JPH07249796A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH07249796A
JPH07249796A JP3815894A JP3815894A JPH07249796A JP H07249796 A JPH07249796 A JP H07249796A JP 3815894 A JP3815894 A JP 3815894A JP 3815894 A JP3815894 A JP 3815894A JP H07249796 A JPH07249796 A JP H07249796A
Authority
JP
Japan
Prior art keywords
layer
light emitting
impurities
emission
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3815894A
Other languages
Japanese (ja)
Other versions
JP3274271B2 (en
Inventor
Yasuo Oba
康夫 大場
Gokou Hatano
吾紅 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3815894A priority Critical patent/JP3274271B2/en
Publication of JPH07249796A publication Critical patent/JPH07249796A/en
Application granted granted Critical
Publication of JP3274271B2 publication Critical patent/JP3274271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To realize high luminance short wave emission by adding group II and IV elements simultaneously to an emission layer 11 thereby increasing the emission center without increasing diffusion of impurities. CONSTITUTION:A GaN buffer layer 12, an n-type GaN confinement layer 13, a GaN emission layer 14 doped with Se and Mg and a P-type GaN confinement layer 15 are grown on a saphire substrate 11 and a P side electrode 16 is formed on the layer 15 while an n side electrode 17 is formed on the side face of the buffer layer 12. Since a GaxAlxIn1-x-yN layer(0<x<=1, 0<=y<1) added simultaneously with group II and Vl elements is employed as an emission layer, the impurities are taken into the crystal as a pair of doner and acceptor thus suppressing the diffusion. Consequently, lowering of efficiency or deterioration of quality due to increase of lattice defect is prevented even if a relatively large quantity of impurities is added in order to increase the number of emission centers thus realizing a high luminance short waveform LED.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体材料を用
いた半導体発光素子に係わり、特にGaN系材料を用い
た半導体発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device using a compound semiconductor material, and more particularly to a semiconductor light emitting device using a GaN material.

【0002】[0002]

【従来の技術】窒素を含むIII-V族化合物半導体の一つ
であるGaNは、バンドギャップが3.4eVと大き
く、また直接遷移型であり、短波長青色発光素子用材料
として期待されている。GaN系材料を用いた半導体発
光素子では通常、発光層はZn,Mg等のII族のアクセ
プタ不純物が添加されたp型層であり、不純物が作る深
い準位(発光センター)からの発光を利用している。
2. Description of the Related Art GaN, which is one of III-V group compound semiconductors containing nitrogen, has a large band gap of 3.4 eV and is a direct transition type, and is expected as a material for a short wavelength blue light emitting device. . In a semiconductor light emitting device using a GaN-based material, the light emitting layer is usually a p-type layer to which a group II acceptor impurity such as Zn or Mg is added, and light emission from a deep level (light emission center) created by the impurity is used. is doing.

【0003】この種の半導体発光素子において、輝度飽
和を抑制して高輝度化をはかるには発光層の発光センタ
ーの数を増加させることが必要であるが、発光センター
を増加させるために発光層に高濃度に不純物をドープす
ると、膜形成時に発光層から多量の不純物が拡散してし
まう。このため、発光効率の高効率化がはかれない、格
子欠陥が増加し品質が低下する等の問題があり、高輝度
化が達成できない。
In this type of semiconductor light emitting device, it is necessary to increase the number of light emitting centers in the light emitting layer in order to suppress the brightness saturation and achieve high brightness. To increase the light emitting centers, however, the light emitting layer is required. If a high concentration of impurities is doped, a large amount of impurities will diffuse from the light emitting layer during film formation. For this reason, there are problems that the luminous efficiency cannot be improved, the lattice defects increase and the quality deteriorates, and high brightness cannot be achieved.

【0004】また、発光層に高濃度に不純物をドープす
ると、アクセプタに束縛された電子の波動関数同士が重
なり合い発光効率が急激に低下する。ドナー不純物との
間の遷移による発光を利用する場合には比較的高濃度ド
ープが可能であるが、これは発光に電子の空間的移動を
伴うため低効率である。
Further, when the light emitting layer is doped with impurities at a high concentration, the wave functions of the electrons bound by the acceptors are overlapped with each other and the light emitting efficiency is drastically reduced. When light emission due to a transition with a donor impurity is used, relatively high concentration doping is possible, but this is low in efficiency because the light emission involves spatial movement of electrons.

