JP2007088269A - Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element - Google Patents

Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element Download PDF

Info

Publication number
JP2007088269A
JP2007088269A JP2005276200A JP2005276200A JP2007088269A JP 2007088269 A JP2007088269 A JP 2007088269A JP 2005276200 A JP2005276200 A JP 2005276200A JP 2005276200 A JP2005276200 A JP 2005276200A JP 2007088269 A JP2007088269 A JP 2007088269A
Authority
JP
Japan
Prior art keywords
layer
light emitting
band gap
electron blocking
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005276200A
Other languages
Japanese (ja)
Inventor
Nobuyuki Takakura
信之 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005276200A priority Critical patent/JP2007088269A/en
Publication of JP2007088269A publication Critical patent/JP2007088269A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve emission efficiency in a semiconductor light emitting element where an n-type nitride semiconductor layer, a light emitting layer (active layer) and a p-type nitride semiconductor layer are sequentially laminated on a substrate. <P>SOLUTION: Well layers 14a, 14b and 14c of the light emitting layer 14 are formed of an Al<SB>0.02</SB>In<SB>0.18</SB>Ga<SB>0.80</SB>N layer and a band gap at a room temperature is 2.7 eV. Barrier layers 14d, 14e, 14f and 14g are formed of an Al<SB>0.3</SB>In<SB>0.12</SB>Ga<SB>0.58</SB>N layer, and the band gap at the room temperature is 3.5 eV higher than 3.4 eV of GaN layers 13 and 16. An electron blocking layer 15 is formed of an Al<SB>0.4</SB>In<SB>0.1</SB>Ga<SB>0.5</SB>N layer, and the band gap at the room temperature is 3.8 eV. Thus, a deep well can be obtained and it can be formed at a temperature which is remarkably lower than a case when the electron blocking layer 15 is created by AlGaN. A deposition temperature is brought close to the light emitting layer 14, sufficient film quality can be obtained and emission efficiency can be improved much more. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体内で電子と正孔とを結合させて発光させる半導体発光素子、およびそれを用いる照明装置ならびにその半導体発光素子の製造方法に関する。   The present invention relates to a semiconductor light emitting element that emits light by combining electrons and holes in a semiconductor, an illumination device using the same, and a method for manufacturing the semiconductor light emitting element.

近年、III−N化合物(以下、ナイトライドと呼ぶ。)を用いて、その中に発光層(活性層)として多重量子井戸を形成し、外部から電流を流して、この多重量子井戸で電子と正孔とを結合させて発光させる半導体固体発光素子の発展が目覚しい。   In recent years, a III-N compound (hereinafter referred to as a nitride) is used to form a multiple quantum well as a light emitting layer (active layer) therein, and an electric current is passed from the outside. The development of semiconductor solid-state light emitting devices that emit light by combining holes is remarkable.

そのような半導体発光素子の代表例として、非特許文献1が挙げられる。その従来技術によれば、近紫外から青色で発光する半導体発光素子において、発光層の構成は、井戸層をInGa(1−x)N(0<x<1)、障壁層をGaNとするのが一般的である。さらに、電子の移動度は大変大きく、簡単に発光層を通り越してp層にリークしてしまうので、電子が量子井戸から溢れてp層に流れ込むのを防ぐために、上記文献では、非特許文献2にも示されている通り、発光層とp層との間に、障壁層よりバンドギャップの大きいAlGaN層を設けている。これは一般にエレクトロン・ブロッキンク層と呼ばれ、これによりp層への電子のリークを防ぎ、発光層への注入効率を向上させている。 A typical example of such a semiconductor light emitting device is Non-Patent Document 1. According to the prior art, in the semiconductor light emitting device emitting light from near ultraviolet to blue, the structure of the light emitting layer is such that the well layer is In x Ga (1-x) N (0 <x <1) and the barrier layer is GaN. It is common to do. Furthermore, since the electron mobility is very large and easily leaks into the p-layer through the light-emitting layer, in order to prevent electrons from overflowing from the quantum well and flowing into the p-layer, in the above-mentioned document, non-patent document 2 As also shown, an AlGaN layer having a band gap larger than that of the barrier layer is provided between the light emitting layer and the p layer. This is generally called an electron blocking layer, which prevents leakage of electrons into the p layer and improves injection efficiency into the light emitting layer.

そのような半導体発光素子の典型的な従来例を図3に示す。MOCVDを用いて、サファイア基板1上にバッファ層2を形成し、その後、1020℃でSiドープしたn型GaN層3を形成し、その上に発光層4、エレクトロン・ブロッキング層5を形成し、その上にp型GaN層6を形成してエピタキシャル層を完成させている。その後は、公知となっている技術を用いて、p型電極7およびn型電極8を形成して該半導体発光素子を完成する。   A typical conventional example of such a semiconductor light emitting device is shown in FIG. Using MOCVD, the buffer layer 2 is formed on the sapphire substrate 1, and then the Si-doped n-type GaN layer 3 is formed at 1020 ° C., and the light emitting layer 4 and the electron blocking layer 5 are formed thereon. A p-type GaN layer 6 is formed thereon to complete the epitaxial layer. Thereafter, the p-type electrode 7 and the n-type electrode 8 are formed using a known technique to complete the semiconductor light emitting device.

そして、発光層4は、3つの井戸層4a,4b,4cおよびそれを挟み込む障壁層4d,4e,4f,4gを交互に堆積して形成されており、井戸層4a,4b,4cはInGaNから成り、障壁層4d,4e,4f,4gはGaNから成り、これらの井戸層4a,4b,4cおよび障壁層4d,4e,4f,4gも、前記1020℃で形成される。また、発光層4からp型GaN層6への電子のリークを防ぐエレクトロン・ブロッキング層5は、AlGaNから成り、これも前記1020℃で形成される。   The light emitting layer 4 is formed by alternately depositing three well layers 4a, 4b, 4c and barrier layers 4d, 4e, 4f, 4g sandwiching them, and the well layers 4a, 4b, 4c are made of InGaN. The barrier layers 4d, 4e, 4f and 4g are made of GaN, and the well layers 4a, 4b and 4c and the barrier layers 4d, 4e, 4f and 4g are also formed at 1020 ° C. Further, the electron blocking layer 5 that prevents leakage of electrons from the light emitting layer 4 to the p-type GaN layer 6 is made of AlGaN, and is also formed at 1020 ° C.

