of the ultrasonic wave transmitted through the bonding interface was measured using the transverse wave. The probe was a square probe having one side of 10 mm.

【0065】初めに、超音波の周波数を5MHzとし、
横波を種々の屈折角で入射させたところ、図8に示すよ
うに、屈折角を60゜とした場合には、接合温度を11
50℃とした接合材の超音波相対比強度と、接合温度を
1300℃とした接合体の超音波相対比強度との差の平
均値は、約10dBであった。一方、屈折角を70゜と
すると、超音波相対比強度の差の平均値は、約15dB
に拡大した。
First, the frequency of the ultrasonic wave is set to 5 MHz,
When a transverse wave is incident at various refraction angles, as shown in FIG. 8, when the refraction angle is set to 60 °, the bonding temperature is set to 11 °.
The average value of the difference between the ultrasonic relative specific strength of the bonding material at 50 ° C. and the ultrasonic relative specific strength of the bonded body at 1300 ° C. was about 10 dB. On the other hand, when the refraction angle is 70 °, the average value of the difference between the ultrasonic relative specific intensities is about 15 dB.
Expanded to.

【0066】また、屈折角を70゜とし、周波数の異な
る横波を用いて各接合材の超音波相対比強度を測定した
ところ、図9に示すように、周波数が2MPaでは、接
合温度の変化に伴う超音波相対比強度の変化が小さいの
に対し、周波数が5MPaの横波を用いた場合には、接
合温度を1150℃とした接合材と接合温度を1300
℃とした接合材の超音波相対比強度の差の平均値は、約
15dBに拡大した。
When the relative angle of ultrasonic wave of each bonding material was measured using a transverse wave having a different refraction angle of 70 ° and a different frequency, as shown in FIG. When the transverse wave having a frequency of 5 MPa is used while the change in the relative intensity of the ultrasonic waves is small, the joining material with the joining temperature of 1150 ° C. and the joining temperature of 1300 are used.
The average value of the difference between the ultrasonic relative specific intensities of the joining materials set to ° C. was expanded to about 15 dB.

【0067】なお、図5の白丸と図9の白丸とを比較す
ると、縦波を用いた方が1150℃及び1200℃にお
ける超音波相対比強度のバラツキが小さく、しかも、1
150℃又は1200℃における超音波相対比強度の下
限値と1290℃前後における超音波相対比強度の上限
値との差が大きくなっている。詳細は不明であるが、図
5及び図9より、縦波を用いて接合材の検査を行った方
が、より信頼性の高い検査を行えることがわかる。
When comparing the white circle in FIG. 5 with the white circle in FIG. 9, the variation in the relative intensity of ultrasonic waves at 1150 ° C. and 1200 ° C. is smaller when the longitudinal wave is used.
The difference between the lower limit value of the ultrasonic relative specific intensity at 150 ° C. or 1200 ° C. and the upper limit value of the ultrasonic relative specific intensity at around 1290 ° C. is large. Although details are unknown, it can be understood from FIGS. 5 and 9 that a more reliable inspection can be performed by inspecting the bonding material using the longitudinal wave.

【0068】以上の結果から、横波を用いた場合であっ
ても、検査条件が適切であれば、接合特性の変化を、接
合界面を透過する超音波の減衰量の変化として検出する
ことができ、履歴が未知である接合材の接合特性を推定
できることがわかった。
From the above results, even when a transverse wave is used, if the inspection conditions are appropriate, a change in the bonding characteristics can be detected as a change in the attenuation of the ultrasonic wave transmitted through the bonding interface. It was found that the joining characteristics of joining materials whose histories were unknown could be estimated.

【0069】以上、本発明の実施の形態について詳細に
説明したが、本発明は上記実施の形態に何ら限定される
ものではなく、本発明の要旨を逸脱しない範囲で種々の
改変が可能である。例えば、上記実施例では、鋼管同志
の接合材に対して本発明を適用しているが、鋼管に限ら
ず、板状の接合材に対しても本発明を適用できる。
Although the embodiments of the present invention have been described in detail, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention. . For example, in the above-described embodiment, the present invention is applied to a joining material of steel pipes. However, the present invention is not limited to steel pipes, but may be applied to a plate-like joining material.

【0070】また、上記実施の形態では、Ni系合金を
インサート材として二相ステンレス鋼を液相拡散接合法
により接合した接合材に対して本発明を適用している
が、二相ステンレス鋼を固相拡散接合法、融接法、圧接
法等により接合した接合材に対しても本発明を適用で
き、上記実施例と同様の効果を得ることができる。
In the above embodiment, the present invention is applied to a joining material obtained by joining a duplex stainless steel by a liquid phase diffusion joining method using a Ni-based alloy as an insert material. The present invention can be applied to a joining material joined by a solid-phase diffusion joining method, a fusion welding method, a pressure welding method or the like, and the same effects as those of the above embodiment can be obtained.