【0005】これらは、緑青色の半導体レーザを実現し
ようとする場合に特に大きな問題となり、これまでGa
N系材料を用いた緑青色の半導体レーザの動作例は報告
されていなかった。
These become particularly serious problems when trying to realize a green-blue semiconductor laser, and until now, Ga has been a problem.
An operation example of a green-blue semiconductor laser using an N-based material has not been reported.

【0006】[0006]

【発明が解決しようとする課題】このように従来、Ga
N系材料を用いた半導体発光素子においては、高輝度化
のために発光センターを増加させるには不純物の濃度を
高める必要があり、不純物濃度を高くすると、発光層か
らの不純物拡散により、効率低下や格子欠陥の増大によ
る品質低下を招く問題があり、高輝度短波長の発光を実
現することは困難であった。
As described above, the conventional Ga
In a semiconductor light emitting device using an N-based material, it is necessary to increase the concentration of impurities in order to increase the number of light emission centers in order to increase the brightness. It is difficult to realize high-luminance and short-wavelength light emission because there is a problem that quality is deteriorated due to increase of lattice defects and lattice defects.

【0007】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、発光層からの不純物の
拡散を増大させることなく発光センターを増加させるこ
とができ、高輝度短波長発光を実現し得る半導体発光素
子を提供することにある。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to increase the number of light emitting centers without increasing the diffusion of impurities from the light emitting layer. An object is to provide a semiconductor light emitting device that can realize light emission.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明は、次のような構成を採用している。即ち本発
明は、Gax Aly In1-x-y N層(0<x≦1,0≦
y<1)を発光層とする半導体発光素子において、発光
層にII族元素とVI族元素を同時に添加したことを特徴と
する。
In order to solve the above problems, the present invention employs the following configurations. That is, the present invention is, Ga x Al y In 1- xy N layer (0 <x ≦ 1,0 ≦
A semiconductor light emitting device having y <1) as a light emitting layer is characterized in that a group II element and a group VI element are simultaneously added to the light emitting layer.

【0009】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) Gas Alt In1-s-t N(0<s≦1,0<t≦
1)からなる第1導電型のクラッド層、Gax Aly
1-x-y N(0<x≦1,0≦y<1,y<t)からな
る活性層(発光層)、及びGas Alt In1-s-t Nか
らなる第2導電型のクラッド層で構成されるダブルヘテ
ロ接合構造を有すること。 (2) 発光層に添加するII族元素としてMg,Be,Z
n,Cd又はHgを用い、VI族元素としてSe,O,S
又はTeを用いること。 (3) 発光層中に添加されるII族元素と III族元素の濃度
を、それぞれ5×1019cm-3以上、望ましくは1×1
20cm-3以上に設定すること。
The following are preferred embodiments of the present invention. (1) Ga s Al t In 1-st N (0 <s ≦ 1, 0 <t ≦
1) A first conductivity type cladding layer consisting of Ga x Al y I
n 1-xy N (0 <x ≦ 1, 0 ≦ y <1, y <t) active layer (light-emitting layer), and second conductivity type cladding layer made of Ga s Al t In 1-st N It has a double heterojunction structure. (2) Mg, Be, Z as group II elements added to the light emitting layer
n, Cd, or Hg is used, and as a group VI element, Se, O, S
Or use Te. (3) The concentration of the group II element and the group III element added to the light emitting layer is 5 × 10 19 cm −3 or more, preferably 1 × 1.
Set it to 0 20 cm -3 or higher.

【0010】[0010]

【作用】発光層中に高濃度の不純物添加ができない最大
の理由は、発光層から不純物が拡散するためである。そ
こで本発明者らが鋭意研究及び各種実験を繰り返したと
ころ、アクセプタ性不純物とドナー性不純物を同時に添
加すると、ドナーとアクセプタのペア(D−Aペア)を
形成して結晶中に取り込まれるので、不純物の拡散が飛
躍的に抑えられることが判明した。また、この方法によ
れば、欠陥を利用した発光ではないので、発光効率が上
がるだけではなく、歩留まりも大幅に向上する。特に、
Znは拡散しやすいので、本方法が有効である。また、
Cdは作る準位が深いので、より高輝度化が望める。
The main reason why high concentration impurities cannot be added to the light emitting layer is that the impurities diffuse from the light emitting layer. Therefore, the inventors of the present invention have conducted extensive studies and various experiments, and when an acceptor impurity and a donor impurity are added at the same time, a donor-acceptor pair (D-A pair) is formed and incorporated into a crystal. It was found that the diffusion of impurities could be dramatically suppressed. Further, according to this method, since the light emission does not utilize the defect, not only the light emission efficiency is improved, but also the yield is significantly improved. In particular,
Since Zn easily diffuses, this method is effective. Also,
Since Cd has a deep level to be created, higher brightness can be expected.