このように構成される半導体発光素子のエネルギーバンド図を、図4に示す。簡単のために、バンドオフセットは省略してある。ここで、n型GaN層3およびp型GaN層6のバンドギャップは室温で3.4eVであり、発光層4中の障壁層4d,4e,4f,4gもGaNから成り、バンドギャップは同じく3.4eVである。一方、井戸層4a,4b,4cは、In0.17Ga0.83Nで形成され、バンドギャップは2.7eV、発光波長は460nmの青色である。
M.Koide.S, S. Yamasaki, S. Nagai, N. Koide,and S. Asam, H. Amano, and I. Akasak, Appl. Phys. Lett. 68, 1403 (1996) 「Introduction to Solid-State Lighting (John Wiley & Sons,Inc 2002)」pp53-54
FIG. 4 shows an energy band diagram of the semiconductor light emitting device configured as described above. For simplicity, the band offset is omitted. Here, the band gap of the n-type GaN layer 3 and the p-type GaN layer 6 is 3.4 eV at room temperature, the barrier layers 4d, 4e, 4f, and 4g in the light emitting layer 4 are also made of GaN, and the band gap is 3 .4 eV. On the other hand, the well layers 4a, 4b, and 4c are formed of In 0.17 Ga 0.83 N, have a band gap of 2.7 eV, and an emission wavelength of 460 nm in blue.
M. Koide.S, S. Yamasaki, S. Nagai, N. Koide, and S. Asam, H. Amano, and I. Akasak, Appl. Phys. Lett. 68, 1403 (1996) `` Introduction to Solid-State Lighting (John Wiley & Sons, Inc 2002) '' pp53-54

しかしながら、上述の従来技術では、まず発光層4がGaN/InGaNから成るので、この場合、井戸層4a,4b,4cの幅および深さをあまり大きく取れないために、電流密度が大きくなると該井戸層4a,4b,4cにキャリアが入りきれなくなり、該井戸層4a,4b,4cから溢れ、発光に寄与しなくなる。その結果、電流密度を上げてゆくと発光効率は単調に減少するという問題がある。   However, in the above-described prior art, first, since the light emitting layer 4 is made of GaN / InGaN, the width and depth of the well layers 4a, 4b, and 4c cannot be made so large. Carriers cannot enter the layers 4a, 4b, and 4c, overflow from the well layers 4a, 4b, and 4c, and do not contribute to light emission. As a result, there is a problem that the luminous efficiency decreases monotonously as the current density is increased.

また、InGa(1−x)N(0<x<1)の堆積温度は700〜800℃程度であるのに対して、GaNの堆積温度は1000〜1100℃程度であるので、InGaN/GaNを連続成長するためには、GaNの成長温度をInGaNに合わせて下げるか、もしくは800℃から1000℃まで急激に昇温しなければいけない。このため、障壁層4d,4e,4f,4gとなるGaNの結晶性は悪くなり、界面やGaN層内部にキャリアの捕獲準位や非発光再結合センターができてしまい、キャリアが捕獲される原因となる。加えて、エレクトロン・ブロッキング層5のAlGaNの形成温度はGaNよりさらに高いために、たとえばAlGaNを最適な温度より低温で堆積しなければならず、やはりGaNとAlGaNと界面に、欠陥もしくは不純物準位を形成して、前記キャリアの捕獲準位や非発光再結合センターを形成してしまう。 Further, the deposition temperature of In x Ga (1-x) N (0 <x <1) is about 700 to 800 ° C., whereas the deposition temperature of GaN is about 1000 to 1100 ° C. In order to continuously grow GaN, the growth temperature of GaN must be lowered in accordance with InGaN or rapidly increased from 800 ° C. to 1000 ° C. For this reason, the crystallinity of GaN that becomes the barrier layers 4d, 4e, 4f, and 4g is deteriorated, and a carrier trap level and a non-radiative recombination center are formed at the interface and inside the GaN layer, thereby causing the carriers to be trapped. It becomes. In addition, since the formation temperature of AlGaN in the electron blocking layer 5 is higher than that of GaN, for example, AlGaN must be deposited at a temperature lower than the optimum temperature, and defects or impurity levels are also formed at the interface between GaN and AlGaN. To form trapping levels of the carriers and non-radiative recombination centers.

本発明の目的は、InGaN/GaN発光層より深い発光層を形成して、キャリアの注入効率を高めるとともに、膜質の良いエレクトロン・ストッパー層を有する半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法を提供することである。   An object of the present invention is to form a light emitting layer deeper than an InGaN / GaN light emitting layer to increase carrier injection efficiency, and to have a semiconductor light emitting element having an electron stopper layer with good film quality, an illumination device using the same, and a semiconductor light emitting element It is to provide a manufacturing method.

本発明の半導体発光素子は、基板上に少なくともn型窒化物半導体層、発光層およびp型窒化物半導体層を順次積層して成る半導体発光素子において、前記発光層とp型窒化物半導体層との間にエレクトロン・ブロッキング層を備え、多重量子井戸構造から成る前記発光層の井戸層および障壁層ならびに前記エレクトロン・ブロッキング層がAlInGaNから成り、前記障壁層のバンドギャップはGaNのバンドギャップよりも大きく、かつ前記エレクトロン・ブロッキング層のバンドギャップは前記障壁層のバンドギャップよりも大きいことを特徴とする。   The semiconductor light-emitting device of the present invention is a semiconductor light-emitting device in which at least an n-type nitride semiconductor layer, a light-emitting layer, and a p-type nitride semiconductor layer are sequentially stacked on a substrate, wherein the light-emitting layer, the p-type nitride semiconductor layer, An electron blocking layer, and the well layer and barrier layer of the light emitting layer having a multiple quantum well structure and the electron blocking layer are made of AlInGaN, and the band gap of the barrier layer is larger than the band gap of GaN. The band gap of the electron blocking layer is larger than the band gap of the barrier layer.