【0071】さらに、被接合材は、二相ステンレス鋼あ
るいは二相ステンレス鋼をベースとする析出硬化型ステ
ンレス鋼に限定されるものではなく、接合条件等の変動
によって超音波減衰量が大きく変動する性質を有する材
料を被接合材とする接合材であれば、あらゆる接合材に
対して本発明を適用できる。
Further, the material to be joined is not limited to the duplex stainless steel or the precipitation hardening stainless steel based on the duplex stainless steel, but the ultrasonic attenuation greatly varies depending on the variation of the joining conditions and the like. The present invention can be applied to any joining material as long as the joining material is a material having properties.

【0072】例えば、パーライトは、フェライトとセメ
ンタイトの層状構造のため、超音波の減衰量は大きくな
るが、マルテンサイトや中間組織では、超音波の減衰量
は小さくなる傾向がある。そのため、パーライトを含む
鋼材を接合し、接合部を急冷してマルテンサイトを生成
させた場合や、マルテンサイト又は中間組織を含む鋼材
を接合し、接合部を徐冷してパーライトを生成させた場
合には、接合界面を透過する超音波減衰量の変化として
検出することができ、超音波減衰量から接合特性を推定
することが可能となる。
For example, since pearlite has a layered structure of ferrite and cementite, the attenuation of ultrasonic waves increases, but the attenuation of ultrasonic waves tends to decrease in martensite or an intermediate structure. Therefore, when joining steel materials containing pearlite and rapidly cooling the joint to generate martensite, or when joining steel materials containing martensite or an intermediate structure and gradually cooling the joint to produce pearlite In this case, it is possible to detect the change in the amount of attenuation of the ultrasonic wave transmitted through the bonding interface, and it is possible to estimate the bonding characteristics from the amount of ultrasonic attenuation.

【0073】[0073]

【発明の効果】本発明は、既知の条件下で接合した標準
接合体の接合界面を透過する超音波の減衰量と接合特性
との相関を予め求め、未知の条件下で接合した被測定接
合材の接合特性を、被測定接合材の界面を透過する超音
波の減衰量から推定するようにしたので、接合温度、接
合強度等の接合特性を非破壊で推定することが可能とな
るという効果がある。
As described above, according to the present invention, the correlation between the amount of attenuation of the ultrasonic wave transmitted through the bonding interface of the standard bonded body bonded under known conditions and the bonding characteristics is determined in advance, and the measured bond bonded under unknown conditions is determined. Since the joining characteristics of the material are estimated from the attenuation of the ultrasonic wave passing through the interface of the joining material to be measured, the effect that the joining characteristics such as the joining temperature and the joining strength can be estimated in a non-destructive manner. There is.

【0074】また、縦波を検査に用いると共に、超音波
の屈折角、周波数、探触子の大きさを最適化すると、超
音波の測定感度を高く維持しながら、接合特性の変化に
伴う超音波の減衰量の変化を大きくとらえることができ
るので、検査精度を向上させることができるという効果
がある。
When the longitudinal wave is used for the inspection and the angle of refraction of the ultrasonic wave, the frequency, and the size of the probe are optimized, the ultrasonic measurement sensitivity is maintained at a high level, and the ultrasonic wave caused by the change in the joining characteristics is maintained. Since the change in the amount of attenuation of the sound wave can be largely recognized, there is an effect that the inspection accuracy can be improved.

【0075】さらに、2種以上の相を含む二相鋼、例え
ば二相ステンレス鋼を被接合材とする接合材を検査対象
とすると、接合特性の変化が超音波減衰量の変化として
顕著に現れ、高い精度で接合特性の非破壊検査が可能と
なるという効果がある。
Further, when a dual-phase steel containing two or more types of phases, for example, a duplex stainless steel, is used as an object to be inspected, a change in the joining characteristics appears remarkably as a change in the ultrasonic attenuation. This has the effect that non-destructive inspection of bonding characteristics can be performed with high accuracy.

【0076】以上のように、本発明に係る接合材の超音
波検査方法によれば、抜き取り検査が不可能な接合材で
あっても高い精度で、接合温度、接合強度等の接合特性
を推定することができるので、これを例えば、油井管や
化学プラントの配管等の検査に応用すれば、接合工程の
信頼性を高めることが可能となるものであり、産業上そ
の効果の極めて大きい発明である。
As described above, according to the bonding material ultrasonic inspection method according to the present invention, the bonding characteristics such as bonding temperature and bonding strength can be estimated with high accuracy even if the bonding material cannot be sampled and inspected. Therefore, if this is applied to, for example, inspection of oil well pipes and pipes of chemical plants, it is possible to increase the reliability of the joining process. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る超音波検査方法の概略を説明する
図である。
FIG. 1 is a diagram schematically illustrating an ultrasonic inspection method according to the present invention.