【0011】しかも、ドナー性不純物としてVI族元素を
使用した場合は、アクセプタ性不純物であるII族元素と
最近接のペアを形成するために特に有効である。なお、
この手法をより有効にするには、発光層中のドナー性不
純物及びアクセプタ性不純物の添加量が、それぞれ5×
1019cm-3以上、望ましくは1×1020cm-3以上で
あり、さらにドナーとアクセプタの濃度差が5×1019
cm-3以下であることが望ましい。このためにはドーピ
ング量制御性の改善が必要であり、添加される不純物の
蒸気圧差が大きい方が良い。この点からも、ドナー性不
純物として蒸気圧の高いVI族元素とアクセプタ性不純物
としてのII族元素との組み合わせは望ましい。特に、II
族元素としてのZnとVI族元素としてのOの組み合わせ
は、GaNとZnOの結合長が略等しいためにさらに高
濃度添加が可能であり理想的である。さらに、II族元素
としては、Znの他にCd,Hg,Beも略同様に使用
でき、例えばBeとS,Se,Taとの組み合わせも例
示され得る。
Moreover, when the group VI element is used as the donor impurity, it is particularly effective for forming a closest pair with the group II element which is the acceptor impurity. In addition,
In order to make this method more effective, the addition amount of each of the donor impurity and the acceptor impurity in the light emitting layer should be 5 ×.
10 19 cm −3 or more, preferably 1 × 10 20 cm −3 or more, and the concentration difference between the donor and the acceptor is 5 × 10 19
It is preferably cm -3 or less. For this purpose, it is necessary to improve the controllability of the doping amount, and it is better that the difference in vapor pressure between the added impurities is large. From this point as well, a combination of a group VI element having a high vapor pressure as a donor impurity and a group II element as an acceptor impurity is desirable. Especially II
A combination of Zn as a group element and O as a group VI element is ideal because it can be added at a higher concentration because the bond lengths of GaN and ZnO are substantially equal. Further, as the Group II element, Cd, Hg, and Be can be used in the same manner in addition to Zn, and for example, a combination of Be and S, Se, Ta can be exemplified.

【0012】なお、アクセプタ性不純物とドナー性不純
物の他の組み合わせとしてSiとCの組み合わせがあ
り、この場合にはCがV族原子と置換しアクセプタとし
て働き、Siは III族原子と置換しドナーとして働く。
さらに、III 族であるB、V族であるAs,P等を添加
する場合には、構成元素と同族であるので拡散はしない
が、結晶中でアイソエレクトロニックトラップを形成す
るので、疑似的にD−Aペアを利用した場合と同様に発
光効率が向上する。従って本発明においては、上述した
ようなII族元素及びVI族元素以外に、これらの不純物を
適宜併用してもよい。
As another combination of acceptor impurities and donor impurities, there is a combination of Si and C. In this case, C substitutes a group V atom to act as an acceptor, and Si substitutes a group III atom to form a donor. Work as.
Further, when adding III group B, V group As, P, etc., they do not diffuse because they are in the same group as the constituent elements, but because they form an isoelectronic trap in the crystal, pseudo D The luminous efficiency is improved as in the case of using the -A pair. Therefore, in the present invention, in addition to the group II element and the group VI element as described above, these impurities may be appropriately used in combination.