また、本発明の半導体発光素子の製造方法は、基板上に少なくともn型窒化物半導体層、発光層およびp型窒化物半導体層を順次積層して成る半導体発光素子の製造方法において、1000±z1℃で前記基板上にn型窒化物半導体層を形成する工程と、温度を低下し、800±z2℃で、多重量子井戸構造から成る前記発光層の障壁層をAlInGaNで形成し、800±z3℃の温度で、井戸層をAlInGaNで形成する工程を前記障壁層と井戸層との組数回繰返す工程と、前記800±z2℃の温度で、エレクトロン・ブロッキング層をAlInGaNで形成する工程と、温度を上昇し、前記1000±z1℃で前記p型窒化物半導体層を形成する工程とを含むことを特徴とする。   According to another aspect of the present invention, there is provided a method for manufacturing a semiconductor light-emitting device, wherein the semiconductor light-emitting device is formed by sequentially stacking at least an n-type nitride semiconductor layer, a light-emitting layer, and a p-type nitride semiconductor layer on a substrate. A step of forming an n-type nitride semiconductor layer on the substrate at ℃, and the temperature is lowered, and at 800 ± z2 ℃, the barrier layer of the light emitting layer having a multiple quantum well structure is formed of AlInGaN, and 800 ± z3 A step of forming the well layer with AlInGaN at a temperature of ° C., a step of repeating the combination of the barrier layer and the well layer several times, a step of forming an electron blocking layer with AlInGaN at the temperature of 800 ± z 2 ° C., and And raising the temperature to form the p-type nitride semiconductor layer at 1000 ± z1 ° C.

上記の構成によれば、基板上に少なくともn型窒化物半導体層、発光層(活性層)およびp型窒化物半導体層を順次積層して成る半導体発光素子において、前記発光層とp型窒化物半導体層との間に、電子のp型窒化物半導体層への流入を阻止することで発光効率を高めるためのエレクトロン・ブロッキング層を設け、多重量子井戸構造(MQW)から成る発光層の井戸層をAly1Inx1Ga(1−x1)N(0<x1<1,0<y1<1)の4元元素で形成し、発光層の障壁層もAly2Inx2Ga(1−x2−y2)N(0<x2<1,0<y2<1)の4元元素で形成し、さらに前記エレクトロン・ブロッキング層もAly3Inx3Ga(1−x3−y3)N(0<x3<1,0<y3<1)の4元元素で形成する。そして、前記障壁層のバンドギャップはGaNのバンドギャップよりも大きく、かつ前記エレクトロン・ブロッキング層のバンドギャップは前記障壁層のバンドギャップよりも大きい。 According to the above configuration, in the semiconductor light emitting device in which at least the n-type nitride semiconductor layer, the light emitting layer (active layer), and the p type nitride semiconductor layer are sequentially stacked on the substrate, the light emitting layer and the p type nitride are provided. An electron blocking layer is provided between the semiconductor layer and an electron blocking layer for preventing light from flowing into the p-type nitride semiconductor layer to increase light emission efficiency, and the well layer of the light emitting layer having a multiple quantum well structure (MQW) Is formed with a quaternary element of Al y1 In x1 Ga (1-x1) N (0 <x1 <1, 0 <y1 <1), and the barrier layer of the light emitting layer is also Al y2 In x2 Ga (1-x2-y2). ) N (0 <x2 <1, 0 <y2 <1), and the electron blocking layer is also Al y3 In x3 Ga (1-x3-y3) N (0 <x3 <1, Formed with quaternary elements of 0 <y3 <1) . The band gap of the barrier layer is larger than the band gap of GaN, and the band gap of the electron blocking layer is larger than the band gap of the barrier layer.

そして、そのようなバンドギャップを実現するにあたって、AlInGaNのAlの量でバンドギャップを調整でき(Alを多くすることでバンドギャップを大きくできる)、またGaNよりもInGaNの方が低温でAlを加えることができる。   And in realizing such a band gap, the band gap can be adjusted by the amount of Al in AlInGaN (the band gap can be increased by increasing the amount of Al), and InGaN adds Al at a lower temperature than GaN. be able to.

したがって、エレクトロン・ブロッキング層は、AlGaNに近い高さのバンドギャップを有し、発光層からp層への電子のリークを防止して注入効率を高めることができる。また、InGaNと同等なバンドギャップを持つ井戸層を形成でき、かつGaNよりもバンドギャップの高い障壁層を形成でき、従来例よりも注入効率の高い発光層を形成することができる。さらにまた、前記エレクトロン・ブロッキング層はAlGaNより格段に低温で形成することができ、同じAlInGaNから成る井戸層および障壁層と成膜温度を近付け、界面や層内部に欠陥もしくは不純物準位の少ない膜質の良いエレクトロン・ブロッキング層を形成でき、更なる発光効率の向上を実現することができる。   Therefore, the electron blocking layer has a band gap as high as AlGaN, and can prevent the leakage of electrons from the light emitting layer to the p layer, thereby increasing the injection efficiency. In addition, a well layer having a band gap equivalent to that of InGaN can be formed, a barrier layer having a band gap higher than that of GaN can be formed, and a light emitting layer having a higher injection efficiency than that of the conventional example can be formed. Furthermore, the electron blocking layer can be formed at a temperature much lower than that of AlGaN. The well layer and barrier layer made of the same AlInGaN are brought close to the film formation temperature, and the film quality with few defects or impurity levels at the interface or inside the layer. A good electron blocking layer can be formed, and further improvement in luminous efficiency can be realized.