【図2】本発明に係る超音波検査方法に用いられる探触
子の断面図である。
FIG. 2 is a cross-sectional view of a probe used in the ultrasonic inspection method according to the present invention.

【図3】縦波の屈折角と超音波相対比強度との関係を示
す図である。
FIG. 3 is a diagram showing the relationship between the angle of refraction of longitudinal waves and the relative intensity of ultrasonic waves.

【図4】縦波の周波数と超音波相対比強度との関係を示
す図である。
FIG. 4 is a diagram showing the relationship between the frequency of longitudinal waves and the relative intensity of ultrasonic waves.

【図5】縦波を用いた場合における振動子寸法と超音波
相対比強度との関係を示す図である。
FIG. 5 is a diagram showing a relationship between a transducer size and an ultrasonic relative specific strength when a longitudinal wave is used.

【図6】二相ステンレス鋼管の接合温度と引張強さとの
関係を示す図である。
FIG. 6 is a diagram showing a relationship between a joining temperature and a tensile strength of a duplex stainless steel pipe.

【図7】縦波の超音波相対比強度と引張強さとの関係を
示す図である。
FIG. 7 is a diagram showing a relationship between an ultrasonic relative specific strength of a longitudinal wave and a tensile strength.

【図8】横波の屈折角と超音波相対比強度との関係を示
す図である。
FIG. 8 is a diagram illustrating a relationship between a refraction angle of a transverse wave and an ultrasonic relative specific strength.

【図9】横波の周波数と超音波相対比強度との関係を示
す図である。
FIG. 9 is a diagram showing a relationship between the frequency of a shear wave and the relative intensity of ultrasonic waves.

【符号の説明】[Explanation of symbols]

1 接合材 2、3 鋼管 4 接合界面 5 超音波発振探触子 6 受信探触子 DESCRIPTION OF SYMBOLS 1 Joining material 2, 3 Steel pipe 4 Joining interface 5 Ultrasonic oscillation probe 6 Receiving probe

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 接合条件の未知な被測定接合材の接合界
面の両側に超音波発振探触子と受信探触子とを置き、前
記超音波発振探触子より発振された超音波が前記接合界
面を透過し、前記受信探触子に受信された時の超音波の
減衰量を測定し、 その測定値に基づいて予め測定される既知の接合条件に
より接合された標準接合体の超音波減衰量と接合特性と
の相関関係より、前記被測定接合材の接合特性を検査す
るようにしたことを特徴とする接合材の超音波検査方
法。
1. An ultrasonic oscillation probe and a reception probe are placed on both sides of a joining interface of a joining material to be measured whose joining conditions are unknown, and the ultrasonic waves oscillated from the ultrasonic oscillation probe generate the ultrasonic waves. The attenuation of the ultrasonic wave transmitted through the bonding interface and received by the receiving probe is measured, and the ultrasonic wave of the standard bonded body bonded under known bonding conditions measured in advance based on the measured value An ultrasonic inspection method for a bonding material, wherein a bonding characteristic of the bonding material to be measured is inspected based on a correlation between an attenuation amount and a bonding characteristic.
【請求項2】 前記接合特性が、接合温度であることを
特徴とする請求項1に記載される接合材の超音波検査方
法。
2. The ultrasonic inspection method for a bonding material according to claim 1, wherein the bonding characteristic is a bonding temperature.
【請求項3】 前記接合特性が、接合強度であることを
特徴とする請求項1又は2に記載される接合材の超音波
検査方法。
3. The ultrasonic inspection method for a bonding material according to claim 1, wherein the bonding characteristic is a bonding strength.
【請求項4】 前記超音波は、縦波モードを用い、屈折
角が17゜〜30゜となるように前記被測定接合材に入
射させるようにしたことを特徴とする請求項1、2又は
3に記載される接合材の超音波検査方法。
4. The ultrasonic wave according to claim 1, wherein a longitudinal wave mode is used, and the ultrasonic wave is incident on the bonding material so as to have a refraction angle of 17 ° to 30 °. 3. The ultrasonic inspection method for a bonding material according to item 3.
【請求項5】 前記超音波は、その周波数が4MHz以
上10MHz以下であることを特徴とする請求項1、
2、3又は4に記載される接合材の超音波検査方法。
5. The ultrasonic wave according to claim 1, wherein the frequency is 4 MHz or more and 10 MHz or less.
The ultrasonic inspection method for a bonding material according to 2, 3, or 4.
【請求項6】 前記探触子は、一辺が8mm以上15m
m以下の角形探触子を用いることを特徴とする請求項
1、2、3、4又は5に記載される接合材の超音波検査
方法。
6. The probe has a side of 8 mm or more and 15 m in length.
The ultrasonic inspection method for a bonding material according to claim 1, 2, 3, 4, or 5, wherein a square probe of m or less is used.
【請求項7】 前記被接合材が、二相鋼からなることを
特徴とする請求項1、2、3、4、5又は6に記載され
る接合材の超音波検査方法。
7. The ultrasonic inspection method for a bonding material according to claim 1, wherein the material to be bonded is made of a duplex stainless steel.
JP10020213A 1998-01-16 1998-01-16 Ultrasonic inspection method for bonded material Pending JPH11201949A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10020213A JPH11201949A (en) 1998-01-16 1998-01-16 Ultrasonic inspection method for bonded material
EP98124887A EP0930502B1 (en) 1998-01-16 1998-12-30 A method for examining bonded-metal by ultrasonic examination
DE69816585T DE69816585T2 (en) 1998-01-16 1998-12-30 Method for examining metal composites using ultrasound
US09/224,710 US6302314B1 (en) 1998-01-16 1998-12-31 Method for examining bonded-metal by ultrasonic examination
NO990201A NO990201L (en) 1998-01-16 1999-01-15 Method of examining fused metal using ultrasound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10020213A JPH11201949A (en) 1998-01-16 1998-01-16 Ultrasonic inspection method for bonded material