【0013】このように本発明によれば、アクセプタ性
不純物及びドナー性不純物として、特にII族元素とVI族
元素を同時に添加することにより、発光層からの不純物
拡散を招くことなく、発光層であるGaInAlN層の
発光センターが増大し、これにより高輝度短波長の半導
体発光素子の実現が可能となる。
As described above, according to the present invention, the group II element and the group VI element are simultaneously added as acceptor impurities and donor impurities at the same time, so that impurity diffusion from the light emitting layer is not caused in the light emitting layer. The number of light emitting centers in a certain GaInAlN layer increases, which makes it possible to realize a semiconductor light emitting device with high brightness and short wavelength.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 (実施例1)図1は、本発明の第1の実施例に係わる青
色LEDの素子構造を示す断面図である。サファイア基
板11上に厚さ50nmのGaNバッファ層12、n型
のGaN閉じ込め層13(Siドープ:5×1017cm
-3,厚さ1μm)、SeとMgをドープした厚さ0.5
μmのGaN発光層14、p型のGaN閉じ込め層15
(Mgドープ:1×1018cm-3,厚さ1μm)が成長
形成されている。そして、閉じ込め層15上にはp側電
極16が形成され、バッファ層12の側面にはn側電極
17が形成されている。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a sectional view showing an element structure of a blue LED according to a first embodiment of the present invention. A GaN buffer layer 12 having a thickness of 50 nm and an n-type GaN confinement layer 13 (Si-doped: 5 × 10 17 cm) on a sapphire substrate 11.
-3 , thickness 1 μm), Se and Mg doped thickness 0.5
μm GaN light emitting layer 14, p-type GaN confinement layer 15
(Mg-doped: 1 × 10 18 cm −3 , thickness 1 μm) is grown and formed. A p-side electrode 16 is formed on the confinement layer 15, and an n-side electrode 17 is formed on the side surface of the buffer layer 12.

【0015】ここで、本実施例の特徴とする点は、発光
層14としてのGaNにII族元素としてMg、VI族元素
としてSeを添加したことにある。発光層14中のSe
とMgの濃度はそれぞれ1×1020cm-3であった。ア
クセプタとしてはMgの他にSe,Zn,Cd,Hg等
が、ドナーとしてはSeの他にSi,Ga,Sn,P
b,O,S,Te等が使用できる。このうち、青色用と
してはMg又はZnが、緑色用としてはCdが、赤色用
としてはHgが適している。
Here, a feature of this embodiment is that Mg is added as a group II element and Se is added as a group VI element to GaN as the light emitting layer 14. Se in the light emitting layer 14
The concentrations of Mg and Mg were 1 × 10 20 cm −3 , respectively. In addition to Mg, Se, Zn, Cd, Hg, etc. are used as acceptors, and Si, Ga, Sn, P are used as donors in addition to Se.
b, O, S, Te, etc. can be used. Of these, Mg or Zn is suitable for blue, Cd is suitable for green, and Hg is suitable for red.

【0016】このように本実施例では、GaN発光層1
4にMg,Seを同時に添加しているので、これらの不
純物はドナーとアクセプタのペア(D−Aペア)を形成
して結晶中に取り込まれることになり、発光層14から
の不純物の拡散が飛躍的に抑えられる。このため、発光
センターの数を増加させるために不純物を比較的多く添
加しても、効率低下や格子欠陥の増大による品質低下を
招くことはない。従って、高輝度短波長のLEDを実現
することができる。
As described above, in this embodiment, the GaN light emitting layer 1
Since Mg and Se are simultaneously added to 4, the impurities form a donor-acceptor pair (D-A pair) and are taken into the crystal, so that the diffusion of the impurities from the light emitting layer 14 is prevented. It can be dramatically reduced. Therefore, even if a relatively large amount of impurities is added in order to increase the number of light emitting centers, the efficiency is not lowered and the quality is not lowered due to the increase of lattice defects. Therefore, an LED with high brightness and short wavelength can be realized.

【0017】図2は、本実施例素子の製造に使用した成
長装置を示す概略構成図である。図中21は石英製の反
応管であり、この反応管21内にはガス導入口22から
原料混合ガスが導入される。そして、反応管21内のガ
スはガス排気口23から排気されるものとなっている。
FIG. 2 is a schematic configuration diagram showing a growth apparatus used for manufacturing the device of this embodiment. In the figure, 21 is a reaction tube made of quartz, and a raw material mixed gas is introduced into the reaction tube 21 from a gas introduction port 22. The gas in the reaction tube 21 is exhausted from the gas exhaust port 23.