さらにまた、本発明の半導体発光素子は、前記井戸層がAly1Inx1Ga(1−x1)N(0<x1<1,0<y1<1)から成り、前記障壁層がAly2Inx2Ga(1−x2−y2)N(0<x2<1,0<y2<1)から成り、前記エレクトロン・ブロッキング層がAly3Inx3Ga(1−x3−y3)N(0<x3<1,0<y3<1)から成り、x1=0.18、y1=0.02、x2=0.12、y2=0.3、x3=0.1、y3=0.4であることを特徴とする。 Furthermore, in the semiconductor light emitting device of the present invention, the well layer is made of Al y1 In x1 Ga (1-x1) N (0 <x1 <1, 0 <y1 <1), and the barrier layer is Al y2 In x2. Ga (1-x2-y2) N (0 <x2 <1,0 <y2 <1), and the electron blocking layer is Al y3 In x3 Ga (1-x3-y3) N (0 <x3 <1 , 0 <y3 <1), and x1 = 0.18, y1 = 0.02, x2 = 0.12, y2 = 0.3, x3 = 0.1, y3 = 0.4 And

上記の構成によれば、量子井戸を深くして大きな注入電流を得ることができ、かつエレクトロン・ブロッキング層のバンドギャップも大きくしてリーク電流を抑えることができるとともに、成膜温度を800℃前後の比較的近い値に設定することができ、良好な膜質を得ることもできる。   According to the above configuration, the quantum well can be deepened to obtain a large injection current, and the band gap of the electron blocking layer can be increased to suppress the leakage current, and the film forming temperature is set to about 800 ° C. Can be set relatively close to each other, and good film quality can be obtained.

また、本発明の半導体発光素子は、前記発光層による中心発光波長が、380nm以上、470nm以下であることを特徴とする。   The semiconductor light emitting device of the present invention is characterized in that a central emission wavelength by the light emitting layer is 380 nm or more and 470 nm or less.

上記の構成によれば、上記の波長域はAlInGaN/AlInGaNの発光層(活性層)の発光効率が高い波長域であり、その波長域内で、所望とするバンドギャップを得ることができる組成とすることが望ましい。   According to said structure, said wavelength range is a wavelength range with high luminous efficiency of the light emitting layer (active layer) of AlInGaN / AlInGaN, and it is set as the composition which can obtain a desired band gap within the wavelength range. It is desirable.

さらにまた、本発明の照明装置は、前記の半導体発光素子を用いることを特徴とする。   Furthermore, the lighting device of the present invention is characterized by using the semiconductor light emitting element.

上記の構成によれば、照明装置では、蛍光体を調整することで所望の演色性を得ることができ、効率のよい励起光が要求されるので、上述のような発光効率の高い半導体発光素子を用いることは、特に照明装置に好適である。   According to the above configuration, the lighting device can obtain a desired color rendering property by adjusting the phosphor, and efficient excitation light is required. Therefore, the semiconductor light emitting device having high luminous efficiency as described above. It is particularly suitable for the lighting device.

本発明の半導体発光素子およびその製造方法は、以上のように、基板上に少なくともn型窒化物半導体層、発光層(活性層)およびp型窒化物半導体層を順次積層して成る半導体発光素子において、前記発光層とp型窒化物半導体層との間に、電子のp型窒化物半導体層への流入を阻止することで発光効率を高めるためのエレクトロン・ブロッキング層を設け、多重量子井戸構造(MQW)から成る発光層の井戸層をAly1Inx1Ga(1−x1)N(0<x1<1,0<y1<1)の4元元素で形成し、発光層の障壁層もAly2Inx2Ga(1−x2−y2)N(0<x2<1,0<y2<1)の4元元素で形成し、さらに前記エレクトロン・ブロッキング層もAly3Inx3Ga(1−x3−y3)N(0<x3<1,0<y3<1)の4元元素で形成し、前記障壁層のバンドギャップはGaNのバンドギャップよりも大きく、かつ前記エレクトロン・ブロッキング層のバンドギャップは前記障壁層のバンドギャップよりも大きくする。 As described above, the semiconductor light-emitting device and the method for manufacturing the same according to the present invention are obtained by sequentially laminating at least an n-type nitride semiconductor layer, a light-emitting layer (active layer), and a p-type nitride semiconductor layer on a substrate. An electron blocking layer is provided between the light emitting layer and the p-type nitride semiconductor layer to increase the light emission efficiency by preventing electrons from flowing into the p-type nitride semiconductor layer. The well layer of the light emitting layer made of (MQW) is formed of a quaternary element of Al y1 In x1 Ga (1-x1) N (0 <x1 <1, 0 <y1 <1), and the barrier layer of the light emitting layer is also Al y2 in x2 Ga (1-x2 -y2) N (0 <x2 <1,0 <y2 <1) of the form with quaternary elements, further wherein the electron blocking layer also Al y3 in x3 Ga (1- x3- y3) N (0 <x3 The band gap of the barrier layer is larger than the band gap of GaN, and the band gap of the electron blocking layer is larger than the band gap of the barrier layer. To do.

それゆえ、エレクトロン・ブロッキング層は、AlGaNに近い高さのバンドギャップを有し、発光層からp層への電子のリークを防止して注入効率を高めることができる。また、InGaNと同等なバンドギャップを持つ井戸層を形成でき、かつGaNよりもバンドギャップの高い障壁層を形成でき、従来例よりも注入効率の高い発光層を形成することができる。さらにまた、前記エレクトロン・ブロッキング層はAlGaNより格段に低温で形成することができ、同じAlInGaNから成る井戸層および障壁層と成膜温度を近付け、界面や層内部に欠陥もしくは不純物準位の少ない膜質の良いエレクトロン・ブロッキング層を形成することができ、更なる発光効率の向上を実現することができる。   Therefore, the electron blocking layer has a band gap with a height close to that of AlGaN, and can prevent the leakage of electrons from the light emitting layer to the p layer and increase the injection efficiency. In addition, a well layer having a band gap equivalent to that of InGaN can be formed, a barrier layer having a band gap higher than that of GaN can be formed, and a light emitting layer having a higher injection efficiency than that of the conventional example can be formed. Furthermore, the electron blocking layer can be formed at a temperature much lower than that of AlGaN. The well layer and barrier layer made of the same AlInGaN are brought close to the film formation temperature, and the film quality with few defects or impurity levels at the interface or inside the layer. A good electron blocking layer can be formed, and a further improvement in luminous efficiency can be realized.

さらにまた、本発明の照明装置は、以上のように、前記の半導体発光素子を用いる。   Furthermore, the illumination device of the present invention uses the semiconductor light emitting element as described above.

それゆえ、効率のよい励起光が要求される照明装置に、上述の半導体発光素子を用いることは、特に好適である。   Therefore, it is particularly preferable to use the above-described semiconductor light-emitting element in an illumination device that requires efficient excitation light.