Publications (1)

Publication Number Publication Date
JPH11201949A true JPH11201949A (en) 1999-07-30

Family

ID=12020895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10020213A Pending JPH11201949A (en) 1998-01-16 1998-01-16 Ultrasonic inspection method for bonded material

Country Status (1)

Country Link
JP (1) JPH11201949A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305111A (en) * 2000-04-20 2001-10-31 Tokimec Inc Ultrasonic rail flaw detector
CN100387982C (en) * 2004-11-19 2008-05-14 南京大学 Method for nonlinear quantitative non-destructive inspection of bonding interface cohesive force using contact sound
CN114280158A (en) * 2021-12-23 2022-04-05 中航金属材料理化检测科技有限公司 Ultrasonic contact type flaw detection method for large-thickness parts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305111A (en) * 2000-04-20 2001-10-31 Tokimec Inc Ultrasonic rail flaw detector
CN100387982C (en) * 2004-11-19 2008-05-14 南京大学 Method for nonlinear quantitative non-destructive inspection of bonding interface cohesive force using contact sound
CN114280158A (en) * 2021-12-23 2022-04-05 中航金属材料理化检测科技有限公司 Ultrasonic contact type flaw detection method for large-thickness parts

Similar Documents

Publication Publication Date Title
Zhu et al. Ameliorated longitudinal critically refracted—Attenuation velocity method for welding residual stress measurement
Cawley et al. The use of Lamb waves for the long range inspection of large structures
US7900516B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
Adams et al. Nondestructive testing of adhesively-bonded joints
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP5003275B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body
Carreón et al. Relation between hardness and ultrasonic velocity on pipeline steel welded joints
AU2004288099C1 (en) Method for checking a weld between two metal pipelines
US6302314B1 (en) Method for examining bonded-metal by ultrasonic examination
JPH11201949A (en) Ultrasonic inspection method for bonded material
JP2000074887A (en) Ultrasonic inspection method for joined material
JP2003130851A (en) Elastic parameter measuring device for material surface and coating layer
Aleshin et al. On the possibility of using ultrasonic surface and head waves in nondestructive quality checks of additive manufactured products
Zharinov et al. Laser-ultrasonic study of residual stresses in pipes made of austenitic steel
Bond Nondestructive Evaluation of Materials
Chang et al. Development of non-contact air coupled ultrasonic testing system for reinforced concrete structure
Nagai et al. Determination of shape profile by SAFT for application of phased array technique to complex geometry surface
Tallafuss et al. A feasibility study on different NDT techniques used for testing bond quality in cold roll bonded Al-Sn alloy/steel bimetal strips
Mojškerc et al. Ultrasonic disbond detection in adhesive joints
Ye et al. Welding induced residual stress evaluation using laser-generated Rayleigh waves
Murav’eva et al. Investigation of acoustic features of samples manufactured of 09G2C steel by selective laser sintering
Hauck et al. A surface wave mediator technique for crack detection in green parts
Maeva et al. Ultrasonic analysis of the degree of cure and cohesive properties of the adhesive in a bond joint
Hayajneh Diagnosis Of Surface And Subsurface Defects By Using Ultrasonic Techniques
JP2001183351A (en) Inspection method for jointed quality of metal pipe