【0018】反応管21内には、カーボン製のサセプタ
24が配置されており、試料基板27はこのサセプタ2
4上に載置される。また、サセプタ24は高周波コイル
25により誘導加熱されるものとなっている。なお、基
板27の温度は図示の熱電対26によって測定され、別
の装置により制御される。
A susceptor 24 made of carbon is arranged in the reaction tube 21, and the sample substrate 27 is used as the susceptor 2.
4. The susceptor 24 is induction heated by the high frequency coil 25. The temperature of the substrate 27 is measured by the illustrated thermocouple 26 and controlled by another device.

【0019】次に、図2の装置を用いたLEDの製造方
法について説明する。まず、試料基板27(サファイア
基板11)をサセプタ24上に載置する。ガス導入口2
2から高純度水素を毎分1l導入し、反応管21内の大
気を置換する。次いで、ガス排気口23をロータリーポ
ンプに接続し、反応管21内を減圧し、内部の圧力を2
0〜300Torrの範囲に設定する。
Next, a method of manufacturing an LED using the apparatus shown in FIG. 2 will be described. First, the sample substrate 27 (sapphire substrate 11) is placed on the susceptor 24. Gas inlet 2
High-purity hydrogen from 2 is introduced at a rate of 1 l / min to replace the atmosphere in the reaction tube 21. Next, the gas exhaust port 23 is connected to a rotary pump to reduce the pressure in the reaction tube 21 and reduce the internal pressure to 2
Set in the range of 0 to 300 Torr.

【0020】次いで、基板温度を450〜900℃に低
下させた後、H2 ガスをNH3 ガス,N24 ガス或い
はNを含む有機化合物、例えば(CH3222
切り替えると共に、有機金属Ga化合物、例えばGa
(CH33 或いはGa(C253 を導入して成長
を行う。同時に、必要に応じ有機金属Al化合物、例え
ばAl(CH33 或いはAl(C253 、有機金
属In化合物、例えばIn(CH33 或いはIn(C
253 を導入してAl,Inの添加を行う。
Next, after lowering the substrate temperature to 450 to 900 ° C., the H 2 gas is switched to NH 3 gas, N 2 H 4 gas or an organic compound containing N, for example (CH 3 ) 2 N 2 H 2 . Together with an organometallic Ga compound, for example Ga
(CH 3 ) 3 or Ga (C 2 H 5 ) 3 is introduced to grow. At the same time, if necessary, an organometallic Al compound such as Al (CH 3 ) 3 or Al (C 2 H 5 ) 3 and an organometallic In compound such as In (CH 3 ) 3 or In (C
2 H 5 ) 3 is introduced to add Al and In.

【0021】ドーピングを行う場合にはドーピング用原
料も同時に導入する。ドーピング用原料としては、Mg
用として有機金属Mg化合物、例えばMg(C25
2 ,Mg(C672 、Be用として有機金属Be化
合物、例えばBe(CH32 ,Be(C252
Zn用として有機金属Zn化合物、例えばZn(CH
32 ,Zn(C252 、Cd用として有機金属C
d化合物、例えばCd(CH32 ,Cd(C25
2 、Hg用として有機金属Hg化合物、例えばHg(C
32 ,Hg(C252 を使用する。
When doping is performed, a doping raw material is also introduced at the same time. As a doping raw material, Mg
For use in organometallic Mg compounds such as Mg (C 2 H 5 ).
2, Mg (C 6 H 7 ) 2, organometallic Be compound as a Be, for example, Be (CH 3) 2, Be (C 2 H 5) 2,
Organometallic Zn compounds for Zn, such as Zn (CH
3 ) 2 , Zn (C 2 H 5 ) 2 , Cd organometallic C
d compounds such as Cd (CH 3 ) 2 and Cd (C 2 H 5 ).
2 , organometallic Hg compounds for Hg, such as Hg (C
H 3) 2, using a Hg (C 2 H 5) 2 .

【0022】また、Se用としてSe水素化物、例えば
2 Se又は有機金属Se化合物、例えばSe(CH
32 ,Se(C252 、O用としてCO2 ,NO
2 ,N2 O,H2 O,C38 OH、S用としてS水素
化物、例えばH2 S或いは有機金属S化合物、例えばS
(CH32 ,S(C252 、Te用として有機金
属Te化合物、例えばTe(CH32 ,Te(C2
52 を使用する。
For Se, Se hydride such as H 2 Se or an organometallic Se compound such as Se (CH
3 ) 2 , Se (C 2 H 5 ) 2 , CO 2 for NO, NO
2 , N 2 O, H 2 O, C 3 H 8 OH, S hydrides for S, such as H 2 S or organometallic S compounds, such as S
(CH 3) 2, S ( C 2 H 5) 2, organometallic Te compound as a Te, for example, Te (CH 3) 2, Te (C 2 H
5 ) Use 2 .