図1は、本発明の実施の一形態に係る半導体発光素子の断面図である。本発明の半導体発光素子の基本構造は、前述の図3で示す半導体発光素子と同様であり、以下にその構造を説明する。サファイア基板11上には、バッファ層12、n型GaN層13、発光層14、エレクトロン・ブロッキング層15およびp型GaN層16が順に積層され、エピが完成される。その後、p型電極17およびn型電極18が形成される。前記発光層14は、3つの井戸層14a,14b,14cおよびそれを挟み込む障壁層14d,14e,14f,14gから構成されている。   FIG. 1 is a cross-sectional view of a semiconductor light emitting device according to an embodiment of the present invention. The basic structure of the semiconductor light emitting device of the present invention is the same as that of the semiconductor light emitting device shown in FIG. 3, and the structure will be described below. On the sapphire substrate 11, the buffer layer 12, the n-type GaN layer 13, the light emitting layer 14, the electron blocking layer 15 and the p-type GaN layer 16 are sequentially laminated to complete the epi. Thereafter, the p-type electrode 17 and the n-type electrode 18 are formed. The light emitting layer 14 includes three well layers 14a, 14b, and 14c and barrier layers 14d, 14e, 14f, and 14g sandwiching the well layers.

注目すべきは、本発明では、前記エレクトロン・ブロッキング層15の組成が図3で示す半導体発光素子と異なり、その成膜温度も異なることである。具体的には、井戸層14a,14b,14c、障壁層14d,14e,14f,14gおよびエレクトロン・ブロッキング層15の総てが、AlInGaNから成ることである。たとえば、前記井戸層14a,14b,14cはAl0.02In0.18Ga0.8Nから成り、障壁層14d,14e,14f,14gはAl0.3In0.12Ga0.58Nから成り、エレクトロン・ブロッキング層15はAl0.4In0.1Ga0.5Nから成る。これは、所望のバンドギャップを実現するにあたって、総ての層をAlInGaNで作成すると、Alの量でバンドギャップを調整でき(Alを多くすることでバンドギャップを大きくできる)、またGaNよりもInGaNの方が低温でAlを加えることができるためである。 It should be noted that in the present invention, the composition of the electron blocking layer 15 is different from that of the semiconductor light emitting device shown in FIG. Specifically, the well layers 14a, 14b, 14c, the barrier layers 14d, 14e, 14f, 14g, and the electron blocking layer 15 are all made of AlInGaN. For example, the well layers 14a, 14b and 14c are made of Al 0.02 In 0.18 Ga 0.8 N, and the barrier layers 14d, 14e, 14f and 14g are Al 0.3 In 0.12 Ga 0.58 N. The electron blocking layer 15 is made of Al 0.4 In 0.1 Ga 0.5 N. In order to achieve a desired bandgap, if all layers are made of AlInGaN, the bandgap can be adjusted by the amount of Al (the bandgap can be increased by increasing Al), and more than InGaN. This is because Al can be added at a lower temperature.

以下に、上述のように構成される半導体発光素子の結晶成長方法を説明する。成長に用いるガスは、キャリアガスとして、水素ガス(H)、窒素ガス(N)、成長に係わるガスとして、アンモニア(NH)、トリメチルガリウム(Ga(CH)、トリメチルアルミニウム(Al(CH)、トリメチルインジウム、(In(CH)、シラン(SiH)、シクロペンタジエニルマグネシウム(Mg(C)である。 Below, the crystal growth method of the semiconductor light-emitting device comprised as mentioned above is demonstrated. The gases used for the growth are hydrogen gas (H 2 ), nitrogen gas (N 2 ) as carrier gases, and ammonia (NH 3 ), trimethyl gallium (Ga (CH 3 ) 3 ), and trimethyl aluminum (G) as growth gases. Al (CH 3 ) 3 ), trimethylindium, (In (CH 3 ) 3 ), silane (SiH 4 ), and cyclopentadienyl magnesium (Mg (C 5 H 5 ) 2 ).

先ず、サファイア基板11を有機および酸溶液にて洗浄を行う。そして、MOCVD装置を用いて、76Torrの減圧雰囲気下で、550℃で30nmのGaNバッファ層12を形成し、その後1000±z1℃、たとえばz1=+20の1020℃に昇温して、Siをドープしながらn型GaN層13を3μm堆積する。これらの技術はすでに周知の事柄であり、詳細は省略する。   First, the sapphire substrate 11 is cleaned with an organic and acid solution. Then, using a MOCVD apparatus, a GaN buffer layer 12 having a thickness of 30 nm is formed at 550 ° C. in a reduced pressure atmosphere of 76 Torr, and then heated to 1000 ± z 1 ° C., for example, 1020 ° C. of z1 = + 20, and doped with Si. Then, 3 μm of the n-type GaN layer 13 is deposited. These techniques are already well known and will not be described in detail.

その後、温度を800±z2℃、たとえばz2=+40の840℃に降温し、材料ガスとして、アンモニア、トリメチルガリウム、トリメチルインジウムおよびトリメチルアルミニウムを、それぞれインジウムの組成比が12%、アルミニウムの組成比が30%、ガリウムの組成比が58%になるように流量比を選んで流し、発光層14内の1番目の障壁層14dとなる前記Al0.3In0.12Ga0.58N層を厚さ約5nm形成する。続いて、温度を800±z3℃、たとえばz3=0の800℃に降温し、障壁層形成の場合と同様に、それぞれのガス流量比を選んで、インジウムの組成比が18%、アルミニウムの組成比が2%、ガリウムの組成比が80%になる条件で、発光層14内の1番目の井戸層14aとなる前記Al0.02In0.18Ga0.80N層を厚さ約3nm形成する。以下同様に、2番目の障壁層14eおよび井戸層14b、3番目の障壁層14fおよび井戸層14c、ならびに4番目の障壁層14gを形成する。 Thereafter, the temperature is lowered to 800 ± z2 ° C., for example, 840 ° C. where z2 = + 40, and ammonia, trimethylgallium, trimethylindium, and trimethylaluminum are used as material gases, respectively, with an indium composition ratio of 12% and an aluminum composition ratio of The Al 0.3 In 0.12 Ga 0.58 N layer serving as the first barrier layer 14d in the light emitting layer 14 is flowed by selecting a flow ratio so that the composition ratio of gallium is 30% and 58%. A thickness of about 5 nm is formed. Subsequently, the temperature is lowered to 800 ± z3 ° C., for example, 800 ° C. where z3 = 0, and in the same manner as in the formation of the barrier layer, the respective gas flow ratios are selected, the indium composition ratio is 18%, and the aluminum composition The Al 0.02 In 0.18 Ga 0.80 N layer serving as the first well layer 14a in the light emitting layer 14 is about 3 nm thick under the condition that the ratio is 2% and the composition ratio of gallium is 80%. Form. Similarly, the second barrier layer 14e and the well layer 14b, the third barrier layer 14f and the well layer 14c, and the fourth barrier layer 14g are formed.

この後に、障壁層14gの温度800±z2℃の840℃に保ったまま、アンモニア、トリメチルガリウム、トリメチルインジウムおよびトリメチルアルミニウムのそれぞれのガス流量比を変えて、インジウムの組成比が10%、アルミニウムの組成比が40%、ガリウムの組成比が50%になるようにし、前記エレクトロン・ブロッキング層15となる前記Al0.4In0.1Ga0.5N層を厚さ約20nm形成する。 Thereafter, the gas flow ratio of ammonia, trimethylgallium, trimethylindium and trimethylaluminum is changed while maintaining the temperature of the barrier layer 14g at 840 ° C., which is 800 ± z 2 ° C., and the composition ratio of indium is 10%. The Al 0.4 In 0.1 Ga 0.5 N layer to be the electron blocking layer 15 is formed to a thickness of about 20 nm so that the composition ratio is 40% and the gallium composition ratio is 50%.

その後は、前記1000±z1℃の1020℃に昇温して、Mgをドープしながら、p型GaN層16を形成してエピウェハの作成を終了し、p型電極17およびn型電極18を形成するのであるが、これも従来から周知の手法であるので、詳細は省略する。こうして、本発明の半導体発光素子が完成する。   Thereafter, the temperature is raised to 1020 ° C., which is 1000 ± z1 ° C., the p-type GaN layer 16 is formed while doping Mg, and the creation of the epi-wafer is completed to form the p-type electrode 17 and the n-type electrode 18. However, since this is also a conventionally well-known method, details are omitted. Thus, the semiconductor light emitting device of the present invention is completed.

図2は、上述のように作成された本発明の半導体発光素子の半導体層におけるエネルギーバンド図である。簡単のため、バンドオフセットは省略している。n型GaN層13およびp型GaN層16のバンドギャップは、室温で3.4eVである。前記発光層14の内、障壁層14d,14e,14f,14gは前記Al0.3In0.12Ga0.58N層から成り、バンドギャップは室温で3.5eVと、GaN層13,16より高い障壁を実現しており、したがって量子井戸の深さは従来例のInGaN/GaNよりも深く、キャリアの蓄積量も多くできる。 FIG. 2 is an energy band diagram in the semiconductor layer of the semiconductor light emitting device of the present invention prepared as described above. For simplicity, the band offset is omitted. The band gaps of the n-type GaN layer 13 and the p-type GaN layer 16 are 3.4 eV at room temperature. Among the light emitting layers 14, the barrier layers 14d, 14e, 14f, and 14g are composed of the Al 0.3 In 0.12 Ga 0.58 N layer, and the band gap is 3.5 eV at room temperature. Therefore, the quantum well is deeper than the conventional InGaN / GaN and the amount of accumulated carriers can be increased.

一方、井戸層14a,14b,14cは前記Al0.02In0.18Ga0.80N層から成り、室温でのバンドギャップは2.7eVで、該井戸層14a,14b,14cで発光再結合により発光される光の波長は、460nmの青色である。エレクトロン・ブロッキング層15は、前記Al0.4In0.1Ga0.5N層から成り、室温でのバンドギャップは3.8eVと障壁層14d,14e,14f,14gよりも高く、電子のp型GaN層16へのリークを止めるには充分な高さである。 On the other hand, the well layers 14a, 14b, 14c are composed of the Al 0.02 In 0.18 Ga 0.80 N layer, and the band gap at room temperature is 2.7 eV. The well layers 14a, 14b, 14c emit light again. The wavelength of light emitted by the coupling is 460 nm blue. The electron blocking layer 15 is made of the Al 0.4 In 0.1 Ga 0.5 N layer, and has a band gap at room temperature of 3.8 eV, which is higher than the barrier layers 14d, 14e, 14f, and 14g. The height is high enough to stop leakage to the p-type GaN layer 16.

ここで、図3の従来例のAlGaNで同様な高さのバンドギャップを有するエレクトロン・ブロッキング層5を形成するためには、Al組成14%、Ga組成86%のAl0.14Ga086Nを1100℃で堆積する必要があり、発光層4の解離を防ぐためには、前述したように、この最適なAl0.14Ga086N形成条件よりかなり低温で形成しなければならない。(750−850℃)。 Here, in order to form the electron blocking layer 5 having the same band gap with the conventional AlGaN of FIG. 3, Al 0.14 Ga 086 N having an Al composition of 14% and a Ga composition of 86% is used. It is necessary to deposit at 1100 ° C., and in order to prevent dissociation of the light emitting layer 4, as described above, it must be formed at a temperature considerably lower than the optimum Al 0.14 Ga 086 N forming conditions. (750-850 ° C).

したがって、本発明のエレクトロン・ブロッキング層15は、格段に低温で形成でき、発光層14の膜質も該エレクトロン・ブロッキング層15の膜質も共に高品質に保ちながら、素子の形成が可能なことが理解される。また、InGaNと同等なバンドギャップを持つ井戸層14a,14b,14cを形成でき、かつGaNよりもバンドギャップの高い障壁層14d,14e,14f,14gを形成でき、InGaN/GaN発光層4より深く、多くの電子を蓄積できる発光層14を形成することができる。このようにして、従来よりも発光効率を向上することができる。   Therefore, it is understood that the electron blocking layer 15 of the present invention can be formed at a remarkably low temperature, and the device can be formed while maintaining both the film quality of the light emitting layer 14 and the film quality of the electron blocking layer 15 at a high quality. Is done. In addition, well layers 14a, 14b, and 14c having a band gap equivalent to InGaN can be formed, and barrier layers 14d, 14e, 14f, and 14g having a band gap higher than that of GaN can be formed, and deeper than the InGaN / GaN light-emitting layer 4. Thus, the light emitting layer 14 capable of accumulating many electrons can be formed. In this way, the light emission efficiency can be improved as compared with the conventional case.

また、AlとInとの2つのパラメータx,yを調整することで、前記発光層14の中心発光波長およびバンドギャップを容易に変化させることができ、前記中心発光波長を380nm以上、470nm以下とすることで、AlInGaN/AlInGaNから成る発光層14の発光効率を高くすることができる。   Further, by adjusting the two parameters x and y of Al and In, the center emission wavelength and the band gap of the light emitting layer 14 can be easily changed, and the center emission wavelength is set to 380 nm or more and 470 nm or less. By doing so, the luminous efficiency of the light emitting layer 14 made of AlInGaN / AlInGaN can be increased.

さらにまた、半導体発光素子を用いる照明装置では、蛍光体を調整することで所望の演色性を得ることができ、効率のよい励起光が要求されるので、上述のような発光効率の高い半導体発光素子を用いることは、特に照明装置に好適である。   Furthermore, in a lighting device using a semiconductor light emitting element, a desired color rendering property can be obtained by adjusting a phosphor, and efficient excitation light is required. The use of the element is particularly suitable for a lighting device.

本発明の実施の一形態に係る半導体発光素子の断面図である。1 is a cross-sectional view of a semiconductor light emitting element according to an embodiment of the present invention. 本発明の半導体発光素子によるエネルギーバンド図である。It is an energy band figure by the semiconductor light-emitting device of this invention. 従来技術の半導体発光素子の断面図である。It is sectional drawing of the semiconductor light-emitting device of a prior art. 従来技術の半導体発光素子によるエネルギーバンド図である。It is an energy band figure by the semiconductor light emitting element of a prior art.

符号の説明Explanation of symbols

11 サファイア基板
12 バッファ層
13 n型GaN層
14 発光層
14a,14b,14c 井戸層
14d,14e,14f,14g 障壁層
15 エレクトロン・ブロッキング層
16 p型GaN層
17 p型電極
18 n型電極
11 Sapphire substrate 12 Buffer layer 13 n-type GaN layer 14 Light-emitting layers 14a, 14b, 14c Well layers 14d, 14e, 14f, 14g Barrier layer 15 Electron blocking layer 16 p-type GaN layer 17 p-type electrode 18 n-type electrode

Claims (5)

基板上に少なくともn型窒化物半導体層、発光層およびp型窒化物半導体層を順次積層して成る半導体発光素子において、
前記発光層とp型窒化物半導体層との間にエレクトロン・ブロッキング層を備え、
多重量子井戸構造から成る前記発光層の井戸層および障壁層ならびに前記エレクトロン・ブロッキング層がAlInGaNから成り、前記障壁層のバンドギャップはGaNのバンドギャップよりも大きく、かつ前記エレクトロン・ブロッキング層のバンドギャップは前記障壁層のバンドギャップよりも大きいことを特徴とする半導体発光素子。
In a semiconductor light-emitting device comprising at least an n-type nitride semiconductor layer, a light-emitting layer, and a p-type nitride semiconductor layer sequentially stacked on a substrate,
An electron blocking layer is provided between the light emitting layer and the p-type nitride semiconductor layer,
The well layer and barrier layer of the light emitting layer having a multiple quantum well structure and the electron blocking layer are made of AlInGaN, and the band gap of the barrier layer is larger than the band gap of GaN, and the band gap of the electron blocking layer Is larger than the band gap of the barrier layer.
前記井戸層がAly1Inx1Ga(1−x1)N(0<x1<1,0<y1<1)から成り、前記障壁層がAly2Inx2Ga(1−x2−y2)N(0<x2<1,0<y2<1)から成り、前記エレクトロン・ブロッキング層がAly3Inx3Ga(1−x3−y3)N(0<x3<1,0<y3<1)から成り、x1=0.18、y1=0.02、x2=0.12、y2=0.3、x3=0.1、y3=0.4であることを特徴とする請求項1記載の半導体発光素子。 The well layer is made of Al y1 In x1 Ga (1-x1) N (0 <x1 <1, 0 <y1 <1), and the barrier layer is Al y2 In x2 Ga (1-x2-y2) N (0 <X2 <1, 0 <y2 <1), and the electron blocking layer is made of Al y3 In x3 Ga (1-x3-y3) N (0 <x3 <1, 0 <y3 <1), x1 2. The semiconductor light emitting device according to claim 1, wherein: 0.18, y 1 = 0.02, x 2 = 0.12, y 2 = 0.3, x 3 = 0.1, and y 3 = 0.4. 前記発光層による中心発光波長が、380nm以上、470nm以下であることを特徴とする請求項1記載の半導体発光素子。   2. The semiconductor light emitting element according to claim 1, wherein a central emission wavelength by the light emitting layer is 380 nm or more and 470 nm or less. 前記請求項2または3記載の半導体発光素子を用いることを特徴とする照明装置。   An illumination device using the semiconductor light emitting element according to claim 2. 基板上に少なくともn型窒化物半導体層、発光層およびp型窒化物半導体層を順次積層して成る半導体発光素子の製造方法において、
1000±z1℃で前記基板上にn型窒化物半導体層を形成する工程と、
温度を低下し、800±z2℃で、多重量子井戸構造から成る前記発光層の障壁層をAlInGaNで形成し、800±z3℃の温度で、井戸層をAlInGaNで形成する工程を前記障壁層と井戸層との組数回繰返す工程と、
前記800±z2℃の温度で、エレクトロン・ブロッキング層をAlInGaNで形成する工程と、
温度を上昇し、前記1000±z1℃で前記p型窒化物半導体層を形成する工程とを含むことを特徴とする半導体発光素子の製造方法。
In a method for manufacturing a semiconductor light-emitting element, in which at least an n-type nitride semiconductor layer, a light-emitting layer, and a p-type nitride semiconductor layer are sequentially stacked on a substrate.
Forming an n-type nitride semiconductor layer on the substrate at 1000 ± z1 ° C .;
The barrier layer of the light emitting layer having a multiple quantum well structure is formed of AlInGaN at a temperature of 800 ± z 2 ° C., and the well layer is formed of AlInGaN at a temperature of 800 ± z 3 ° C. A step of repeating the set with the well layer several times;
Forming an electron blocking layer of AlInGaN at a temperature of 800 ± z2 ° C .;
And raising the temperature to form the p-type nitride semiconductor layer at 1000 ± z1 ° C.
JP2005276200A 2005-09-22 2005-09-22 Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element Pending JP2007088269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005276200A JP2007088269A (en) 2005-09-22 2005-09-22 Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005276200A JP2007088269A (en) 2005-09-22 2005-09-22 Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JP2007088269A true JP2007088269A (en) 2007-04-05

Family

ID=37974946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005276200A Pending JP2007088269A (en) 2005-09-22 2005-09-22 Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JP2007088269A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056632A1 (en) * 2006-11-07 2008-05-15 Rohm Co., Ltd. GaN SEMICONDUCTOR LIGHT EMITTING ELEMENT
JP2008118049A (en) * 2006-11-07 2008-05-22 Rohm Co Ltd GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE
JP2008118048A (en) * 2006-11-07 2008-05-22 Rohm Co Ltd GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE
JP2010027924A (en) * 2008-07-22 2010-02-04 Sumitomo Electric Ind Ltd Group iii nitride light-emitting diode
KR100946034B1 (en) 2008-02-01 2010-03-09 삼성전기주식회사 Nitride semiconductor light emitting device
WO2014123092A1 (en) 2013-02-05 2014-08-14 株式会社トクヤマ Nitride semiconductor light-emitting element
WO2014168334A1 (en) * 2013-04-11 2014-10-16 서울바이오시스 주식회사 Light emitting diode having improved electrostatic and discharge characteristics
JP2015082612A (en) * 2013-10-23 2015-04-27 旭化成株式会社 Nitride light-emitting element and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076519A (en) * 2000-08-30 2002-03-15 Fujitsu Ltd Semiconductor laser
JP2003008059A (en) * 2001-06-22 2003-01-10 Sharp Corp Nitride-family semiconductor light-emitting element
JP2004134787A (en) * 2002-09-18 2004-04-30 Toyoda Gosei Co Ltd Group iii nitride compound semiconductor light-emitting device
JP2005175056A (en) * 2003-12-09 2005-06-30 Nichia Chem Ind Ltd Nitride semiconductor substrate and nitride semiconductor laser element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076519A (en) * 2000-08-30 2002-03-15 Fujitsu Ltd Semiconductor laser
JP2003008059A (en) * 2001-06-22 2003-01-10 Sharp Corp Nitride-family semiconductor light-emitting element
JP2004134787A (en) * 2002-09-18 2004-04-30 Toyoda Gosei Co Ltd Group iii nitride compound semiconductor light-emitting device
JP2005175056A (en) * 2003-12-09 2005-06-30 Nichia Chem Ind Ltd Nitride semiconductor substrate and nitride semiconductor laser element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056632A1 (en) * 2006-11-07 2008-05-15 Rohm Co., Ltd. GaN SEMICONDUCTOR LIGHT EMITTING ELEMENT
JP2008118049A (en) * 2006-11-07 2008-05-22 Rohm Co Ltd GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE
JP2008118048A (en) * 2006-11-07 2008-05-22 Rohm Co Ltd GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE
KR100946034B1 (en) 2008-02-01 2010-03-09 삼성전기주식회사 Nitride semiconductor light emitting device
JP2010027924A (en) * 2008-07-22 2010-02-04 Sumitomo Electric Ind Ltd Group iii nitride light-emitting diode
WO2014123092A1 (en) 2013-02-05 2014-08-14 株式会社トクヤマ Nitride semiconductor light-emitting element
KR20150114488A (en) 2013-02-05 2015-10-12 가부시끼가이샤 도꾸야마 Nitride semiconductor light-emitting element
WO2014168334A1 (en) * 2013-04-11 2014-10-16 서울바이오시스 주식회사 Light emitting diode having improved electrostatic and discharge characteristics
JP2015082612A (en) * 2013-10-23 2015-04-27 旭化成株式会社 Nitride light-emitting element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2007088270A (en) Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element
JP5737111B2 (en) Group III nitride semiconductor light emitting device
TWI451591B (en) Nitride-based light emitting device
TWI436495B (en) Nitride-based light emitting device
JP5874593B2 (en) Group III nitride semiconductor light emitting device and method for manufacturing the same
CN101188264B (en) Nitride semiconductor light-emitting device
TW201724560A (en) Nitride semiconductor light emitting element
JP5279006B2 (en) Nitride semiconductor light emitting device
TW201631797A (en) Group iii nitride semiconductor light emitting element and method for manufacturing same
US8716048B2 (en) Light emitting device and method for manufacturing the same
JP6587673B2 (en) Light emitting element
JP2010258096A (en) Nitride semiconductor light emitting device
JP2007088269A (en) Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element
US10580936B2 (en) Group III nitride semiconductor light-emitting device and production method therefor
KR20130141945A (en) Light emitting device having electron blocking layer
JP5777196B2 (en) Manufacturing method of nitride semiconductor light emitting device
KR100998234B1 (en) Nitride semiconductor light emitting device and method for fabricating the same
JP2009076864A (en) Nitride-based light emitting device
KR20090056319A (en) Nitride compound semiconductor light-emitting device with a superlattice structure
JP2008227103A (en) GaN-BASED SEMICONDUCTOR LIGHT EMITTING ELEMENT
KR100881053B1 (en) Nitride based light emitting device
KR20130094451A (en) Nitride semiconductor light emitting device and method for fabricating the same
JP2004158893A (en) 3 group nitride semiconductor light emitting device
WO2022196374A1 (en) Light-emitting element
JP2010232290A (en) Nitride semiconductor light-emitting diode and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629