【0023】また、Si用としてSi水素化物、例えば
SiH4 又は有機金属Si化合物、例えばSi(CH
32 ,Si(C252 、Ge用としてGe水素化
物、例えばGeH4 又は有機金属Ge化合物、例えばG
e(CH34 ,Ge(C254 、Sn用として有
機金属Sn化合物、例えばSn(CH34 ,Sn(C
254 を使用する。さらに、Pb用として有機金属
Pb化合物、例えばPb(CH34 ,Pb(C2
54 を使用する。
For Si, a Si hydride such as SiH 4 or an organometallic Si compound such as Si (CH
3 ) 2 , Si (C 2 H 5 ) 2 , Ge hydrides for Ge such as GeH 4 or organometallic Ge compounds such as G
e (CH 3 ) 4 , Ge (C 2 H 5 ) 4 , and Sn for organometallic Sn compounds such as Sn (CH 3 ) 4 and Sn (C
2 H 5 ) 4 is used. Furthermore, for Pb, an organometallic Pb compound such as Pb (CH 3 ) 4 or Pb (C 2 H
5 ) Use 4 .

【0024】具体的には、図1に示されるLEDの製造
には、原料としてNH3 を1×10-3 mol/min、Ga
(CH33 を1×10-5 mol/min、Al(CH33
を1×10-6 mol/min、In(CH33 を1×10-6
mol/min、導入して成長する。基板温度は1000℃、
圧力76Torr、原料ガスの総流量は1l/minとした。ド
ーパントにはSi,Mg,Seを用い、原料はSiH
4 ,Cp2 Mg,H2 Seをそれぞれ使用した。 (実施例2)図3は、本発明の第2の実施例に係わる半
導体レーザの素子構造を示す断面図である。3C−Si
C基板31上にn−GaInAlNバッファ層32が形
成され、その上にn−GaInAlNクラッド層33,
ZnとOを添加したInGaN発光層34,及びp−G
aInAlNクラッド層35からなるダブルヘテロ接合
構造が形成されている。ダブルヘテロ接合構造のクラッ
ド層35上にはストライプ状開口を有するn−GaIn
AlN電流阻止層36が形成され、その上にp−GaI
nAlNコンタクト層37が形成されている。そして、
コンタクト層37上にはp側電極38が形成され、基板
11の下面にはn側電極39が形成されている。
Specifically, in manufacturing the LED shown in FIG. 1, NH 3 is used as a raw material at 1 × 10 −3 mol / min and Ga.
(CH 3 ) 3 at 1 × 10 −5 mol / min, Al (CH 3 ) 3
Is 1 × 10 -6 mol / min, In (CH 3 ) 3 is 1 × 10 -6
Introduce and grow at mol / min. Substrate temperature is 1000 ° C,
The pressure was 76 Torr, and the total flow rate of the raw material gas was 1 l / min. Si, Mg, Se are used as the dopant, and SiH is used as the raw material.
4 , Cp 2 Mg and H 2 Se were used, respectively. (Embodiment 2) FIG. 3 is a sectional view showing an element structure of a semiconductor laser according to a second embodiment of the present invention. 3C-Si
An n-GaInAlN buffer layer 32 is formed on the C substrate 31, and an n-GaInAlN cladding layer 33,
InGaN light emitting layer 34 containing Zn and O, and p-G
A double heterojunction structure composed of the aInAlN cladding layer 35 is formed. N-GaIn having a stripe-shaped opening is formed on the cladding layer 35 of the double heterojunction structure.
An AlN current blocking layer 36 is formed and p-GaI is formed thereon.
The nAlN contact layer 37 is formed. And
A p-side electrode 38 is formed on the contact layer 37, and an n-side electrode 39 is formed on the lower surface of the substrate 11.

【0025】なお、ダブルヘテロ接合構造を構成する発
光層34はIn0.35Ga0.65N、クラッド層33,35
はIn0.35Ga0.55Al0.1 Nである。また、この結晶
積層構造は、基板31上に第1回目の成長によりバッフ
ァ層32から電流阻止層36までを成長した後、電流阻
止層36にストライプ状の溝を形成し、第2回目の成長
によりコンタクト層37を成長して形成される。
The light emitting layer 34 constituting the double heterojunction structure is In 0.35 Ga 0.65 N and the cladding layers 33 and 35.
Is In 0.35 Ga 0.55 Al 0.1 N. Further, in this crystal laminated structure, after growing from the buffer layer 32 to the current blocking layer 36 on the substrate 31 by the first growth, a stripe-shaped groove is formed in the current blocking layer 36, and the second growth is performed. Then, the contact layer 37 is grown and formed.

【0026】このような構成であれば、発光層34であ
るInGaNにZnとOを比較的多量に添加することに
より、発光センターを増大させることができる。そして
この場合、ZnとOを同時に添加することにより、発光
層34から不純物がクラッド層33,35に拡散するこ
とを抑制することができる。これにより、高輝度短波長
の半導体レーザを実現することができる。
With such a structure, the emission center can be increased by adding a relatively large amount of Zn and O to InGaN, which is the light emitting layer 34. In this case, by simultaneously adding Zn and O, it is possible to suppress the diffusion of impurities from the light emitting layer 34 into the cladding layers 33 and 35. As a result, a semiconductor laser with high brightness and short wavelength can be realized.

【0027】なお、本発明は上述した各実施例に限定さ
れるものではない。発光層に添加するZn,Mgの代わ
りには他のII族元素を用いることができ、発光層に添加
するSe,Oの代わりには他のVI族元素を用いることが
できる。また、素子構造は図1,3に限定されるもので
はなく、仕様に応じて適宜変更可能である。その他、本
発明の要旨を逸脱しない範囲で、種々変形して実施する
ことができる。
The present invention is not limited to the above embodiments. Other Group II elements can be used in place of Zn and Mg added to the light emitting layer, and other Group VI elements can be used in place of Se and O added to the light emitting layer. Further, the element structure is not limited to those shown in FIGS. 1 and 3, and can be appropriately changed according to the specifications. In addition, various modifications can be made without departing from the scope of the present invention.

【0028】[0028]

【発明の効果】以上詳述したように本発明によれば、発
光層であるGaInAlN層の発光センターが増大し、
高輝度短波長発光素子及び緑青色半導体レーザの実現が
可能となる。
As described in detail above, according to the present invention, the number of emission centers of the GaInAlN layer, which is the emission layer, increases.
It is possible to realize a high brightness short wavelength light emitting device and a green-blue semiconductor laser.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例に係わるLEDの素子構造を示す
断面図。
FIG. 1 is a sectional view showing an element structure of an LED according to a first embodiment.

【図2】第1の実施例素子の製造に使用した成長装置を
示す概略構成図。
FIG. 2 is a schematic configuration diagram showing a growth apparatus used for manufacturing the device of the first embodiment.

【図3】第2の実施例に係わる半導体レーザの素子構造
を示す断面図。
FIG. 3 is a sectional view showing an element structure of a semiconductor laser according to a second embodiment.

【符号の説明】[Explanation of symbols]

11…サファイア基板 12…GaNバッファ層 13…n型GaN閉じ込め層 14…GaN発光層 15…p型GaN閉じ込め層 16,17,38,39…電極 21…反応管 22…ガス導入口 23…ガス排気口 24…サセプタ 25…高周波コイル 26…熱電対 27…試料基板 31…3C−SiC基板 32…n−GaInAlNバッファ層 33…n−GaInAlNクラッド層 34…InGaN発光層 35…p−GaInAlNクラッド層 36…n−GaInAlN電流阻止層 37…p−GaInAlNコンタクト層 11 ... Sapphire substrate 12 ... GaN buffer layer 13 ... n-type GaN confinement layer 14 ... GaN light-emitting layer 15 ... p-type GaN confinement layer 16, 17, 38, 39 ... Electrode 21 ... Reaction tube 22 ... Gas inlet 23 ... Gas exhaust Mouth 24 ... Susceptor 25 ... High-frequency coil 26 ... Thermocouple 27 ... Sample substrate 31 ... 3C-SiC substrate 32 ... n-GaInAlN buffer layer 33 ... n-GaInAlN cladding layer 34 ... InGaN light emitting layer 35 ... p-GaInAlN cladding layer 36 ... n-GaInAlN current blocking layer 37 ... p-GaInAlN contact layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】II族元素とVI族元素が同時に添加されたG
x Aly In1-x-y N層(0<x≦1,0≦y<1)
を発光層としたことを特徴とする半導体発光素子。
1. A G to which a group II element and a group VI element are added at the same time.
a x Al y In 1-xy N layer (0 <x ≦ 1,0 ≦ y <1)
A semiconductor light-emitting device characterized by using as a light-emitting layer.
JP3815894A 1994-03-09 1994-03-09 Semiconductor light emitting device Expired - Fee Related JP3274271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3815894A JP3274271B2 (en) 1994-03-09 1994-03-09 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3815894A JP3274271B2 (en) 1994-03-09 1994-03-09 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH07249796A true JPH07249796A (en) 1995-09-26
JP3274271B2 JP3274271B2 (en) 2002-04-15

Family

ID=12517607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3815894A Expired - Fee Related JP3274271B2 (en) 1994-03-09 1994-03-09 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3274271B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022423A1 (en) * 2004-08-25 2006-03-02 Showa Denko K.K. Germanium-adding source for compound semiconductor, production method of compound semiconductor using the same and compound semiconductor
CN1316567C (en) * 2003-04-16 2007-05-16 方大集团股份有限公司 Preparation f green light fallium nitride base LED epitaxial wafer by adopting multiquantum well
CN100461475C (en) * 2005-03-31 2009-02-11 丰田合成株式会社 Method of forming a low temperature-grown buffer layer, light emitting element, method of making same, and light emitting device
CN101887938A (en) * 2010-06-29 2010-11-17 张汝京 LED chip and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316567C (en) * 2003-04-16 2007-05-16 方大集团股份有限公司 Preparation f green light fallium nitride base LED epitaxial wafer by adopting multiquantum well
WO2006022423A1 (en) * 2004-08-25 2006-03-02 Showa Denko K.K. Germanium-adding source for compound semiconductor, production method of compound semiconductor using the same and compound semiconductor
CN100461475C (en) * 2005-03-31 2009-02-11 丰田合成株式会社 Method of forming a low temperature-grown buffer layer, light emitting element, method of making same, and light emitting device
CN101887938A (en) * 2010-06-29 2010-11-17 张汝京 LED chip and manufacturing method thereof

Also Published As

Publication number Publication date
JP3274271B2 (en) 2002-04-15

Similar Documents

Publication Publication Date Title
US5656832A (en) Semiconductor heterojunction device with ALN buffer layer of 3nm-10nm average film thickness
US5998810A (en) Semiconductor light-emitting diode having a p-type semiconductor layer formed on a light-emitting layer
JPH0964477A (en) Semiconductor light emitting element and its manufacture
WO2011125449A1 (en) Nitrogen compound semiconductor light emitting element and manufacturing method thereof
US5909040A (en) Semiconductor device including quaternary buffer layer with pinholes
US9064996B2 (en) Group III nitride-based compound semiconductor light-emitting device and production method therefor
JPH08139361A (en) Compound semiconductor light emitting device
JP3509260B2 (en) Group 3-5 compound semiconductor and light emitting device
JPH09293897A (en) Semiconductor element and manufacture thereof
JPH07263748A (en) Iii group nitride semiconductor light emitting element and manufacture of it
JPH11220169A (en) Gallium nitride compound semiconductor device and manufacture thereof
JP3602856B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2007088269A (en) Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element
JP2965709B2 (en) Method for manufacturing semiconductor light emitting device
JPH11145063A (en) Semiconductor device having gallium nitride semiconductor layer and its manufacture
JPH09266327A (en) Group iii nitride chemical compound semiconductor light emitting element
JP3335974B2 (en) Gallium nitride based semiconductor light emitting device and method of manufacturing the same
JP3274271B2 (en) Semiconductor light emitting device
JPH09116130A (en) Iii-v compound semiconductor and its manufacture and light emitting device
JP3753369B2 (en) Nitride semiconductor light emitting device
JP3302162B2 (en) Semiconductor light emitting device
JPH07249820A (en) Semiconductor light-emitting element
US6258619B1 (en) Fabrication of semiconductor light emitting device
JPH0964419A (en) Iii-v compound semiconductor and light emitting element
JP3785059B2 (en) Manufacturing method of nitride semiconductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees